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Abstract

This thesis investigates the use of a Lagrangian mean wind field in a

two-dimensional tracer transport model. Advection by the Lagrangian mean

circulation accounts for approximately 90% of the horizontal transport and

all of the vertical transport in the model. A horizontal diffusion coeffi-

cient of 1.0x1010 cm2/sec was introduced into the model to account for the

variance in wind velocities, since the model uses seasonally-averaged wind

fields.

The model was applied to three chemical species: carbon tetrachloride,

trichlorofluoromethane, and dichlorodifluoromethane. These halocarbons are

of interest because of their potential for catalytic destruction of ozone in

the stratosphere. They are primarily of anthropogenic origin and are

modeled as having a source at ground level and a sink due to

photodissociation in the stratosphere. The photodissociation lifetimes and

the global and ground level trends were calculated and compared to observa-

tions obtained by the Atmospheric Lifetime Experiment.
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I. Introduction

Two-dimensional models of tracer transport have traditionally employed

advection by the zonally averaged mean meridional circulation and

gradient-induced flow parameterized in terms of eddy diffusion.

Tracer experiments have shown that the atmospheric mean mass flow, espe-

cially in the stratosphere, does not look like the Eulerian mean meridional

circulation but more closely resembles the "Brewer-Dobson" circulation.

(See Dutsch, 1971.) The explanation is that the eddy fluxes are just as

important as the mean meridional circulation in determining the magnitude

and direction of mass transport in the atmosphere. In fact, the Eulerian

mean transport and the eddy transport almost cancel. Thus the net zonally

averaged transport is the small residual obtained by summing two large terms

of opposite sign. This approach is subject to numerical error and the

empirical determination of diffusion coefficients lacks a physical basis.

Dunkerton (1978) treated the transport problem as purely advective by the

use of a Lagrangian mean circulation. He calculated a set of Lagrangian

mean wind velocities using the thermodynamic and continuity equations and

simplifying under the assumption that meridional temperature advection and

vertical eddy fluxes were small. Dunkerton arrived at a simplified balance

equation relating diabatic heating and static stability to the Lagrangian

mean wind velocities. He was able to show that this circulation resembled

the "Brewer-Dobson" circulation.

Olaguer (1982) followed the approach of Dunkerton but did not neglect

meridional temperature advection or wave dissipation. He calculated a

Lagrangian mean circulation for the solstices based on mutually-consistent

temperature and diabatic heating profiles from a run of the MIT

three-dimensional stratospheric model. His Lagrangian mean velocities, with

some smoothing, are used in our two-dimensional tracer transport model.

Holton (1981) used the theory of the residual mean meridional circulation



to develop an Eulerian two-dimensional advective model of stratospheric

tracer transport. The residual mean meridional circulation, as defined by

Andrews and McIntyre (1976), is the difference between the Eulerian mean

circulation and the eddy-induced circulation. This definition removes all

eddy terms from the thermodynamic and transport equations if the eddy field

is steady and adiabatic. The residual mean circulation used by Holton was

calculated from the output of the Holton and Wehrbein three-dimensional mod-

el and included the effects of diabatic heating, wave transience, and dissi-

pation. Holton applied his residual mean circulation to the transport of

N20 and found qualitative agreement with observed tracer profiles.

Tung (1982) approached the problem of the residual mean circulation with

the use of isentropic coordinates. He showed that the zonal mean circula-

tion calculated in isentropic coordinates is the mean diabatic circulation.

This circulation is thermally direct and is in the same direction as tracer

transport trajectories. Tung used Eulerian coordinates in his formulation

to retain applicability to conventionally-obtained atmospheric data. Howev-

er, he also showed that advective velocities in isentropic coordinates are

approximately the Lagrangian mean velocities for the case of steady, conser-

vative eddy fields and inert tracers.

Our model is an attempt to calculate the transport of tracers due to

advection by the Lagrangian mean circulation, as formulated by Dunkerton and

Olaguer. With tracer transport occurring by advection only, large concen-

tration gradients were produced in our tracer concentration fields by

allowing the same velocity field to operate on the tracer for a full season.

The real atmosphere does not possess such strong concentration gradients

because of mixing due to eddies and a large variance about the mean wind.

We therefore introduced a diffusion term into the transport equation which

smooths the concentrations and keeps concentration gradients within reason-

able limits. The largely advective nature of our model is demonstrated by
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separately monitoring the amount of transport due to advection and the

amount due to diffusion. Diffusion accounted for an average of 15% of the

horizontal transport crossing the equator and an average of 8.5% of the

total horizontal transport. All vertical transport was due to advection.
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II. The Model

1. The differential equations

The model used in this thesis was derived from the two-dimensional model

of Pitari and Visconti (1980). However, it differs from their model in that

it uses Lagrangian velocities, has only horizontal diffusion, and includes

industrial input to the lower boundary. It also has a revised scheme for

evaluating the transport term and different boundary conditions.

The differential equation to be solved by the model and integrated in a

forward time-stepping scheme is:

Q = ( ind + ( .9 trans + (Q)chem
at at/ at \at'

where Q=molecular number density of tracer,

X=number mixing ratio of tracer=Q/p,

p=molecular number density of air,

(bQ/at)ind=industrial input of tracer to atmosphere,

(bQ/bt)trans=net molecular transport of tracer,

(aQ/bt)chem=net chemical production or destruction of tracer.

In spherical coordinates, the transport term can be written as:

(aQtrans = 1 [_ __(vpcosfX) _ _(wpcosfX) + __(Kyypcosf6X)
at cosf abo az a6f a73

where f,z are coordinates in the latitudinal and vertical directions, v,w

are Lagrangian mean velocities in the northward and upward directions, and a

is the radius of the earth.

