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Abstract 

The development of ductile fracture models of metals requires reliable measurements of the 

stress and strain histories up to the onset of fracture in multi-axial experiments. In the present 

work, a hybrid experimental-numerical approach is taken to determine the loading path in various 

fracture experiments on TRIP780 steel sheets. In most mechanical experiments on sheet metal, 

the localization of plastic deformation precedes the onset of fracture. After the beginning of 

necking, the stress fields within the specimen gage section become non-uniform and of three-

dimensional nature. Consequently, the stress history prior to fracture can no longer be estimated 

based on the force history measurements using simple analytical formulas. A detailed finite 

element analysis of each experiment is required to identify the local stress and strain fields. 

The results of the hybrid experimental-numerical analysis of a fracture experiment depend 

strongly on the chosen constitutive model. Here, an extensive bi-axial experimental program 

comprising more than 20 distinct loading conditions is performed to characterize the monotonic 

large deformation behavior of the TRIP780 steel. It is found that an anisotropic quadratic yield 

function along with a non-associated flow rule can accurately describe the inelastic behavior of 

the TRIP material. 

A first series of fracture experiments is carried out on three types of full-thickness fracture 

specimens. This experimental program characterizes the onset of fracture for stress states 

between uniaxial tension and equi-biaxial tension. An effort is made to quantify and minimize the 

errors affecting the hybrid experimental-numerical analysis of those experiments. Inaccuracies 

affecting the stress triaxiality and plastic strain histories to fracture are evaluated by comparing 

surface strains measured by Digital Image Correlation (DIC) and computed by Finite Element 

Analysis (FEA). A second series of fracture experiments is carried out on a newly designed 

butterfly-shaped specimen, which allows for multi-axial testing under combinations of normal 

and tangential loads. Experiments for four different loading conditions are performed and used to 

analyze the onset of fracture for stress states ranging from pure shear to transverse plane strain 

tension. 
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Chapter 1.  

Introduction 

1.1 Background 

1.1.1 Ductile fracture of metals 

The use of sheet materials of high strength-to-weight ratio is essential in modern 

transportation vehicle engineering. This choice is driven by the constant quest for lower structural 

weight in an attempt to improve fuel efficiency, vehicle dynamics and cost efficiency. Candidate 

materials are advanced high strength steels which feature a tensile strength that is more than 

twice as high as that of conventional low carbon or HSLA steels. Special aluminum and 

magnesium alloys are also being considered, mostly for castings and extrusions. The common 

feature of light weight metal structures is that ductile fracture frequently limits their formability 

and crashworthiness. 

Ductile fracture is generally described by the nucleation and growth of voids that ultimately 

link to form cracks. The early studies of McClintock (1968) and Rice and Tracey (1969) analyzed 

the evolution of cylindrical and spherical holes in a ductile matrix. Their results show that void 

growth is governed by the stress triaxiality. Gurson (1977) proposed a porous plasticity model 

which includes the void volume fraction as internal variable. Some phenomenological fracture 

models make use of Gurson’s evolution equations assuming that ductile fracture occurs as the 

void volume fraction reaches a critical threshold value.  The original Gurson model has been 

repeatedly improved by accounting for the loss of stress-carrying capacity associated with void 

coalescence (e.g. Tvergaard and Needleman, 1984), by incorporating enhanced strain hardening 

models (e.g. Leblond et al., 1995), by describing void shape effects (e.g. Pardoen and 

Hutchinson, 2000) and by incorporating plastic anisotropy (e.g. Benzerga et al., 2004) and shear 
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(e.g. Nahshon and Hutchinson, 2008). A comprehensive review of modified Gurson models can 

be found in Lassance et al. (2007). 

As an alternative to micromechanics inspired fracture models, phenomenological models have 

been developed to predict ductile fracture without modeling void nucleation and growth. It is 

assumed that fracture occurs at a point of the body where a weighted measure of the accumulated 

plastic strain reaches a critical value. A comparative study of various weighting functions 

(including models based on the work of McClintock (1968), Rice and Tracey (1969), LeRoy et 

al. (1981), Cockcroft and Latham (1968), Oh et al. (1979), Brozzo et al. (1972), and Clift et al. 

(1990)) showed that none of them can accurately describe the fracture behavior of a given 

material over a large range of stress triaxialities (Bao and Wierzbicki, 2004). Attempts to define a 

more general fracture criterion have lead to the introduction of the third invariant of the stress 

tensor in the weighting function (e.g. Wierzbicki and Xue, 2005), or to the transformation of 

stress based fracture criteria into the space of stress triaxiality, Lode angle and equivalent plastic 

strain (Bai and Wierzbicki, 2008). 

1.1.2 Previous experimental investigations on ductile fracture 

Numerous experimental investigations have been carried out to characterize ductile fracture. 

Clausing (1970) performed an experimental study on axisymmetric and plane strain tensile 

fracture specimens of several materials and found a lower ductility for plane strain loading. 

Hancock and MacKenzie (1976) investigated the relationship between the ductility and the stress 

triaxiality for three different steels. They used smooth and U-notched axisymmetric tensile 

specimens and concluded that for all studied materials, the ductility is decreasing with stress 

triaxiality; the same authors also found good agreement between their experimental results and 

the predictions by Rice and Tracey’s (1969) fracture model. Hancock and Brown (1983) 

compared experimental results from notched axisymmetric specimens and flat grooved plane 

strain specimens and concluded that the ductility was determined by the stress state, and not the 

strain state. Using split Hopkinson bars, Johnson and Cook (1985) performed dynamic torsion 

and notched tensile tests at different strain rates and temperatures. They concluded that the effect 

of stress triaxiality on the ductility of their tested metals was more significant than that of strain 

rate and temperature.  
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Bao (2003) carried out an extensive experimental program on aluminum 2024-T351 covering 

stress triaxialities ranging from compression to multi-axial tension. Bao’s results suggested a 

transition region between shear and uniaxial tension, where ductility increases with stress 

triaxiality. Mohr and Henn (2007) proposed a butterfly-shaped flat specimen to study the onset of 

fracture over a wide range of stress triaxialities. When using this specimen in conjunction with a 

dual actuator system (Mohr and Oswald, 2008), virtually any loading condition between pure 

shear and transverse plane strain tension can be imposed. 

1.2 Objectives and structure of the thesis 

This works aims at determining the loading path to fracture in TRIP780 sheets under quasi-

static loading, through hybrid experimental-numerical analysis over a wide range of stress states. 

It is divided into three main parts. 

The first part of this thesis focuses on finding an accurate plasticity model for the TRIP780 

material. The accuracy of quadratic plane stress plasticity models is evaluated. The sheet material 

exhibits a considerable direction-dependence of the r-ratio while the uniaxial stress-strain curves 

are approximately the same irrespective of the specimen direction. Isotropic and anisotropic 

associated as well as non-associated quadratic plasticity models are considered to describe this 

behavior. Using a newly-developed dual-actuator system, combinations of normal and tangential 

loads are applied to a flat specimen in order to characterize the sheet material response under 

more than 20 distinct multi-axial loading states. The comparison of the experimental results with 

the plasticity model predictions reveals that both the associated and non-associated quadratic 

formulations provide good estimates of the stress-strain response under multi-axial loading. 

However, the non-associated model is recommended when an accurate description of the thinning 

behavior is important. Moreover, a structural validation example is presented that demonstrates 

the higher prediction accuracy of the non-associated plasticity model. 

In a second part, a basic ductile fracture testing program is carried out on specimens extracted 

from the TRIP780 material including tensile specimens with a central hole and circular notches. 

In addition, equi-biaxial punch tests are performed. The surface strain fields are measured using 

two- and three-dimensional digital image correlation. Due to the localization of plastic 
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deformation during the testing of the tensile specimens, finite element simulations are performed 

of each test to obtain the stress and strain histories at the material point where fracture initiates. 

Error estimates are made based on the differences between the predicted and measured local 

strains. The results from the testing of tensile specimens with a central hole as well as from punch 

tests show that equivalent strains of more than 0.8 can be achieved at approximately constant 

stress triaxialities to fracture of about 0.3 and 0.66, respectively. The error analysis demonstrates 

that both the equivalent plastic strain and the stress triaxiality are very sensitive to uncertainties in 

the experimental measurements and the numerical model assumptions. The results from 

computations with very fine solid element meshes agree well with the experiments when the 

strain hardening is identified from experiments up to very large strains. 

In the last part, an attempt is made to characterize the ductile fracture behavior of the TRIP 

material in the intermediate range of stress triaxialities (from shear to uniaxial tension stress 

states). For that purpose, the experimental technique by Mohr and Henn (2007) is used. The 

design of the butterfly shaped specimen has been revisited in order to provide more homogeneous 

stress and strain states at the center of the gage section, where fracture initiate. The influence of 

each feature of the specimen design on the homogeneity of the material state has been 

investigated through a parametric study. The proposed specimen features concave lateral edges 

and a reduced-thickness gage section delimited by clothoidally-shaped fillets. The hybrid 

experimental-numerical analysis is carried out for four different loadings, ranging from shear to 

tension under transverse plane strain stress states. The analysis shows that tests results are very 

sensitive to the specimen machining precision. Furthermore, it is found that the local stress and 

strain fields within the specimen gage section cannot be computed with high accuracy at very 

large strains. 

1.3 Material 

The present study has been conducted using 1.5mm thick TRIP780 steel sheets provided by 

POSCO (Korea). This TRIP-assisted steel features a complex multiphase microstructures 

consisting of ferrite, bainite, martensite and metastable retained austenite. present complex 

multiphase microstructures consisting of a ferrite matrix and dispersion of multiphase grains of  
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Figure 1-1: Microstructure of TRIP780. 
Micrograph showing the different phases in the undeformed microstructure: grey=ferrite and 

bainite, yellow=retained austenite 

 

bainite, martensite and metastable retained austenite (Jacques et al., 2007). The transformation of 

this retained austenite into martensite during straining is responsible for the so called TRIP 

(TRansformation Induced Plasticity) effect (Angel (1954), Lecroisey and Pineau (1972), Olsen 

and Cohen (1975), Stringfellow et al. (1992)). This effect enhances both the strength of the 

material by allowing maintenance of a high work hardening rate through the continuous 

appearance of martensite in the microstructure, and its ductility by improving dilatation and shear 

strains associated with the displacive formation of martensite (Jacques et al., 2001). 

 

 

C Al Mn Si Mo 

1.70 0.47 2.50 0.59 0.08 

Table 1-1: Chemical composition of the TRIP780 material in wt-% 
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The exact chemical composition of the present TRIP780 material as measured by energy-

dispersive X-ray analysis is given in Table 1-1. Micrographs (see figure 1-1) reveal a fine grain 

structure with a maximum grain size of about 10µm and an austenite content of about 6%. 

1.4 Related Publications 

Chap. 2 Mohr, D., Dunand, M. and Kim, K.H., Evaluation of Associated and Non-

associated Quadratic Plasticity Models For Advanced High Strength Steel Sheets 

under Multi-axial Loading, International Journal of Plasticity, In Press, 2009. 

Chap. 3 & 4 Dunand, M. and Mohr, D., Hybrid Experimental-numerical Analysis of Basic 

Ductile Fracture Experiments for Sheet Metals, International Journal of Solids 

and Structures, In Press, 2010. 

Chap. 5 Dunand, M. and Mohr, D., Optimized Specimen for the Fracture Testing of 

Advanced High Strength Steels under Combined Normal and Shear Loading, In 

Preparation. 
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Chapter 2.  

Calibration of a plasticity model 

2.1 Introduction 

In this chapter, we investigate the large deformation behavior of the TRIP780 steel under 

monotonic multi-axial loading. The key purpose of this study is to evaluate existing 

phenomenological plasticity models for sheet materials. The reader is referred to Chaboche 

(2008) for a recent review of macroscopic plasticity theories. Different yield surfaces have been 

used in the past to model advanced high strength steels: von Mises yield surface (e.g. Yoshida et 

al., 2002, Durrenberger et al., 2007), quadratic anisotropic Hill (1948) yield function (e.g. Banu 

et al., 2006, Padmanabhan et al., 2007, Campana and Cortese, 2007, Chen and Koc, 2007), high 

exponent isotropic Hershey (1954) yield function (Tarigopula et al., 2008), non-quadratic 

anisotropic Barlat (2003) yield function (Lee et al., 2005, 2008). Here, we focus on simple 

quadratic yield functions and evaluate their predictive capabilities for multi-axial loading 

conditions. Moreover, following the work by Stoughton (2002), we include both associated and 

non-associated quadratic flow rules. The discussion of non-associated formulations in metal 

plasticity has been partially initiated by the experimental observations of Spitzig and Richmond 

(1984). Non-associated plasticity models for metals have been considered by Casey and Sullivan 

(1985), Brünig and Obrecht (1998), Brünig (1999), Lademo et al. (1999), Stoughton (2002), 

Stoughton and Yoon (2004, 2008) and Cvitanic et al. (2008).  

Kuwabara (2007) provides a comprehensive review of experimental techniques measuring the 

anisotropic behavior of sheet materials. As an alternative to the testing of cruciform specimens 

(e.g. Makinde et al. (1992), Boehler et al. (1994), Lin and Ding (1995), Müller and Pöhlandt 

(1996), Kuwabara et al. (1998)), we make use of a newly-developed combined tension and shear 
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technique (Mohr and Oswald, 2008). Similar to the experimental work reported in Wang et al. 

(2008), the technique of Oswald and Mohr (2008) achieves multi-axial stress-states through the 

application of normal and tangential loads to a rectangular sheet specimen. The TRIP780 sheet 

material is loaded monotonically along more than 20 different multi-axial loading paths. The 

comparison of the simulation and experimental results suggests that the use of Hill’s (1948) 

quadratic anisotropic yield surface along with a non-associated flow rule provides satisfactory 

results from a phenomenological point of view.  

2.2 Uniaxial experiments 

Dogbone-shaped tensile specimens are cut from the sheet materials using a waterjet. In 

accordance with ASTM E8, the specimens featured a 12.7mm wide and 50mm long gage section. 

The specimens have been placed into an electro-mechanical universal testing machine with 

wedge grips (Model G45, MTS, Eden-Prarie). All experiments have been carried out at a cross-

head loading velocity of less than 1mm/min. Both the axial and width strain are continuously 

measured using a digital image correlation system (VIC2D, Correlated Solution, SC). For this, a 

random speckle pattern with an average speckle size of about 100�� has been applied to the 

specimen gage section.   

 

Figure 2-1: Uniaxial tensile testing – engineering stress strain curve. 
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Figure 2-2: Results from uniaxial tensile test. 
Calculated and measured r-ratio variations (black curves and solid dots, respectively) and 
calculated yield stress variations (dotted blue curves). 

 

Specimens are cut from seven different directions, from � � 0° (rolling direction) to � � 90° 
(transverse direction) by step of 15°. The corresponding uniaxial engineering stress-strain curves 

are plotted in Fig. 2-1 up to their respective stress maximum. The results show that except for a 

short plateau at the beginning of the experiment along the rolling direction, all stress-strain curves 

lie almost on top of each other. The maximum differences in the stress level of up to 5% are 

observed at the very beginning of plastic deformation. The engineering stress at necking is about 

850 ���, irrespective of the material orientation. 

Using a Young’s modulus of � � 185���  and an elastic Poisson’s ratio of � � 0.3, we 

calculated the logarithmic plastic axial and width strains from the measured stress-strain curves. 

Based on the assumption of plastic incompressibility, the r-values are then determined from the 

slopes of the corresponding linear approximation of the logarithmic plastic width strain versus 

logarithmic plastic thickness strain curves (� � ���� ������ ).  The solid dots in Fig. 2-2 show the 

identified r-values as a function of the specimen orientation angle α. The average r-value, ��, 
defined as 

�� � 14 !�" # 2 �$% # �&"' (2.1)  

is 0.89. 
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2.3 Biaxial experiments 

2.3.1 Biaxial testing technique 

A series of biaxial experiments is performed using a newly-developed dual actuator system. 

The reader is refereed to Mohr and Oswald (2008) for details on the multi-axial testing 

procedure. The dual actuator system applies tangential and normal loads to the boundaries of a 

flat specimen. The horizontal actuator applies the tangential force to the lower specimen 

boundary. As shown in Fig. 2-3, the lower specimen clamp is mounted onto a low friction sliding 

table. A load cell positioned between the horizontal actuator and the lower specimen clamp 

measures the tangential force. The normal force is applied through the vertical actuator in the 

upper cross-head. Two additional load cells have been integrated into the lower sliding table to 

measure the total vertical force. For all tests, the hydraulic dual actuator system is run in the 

force-controlled mode.  

 

 

 

Figure 2-3: Schematic of the dual actuator system. 
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Figure 2-4: Specimen geometry and the definition of the biaxial loading angle β. 

 

Figure 2-4 shows the exact shape and dimensions of the specimen. It features a  ( � 4.5��  
high and ) � 50��  wide gage section. The thickness of the gage section has been 

symmetrically reduced to about * � 0.5�� using a conventional milling process. The 

displacements are measured directly on the specimen surface using a digital image correlation 

system (VIC2D, Correlated Solutions Inc, SC). More than 200 photographs are taken throughout 

each monotonic experiment. The data is acquired using the software packages FastTrack DAX 

(Instron, Canton, MA) and VicSnap (Correlated Solution, SC).   

The limiting cases of 	 � 0°  and 	 � 90°  correspond to pure shear and transverse plane 

strain tension, respectively. In the case of orthotropic sheet materials, we introduce the specimen 

orientation angle � to report the orientation of the sheet rolling direction with respect to the 

vertical axis of the dual actuator system. We refer to the horizontal and vertical axis as the x- and 

y-direction, respectively. 

As demonstrated by Mohr and Oswald (2008), the specimen is designed such that the 

engineering stress along the y-direction, Σ,, may be approximated by 

Σ, - ./0" (2.2)  

with the initial cross-sectional area of 0" � )*. Equation (2.3) implies that the variations of the 

stress Σ, are negligible along the x-direction. Similarly, due to the large width-to-height ratio, we 
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may assume that the shear stress variations along the x-direction are small. Hence, the 

engineering shear stress Σ1, associated with the horizontal force measurement .2 reads 

Σ1, - .20" (2.3)  

The corresponding engineering normal strain �,  and engineering shear strain �1,  are 

determined from DIC. The state of stress in the specimen gage section is plane stress, while the 

state of deformation in this specimen is transverse plane strain. In other words, the strain along 

the x-direction is approximately zero, �1 - 0. In order to study distinct features of the material’s 

constitutive response, it may be useful to map the measured stresses and strains into a coordinate 

system which is attached to the material’s orthotropy axes (see Mohr and Jacquemin, 2008). 

However, the present work focuses on the validation of existing constitutive models which may 

be readily performed in the machine coordinate system.  

2.3.2 Biaxial testing program 

Biaxial tests are performed over a wide range of loading conditions by varying the biaxial 

loading angle 	 as well as by cutting the specimens at different angles � relative to the rolling 

direction. Three different batches of specimen have been extracted along three different sheet 

directions (� � 0°, � � 45°, � � 90°) and subsequently tested at the following biaxial loading 

angles: 	 � 0° , 	 � 28° , 	 � 49° , 	 � 63° , 	 � 74° , 	 � 82°  and 	 � 90° . Note that the 

limiting cases 	 � 0° and 	 � 90° correspond to pure shear and transverse plane strain loading, 

respectively.  

Figure 2-5 shows a graph which illustrates the different loading states on a generic von Mises 

yield surface in the plane stress subspace !5", 5&", 7', where 5" is the normal stress in the rolling 

direction, 5&"is the normal stress in the cross-rolling direction, and 7 is the corresponding shear 

stress component. From each experiment, we obtain a normal stress versus normal strain curve as 

well as a shear stress versus shear strain curve. All measured normal and shear stress-strain 

curves can be found in Annex A. The results will be discussed in detail throughout our 

comparison of the experimental results with the numerical simulations in Paragraph 2.5.   
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Figure 2-5: Visualization of the loading states in the 3-dimensional stress-space.  
The solid dots represent the intersection of the linear stress paths with a quadratic yield surface. 
The labels next to the data points denote the biaxial loading angle β while the point color 
corresponds to the specimen orientation α (see legend). The green dots correspond to uniaxial 
tension (UT). 

 

2.4 Quadratic plane stress plasticity models 

In the case of aluminum alloys, direct measurements of distinct points on the yield surface 

(e.g. Green et al., 2004) have shown that non-quadratic functions are needed to describe the 

boundary of the elastic domain with satisfactory accuracy. To the best knowledge of the author, 

no such yield surface measurements have been published in the open literature for dual phase or 

TRIP-assisted steel sheets. The use of non-quadratic yield envelopes for steels is usually justified 

through the upper bound calculations by Logan and Hosford (1980) or by r-value measurements. 