The chemistry term includes only photodissociation by ultraviolet radia-

tion. It can be expressed in terms of a rate constant J.

(u chem = -QJ.
at

2. The grid

The differential equation is solved in finite difference form on a grid

from 80.5 0N to 80.50S and from the ground to an elevation of 71.6 km. Grid



points are spaced every 11.5 degrees of latitude and every 2.864 km in the

vertical. The grid spacing was chosen to duplicate that used in the

derivation of the Lagrangian mean wind velocities.

The grid point levels are numbered from 1 to 26, with level 1 at 71.6 km

and level 26 at the ground. The 15 latitudes are numbered from north to

south, beginning at 80.50N. Grid point (i,j) will be used in this paper to

represent the grid point at latitude i and level j.

3. The finite difference equations

In finite difference form, AQ/At is the sum of three finite difference

terms.

(AQ)ind + (AQ)trans + AQ)chem
At i~j At i'j At i'j At ij

a) Industrial source term

The industrial source term represents the release to the atmosphere of a

pollutant of industrial or domestic origin. Since such sources are at or

near ground level, this term is applied only to the lowest two layers of

grid points, implying that the tracer is well mixed up to 4.3 km above the

ground within a few model time steps. The total annual anthropogenic

release of the tracer and the latitudinal distribution of its release are

input to the model. The model then calculates the number of molecules of

tracer per square centimeter to be added to the ground level grid points at

each time step such that the same mixing ratio is added to the two lowest

grid points at each latitude.

b) Transport term

The transport term represents the movement of tracer between grid points

within the model. Mass conservation is ensured by enforcing continuity on

the assumed Lagrangian mean velocity field. The velocities obey the conti-

nuity equation as written here in spherical coordinates:

_ _(vpcosO) + b(wpcosf) = 0
a6f 2)z



To minimize numerical instability, the finite differences were taken

across a distance of one grid space, i.e. the difference was taken from

half a grid space on one side of a point to half a grid space on the other

side of the point. Mixing ratios midway between grid points were equated

with the linear average of the mixing ratios of the two nearest points.

Xi+1/2,j *= .5(Xi,3 + Xi+1,j)

Xi,j+1/2 = 0.5(Xi,j + Xij+1 )

Velocities midway between grid points were found by averaging the mass flux

between adjacent grid points.

(vpcosO)i+1/2 ,j = 0.5[(vpcoso)i,j + (vpcoso)i+1,j]

(wpcosO)i,j+1/2 = 0.5[(wpcoso)i,j + (wpcoso)i,j+1)

It can be shown that the field of velocities at the points midway between

grid points also satisfies continuity. Note that our modified velocity

field has the horizontal and vertical velocities defined at different

points. See Figure 1 for an illustration.

The finite difference equation for the transport term becomes:

(A&)trans = 1 [(-vpcos Xi-1/2 - cos) Xi+/
At ij cosoi aAO )i-1/2,j i-12, aAO /i+1/2,ji+/,

+z -co)X-f-wpcosf) X~~
/[(-wpcos)i,j-1/2 ifj-1/2 \ Az i,j+1/2 i,2

+ rKY3pcosf) (X. X. .) - (K3 pcosO (X. .- X.
L -aAO)'6 i-1/2,j '11 ']i -aAO)2 'i+1/2, j i, j i+1,j

The horizontal dispersion coefficient Kyy is a parameterization meant to

account for atmospheric eddies which disperse the tracer more uniformly than

seasonally averaged Lagrangian transport could.

c) Chemistry term

The change in the tracer concentration at a grid point due to

photodissociation is proportional to the concentration at that grid point

and to the photodissociation coefficient, J.

(Q) chem _ _
At ij 1, i3j
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Figure 1: Sample of model grid. Solid dots represent model grid points

at which tracer concentration is predicted and for which v and w are
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differences are taken and for which only v or w is defined.
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4. Boundary Conditions

The boundary conditions are that no mass crosses the boundaries of the

model. This constraint is applied by setting the horizontal Lagrangian wind

velocities at 80.5 0N and 80.5 0S to zero, setting the vertical Lagrangian

wind velocities at level 1 and level 26 to zero, and setting aX/by to zero

at the side boundaries. Finite differences at the boundaries are uncentered

and are taken over half of the normal distance.

At the left side boundary, 80.5 0N, the transport term becomes:

(AQ)trans = 1 -_ _ -vpcsX
At 1, cosl I 0.5aAO )1+1/2,j 1+1/2,j

+ L( -wpcos) X- f-wpcos) X 2\ Az /1,j-1/2 1,j-1/2 \_ Az /1,j+1/2 1,j+1/2

+ - ( KyYPCOS4) (X 1 .-X ) .
\0.5(aAO)2/1+1/2,j1, 2j

and similarly for the right side boundary. At the lower boundary, the

transport term is:

(AQ)trans = 1 [R-vpcosO x - {-vpcosf\ xi

i,26 cos)i L aA /i-1/2,26 2,26 \ aAf i+1/2,26

+ (-wPcosO) X26-1/
0.5Az /i,26-1/2 i2-/

+ f(KYypcosf (X -x.) - (KyyPcos) (x -X ).
\ (aA)/ i-1,26 i,26 (aAO) i+1/ 2 , 2 6  .i

5. Integration

Time integration of the finite difference equation is performed with the

Lorenz 4-cycle time differencing scheme (Lorenz, 1971). The sum of the

transport and chemistry terms is multiplied by a constant times the time

step interval in seconds and added to the concentration at each grid point.

The time step is 6 hours, and the 4-cycle scheme is complete, yielding sec-

ond order time integration precision, every 24 hours.

The value of Q after the Nth cycle, using a time step of At, is:

Q(t+At)if = Q(t)ig + Z(t)i,g.