In the latter case, the assumption of associated plastic flow is imposed and the shape of the yield 

surface is adjusted such that the r-values are predicted accurately. However, as pointed out by 

Stoughton (2002), Bishop and Hill’s (1951) proof of the associated flow rule is only valid if slip 

according to Schmid’s law is the dominant deformation mechanism at the crystal level.  
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Similar to the results by Padmanabhan et al. (2007) on a Dual-Phase Steel, the present 

uniaxial experiments indicated a pronounced direction dependency of the r-value (Fig. 2-2), 

while nearly the same stress-strain curve has been measured for all specimen directions. In other 

words, the r-value measurements suggest planar anisotropy while the material’s response is 

planar isotropic as far as the stress level is concerned. It is straightforward to show that a standard 

associated plasticity model with a quadratic yield surface cannot replicate this behavior. As an 

alternative to the formulation of non-quadratic associated plasticity models (e.g. Barlat, 2003a,b), 

we loosen the constraint of associated plastic flow. As suggested by Stoughton (2002), we make 

use of a quadratic yield surface in conjunction with a non-associated quadratic plastic flow 

potential. Thus, the computational efficiency of quadratic plasticity models is maintained while 

providing a model structure that can describe the present uniaxial experiments accurately. The 

reader is referred to Stoughton (2002) for the proof of the uniqueness of the states of stress and 

strain as well as the proof of stability of plastic flow.  

2.4.1 Plane stress yield surface 

As discussed above, we limit our attention to the quadratic yield function proposed by Hill 

(1948). It may be written in the form  

8!9, :' � 5; < : � 0 (2.4)  

where 5= is the equivalent stress, 

5; � >!?9' · 9 (2.5)  

9 denotes the Cauchy stress vector in material coordiantes  

9 � A5" 5&" 7BC (2.6)  

with the true stress components 5"  along the rolling direction, 5&"  
along the cross-rolling 

direction and the corresponding shear stress 7. P shall be a symmetric positive-definite matrix 

defined through the three independent parameters �DD, �EE and �FD  
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? � G 1 �FD 0�FD �DD 00 0 �EEH (2.7)  

2.4.2 Flow rule 

The flow rule describes the incremental evolution of the plastic strain vector  

�IJ � K��"� ��&"� �L�MC (2.8)  

��"� and ��&"�  denote the plastic strain components along the rolling and cross-rolling direction, 

while L�  denotes the plastic engineering shear strain (which is twice the mathematical shear 

strain). The direction of plastic flow is assumed to be aligned to the stress derivative of the flow 

potential function N!9' 
�IJ � �O PNP9 (2.9)  

where �O Q 0 is a scalar plastic multiplier. In close analogy with the yield function, the potential 

function N!9' is defined as a quadratic function in stress space,   

N!9' � >!R9' · 9 (2.10)  

with the positive definite coefficient matrix 

R � G 1 SFD 0SFD SDD 00 0 SEEH (2.11)  

Note that in the special case of � R , we recover the associated flow rule. 

2.4.3 Isotropic hardening 

The distinction between isotropic and kinematic hardening is omitted since the present 

evaluation is limited to monotonic loading conditions. Isotropic strain hardening is described 
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through the relationship between the deformation resistance k and the equivalent plastic strain. 

Formally, we introduce the hardening modulus ( � (!���' and the evolution equation 

�: � (!���'����  with :!��� � 0' � :" 
 

(2.12)  

The equivalent plastic strain ���  is defined as incrementally work-conjugate to the equivalent 

stress, i.e.  

9 · T�IJU � 5;!���� ' (2.13)  

Upon evaluation of this relationship for non-associated plastic flow, we obtain the following 

relationship between the equivalent plastic strain and the plastic multiplier,  

���� � N!9'5; !�O' (2.14)  

as well as the relationship between the equivalent plastic strain and the plastic strain tensor, 

���� � VN5;W
DXK?RYFT�IJUM · RYFT�IJU (2.15)  

The evaluation of the present experimental data for the TRIP780 steel revealed that the Swift 

(1952) law provides a good approximation of the relationship between the equivalents stress and 

the equivalent plastic strain. In the case of monotonic loading, the Swift law reads  

5; � 0!�Z # ���'[ (2.16)  

with the model parameters A, ��� and n given in Table 2-1. Consequently, we chose the following 

special function to define the hardening modulus as a function of the equivalent plastic strain:  

(!���' � \0!�Z # ���'[YF (2.17)  

In the case of the structural validation simulations (see Section 2.6), the modified Swift law 

approximation is employed for an equivalent plastic strain of up to 0.2. Thereafter, we use a 

piecewise-linear extrapolation curve which has been determined from biaxial punch experiments 

(see section 4.3). 
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A [MPa] ��� [-] n [-] 

1460 1.63x10
-3

 0.204 

Table 2-1: Swift hardening law parameters 

2.4.4 Model Calibration 

It is common practice to calibrate anisotropic plasticity models based on Lankford’s r-values. 

According to our flow rule, the dependence of the r-value on the loading direction is 

�!�' � !SEE # 2SFD < SDD < 1' sinD � cosD � < SFD!1 < SDD' cosD � # SFD # SDD  (2.18)  

where � denotes the angle between the material rolling direction and the loading axis. In the 

present comparative study, we consider four special parameter settings of the general non-

associated quadratic plasticity model. For historic reasons, we refer to these special cases as 

different models:  

� Model #1: Isotropic model with associated plastic flow. By setting �FF � �DD � 1.0 , 

�FD � <0.5  and �EE � 3.0 , we recover the isotropic von Mises yield surface. 

Furthermore, we assume ? � R which corresponds to associated plastic flow. 

� Model #2: Orthotropic model with associated plastic flow. By imposing associated plastic 

flow, ? � R, we may use the r-value measurements to calibrate both coefficient matrices. 

The relationships among the r-values �", �$% and �&" and the coefficients read: 

SFD � < �"1 # �" , SDD � �"�&" 1 # �&"1 # �"       and   SEE � 1 # 2�$%�&" �" # �&"1 # �"  (2.19)  

� Model #3: Planar isotropy (normal anisotropy) with associated plastic flow. In this case, 

we still have ? � R, while both matrices are calibrated based on the average r-value: 

SFD � < ��1 # �� , SDD � 1      and   SEE � 21 # 2��1 # ��  (2.20)  
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� Model #4: Isotropic yield surface with non-associated anisotropic plastic flow rule. As in 

model #1, we set �FF � �DD � 1.0, �FD � <0.5 and �EE � 3.0 . At the same time, we 

make use of the coefficients determined for model #2 to predict the direction of plastic 

flow.  

� Model #5: Planar isotropic yield surface with non associated flow potential. The same G 

matrix as for model #2 is used to define the flow rule. The yield surface is defined 

through the Hill parameters for planar isotropy (see model #3). However, instead of using 

the average r-value, a suitable �� may be identified from calibrating the model with respect 

to the transverse plane strain tension tests (	 � 90°). The analytical expressions for the 

yield stresses under transverse plane strain conditions read 

5,CdeY" � :
f1 < 2�FD VSFDSDD W # �DD VSFDSDDW

D 

(2.21)  

for loading along the rolling direction and 

5,CdeY&" � :
>SFDD < 2�FDSFD # �DD (2.22)  

for loading along the cross-rolling direction. In the present case, �� � 0.91 yielded the best 

results. 

Tables 2-2 summarize the corresponding parameter settings. 

 

 r0 r45 r90 P12 P22 P33 G12 G22 G33 

#1 1.00 1.00 1.00 -0.50 1.00 3.00 -0.50 1.00 3.00 

#2 0.89 0.82 1.01 -0.47 0.94 2.64 -0.47 0.94 2.64 

#3 0.89 0.89 0.89 -0.47 1.00 2.94 -0.47 1.00 2.94 

#4 0.89 0.82 1.01 -0.50 1.00 3.00 -0.47 0.94 2.64 

#5 0.89 0.82 1.01 -0.48 1.00 2.95 -0.47 0.94 2.64 

Table 2-2: Plasticity model parameters 



 

30 

2.5 Results and comparison 

A standard return-mapping algorithm is used to implement the constitutive model(s) into a 

commercial finite element program (user subroutine for ABAQUS/explicit (Abaqus, 2008)). 

Using the different sets of parameters (Table 2-2), finite element simulations are performed to 

investigate the predicative capabilities of all five plasticity models. The finite element model of 

the biaxial experiment comprises a single reduced integration plane stress element (Abaqus 

element CPS4R) that is subject to different radial engineering stress paths as specified by the 

biaxial loading angle β. The transverse plane strain condition is imposed by imposing kinematic 

constraints on displacement boundary conditions. The outcomes of each single-element 

simulation are two engineering stress-strain curves (normal and shear) which are the compared to 

the experimental results. 

2.5.1 Uniaxial stress-strain curve and r-ratios 

Figures 2-6 and 2-7 compares all experimental and simulation results for uniaxial loading. 

Models #1, #3, #4 and #5 all predict the same uniaxial stress-strain curves irrespective of the 

loading direction. Note that the curves labeled isotropic, planar isotropic and non-associated are 

all lying on top of each other in Figure 2-6. Model #2 is the only one using a fully-orthotropic 

yield surface and consequently the stress-level can only be predicted with high accuracy for the 

specimens loaded along the rolling direction, while the stress level is respectively under- and 

overestimated for 45° and 90° loading. 

The orthotropic Hill model with associated flow rule (model #2) can describe the direction 

dependency of the r-values. The solid black lines in Fig. 2-2 show the r-value variations that are 

predicted after calibrating the Hill model. Observe the good agreement of the model with the 

experimental data points (solid dots). However, since the flow rule and the yield surface are 

associated in the standard Hill model, the r-value direction dependency translates into a direction-

dependency of the stress-strain curves. The direction-dependent yield stress which is given by 
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5,!�' � :>cos$ � # sinD � cosD � !2�FD # �EE ' # sin$ � �DD (2.23)  

is plotted as dotted blue lines in Fig. 2-2. The ratio of the maximum and minimum yield stress is 

1.05. Due to this direction-dependency of the yield stress, the standard Hill model (model #2) 

cannot predict the uniaxial stress-strain curves to a great degree of accuracy for all specimen 

orientations (see red curves in Fig. 2-6). Model #4 makes use of a von Mises yield surface and a 

Hill flow rule. As a result, both the r-ratio variations and the uniaxial stress-strain curves are 

modeled accurately for all specimen orientations. The same accuracy with respect to the uniaxial 

experiments may be achieved by using a planar isotropic (i.e. normal anisotropic) yield surface 

along with the Hill flow rule (models #5). 