For N=1, Z(t)jg = At(AQ/At)ig,



N=2,3,4, Z(t)ij = -(N-1)/(5-N) Z(t-At)ij + 4At/(5-N)(AQ/At)i,j,

where (AQ ) = Q )trans + (AQ chem.
At i,j At i,j At i~j

The industrial source term, in molecules per cubic centimeter per day, is

added to Q after a cycle of four time steps is completed.

Q(t+At)i, = Q(t)i,j + 4At(AQ)ind
At i, j

When an integration resulted in the concentration at a grid point being

less than zero, it was set to zero and the necessary tracer mass was

"borrowed" from neighboring grid points so as to avoid having unaccounted

losses of mass from the system. Our technique was similar to that of

Mahlman and Moxim (1978) except that tracer mass was borrowed equally from

all suitable neighboring grid points. Suitable neighboring grid points had

tracer concentrations at least as great as the magnitude of the negative

grid point concentration. Negative concentrations were produced mainly

above 30 km and the mass transport associated with "borrowing" to fill them

in was at least 8 orders of magnitude less than the model transport due to

advection.

6. Data

Our two-dimensional model uses seasonally averaged data. Temperatures,

photodissociation coefficients, Lagrangian mean wind velocities, and hori-

zontal diffusion coefficients are input for each season. The Northern Hemi-

sphere winter season is December, January, and February.

The temperature values are those used by Pitari and Visconti (1980) and

are derived from Dopplick (1972) below 30 km and Run 17 of the MIT

three-dimensional model above 30 km. The photodissociation coefficients are

calculated seasonally from cross-sections for the appropriate chemical spe-

cies by a separate program which accounts for Rayleigh scattering in the

calculation, as described by Pitari and Visconti (1978).



The Lagrangian mean velocity fields were derived from those calculated by

E. Olaguer (1982). He calculated v and w for each day of January and July

using daily values of density, potential temperature, and heating rate

derived from runs of the MIT three-dimensional model. Daily values of v and

w were averaged to give January and July monthly average velocities.

Olaguer's calculation of Lagrangian mean velocities is described in Appendix

A.

Because Olaguer's Lagrangian mean velocity field was derived from two

months of data from one run of a specific model, his velocity fields were

not as smooth as we desired for the climatological application needed in our

model. For this reason, we found it necessary to smooth the velocity

fields. Starting with the monthly averaged Lagrangian wind velocities, we

applied continuity to produce a w field derived from the v field so that

continuity was satisfied with our density fields. Deviations from Olaguer's

w field were small. All values of w greater than 8 km/day were treated as

missing and replaced by interpolation, since these values appeared to be

unrealistic for our application. Six of the 390 January values and 10 of

the 390 July values of w were replaced. A triangular smoothing function was

then applied to the w momentum field (wpcoso). Smoothing included two

points to either side of a given point in the vertical and one point to

either side in the horizontal. We applied continuity twice more, going from

w to v and then from v to w, yielding velocity fields which satisfied conti-

nuity and which had v=0 at the side boundaries and w=0 at the top and bottom

boundaries.

Seasonal values of Lagrangian velocities were obtained by assuming that

the wind speeds vary sinusoidally with the seasons. The following time

variation equation was applied and averaged over the seasons:

v(x,z,t)=0.5(vs+vw) + 0.5(vs~vw)cos(2'fft/360)

where vs and vw are the July and January average meridional velocities and t



is the number of days past July 15. A similar equation applies to the aver-

age vertical velocities.

For seasonal averages that represent a climatological mean, we wanted the

Northern Hemisphere winter circulation to be similar to the Southern Hemi-

sphere winter circulation six months later. To achieve this, we averaged

the velocities for each season over both hemispheres and again checked con-

tinuity. See Figures 2-5 for the seasonally averaged Lagrangian velocity

fields for winter-summer and spring-fall that were used in our model.

With only advective transport, our concentration fields frequently showed

increasing tracer concentrations from the ground up to 20 km. With the Kyy

field set at 1.0x1010 cm2/sec for all latitudes, heights, and seasons, maxi-

mum concentrations appeared at or near ground level. The concentration

field was adequately smooth and the largely advective character of the model

was maintained. Other Kyy values tried were 1.0x109 and 5.0x109 , but they

were found to produce inadequate smoothing. Vertical diffusion coefficients

of 1.0x105 in the troposphere and 1.0x102 in the stratosphere were also

tried, but they were found to be unnecessary and, in addition, to produce

too much upward transport of tracer as compared to observations.

7. Model constraints

The time step used in the model is constrained to be less than that which

would cause mass to be advected across a distance of one grid space. In our

case, the maximum horizontal and vertical velocities are 2471 cm/sec and

4.197 cm/sec, respectively. The grid spacing is 1278 km in the horizontal

and 2.864 km in the vertical. This implies that our time step must be less

than 14 hours. Our 6 hour time step satisfies this constraint.

Our model does not account for possible sources and sinks of tracer

except for anthropogenic release at ground level and photodissociation in

the stratosphere. Other possible sources include an oceanic flux, chemical

reactions in the atmosphere, or other natural sources. The oceans and the
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deserts may also act as sinks for atmospheric pollutants. Other chemical

reactions, primarily in the stratosphere, destroy some of our tracers. The

reaction with O(1 D) was found by Golombek (1982) to be less than 2% of the

photodissociation destruction for CFCl 3 and less than 12% for CF2C12* It is

very small for CCl4.

We ensure that numerical errors are not occurring in our integration of

the tracer continuity equation by printing out, at the beginning and end of

each season, the total amount of tracer in the model atmosphere, the mass

input due to anthropogenic sources, and the mass loss due to photochemical

dissociation. Input minus loss always exactly balanced tracer increase.