 

 

Figure 2-6: Model predictions for uniaxial loading - engineering stress-strain curves. 
The experimental results are shown by dots, while the solid lines correspond to the model 
predictions. 
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Figure 2-7: Model predictions for uniaxial loading – Strain evolution 
Strain along the width direction as a function of the axial engineering strain. The experimental 
results are shown by dots, while the solid lines correspond to the model predictions. 

2.5.2 Multi-axial experiments 

Each multi-axial experiment is simulated using the plasticity models. Subsequently, we 

extracted one normal stress-strain curve and one shear stress-strain curve from each simulation 

and compared the computational and experimental results. Annex A summarizes the stress-strain 

curves. The solid curves represent the simulation results for the isotropic von Mises model; the 

experimental results are shown by dashed lines. The model and the experiments show a 

remarkably good overall agreement. Note that the transverse plane strain stress-strain response 

(	 � 90°) is predicted accurately for all three specimen orientations (� � 0°, 45° and 90°). The 

same holds true for the shear stress-strain curves where the relative error in the estimated stress 

level is less than 5% irrespective of the specimen orientation α and the biaxial loading angle β. 

The simulation results for the other models are more or less identical (within 1% as far as the 

stress level is concerned). Even though the other models predict different r-ratios than the 

isotropic von Mises model, this anisotropic feature played only a minor role as far as the 

predictions under multi-axial loading are concerned. The only noteworthy exception is the 

prediction of the pure shear stress-strain curve for the associated Hill model (model #2). Here, the 
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Hill model overestimates the shear stress by about 5%. This is due to the low value of the 

parameter P33. Note that the yield stress 7, for pure shear loading is 7, � : >�EE⁄   . 
The use of the planar isotropic yield surface in combination with an orthotropic flow rule 

(model #5) may be seen as the most accurate model. It provides an accurate description of all 

uniaxial data while its prediction accuracy for multi-axial loading is similar to that of model #3.  

2.6 Structural validation 

The analysis of the biaxial plasticity experiments does not provide a clear answer as to 

whether the direction of plastic flow is associated or non-associated with the yield surface. In this 

section, a structural experiment is presented to elucidate the difference between these two 

modeling approaches. In the previous material experiments, the stress and strain fields are 

approximately uniform throughout the entire specimen. In a structural experiment, the fields are 

usually non-uniform and a wider range of stress states is covered by a single experiment. Even 

though it is difficult to deduce material properties from a structural experiment, the comparison 

of numerical simulations with the experimental results can be used to validate the underlying 

material model. Here, we perform a structural experiment on a butterfly-shaped specimen, 

sketched in Fig. 2-8. Subsequently, a finite element analysis is performed to assess the influence 

of the flow rule assumption on the simulation results. 

 

 

Figure 2-8: Geometry on the butterfly specimen 
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2.6.1 Experiments and numerical model 

The geometry of the butterfly-shaped specimen is detailed in Chapter 5 of the present thesis. 

It has been developed for fracture testing, but in the present context we are only interested in its 

elasto-plastic response. The specimen is extracted from a 1.4mm thick TRIP780 sheet using CNC 

machining. The material rolling direction is aligned with the vertical direction of the testing 

machine (corresponds also to vertical direction of Fig. 2-8). After verifying the dimensions of the 

machined specimens, we make use of the same dual-actuator system as for biaxial plasticity 

testing to subject the specimen to a combination of horizontal (tangential) and vertical (normal) 

loads (	 � 63°  until the maximum force is reached). The displacements of the specimen 

boundaries are measured using digital image correlation. The measured vertical and horizontal 

force-displacement curves are shown as dashed lines in Figure 2-9.   

 

 

(a) (b) 

Figure 2-9: Results for butterfly specimen 
(a) vertical force-displacement curve, (b) horizontal force-displacement curve. 

 

The specimen geometry is discretizated using first-order reduced integration solid elements 

(element C3D8R of the Abaqus element library). Due to the symmetry of the mechanical problem 

only one half of the specimen is meshed with at least five elements along the thickness direction. 

A total of 80,000 elements is used to mesh the entire specimen geometry. The DIC measured 
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displacements and rotations (almost zero) are applied to the boundaries of the virtual specimen 

assuming that the boundary surfaces remain plane throughout testing. The simulations are 

performed using Abaqus/explicit with double precision. The material density and loading 

velocity are scaled such that more than 600,000 explicit time steps are required to compute the 

quasi-static solution of the boundary value problem. 

2.6.2 Extension of the plasticity model to 3-dimensional stress states 

The quadratic equivalent Hill stress can be expressed for a three dimensional stress state as: 

5; � >.!5DD < 5EE'D # S!5EE < 5FF'D # h!5DD < 5FF'D # 2i5DED # 2�5FED # 2j5FDD   (2.24)  

We can thus generalize the framework given in Paragraph 2.4 by using 6 components stress 

and strain vectors, and 6-by-6 ?k and Rk matrixes. 

The Cauchy stress vector σ is now defined in material coordinates as: 

9 � A5" 5&" 5�� 5"Y&" 5"Y�� 5&"Y��BC (2.25)  

where 5*( is the out-of-plane stress, 50<90 the in-plane shear stress, 50<*( and 590<*( the out-of-

plane shear stresses. 

Similarly the plastic strain vector becomes: 

lIJ � A��" ��&" ���� ��"Y&" ��"Y�� ��&"Y��BC (2.26)  

The equivalent stress 5= (resp. flow potential N!9') is given by: 

5; � XT?k9U · 9 (2.27)  

where positive definite matrix ?k (resp.  Rk) becomes: 
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?k �
mn
nn
nn
o 1 �pFD �pFE 0 0 0�pFD �pDD �pDE 0 0 0�p$FE �pDE �pEE 0 0 00 0 0 �p$$ 0 00 0 0 0 �p%% 00 0 0 0 0 �pqqrs

ss
ss
t
 (2.28)  

The coefficients of ?k (resp.  Rk) are linked to the 6 Hill48 coefficients through: 

�pDD � . # h�pEE � . # S�pFD � <h�pFE � <S�pDE � <.�p$$ � 2j�p%% � 2��pqq � 2i

 (2.29)  

with:  

. � �"�&" 11 # �"  , S � 11 # �"  , h � �"1 # �"   and    j � 1 # 2�$%2�&" �" # �&"1 # �"  (2.30)  

Due to lack of experimental data for out-of-plane shear, we assume L and M are equal to 1.5 

(value for isotropic materials). 

2.6.3 Results 

The numerical simulations are performed for material model #1 (isotropic yield with AFR), 

model #2 (orthotropic yield with AFR) and model #5 (planar isotropic yield with non-AFR). 

Figure 2-9 shows the predicted vertical and horizontal force-displacement curves. It is interesting 

to observe that the isotropic model overestimates the vertical force (Fig. 2-9.a) while it 

underestimates the horizontal force (Fig. 2-9.b). The simulation with the associated orthotropic 

model (red curves) provides an accurate prediction of the vertical force up to a displacement of 

about 0.3mm, but overestimates the vertical force level thereafter. The same model overestimates 

the horizontal force up to its maximum. Beyond this point, the horizontal force decreases much 

faster in the simulation than in the experiments. The non-associated planar isotropic model (blue 
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curves) provides the best overall predictions. It slightly underestimates the vertical force level at 

the beginning of the experiments, but provides very accurate predictions of the tangential force-

displacement curve including its decreasing branch.  

 

 

(a) (b) 

 

(c) (d) 

Figure 2-10: Contour plot of the maximum principal strain fields before the onset of fracture 
(a) experiment, (b) isotropic model with AFR, (c) orthotropic model with AFR, (d) planar isotropic 
model with AFR. The Lagrangian strain ranging from 0 to 0.8 is shown for the experiment, while 
the logarithmic strain ranging from 0 to 0.95 is depicted for the simulations. In all four cases, the 
strain fields are plotted on the undeformed configuration of the butterfly specimen 

 

The advantages of the non-associated model become even more apparent when comparing the 

fields of deformation. Figure 2-10.a shows the DIC measured field of deformation towards the 

end of the experiment. A band of deformation localization is clearly visible at that point. The 
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corresponding numerical predictions (Figs. 2-10.b and 2-10.c) reveal that the predictions of both 

the associated isotropic and the associated orthotropic models are very different from the 

experimental result. The orientation of the band of localization is almost opposite to that observed 

in the experiment. However, the predicted orientation of the simulations with non-associated flow 

rule (Fig. 2-10.d) agrees well with the experimental observation (Fig. 2-10.a). 

2.7 Discussion 

The results for uniaxial tension clearly indicate that the anisotropy of the material needs to be 

taken into account in order to obtain satisfactory predictions of the direction-dependent thickness 

reduction. Thus, different anisotropic models have been considered for the multi-axial 

simulations in addition to the isotropic Levy-von Mises model. The comparison of the simulation 

and experimental results shows that all models provide overall good estimates of the stress-strain 

curves for a wide range of multi-axial loading conditions. Both associated and non-associated 

plasticity models have been considered. The present comparison of the respective model 

predictions with the results from biaxial plasticity tests does not provide a clear answer to the 

question as to whether the plasticity of the TRIP steel is associated or non-associated. However, 

the example of a butterfly-shaped specimen shows strong evidence that the plasticity of the TRIP 

steel is non-associated.   

Both the associated and non-associated model types appear to perform well under the tested 

biaxial loading conditions. Highly accurate measurements and repeatable material properties 

would be needed to shed more light on this issue. Here, the accuracy of the experimentally-

measured stresses is only about ±2% for the multi-axial experiments (Mohr and Oswald, 2008). 

The uniaxial tensile experiments have shown that almost the same stress-strain curve is obtained 

while the r-ratio varies for different specimen orientations. Therefore, a non-associated plasticity 

model with a planar isotropic yield surface and a non-associated anisotropic flow potential is 

proposed to model the uniaxial experiments.  

Most of the present biaxial plasticity experiments have been performed under force control. 

The material has been loaded along radial loading paths in stress space. Thus, the choice of the 

yield surface had a stronger effect on the measured stress-strain curves for multi-axial loading 
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than the flow rule. Note that the multi-axial simulation results for model #1 (isotropic yield 

surface and isotropic flow rule) and model #4 (isotropic yield and orthotropic flow rule) are 

almost identical for loading angles and specimen orientations. Similarly, all multi-axial 

predictions for model #3 (planar isotropic yield surface and associated flow) and model #5 

(planar isotropic yield surface and non-associated flow) were almost identical. The differences 

between the isotropic von Mises surface and the orthotropic Hill’48 surface are small for the 

tested material. A future study on a sheet material with a higher degree of anisotropy may allow 

for a better differentiation between the prediction accuracy of associated and non-associated 

plasticity models. Furthermore, it is recommended to include equi-biaxial tensile tests in the 

experimental program to validate the assumption of a quadratic yield function.   

2.8 Conclusion 

The isotropic Levy-von Mises model and the associated orthotropic Hill (1948) plasticity 

models are considered in this study to describe the large deformation response of TRIP780 steel 

sheets. The uniaxial tensile experiments reveal a pronounced in-plane direction-dependence of 

the r-ratios while the measured stress-strain curves appeared to be direction-independent. Here, 

Stoughton’s (2002) non-associated quadratic flow rule is employed as an alternative to non-

quadratic associated plasticity models. Using a newly-developed testing technique for sheet 

materials (Mohr and Oswald, 2008), a series of multi-axial experiments has been performed on 

the TRIP material. The comparison of the experiments with the simulation results shows that both 

the associated and non-associated quadratic plasticity model provide a satisfactory description of 

the mechanical response under multi-axial loading. However, the non-associated model is 

recommended when the thinning of the sheets needs to be predicted with a high degree of 

accuracy. Moreover, a structural validation example is presented that elucidates substantial 

differences between the simulations with associated and non-associated flow rule. In the case of 

the non-associated flow rule the force-displacement curves as well as the position of the strain 

localization band are predicted accurately. 
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Chapter 3.   

Hybrid Experimental-numerical Method 

3.1 Introduction 

In most fracture experiments on sheet materials, the localization of plastic deformation 

through necking cannot be avoided. After necking, the stress fields within the specimen gage 

section become non-uniform and of three-dimensional nature (stresses in the thickness direction 

develop). Consequently, the stress history prior to fracture can no longer be estimated from the 

force history measurements using simple analytical formulas. Unless reliable in-situ neutron 

diffraction stress measurements (e.g. Lee et al., 2002) and three-dimensional tomography based 

digital image correlation measurements (e.g. Baranger et al., 2009) are available, the stress and 

strain histories prior to fracture need to be determined in a hybrid experimental-numerical 

approach. In other words, a detailed finite element analysis of each experiment is required to 

identify the stress and strain fields. This forced marriage of experimental and computational 

mechanics involves the risk of adding up the errors from both the experiment and the numerical 

simulation. In the present chapter, we limit our attention to the determination of the stress 

triaxiality and the equivalent plastic strain history to fracture and to the evaluation their accuracy. 

3.2 Determination of the onset of fracture 

The displacement fields on the specimen surface are measured using either two-dimensional 

or three-dimensional Digital Image Correlation (DIC). Based on the DIC measurements, we 

define the instant of onset of fracture (not the location) by the first detectable discontinuity in the 

measured displacement field at the specimen surface. Subsequently, a finite element simulation is 
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performed of each experiment. Post-processing of those simulations gives then access to the 

evolution of the stress triaxiality and the equivalent plastic strain. For the experiments performed 

within this study, it is assumed that the location of the onset of fracture coincides with the 

location of the highest equivalent plastic strain within the specimen at the instant of onset of 

fracture. The corresponding equivalent plastic strain is referred to as fracture strain ��u. 

3.3 Sources of error 

3.3.1 Experimental error 

Among all experimental uncertainties, we consider the error in the optical displacement field 

measurement as critically important for the determination of the fracture strain and triaxiality. 

Possible errors in the initial specimen geometry including thickness can be easily eliminated 

through dimensional verification prior to each experiment. The accuracy of the DIC procedure 

used to measure the fracture displacement depends mainly on the quality of the speckle pattern 

applied on the specimen and on the interpolation function used during the correlation. In order to 

get the least error, the pattern has been applied following the recommendations of Sutton et al. 

(2009) in terms of speckle size and density. Based on correlations performed on computer-

generated sinusoidal waves, Sutton et al. (2009) concluded that for an appropriate speckle 

pattern, cubic B-spline displacement field interpolation functions produce an interpolation bias of 

about 1/40 pixel. 

3.3.2 Computational error 

The solution obtained from finite element analysis usually differs from the exact solution of 

the corresponding physical problem. In addition to shortcomings of the material model, the FEA 

is affected by different sources of errors (e.g. Bathe, 1996). In particular, errors associated with 

the spatial and time discretization as well as the constitutive model are monitored in this study: 

- Spatial discretization errors are minimized by increasing the number of elements. To 

find a suitable mesh, we start with a coarse mesh that is successively refined by 
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dividing the elements’ characteristic dimensions by two until the result converges. It is 

considered that convergence is achieved when an additional element division does not 

change the final plastic strain by more than 0.5%. 

- Time discretization errors are minimized by increasing the number of implicit time 

steps. It is considered that convergence is achieved when adding 50% more time 

increments does not change the final plastic strain by more than 0.5%. 

Furthermore, round-off errors are minimized by using the double precision floating point 

format in our computations with explicit time integration. 

3.3.3 Error estimation 

Due to the redundancy of measurements, we compare the logarithmic strain history obtained 

from DIC with that computed by FEA at the point on the surface where the first displacement 

field discontinuity appears. For every time step in the finite element simulation, there is a 

difference between the computed strain increment lIvwx at the surface of the specimen and the 

actual strain increment lIyz{ measured by DIC. The error affecting the determined plastic strain 

increment at the location of the onset of fracture, |!lI;J', is then estimated based on the strain 

increment difference on the specimen surface, 

}!����' - ����|�����| |����� < ��.�0| (3.1)  

Furthermore, we estimate the error in the accumulated equivalent plastic strain as 

}��� - � �|����� < ��.�0||�����| �I;J

�
���� (3.2)  

It is noted that the above error estimate represents both computational and experimental 

uncertainties. Using the definition of the stress triaxiality,  

� � 5�5;/�   with  5� � *�!9'3  (3.3)  
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the error in the stress triaxiality is related to the error in the hydrostatic stress 9� and that in the 

von Mises stress, 

}� � 15;/� A}5� # �}5;/�B (3.4)  

It is assumed that all the components of the stress tensor are computed with the same error, 

}5�5� � }5;/�5;/� � }5;2���5;2���  (3.5)  

and thus  

}� � 2 �5;/� }5;2��� (3.6)  

Using the hardening law, the first order estimate of the error in stress triaxiality may be written as 

}� � 2 �5;/�h!���'}��� (3.7)  
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Chapter 4.   

Analysis of basic ductile fracture experiments 

4.1 Introduction 

A series of three different types of fracture experiments is carried out on TRIP780 steel: 

notched tensile tests, punch tests and tensile test on specimens with a central hole. The common 

feature of these three types of fracture experiments is their simplicity: (1) the specimens can be 

easily extracted from sheet material, and (2) all experiments can be performed on a universal 

testing machine. For each type of specimen, the accuracy of the hybrid experimental-numerical 

loading history identification is evaluated from the comparison of local digital image correlation 

measurements with FE predictions. It is found that the shell element meshes are not suitable for 

post-necking analysis of local strain fields. Conversely, solid element simulations provide 

accurate estimates of the measured local strain fields when the plasticity model is identified for 

large strains. The results demonstrate the stress triaxiality in specimens with a central hole is 

close to 0.3 all the way to fracture. Furthermore, it is noted that this type of experiment is also 

suitable for the identification of the stress-strain curve for very large strains. 

4.2 Notched tensile tests 

The first type of specimen considered in this study is a flat tensile specimen with circular 

cutouts (Figure 4-1). The stress triaxiality within the specimen is a function of the notch radius. 

For very large notch radii the stress state near the specimen center (prior to necking) corresponds 

to uniaxial tension, while the plane strain condition (along the width direction) is achieved for 
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very small notch radii. In the case of isotropic materials, this variation of stress state corresponds 

to a range of triaxialities from 0.33 to 0.58. 

 

 

Figure 4-1: Geometry of the notched tensile specimens. 
The special shape of specimen shoulders is due to the geometry of our high pressure grips; the 
total clamping force is applied to an area of 50x10mm at the top of the shoulders. 

4.2.1 Experimental procedure 

Specimens are extracted from the sheet material using water-jet cutting. The specimen 

loading axis is always oriented along the rolling direction. All specimens are 20mm wide and 

feature a b=10mm wide notched gage section. Three different notch radii are considered: 

R=20mm, R=10mm and R=6.67mm. The specimens are tested on a hydraulic testing machine 

(Instron Model 8080) with custom-made high pressure clamps. All experiments are carried out 

under displacement control at a constant crosshead velocity of 0.5mm/min. 

During the tests, two digital cameras (QImaging Retiga 1300i with 105mm Nikon Nikkor 

lenses) take about 300 pictures (resolution 1300x1030 pixels) of the speckle-painted front and 

back surface of the specimens. The pictures of the front surface are used to determine the 

displacements of the specimen boundaries. The front camera is positioned at a distance of 1.25m 

to take pictures of the entire specimen (square pixel edge length of 51µm). The photographs of 
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the back face are used to perform accurate DIC measurements of the displacement field at the 

center of the specimen gage section. For that purpose, the second camera is positioned at a 

distance of 0.25m which reduces the square pixel edge length to 9.5µm. The average speckle size 

is about 70µm on both faces. The displacement field is calculated by DIC (VIC2D, Correlated 

Solutions) based on the assumption of an affine transformation of the 21x21 pixel neighborhood 

of each point of interest. The logarithmic axial strain at the center of the specimen is computed 

from the relative vertical displacement Δ� of two points located at the center of the specimen,  

� � ln �1 # Δ�Δ�� (4.1)  

Both points are located on the vertical axis of symmetry at an initial distance of Δ� �
20������  (190µm). For each specimen geometry, we also performed an interrupted test: the 

monotonic displacement loading has been interrupted at a crosshead displacement of 

approximately 98% of the measured displacement to fracture. Subsequently, two 12 mm long 

samples have been extracted from the deformed specimen gage section; the small samples are 

embedded in an epoxy matrix for polishing; low magnification pictures are then taken to 

determine the thickness profile along the specimen’s planes of symmetry. 

4.2.2 Experimental results 

The force-displacement curves for the three different notched geometries (black solid dots in Fig. 