III. Model Results

1. Model diagnostics

Our model was tested by running it for three consecutive years for the

man-made pollutants carbon tetrachloride (CC14 ), trichlorofluoromethane

(CFCl3), and dichlorodifluoromethane (CF2Cl2). The model was evaluated by

comparing the results to the data taken by the Atmospheric Lifetime Experi-

ment (ALE). (Cunnold, et al, 1982a,b; Simmonds, et al, 1982)

The photodissociation lifetime was computed every 30 days of the model

runs. The instantaneous photodissociation lifetime r is defined as the

total atmospheric content of tracer divided by the rate of photochemical

destruction. Our computed lifetime values are 30 day averages. Annual

averages were also calculated and are compared with previous estimates of

the photodissociation lifetime. Unfortunately, atmospheric measurements

still leave large uncertainties in our knowledge of the photodissociation

lifetimes of these substances.

The trend, or percentage rate of increase, of a tracer is our most valu-

able diagnostic parameter because we can compare it with the trends being

measured at the five global monitoring stations in the ALE network. The

trend over a particular time period is defined as

(i/X) (dX/dt)=A

where A is a constant. It can be calculated by fitting our modeled concen-

trations to a line of the form

ln X = At + B.

We have used a least squares curve fit to the mixing ratios at the end of

each season for our three years of calculated data. We calculate a global

trend based on the total atmospheric tracer content, surface trends

corresponding to each of the five ALE sites, and a surface global trend.

The surface global trend is an area weighted average of the ALE site surface

trends. The same area-weighting is applied to the ALE observations for



comparison.

2. ALE Data

The ALE network was set up to provide accurate measurements of atmospher-

ic halocarbons over a time period long enough to determine their trends and

lifetimes. Measurements of trichlorofluoromethane, dichlorodifluoromethane,

carbon tetrachloride, nitrous oxide, and methyl chloroform are taken three

to four times a day using elctron-capture gas chromatography.

Concentrations are determined by comparison with an on-site standard.

(Prinn et al, 1982)

The five operating stations are Adrigole, Ireland at a latitude of 520N,

Cape Meares, Oregon at 450N, Ragged Point, Barbados at 130N, the NOAA site

in Americal Samoa at 140 S, and Cape Grim, Tasmania at 410S. All sites

except Oregon have been operating since July 1978 and three years of data

have been obtained for them. Cape Meares, Oregon began operating in January

1980. Nineteen months of data have been obtained for this station. See

Table 1 for the ALE station numbering system which will be used in the

remainder of this thesis.

The trends fitted to the ALE station data are optimal estimations of a

linear trend with a curvature term and an annual cycle. The data for

Adrigole and Cape Meares have been combined to produce a composite single

trend.

3. Initialization

Our model was initialized using the same initial two-dimensional concen-

tration profiles as were used by Golombek (1982). Measured concentrations

at four of the ALE stations for July 1978 were used as the initial horizon-

tal profile by linearly interpolating between stations. Vertical profiles

were from a one-dimensional model by Crutzen et al (1978) for our three

pollutants. A second profile obtained from measurements by Fabian (1981)

and Fabian et al (1981) at a location in Germany (-44 0N) was also used for



Table 1: ALE station numbers and locations.

Station
Name

Adrigole, Ireland

Cape Meares, Oregon

Ragged Point, Barbados

NOAA Site, American Samoa

Cape Grim, Tasmania

Location

520N, 10*W

450N,1240W

130N, 590W

140S,171*W

410S,1450E

Date at which
measurements began

July, 1978

January,1980

July, 1978

July,1978

July, 1978

Station
Number

1

2

3

4

5



the two chlorofluorocarbons. Two-dimensional initial profiles were obtained

by multiplying the vertical profile by the ratio of the horizontal profile

surface concentration to the vertical profile surface concentration for each

model latitude. Initial horizontal and vertical profiles are shown in

Tables 2 and 3.

4. Anthropogenic source

Anthropogenic release rates are based on reports of the Chemical Manufac-

turers Association and are summarized by Simmonds et al (1982) for carbon

tetrachloride, by Cunnold et al (1982a) for CFC13 , and by Cunnold et al

(1982b) for CF2Cl2 . Annual atmospheric releases for the years 1978 to 1981

are shown in Table 4. Our values are updated to those given in the February

1982 CMA report and thus are slightly different from Golombek's.

Our anthropogenic source distribution follows Golombek (1982) but is

integrated over longitude for application to our two-dimensional model. The

latitudinal distribution of the anthropogenic source in percent of total

input is shown in Table 5.

5. Photodissociation

Photochemical dissociation is the chemical breakdown of a compound in the

presence of ultraviolet radiation. The main reactions undergone by the

halocarbons studied in our model are:

CCCl
CCl 4 +hv------ 4 -- >CCl 3 +Cl

JCFC1
CFCl 3 +hv------- 3 ->CFCl 2 +Cl

JCF Cl
CF2Cl2+hv----

2--2->CF 2Cl+Cl.

The J values, or photodissociation coefficients, determine the reaction

rates. J values are computed for a given latitude, level, and season by the

following numerical integration over wavelength:

Jk (Po)~ =1Ok (X) F (po, X

where ak is the absorption cross-section of species k, F is the solar flux

at wavelength X and solar angle to the zenith of arccos(p). Solar flux is



Table 2: Horizontal concentration profiles used for model
initialization. Concentrations at ALE stations are measured
monthly average mixing ratios for July 1978. Other mixing ratios
are interpolated.

Latitude

80.5 0 N

69.0*N

57.5 0N

46.0*N

34.5 0 N

23.0*N

11.5 0N

0.0

11.5*S

23.0*S

34.50 S

46.0*S

57.50S

69.0*S

80.5*S

ALE
Station

1

3

4

5

CCl4
(pptv)

119.0

119.0

119.0

117.9

116.8

115.8

114.7

112.3

109.9

111.2

112.5

113.8

113.8

113.8

113.8

CFCl3
(pptv)

166.9

166.9

166.9

165.1

163.3

161.6

159.8

152.4

145.0

144.0

143.1

142.1

142.1

142.1

142.1

CF2Cl2
CF2Cl2
(pptv)

273.7

273.7

273.7

272.5

271.4

270.2

269.0

255.4

241.7

241.8

241.8

241.9

241.9

241.9

241.9



Table 3: Vertical concentration profiles used for model initialization.
(from Crutzen et al, 1978 or Fabian, 1981 and Fabian et al, 1981)

height
level (km)

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

48.7

45.8

43.0

40.1

37.2

34.4

31.5

28.6

25.8

22.9

20.0

17.2

14.3

11.5

8.6

5.7

2.9

0.0

CCl 4
CRU

(pptv)

0.1

0.4

1.2

4.5

17.0

37.0

67.7

87.2

110.1

111.6

117.7

117.8

118.6

118.8

118.8

CFCl
3

FAB
(pptv)

0.3

1.4

5.7

18.0

40.8

76.7

95.3

120.5

136.8

151.5

151.4

153.1

153.1

CFCl
3

CRU
CF 2 Cl 2

FAB
CF2 Cl 2

CRU
(pptv) I (pptv) (pptv)

0.2

1.0

4.3

16.9

42.1

75.4

109.3

127.7

137.1

145.5

152.3

152.2

153.2

153.2

0.1

1.0

3.1

8.5

18.7

36.1

54.9

70.6

103.5

151.0

187.1

214.0

237.6

253.8

254.6

256.4

256.4

0.1

1.3

4.4

12.0

27.8

52.2

84.0

106.6

135.0

166.9

196.6

215.7

229.4

242.2

254.7

255.0

256.5

256.6

I1 -- L I __________________

1 1



Table 4: Annual anthropogenic releases to atmosphere
(109 gm/year).

References:
(1) Simmonds, et al (1982)
(2) Cunnold, et al (1982a)
(3) Cunnold, et al (1982b)

*-Estimated value.

year CCl4 (1) CFCl 3 (
2) CF2C12 (3)

1978 99.2 294.6 384.9

1979 93.0 276.1 388.4

1980 97.2 264.3 392.5

1981 97.2* 264.3 412.2



Table 5: Latitudinal distribution of anthropogenic
release in per cent for years 1978-1981. (from
Golombek, 1982)

latitude

80.5 0N

69.0*N

57.5 0 N

46.0*N

34.5 0N

23.0*N

11.5 0 N

0

11.5*S

23.0*S

34.5 0S

46.00 S

57.5 0 S

69.0*S

80.5 0 S

CCl4

0

0

15.09

41.25

21.13

7.11

8.89

1.19

1.19

1.19

2.11

0.85

0

0

0

CFCl 3

0

0

15.09

41.25

21.13

7.11

8.89

1.19

1.19

1.19

2.11

0.85

0

0

0

CF2 C12

0

0

15.24

41.58

21.26

6.08

7.60

1.50

1.50

1.50

2.60

1.10

0

0

0



computed as in Pitari and Visconti (1979) and includes the effects of

Rayleigh scattering. Scattering by air molecules results in an increase in

the apparent reflectivity of the lower atmosphere and surface of the earth.

See Appendix B for a description of the solar flux calculation.

Seasonally averaged J values are obtained for each latitude by averaging

instantaneous J values calculated for ten different zenith angles equally

spaced for the daylight hours of the mid-season day. The mid-season day has

a maximum solar zenith angle which is the average of the daily maximum solar

zenith angles for that season.

The cross-sections for CCl4 come from WMO (1981) and for CFCl3 and CF2Cl2

from NASA (1979). The horizontal averages of our calculated J values for

the Northern Hemisphere winter season are shown in Table 6.

6. Results for carbon tetrachloride

The photodissociation lifetime trend given by our model for carbon

tetrachloride is shown in Figure 6. The lifetime is increasing slowly dur-

ing the first 12 month of model integration as excess tracer introduced by

the initialization is destroyed in the stratosphere. There is an obvious

annual cycle in the lifetime trend. More photodissociation occurs in spring

and fall than in summer and winter because stratospheric CCl4 concentrations

are considerably larger in the tropics than over mid-latitudes. When solar

radiation strikes the tropics most directly, greater photodissociation

occurs and the photochemical lifetime is smaller.

The annual average lifetime of CCl4 given by our model is about 47.5

years. The best estimate of the lifetime of CCl4 is 56 years based on the

ALE data and a 9-box model by Simmonds, et al (1982). Golombek (1982)

estimated 50 years.

The measured trends of CCl4 t the five ALE stations are shown in Table 7

along with those predicted by our model. Our predicted trends are very

close to the experimentally determined trends, though we are overpredicting



Table 6: Photochemical dissociation rates, J (sec-1 ), and photochemical

lifetimes, r, horizontally averaged for December, January, and February as a

function of height.

level

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

height
(km)

71.6
68.7
65.9
63.0
60.1
57.3
54.4
51.6
48.7
45.8
43.0
40.1
37.2
34.4
31.5
28.6
25.8
22.9
20.0
17.2
14.3
11.5