4-2) are shown all the way to fracture. All feature a force maximum before fracture occurs. The 

displacement to fracture presents small variations for different tests carried out on a given 

geometry (less than 3%). The measured fracture displacements and the corresponding 

experimental uncertainty are summarized in Table 4-1. DIC analysis of the strain fields shows 

important strain localization near the center of the specimens. The evolution of the logarithmic 

axial strain with respect to displacement is shown as solid blue dots in Fig. 4-2. Irrespective of 

the notch radius, two consecutive increases of the local strain rate become apparent. The first 

corresponds to the development of diffuse necking (localization through the width of the gage 

section), while the second indicates the onset of localized necking (through the thickness 

localization). The localized necking provokes a severe thickness reduction at the center of the 
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specimens. The measured thickness variations along the axial plane of symmetry of the samples 

obtained from interrupted tests are depicted in Fig. 4-3. Observe the severe thickness reduction 

for all three geometries. 

 

 (a) R=20mm (b) R=10mm 

 

 

(c) R=6.67mm 

 

Figure 4-2: Experimental and simulation results for tensile specimen with circular cutouts. 
Force displacement curves are in black and central logarithmic axial strain versus displacement 
curves in blue. 
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Figure 4-3: Thickness profile along the axial plane of symmetry for the 3 geometries. 
The curves corresponding to the 10mm and 6.67mm notched geometries are shifted by -0.3mm 
and -0.6mm respectively. 

 

Notch radius 

[mm] 

Fracture displacement Fracture plastic strain Stress triaxiality at fracture 

Value [mm] Variation [%] Value [-] Variation [%] Value [-] Variation [%] 

6.67 2.048 1.28 0.422 5.09 0.626 1.90 

10 2.336 1.21 0.552 5.22 0.653 1.97 

20 2.887 1.22 0.585 5.38 0.614 2.43 

Table 4-1: Experimental results and fracture predictions for the tensile specimens with 
circular cutouts 

4.2.3 Finite element model 

Implicit finite element simulations are performed of each experiment using Abaqus/standard. 

Reduced integration eight-node 3D solid elements (type C3D8R of the Abaqus element library) 

are used to mesh the specimens. Exploiting the symmetry of the specimen geometry, material 

properties and loading conditions, only one eighth of the specimen is modeled: the mesh 

represents the upper right quarter of the specimen, with half its thickness (Fig. 4-4). A constant 
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velocity is uniformly imposed to the upper boundary. A zero normal displacement condition is 

imposed to the three boundaries that correspond to symmetry planes.  

The effect of mesh density and time discretization on the computational predictions is studied 

for the R=10mm notch specimen geometry. Four meshes are considered (Fig. 4-4):  

- coarse mesh with an element edge length of �� � 400�� at the specimen center and 

\� � 2 elements in thickness direction (half thickness), 

- medium mesh with �� � 200�� and \� � 4;  

- fine mesh with �� � 100�� and \� � 8; 

- very fine mesh with �� � 50�� and \� � 16; 

The meshes are designed such that the elements near the specimen center feature the same 

dimension in all three spatial directions. In addition to solid element simulations, we make use of 

first-order plane stress shell elements (S4R) with five integration points in the thickness direction. 

The simulations are run up to the fracture displacement. Forty equally spaced time increments are 

used. The corresponding force-displacement curves as well the evolution of the equivalent plastic 

strain at the center of the specimen with respect to displacement are plotted in Fig. 4-5. The 

force-displacement curves lie on top of each other for all solid element meshes. However, the 

comparison with the results from shell element simulations shows that solid elements are required 

in order to provide meaningful predictions after the force maximum has been reached (after the 

onset of necking). Therefore, we limit our attention to the solid element simulations.  

The predictions of force-displacement relationship are approximately mesh size independent, 

but the mesh density has a noticeable effect on the predicted strains at the specimen center. The 

final plastic strain computed with the coarse mesh is 7.3% lower than that for the very fine mesh. 

The relative error between the fine and very fine meshes being only 0.2%. Errors due to time 

discretization are evaluated by running a simulation on the fine mesh with 40, 60 and 90 implicit 

time steps. The difference in the final plastic strain between 40 and 90 steps is 0.7%, while a 

difference of less than 0.2% is observed for 60 time steps. In the following, all simulations of 

notched tensile tests are performed using at least 8 solid elements through the half-thickness and 

at least 60 equally spaced implicit time increments. 
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(a) (b) 

 

(c) (d) 

Figure 4-4: Meshes of the 10 mm notched radius specimen. 
(a) Coarse mesh with 2 elements through half the thickness, (b) medium mesh with 4 elements 
through half the thickness, (c) fine mesh with 8 elements through half the thickness, (d) very fine 
mesh, with 16 elements through half the thickness. 
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Figure 4-5: Effects of spatial discretization on the predict force and strain displacement 
curves for R=10mm 

4.2.4 Extrapolation of the stress-strain curve 

The Swift strain hardening curve has been validated for equivalent plastic strains of up to 0.2 

(point of necking under uniaxial tension). However, in notched tensile specimens, the plastic 

strains at the specimen center are much higher than 0.2. The comparison of the experimentally-

measured force-displacement curve for R=20mm (black solid dots in Fig. 4-6) with the simulation 

results shows that the Swift model assumption overestimates the force level (blue solid line). The 

assumption of a tangent modulus of h��[ � 0  for strains greater than 0.2 yields an 

underestimation of the force level. To obtain a better extrapolation of the measured stress-strain 

curve, we defined two segments of constant slope H1 and H2; here, H1 corresponds to the range of 

intermediate plastic strains (from 0.2 to 0.35), H2 to the range of high plastic strains (��� higher 

than 0.35). The two strain hardening rate moduli are calibrated such that the simulation provides 

a good prediction of the experimentally-measured force-displacement curve (Fig. 4-6). 
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Figure 4-6: Influence of the strain hardening extrapolation on the prediction of the force-
displacement curve for R=20mm 

4.2.5 Comparison of simulations and experiments 

In Fig. 4-2, we show the simulated force-displacement curves (solid black lines) all the way to 

fracture. The agreement with the experimental results (depicted with black dots) is very good for 

the 20mm (Fig. 4-2a) and 10mm (Fig. 4-2b) notch geometries. The force difference between 

simulation and experimental results is less than 1% in both cases. For the 6.67mm notch 

geometry (Fig. 4-2c), the peak of force, corresponding to the onset of localized necking, is 

delayed in the simulation by relative displacement of about 5%. As a result, the FEA predicted 

force drop is too small: the axial force at the onset of fracture is 3.7% higher in the simulation 

than in the experiment. The comparison of the evolution of the logarithmic axial strain at the 

center of the gage section with respect to the displacement (depicted in blue in Fig. 4-2) also 

shows a good agreement. Irrespective of the notch radius, the simulations are able to describe the 

characteristic increases in strain rates that have been observed in the experiments. Relative 

differences between simulation and DIC strains in case of the 20mm notch geometry are about 

3% (Fig. 4-2a). For the 10mm notch geometry (Fig. 4-2b), the computed strain is of up to 10% 

higher than the DIC measurement. As far as the 6.67mm notch geometry is concerned (Fig. 4-2c), 

the first increase of strain rate is too large in the simulation, while the predicted strain rate 

increase after the onset of localized necking appears to be smaller than that given by DIC. As a 
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result, differences between simulated and measured strains tend to decrease at the end of the 

simulation, to be almost zero at fracture. Figure 4-3 depicts the thickness profile along the axial 

plane of symmetry of the specimens (20mm in red, 10mm in blue, 6.67mm in black). Note that 

both the amplitude of thickness variation and the size of the area of localization are very well 

predicted by the simulations. 

4.2.6 Stress triaxiality and equivalent plastic strain evolution 

Figures 4-7a to 4-7c show the evolution of the equivalent plastic strain as a function of the 

stress triaxiality at the center of the gage area. The red solid lines depict the evolution on the 

specimen surface, while the black solid lines show the evolution at the very center of the 

specimen (intersection point of all three symmetry planes). The large solid dot marks the onset of 

fracture that is obtained when using the average fracture displacement from three experiments. 

The crosses indicate the corresponding simulation results for the measured minimum and 

maximum displacement to fracture (see also Table 4-1). The comparison of the red and black 

curves clearly shows that the stress and strain state at the specimen surface is significantly 

different from that at the specimen mid-plane. In other words, there is a strong gradient along the 

thickness direction within the central zone of strain localization. The equivalent plastic strains to 

fracture inside the specimen are 11.5% (20mm notch) and 15.8% (10mm notch) higher inside the 

specimen than on the surface (see Fig. 4-8). Localized necking also leads to the development of 

out-of-plane stress components in the middle of the specimen (while the surface deforms under 

plane stress), which increases the stress triaxiality. Furthermore, the strains measured at the 

specimen surface are not representative for the strain to fracture of the material (red line in Fig. 4-

7). It is also noted that the stress triaxiality exhibits very strong variations during loading. For 

instance, for R=20mm it increases from � � 0.40  before the onset of localized necking to 

� � 0.61 at the onset of fracture. 
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 a) R=20mm (b) R=10mm 

 

 
(c) R=6.67mm 

 

Figure 4-7: Loading paths at the center of the notched specimens. 

The red solid line depicts the loading path at the surface, the black solid line at the mid-plane; 
black dots and the crosses highlight the onset of fracture including experimental scatter 
(min/max). The dashed blue lines show the error envelopes. 
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Figure 4-8: Contour plot of the equivalent plastic strain at the instant of the onset of fracture 
in the notched specimen with R=10mm 

4.2.7 Uncertainty analysis 

Three different types of errors affecting both the plastic strain and the stress triaxiality at the 

onset of fracture are summarized in Table 4-2. Considering DIC accuracy and camera resolution, 

the relative displacement of the specimen boundaries is measured in all experiments with an 

accuracy of 2.5µm. Due to the strain localization at the center of the specimen, the errors in the 

fracture displacement translate to even larger errors in the fracture strain. This small uncertainty 

in the measured fracture displacement (relative error of about 0.1%) leads to an error of about 

0.004 on the fracture strain and 0.002 on the stress triaxiality at the onset of fracture. 

Errors due to the inaccuracy of the constitutive model are computed according to Eq. (3.2). 

For all three specimen geometries, the estimated error }��� on the plastic strain is less than 0.03 at 

the onset of localized necking and reaches 0.063 at the point of fracture for the 20mm notch 

geometry (0.083 and 0.073 for the 10mm and 6.67mm geometries, respectively). This emphasizes 

the difficulty of modeling the post necking behavior of the specimen with great accuracy. 