8.6
5.7
2.9
0

JCCl 4

9.5x10-6
9.1x10-6
8.8x10-6
8.6x10-6
8.2x10-6
8.0x10-6

7.7x10-6
7.1x10-6
6.1x10-6
5.6x10-6
4.9x10-

6

3.6x10-6
2.6x10-6
1.5x10-6
8.2x10-7
3.5x10~

7

1.1x10-7
2.5x10-8
4.2x10~9

4.4x10~ 9

2.0x10- 1 0

2.3x10-
1 3

6.0x10-
1 6

4.6x10~ 1 9

4.5x10-2
3

1. 7x10-2 6

'CCl 4

29 hr
31 hr
32 hr
32 hr
34 hr
35 hr
35 hr
39 hr
44 hr
50 hr
57 hr
77 hr

4.5 da
7.7 da
14 da
33 da

105 da
463 da
7.5 yr

72 yr
2x10 3 yr
1x10 5 yr
5x107 yr
7x10 1 0 yr
7x 1 0 14yr
2x10 1 8 yr

JCFCl 3

2.6x10-6
2.6x10-6
2.8x10-6
2.8x10-6
2.8x10-6
2.8x10-6
2.7x10-6
2.5x10-6

2.3x10-6
2.1x10-6
1.8x10-6

1.4x10-6
9.8x10~7

6.1x10~
7

3.4x10~
7

1. 7x10~
7

4.6x10-8
1.0x10-8
1.7x10~9

1.7x10~1 0

6.4x10-
1 2

6.9x10~
14

1. 6x10-
1 6

1. 0x10~19

8.1x10-2 4

1. 7x10- 2 7

rCFCl 3

4.5 da
4.5 da
4.1 da
4.1 da
4.1 da
4.1 da
4.3 da
4.6 da
5.0 da
5.5 da
6.4 da
8.3 da

12 da
19 da
34 da
68 da

252 da
3.2 da
19 yr

187 yr
5x103 yr
5x10 5 yr
2x108 yr
3x101 1yr
4x 1 0 15yr
2x10 1 9 yr

JCF Cl2 2

5.6x10~
7

5.4x10~
7

5.2x10~
7

4.9x10~
7

4.5x10-7
4.2x10-7
3.8x10-7
3.3x10~

7

2.8x10-7
2.3x10-7
1.9x10~

7

1.3x10~
7

8.9x10-8
4.9x10-8
2.5x10-8
1.0x10-8
2.9x10-9
6. 1x10-9
9. 1x10 1 1

7.6x10-
1 2

2.8x10-
1 3

2.8x10-
1 5

6.2x10-1 8

3.9x10-21
3. 1x10-

2 5

1.4x10-
2 8

____________ .1 _________________ J ______________ ________________________________ I ________________________________

'CF Cl2 2

21 da
21 da
22 da
24 da
26 da
28 da
30 da
35 da
41 da
50 da
61 da
89 da

135 da
236 da
463 da
3.2 yr

11 yr
52 yr

348 yr
4x10 3 yr
1x105 yr
1x107 yr
5x10 9 yr
8x10 1 2 yr
1x10 1 7 yr
2x102 0yr
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Figure 6: CCl4 lifetime trends calculated by the model for June 1978 to May 1981.
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Table 7: CCl4 experimental and calculated trends
in %/year, based on three years of data. Mixing
ratios for May 1981 (m8 1 ) are given in pptv.

Experimental

Trend

2.03

2.03

2.10

1.83

1.22

1.78

mR1

132.3

125.0

122.7

117.4

116.5

Calculated

Trend

2.07

1.82

2.19

2.01

1.31

1.82

0.93

ma1

132.6

132.3

127.8

120.7

116.2

ALE

Station

1

2

3

4

5

Surface

Global
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slightly at Station 4, American Samoa. The area-wieghted surface average

trend is predicted to be 1.82% per year. The same average of the ALE site

experimental trends is 1.78% per year. The calculated global trend for the

integrated CCl4 mass of the entire model atmosphere is 0.93% per year.

Figure 7 shows the two-dimensional field of CCl4 mixing ratios at the end

of May 1981 after three years of model integration. Mixing ratios at the

ALE stations as measured and as predicted by the model for May 1981 are

shown in Table 7 along with the trends. It can be seen that stratospheric

concentrations of CCl4 peak in the tropics, presumably due to strong upward

transport by the Lagrangian mean circulation in this region. Ground level

concentrations peak in the Northern Hemisphere because the largest portion

of the anthropogenic release occurs there.

The contributions of the horizontal advection, horizontal diffusion, and

vertical advection terms to tracer transport in the model have been

evaluated for the end of May 1981. The flux due to advection crossing the

equator is 4.27x10 26 molecules per second compared with 1.62x1025 molecules

per second due to diffusion. The total horizontal advective transport is

4.88x1027 molecules per second. The total horizontal diffusive transport is

2.52x10 26 molecules per second. Total vertical transport, all due to

advection, is 1.80x1027 molecules per second.

7. Results for trichlorofluoromethane

The lifetime trends for trichlorofluoromethane are shown in Figure 8.

With the Fabian initial profile, our model stratosphere had too little trac-

er mass initially and therefore the lifetime was initially large and gradu-

ally decreased until the stratospheric mass deficit had been filled in by

transport from lower levels. The trends for the two different initial pro-

files are converging slowly. After three years of model integration, they

differ only by one year in the predicted lifetime values. An annual trend

similar to that seen for CCl4 is also evident for CFC13*
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Figure 7: Calculated CCl4 mixing ratios for May 1981 in pptv.
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Figure 8: CFC1 lifetime trends calculated by the model using the Fabian and Crutzen

initial profiles for June 1978 to May 1981.



The annual average lifetime for CFCl 3 estimated by our model is about 58

years. Golombek(1982) estimated the lifetime to be 78 years. Cunnold et al

(1982) derived lifetime estimates based on the ALE data of between 66 and 71

years, with an uncertainty range of from 45 years to 145 years.

Experimental and calculated trends for CFC13 are shown in Table 8. The

results with the Crutzen initial profile most closely match the experimental

trends, though the trend at Station 4 is again overpredicted and that at

Station 5 underpredicted. The predicted average surface trend is 5.25% per

year with the Fabian initial profile and 5.88% per year with the Crutzen

initial profile. The experimental surface trend is 5.83% per year and has

been bracketed by our predicted surface trends. Predicted global trends are

5.51% per year with the Fabian initial profile and 5.15% per year with the

Crutzen initial profile.

The two-dimensional field of CFCl3 mixing ratios calculated for May 1981

for the Crutzen initial profile is shown in Figure 9. Surface mixing ratios

at the ALE stations for May 1981 are shown in Table 8. Stratospheric con-

centrations also peak in the tropics for CFCl3 '

For May 1981, the predicted horizontal flux crossing the equator due to

advection is 1.44x10 26 molecules per second for the integration with the

Crutzen initial profile. The flux crossing the equator due to diffusion is

2.31x102 5 molecules per second. The total advective horizontal transport is

2.60x10 27 molecules per second and the total diffusive horizontal transport

is 2.54x1026 molecules per second. The total vertical transport is

2.70x1027 molecules per second.

8. Results for dichlorodifluoromethane

The calculated lifetime trends for dichlorodifluoromethane are shown in

Figure 10. The lifetime trends for both initial profiles indicate an ini-

tial deficit of tracer mass in the model stratosphere, since both trends are

initially dropping rapidly. The annual cycle in the lifetime trend of



Table 8: CFC13 experimental and calculated trends in %/year,
based on three years of data. Mixing ratios for May 1981 (mi8 )
are given in pptv.

Experimental

Trend

4.98

4.98

5.65

6.05

6.80

5.83

mg1

192.1

188.7

183.8

175.0

173.0

Calculated-FAB

Trend

4.61

4.11

4.96

5.84

5.81

5.25

5.51
1 1 _______________________ £ __________________________ L

mg1

213.0

212.6

198.5

179.0

167.7

Calculated-CRU

Trend Ma1

5.21 216.8

4.72 216.4

5.66 202.3

6.50 182.9

6.40 171.5

5.88

5.15

ALE

Station

1

2

3

4

5

Surface

Global
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Figure 9: Calculated CFCl3 mixing ratios in pptv for May 1981 using the Crutzen initial
profile.
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Figure 10: CF2C12 lifetime trends calculated by the model using the Fabian and Crutzen

initial profiles for June 1978 to May 1981.



CF2Cl2 is much less distinct than for CCl4 or CFCl 3 because stratospheric

concentrations do not peak as strongly in the tropics for CF2Cl2 '

The lifetime trends for the two initial profiles converge to an annual

average of 104 years. Golombek (1982) found a lifetime of about 220 years

for CF2Cl2. Cunnold et al (1982b) estimated a lifetime of 1430 years by the

trend technique and 67 years by the inventory technique, with uncertainties

ranging from a value of 51 years to infinity.

Table 9 shows experimental and calculated trends for CF2C12- Here our

predicted trends with the Fabian initial profile are quite close to the

experimental trends for all stations except Station 3, Barbados, where we

are overpridicting. Results for the Crutzen initial profile show trends

that are too large for all ALE stations. Predicted surface trends are 6.14%

per year for the Fabian initial profile and 6.61% per year for the Crutzen

initial profile. The experimental surface trend is 6.00% per year.

Predicted global tracer content trends are 6.03% per year and 5.76% per year

for the Fabian and Crutzen initial profiles, respectively.

Figure 11 shows the two-dimensional concentration field for May 1981 for

the Fabian initial profile. Because CF2Cl2 has much smaller

photodissociation coefficients than CFCl3 or CCl4 , we find concentrations of

up to 11 pptv at the top boundary of the model.

The horizontal tracer fluxes crossing the equator ,as predicted for May

1981, using the Fabian initial profile, are 2.43x1026 molecules per second

due to advection and 3.78x102 5 molecules per second due to diffusion. The

total horizontal advective transport is 4.43x10 27 molecules per second and

the total diffusive transport is 3.81x10 26 molecules per second. The total

vertical transport is 4.66x10 27 molecules per second.



Table 9: CF2C12 experimental and calculated trends in %/year,
based on three years of data. Mixing ratios for May 1981 (mi8 )
are given in pptv.

Experimental

Trend

5.89

5.89

5.52

6.32

6.24

6.00

mR1

324.1

318.4

318.4

296.2

292.9

Calculated-FAB

Trend

6.07

5.61

5.61

6.44

6.18

6.14

6.03

m1

362.9

362.3

362.3

304.6

285.9

Calculated-CRU

Trend

6.54

6.09

6.09

6.94

6.56

6.61

5.76

mg1

367.3

366.7

341.5

309.0

290.5

ALE

Station

1

2

3

4

5

Surface

Global
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Figure ll: Calculated CF2 C2 mixing ratios in pptv for May 1981 using the Fabian initial

profile.



IV. Summary and Conclusions

Our model has done a good job of predicting global trends for the

pollutants carbon tetrachloride, trichlorofluoromethane, and

dichlorodifluoromethane. Our results compare favorably with those obtained

by Golombek (1982) from a three-dimensional model. In fact, our predicted

trends for CCl4 are closer to the measured trends than are Golombek's.

Also, he consistently overpredicted the trends at Station 5, Tasmania, where

we have sometimes predicted well and sometimes underpredicted slightly.

We have shown that an advective model using Lagrangian mean winds can be

used for studying the global transport of atmospheric pollutants. A

Lagrangian model eliminates the need to know both a set of mean winds and a

set of diffusion coefficients. Diffusion coefficients are not known with

any certainty. Unfortunately, Lagrangian winds are not known accurately

either. However, the success of our two-dimensional model gives credibility

to the Lagrangian mean wind velocities that we have used.