According to Eq. (3.7), this corresponds to errors on the stress triaxiality at the onset of fracture 

of 0.025 for the 20mm geometry, 0.036 for R=10mm and 0.032 for R=6.67mm. The errors 

affecting the plastic strain versus stress triaxiality curves are depicted in Figs. 4-7a to 4-7c by 
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dashed blue lines. Those lines can be seen as the upper and lower boundaries on the evolution of 

the actual material state in the stress triaxiality/plastic strain space at the fracture locus. Colored 

areas surrounding fracture points depict the uncertainty on the actual fracture point due to both 

errors (plus experimental scatter). Those areas represent the precision achievable when 

determining the material state at the onset of fracture using tensile specimens with circular 

cutouts. Note that errors affecting stress triaxiality are very important for small strains, even if 

strain errors are then very small. According to Eq. (3.7), }� is proportional to the current strain 

hardening modulus h!���'; the latter is very high for small strains, but decreases monotonically 

as the strain increases (e.g. h � 8100��� for ��� � 0.01 and h � 400��� for ��� � 0.5). 

To illustrate the large error associated with the use of shell elements, we added a red dashed 

line to Fig. 4-7b which shows the predicted loading path evolution from a shell element 

simulation. The loading path agrees well with the solid element simulation prior to necking, 

whereas the predicted strain increases to unrealistically high values after the onset of necking. 

 

Notch radius 

[mm] 

Fracture plastic strain Stress triaxiality at fracture 

Displacement 

error [-] 

Modeling 

error [-] 

Total error 

[-] 

Displacement 

error [-] 

Modeling 

error [-] 

Total 

error [-] 

6.67 0.34 10
-2

 7.31 10
-2

 7.65 10
-2

 0.14 10
-2 

 3.16 10
-2

 3.30 10
-2

 

10 0.43 10
-2

 8.34 10
-2

 8.77 10
-2

 0.17 10
-2

 3.57 10
-2

 3.74 10
-2

 

20 0.46 10
-2

 6.34 10
-2

 6.80 10
-2

 0.17 10
-2

 2.55 10
-2

 2.72 10
-2

 

Table 4-2: Errors in the evaluation of the plastic strain and stress triaxiality at the onset of 
fracture 

4.3 Circular punch test 

The circular punch test is a standard sheet metal forming test that characterizes the 

formability of sheet materials under stress states that are close to equi-biaxial tension. 

Analogously to our analysis of the notched tensile test, we assess the accuracy of the circular 

punch test.  
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4.3.1 Experimental procedure 

The circular sheet specimen is clamped on a circular die and subsequently loaded through a 

hemispherical punch.  The punch and die have a diameter of 44.5mm and 100mm, respectively. 

The clamping pressure is applied through eight M10-12.9 screws. The experiment is carried out 

in a universal testing machine (MTS, Model G45) at a constant punch velocity of 5mm/min. In 

order to limit the effects of friction, a stack of six oil-lubricated 90�� thick Teflon layers is put 

between the specimen and the punch during each test.  

Three-dimensional Digital Image Correlation (Vic3D, Correlated Solutions) is used to 

measure the out-of-plane deformation of the specimen. In our vertical experimental set-up, the 

clamping die is fixed on a special metal frame (Walters, 2009). A leaning mirror is integrated into 

that frame to record pictures of the speckle-painted bottom surface of the specimen with two 

digital cameras. The cameras see the specimen at a distance of 2.5m at an angle of 20° from the 

punching direction. Each camera records about 300 pictures during the test; the edge length of a 

square pixel is about 100µm. The displacement field is calculated by DIC for the entire free 

surface of the specimen assuming an affine transformation of the 21x21pixels neighborhood of 

each point. The interpolation of the gray values is performed with a 6-tap filter. The logarithmic 

strain field is then calculated by averaging the displacement gradient over an area of 11x11 

pixels. 

4.3.2 Experimental results 

The measured cross-head displacement includes the deformation of the clamping fixture as 

well as the deformation of the punch and the testing frame in addition to the effective punch 

displacement. Since the punch behaves like a non-linear spring (because of the increasing contact 

area between the punch and the specimen) it is difficult to extract the displacement associated 

with permanent deformation of the specimen from these measurements. Moreover, we observed 

that most of the Teflon layers are torn apart during the punching which may be considered as 

permanent deformation of the testing device. The initial thickness of the Teflon stack is 0.55mm, 

but we measure a final thickness of 0.12mm after the experiment. In order to eliminate these 
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experimental uncertainties in the punch displacement measurements, we present most 

experimental results as a function of the punch force instead of the punch displacement. 

Figure 4-9 depicts the evolution of the maximum principal true strain on top of the dome 

measured by DIC. Observe that the applied force reaches a plateau in this displacement 

controlled experiment. Fracture initiates on top of the dome which indicates that friction was 

close to zero in this experiment. After fracture initiation, cracks propagate along the rolling 

direction of the sheet. Both measured principal strains at the apex of the deformed specimen 

exceed 0.4 at the onset of fracture. Post-mortem analysis revealed that the sheet thickness is 

reduced by almost 60%, from 1.43mm (initial) to 0.58mm (final).  

In addition to measuring the strain at the specimen apex, the DIC measurements are used to 

verify two important features of this experiment. Firstly, the DIC measurements demonstrate that 

the radial displacements are negligibly small along the interface between the specimen and the 

clamping ring (less than 0.05mm). Secondly, the DIC measurements demonstrate that the strain 

maximum prior to fracture is located at the specimen center which re-confirms that friction 

effects have been successfully eliminated by the lubricated Teflon layers (Burford et al., 1991). 

 

 

Figure 4-9: Punch test experimental results. 
Evolution of the major logarithmic strain on the specimen surface as a function of the punch 
force 
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4.3.3 Numerical modeling 

A quarter of the mechanical system is modeled because of the symmetry of the punch 

experiment and the orthotropic material behavior. Eight-node reduced-integration solid element 

meshes are employed in conjunction with the implicit solver of Abaqus. In addition, we make use 

of a shell element mesh along with the explicit solver of Abaqus because of the high 

computational efficiency of the shell contact formulation. In all FE models, the punch and the die 

are modeled as rigid bodies. The portion of the specimen that is clamped in the die is limited to 

5mm in the simulation (i.e. the diameter of the circular specimen in the FE model is 110mm). The 

displacements of all nodes located on the outer edge of the specimen are set to zero. A condition 

of zero-normal displacement is imposed along the two edges that correspond to planes of 

symmetry. For shell meshes, no rotation around the edge direction is allowed on those two 

boundaries. A frictionless node-to-surface contact is defined between the punch and the 

specimen. In the case of shell elements, contact is defined for the sheet surface while thickness 

variations are taken into account. A constant velocity is applied to the punch, while the die is 

fixed in space. 

 

 

Figure 4-10: Punch test modeling. 
Influence of the mesh density on the force displacement curve and on the equivalent plastic 
strain versus displacement curve. Results for solid and shell elements are depicted with solid 
and dashed lines, respectively 
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The predicted force-displacement curves from an implicit simulation with 100 time steps 

using a coarse mesh (60/3 solid elements along the radial/thickness direction), an intermediate 

mesh (120/6) and a fine mesh (240/12) all lie on top of each other (Fig. 4-10). Similarly, the 

results from quasi-static explicit simulations with shell elements (using the same number of 

integration points through-the-thickness as solid elements along that direction) are all identical. 

However, there is a noticeable difference between shell and solid element simulations for large 

punch displacements. This difference may be attributed to the errors associated with the 

assumption of plane stress and zero plastic out-of-plane shear strains in the shell element 

formulation. Analysis of the solid element simulations reveals that the out-of–plane compression 

stress reaches 90MPa on the contact surface with the punch; the maximal out-of-plane 

logarithmic shear strain is about 0.035. Unlike the results for the force-displacement curves, the 

solid element model predictions of the equivalent plastic strain feature a weak mesh size effect. 

At the center, the final equivalent plastic strain reaches 0.92 for a coarse mesh, whereas it is 0.90 

for a fine mesh. Between a medium and fine mesh, the relative difference is almost zero. The 

results from implicit simulations with different numbers of time steps (65, 100, 150 and 200) 

revealed only small differences. The final maximal equivalent plastic strain reaches 0.92 when 

using 65 time steps and 0.90 for 200 steps.  

Based on our brief analysis, the punch experiment will be analyzed using a finite element 

model with (i) 120 solid elements along the radial direction, (ii) 6 solid elements in thickness 

direction, (iii) 100 implicit time steps, and (iv) frictionless kinematic node-to-surface contact. 

4.3.4 Identification of strain hardening response 

When plotting the evolution of the major principal strain at the center of the specimen as a 

function of the punching force (Fig. 4-9), it becomes apparent that the simulation model (blue 

curve) underestimates the strain in comparison with the experiment (solid black dots). Recall that 

the hardening curve used in the simulation has been calibrated based on the experimental results 

from uniaxial and notched tensile tests. However, since the maximum equivalent plastic strain 

reached in a punch test (about 0.9) is still much larger than that reached in a notched tensile test 

(about 0.6), we may improve the extrapolation of the stress-strain curve for large strains. Here, a 
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third linear hardening segment is introduced for ��� � 0.6 . The best correlation between 

simulation and the punch experiment is achieved when using a hardening modulus of 

H3=100MPa in this third segment. The corresponding simulation result is depicted as a black 

solid line in Fig. 4-9. It is emphasized that this modification of the hardening curve does not 

affect the results from the previous section on notched tensile tests. 

4.3.5 Simulation results and uncertainty analysis 

The numerical simulation is performed up to the instance where the computed surface strain 

equals the measured surface strain at the onset of fracture (� � 0.461). The simulated curve 

shows very good agreement with the experimental results (depicted with black dots). 

Furthermore, the predicted thickness reduction is in excellent agreement with the experiment. 

Figure 4-11 depicts the evolution of the equivalent plastic strain as a function of the stress 

triaxiality (black curve); here, it is assumed that fracture initiates on the free specimen surface. 

The loading state at the onset of fracture is depicted as a black dot. Fracture occurs at a computed 

stress triaxiality of � � 0.66 (equi-biaxial tension). 

 

 

Figure 4-11: Loading paths on the outer surface of the punched specimen. 
The black dot indicates the onset of fracture, the dashed blue lines shows the error envelope. 
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Fracture plastic strain Stress triaxiality at fracture 

Value [-] Error [-] Value [-] Error [-] 

0.896 6.86 10
-2

 0.662 0.73 10
-2

 

Table 4-3: Fracture point and error estimation for the circular punched specimen 

 

The modeling error affecting the computation of the equivalent plastic strain and the stress 

triaxiality is evaluated according to Eqs. (3.2) and (3.7); it is shown by blue dashed lines in Fig. 

4-11. Modeling errors at the onset of fracture are summarized in Table 4-3. A complete 

evaluation of the errors affecting the hybrid experimental-numerical result would require 

evaluating the precision of the 3D DIC method. However, the authors could not identify such an 

evaluation in the open literature. For the case of one-dimensional DIC, Sutton et al. (2009) 

reported that the 6-tap optimized filter interpolation function does not produce any significant 

error. Thus, we neglect this source of error in our analysis. 