Appendix A: Calculation of Lagrangian Velocities

Lagrangian mean velocities may be calculated from diabatic heating rates,

as was done by Olaguer, starting with the thermodynamic equation and the

continuity equation.

L+ -Lo + LoL
at by az

1 _(VLcosp) + 1 _(poL) 0
coso by Po bz

where L=the Lagrangian mean potential temperature,

L=the Lagrangian mean diabatic heating rate,

VL=the Lagrangian mean meridional velocity,

WL=the Lagrangian mean vertical velocity,

0 =latitude,

Po=density of the basic state.

The relationship between the Lagrangian mean and the zonal mean for

either 6 or Q can be written as:

AL A + b (T'A' =- + IS

where the overbar denotes a zonal mean and a prime denotes the deviation

from the zonal mean. ' is the perturbation stream function and U is the

mean zonal wind velocity. AS is known as the Stoke's correction.

By introducing a Lagrangian stream function iL such that

Po Lcosf = -fIL/az

PoWLcoso = oTL/by,

equation (1) may be rewritten as

pcosf 6 L + b LbTL _ a LaL _ pgLcosf.
t Tz by yz Z

This equation is evaluated numerically on a grid of 26 levels and 15

latitudes. The term bNP/ay cannot be included in the calculations because

it is a wave property with a vertical scale smaller than the resolution of
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the model, therefore PS will be neglected. If only solstice conditions are

evaluated, 36/t can be neglected, and equation (6) reduces to:

b _ - L - poQ cosf.
bz ay b z

Q includes the effects both of thermal forcing and of wave dissipation.

Equation (7) was integrated separately for each hemisphere using the

method of characteristics, subject to the boundary condition that TL vanish

at all model boundaries.



Appendix B: Calculation of Solar Flux

Solar flux is computed using the method of Pitari and Visconti (1979) and

includes the effects of Rayleigh scattering. Scattering by air molecules

results in an increase in the apparent reflectivity of the earth. Upward

and downward solar fluxes are therefore modified.

For each height z the atmosphere is divided into two layers: layer 1

from o to z and layer 2 from z to the ground. For each layer i we define

its total reflectivity Ri(po) and its reflectivity when illuminated from

below Ri*.
1

Ri(po) = 2 R(po)p dp
0

Ri* = 21 Ri(pao)po dp00

Rc is the combined reflectivity of the ground and the atmosphere below

height z.

Rc(po) = R2 (Po) + [1-R 2 (Po)](1-R2*)A/(1-R 2*A)

where A is the albedo of the earth's surface.

Ri(po) can be determined by a simple function

Ri(po) = A(rR)/[B(rR)+Po]

where A and B are given in Table 10 and 7R is the Rayleigh optical thickness

for each level. With this function for Ri(po), Ri* can be found by integra-

tion to be

Ri* = 2A(rR)+2A(rR)B(rR)ln(B(rR)/[1+B(rR)]}*

The transmission factors for direct radiation Ti and diffuse radiation

Ti* are

T, = exp[-rdir(0o,z)/Po]

Ti* = exp[-MIlrdir(*o,z)/Po]

T2 = exp l-rdir(z,0)/Po]

T2* = exp[-M2rdir(z,0)/pol



where rdir(O,z)=NO (Z) 3 +No 2(z)o2

Tdir(z,O)=[NO 3(0)-No3 (z)] 0 +[N 2(0)-N 2(z)]O'0
No3 and No2 are the columnar densities of 03 and 02 and 0 3 and a0 2 are the

corresponding cross sections. M is the magnification factor for diffuse

radiation and is a function of optical thickness. Average values of M for

five optical thickness intervals are shown in Table 11, as based on the

curve reported by Kondratiev (1969).

The reflectivity seen at height z is given by

Rz-T2T2*Rc'

taking into account the absorption between z and the ground.

Upward and downward direct fluxes are given by

Fu = PoFoTlRzM2 (1-Rl)/(1-Rl*Rz)

Fd = PoFoT1(1-R)/(1-Rl*Rz).

The diffuse component of the downward flux is

Fddif = Fd/Tj - poFoexp(-7R/Po).

The total downward flux is

Fd = PoFoTlexp(-7R/Po) + FddifT,*Ml

~ poFO(Tl-Tl*Ml)exp(-rR/Po) + poFoTl*Ml(l-Rl)/(l-Rl*Rz).

The total flux is therefore

F = Fu + Fd

= poFo(T,-MT,*)exp(-rR/Po) + poFO(MlTl*+M 2TlRz)(1-Rl)/(l-Rl*Rz).



Table 10: Values of A and B as a function of Rayleigh optical
thickness fR (from Pitari and Visconti, 1979)

_ r_ I A | B

0.0214
0.05
0.1
0.15
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0106
0.0251
0.0502
0.0757
0.101
0.203
0.316
0.436
0.562
0.695
0.832
0.975
1.11
1.27

0.0113
0.026
0.052
0.080
0.110
0.239
0.382
0.535
0.693
0.857
1.02
1.18
1.36
1.531

2.2
2.4
2.6
2.8
3.0
3.5
4.0
5.0
7.0
9.0

11.0
13.0
15.0
16.0

A

1.424
1.578
1.735
1.894
2.053
2.459
2.883
3.737
5.4307
7.134
8.779

10.447
12.05
12.86

Table 11: Magnification factor M as a function of optical thickness
interval 7R (from Pitari and Visconti, 1979)

ArR 0-0.07 0.07-0.2 0.2-1.0 1.0-3.5 3.5-

M 2 1.8 1.5 1.35 1.2

-B

1.706
1.879
2.055
2.232
2.405
2.849
3.309
4.225
6.01
7.793
9.523

11.227
12.89
13.73
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