4.4 Tensile specimen with a central hole 

Conventional uniaxial tensile specimens develop a pronounced neck at large strains which 

yields to a change in stress state throughout the experiment from uniaxial tension to transverse 

plane strain. In an attempt to keep the stress triaxiality more constant throughout the experiment, 

we make use of tensile specimens with a central hole. The presence of a central hole creates a 

strain concentration which favors the fracture initiation at the intersection of the hole and the 

transverse axis of symmetry of the specimen. 

4.4.1 Experimental procedure 

The tensile specimens are 20mm wide and feature an 8mm diameter circular hole at the center 

(Fig. 4-12). For the first set of specimens, the central hole is cut using a water-jet. In order to 

obtain a better edge finish, we prepared a second set of specimens with a 7mm diameter water jet 

cut hole that is subsequently enlarged to 8mm using CNC milling (with a 0.125” diameter end 
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mill). The experimental procedure follows closely the program outlined for the notched 

specimens. To evaluate the error in the computed strains, we determined the axial logarithmic 

strain on the transverse symmetry axis at a distance of 40 pixels (380µm) from the hole. A 

measurement right at the edge of the hole is not possible as the DIC algorithm needs a continuous 

displacement field in the vicinity of the point of interest. 

 

Figure 4-12: tensile specimen with central hole 

4.4.2 Experimental results 

The measured force-displacement curves for the two sets of specimens are shown in Fig. 4-13 

as crosses for the waterjet cut specimens and as solid dots for the CNC milled specimens. The 

waterjet-prepared specimens are extracted from a slightly thinner part of the sheet (1.46mm 

instead of 1.5mm), resulting in a lower force displacement curve. The measurements demonstrate 

that the machining technique has a strong influence on the fracture displacement. It is about 

2.1mm for CNC-milled specimens and only 1.7mm for the waterjet cut specimens. The waterjet 

cuts the sheet by abrasion (abrasive jet), which leaves a non-smooth edge with numerous 

geometric defects. It is speculated that those defects along with some residual plastic strains are 

responsible for the premature failure of the water-jet cut specimens. Consequently, the results for 

water-jet cut specimens are discarded in the following analysis. 
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The force-displacement curve (Fig. 4-13) exhibits a peak before fracture occurs. An important 

width reduction (diffuse necking) is observed within both specimen ligaments (Fig. 4-14), which 

appears to intensify as the force reaches its maximum. The displacement to fracture varies among 

the CNC-milled specimens (Table 4-4). Observe from Fig. 4-15 that axial strain field features 

steep gradients around the transverse axis of symmetry of the specimen. The evolution of the 

surface strain (blue curve in Fig. 4-13) shows that the surface strain reaches values of up to 0.7 

prior to fracture. 

 

 

Figure 4-13: Experimental and simulation results for the tensile specimen with a central hole 
Force-displacement curves and logarithmic strain versus displacement curves from experiments 
(dots = CNC-machined, crosses = waterjet cut) and simulation (solid lines)  

 

 

Figure 4-14: Specimen with a central hole after crack initiation 
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Figure 4-15: Logarithmic axial strain computed on specimen surface at the instant of the 
onset of fracture on a specimen with a central hole 

 

 

Fracture displacement Fracture plastic strain Stress triaxiality at fracture 

Value [mm] Variation [%] Value [-] Variation [%] Value [-] Variation [%] 

2.089 2.24 0.834 6.67 0.282 1.45 

Table 4-4: Experimental results and fracture predictions for the tensile specimen with central 
hole 

4.4.3 Numerical modeling 

Based on the results from Paragraph 3.3, eight-node solid elements (with reduced integration) 

are used to mesh one eighth of the specimen (Fig 4-16). A constant velocity is applied to the 

upper boundary. A zero normal displacement condition is imposed to the three boundaries 

corresponding to symmetry planes. Since the experimental results indicate that through-the-

thickness localization is less important with this specimen design than for notched tensile 

specimens, we assume that 8 elements through the half thickness are enough to describe the stress 

and strain variations along the thickness direction. However, we use a biased mesh with the 
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smallest elements at the intersection of the hole with the transverse plane of symmetry (Fig. 4-

16).  In this vicinity, the elements have also the same length in the axial and transverse directions. 

Implicit simulations are performed using a coarse mesh (smallest in-plane element edge length is 

120µm), a medium mesh (60µm) and a fine mesh (30µm). As for the notched tensile tests, we 

find the same force-displacement curves for all mesh sizes. The effect of mesh size on the 

equivalent plastic strain is also weak for the element located at the hole boundary (on the 

specimen mid-plane). The final equivalent plastic strain computed with the coarse mesh is 0.83 

compared to 0.86 when using the fine mesh. Errors due to time discretization are also evaluated 

by running simulations with 50, 75, 100 and 150 time increments. The difference in final plastic 

strain is already negligible (0.004) when comparing the results for 75 and 100 time increments. 

Thus, we make use of the implicit analysis with 75 time steps and a medium mesh to determine 

the loading history to fracture. 

 

Figure 4-16: medium FE mesh for the specimen with a central hole 

4.4.4 Numerical results and error estimation 

The simulated force-displacement curve is depicted as a black solid line in Fig. 4-13. It is in 

excellent agreement with the experimental data (solid dots). The maximum difference between 

the experimentally-measured and numerically-predicted force level is smaller than 2%. This good  
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Figure 4-17: Analysis of a tensile test with a central hole 
Loading path at the center of the specimen (black solid line); the black dot and the crosses 
highlight the onset of fracture including experimental scatter (min/max). The dashed blue lines 
show the error envelopes. 

 

correlation is seen as a validation of the strain hardening curve that has been determined from the 

notched tension and punch tests. The FEA predicted evolution of the surface strain (blue line in 

Fig. 4-13) is also close to the DIC measurements (blue dots). Similar to the results for notched 

tensile tests, the strains computed by FEA are higher than the DIC measurements. Here, the final 

computed strain is overestimated by about 10%.  

The evolution of the equivalent plastic strain as a function of the stress triaxiality is shown in 

Fig. 4-17. The black solid dot highlights the instant of onset of fracture. The differences due to 

scatter in the measured fracture displacement is represented with solid crosses. The identified 

fracture strain as well as the stress triaxiality at the onset of fracture are summarized in Table 4-4 

along with the corresponding error estimates.  

As compared to the results for notched tensile specimens, the stress triaxiality variations in 

the tensile specimen with a central hole are small. It varies between 0.277 and 0.338. At the onset 

of fracture, the stress triaxiality is � � 0.282 which is close to uniaxial tension (� � 0.33). The 

estimated equivalent plastic strain to fracture is 0.83. The relative displacements of the specimen 

boundaries are computed with a precision of 2.5µm which translates into an uncertainty of 0.002 
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for the fracture strain and of less than is 0.001 for the stress triaxiality. The modeling errors 

according to Eqs. (3.2) and (3.7) are 0.095 for the fracture strain and 0.004 for the stress 

triaxiality. 

Fracture plastic strain Stress triaxiality at fracture 

Displacement 

error [-] 

Modeling 

error [-] 

Total error 

[-] 

Displacement 

error [-] 

Modeling 

error [-] 

Total error 

[-] 

0.22 10
-2

 9.49 10
-2

 9.71 10
-2

 0.03 10
-2

 0.43 10
-2

 0.46 10
-2

 

Table 4-5: Errors in the evaluation of the plastic strain and stress triaxiality at the onset of 
fracture in the tensile specimen with a central hole 

4.5 Discussion and recommendations 

4.5.1 Identification of the strain hardening response 

The proper identification of the strain hardening model for very large strains is critically 

important for the reliable determination of the fracture strains. It is emphasized that conventional 

extrapolation formulas such as the modified Swift model seem to provide a poor approximation 

of the strain hardening behavior of advanced high strength steels at large strains. The present 

study shows that the Swift assumption leads to substantial errors in the simulation results after the 

onset of necking which is consistent with earlier results on martensitic steel (Mohr and 

Ebnoether, 2009). When hydraulic bulge testing devices are not available or a bulge test is 

impossible to realize (because of the very large specimen size), we propose the following 

procedure to identify the strain hardening function h!���': 
(i) Uniaxial tensile testing of dogbone specimens up to the strain of necking (ASTM E8, 

2004); 

(ii) Uniaxial testing of a tensile specimen with a central hole;  the stress-strain curve can 

then be identified through inverse calibration; 
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One may also model the post-necking behavior of uniaxial tensile test and determine the 

stress-strain curve from inverse analysis (e.g. Mohr and Ebnoether, 2009). However, since the 

stress state in the neck of a uniaxial tension specimen is close to transverse plane strain, the 

maximum equivalent plastic strain achieved using a uniaxial tensile specimen with a central hole 

is expected to be larger. Furthermore, the stress gradients through the sheet thickness are smaller 

for the later type of specimen. From an experimental point of view, we note that location of the 

zone of localization is a priori known when using a specimen with a central hole. This allows for 

the proper positioning of the DIC system before the experiment. Note that in a uniaxial tensile 

test, the position of the emerging neck is unknown before the experiment and may thus occur 

outside the field of vision of the camera system. 

4.5.2 Numerical modeling 

Shell element simulations provide accurate predictions of the large deformation behavior of 

sheet metal structures before the onset of through-the-thickness necking. However, the strain and 

stress state predictions of shell element simulations after the onset of through-the-thickness 

necking are not reliable as out-of-plane stresses become important. The same limitation becomes 

apparent under the presence of high surface pressures (e.g. final phase of the punch test). Thus, 

we strongly recommend using solid element meshes to determine the stress and strain histories all 

the way to fracture. When evaluating the effect of mesh density on the simulation results, it is 

important to monitor the strain evolution within the zone of localization. The global force-

displacement curves are usually not mesh size sensitive since the material within the zone of 

localization contributes only little to the “internal energy” (elastic strain energy plus plastic 

dissipation) of the entire structure. As a rule of thumb, we recommend sixteen first-order solid 

elements through the full thickness of the sheet. 

4.5.3 Summary of the loading paths to fracture 

Figure 4-18a summarizes the results from all simulations in a single graph of equivalent 

plastic strain versus stress triaxiality. Recall that the critical element (integration point) is 

positioned on the sheet mid-plane for the notched tensile specimens and the specimen with a 



 

70 

central hole, while it is located on the specimen surface for the punch experiment. We observe 

the high ductility for stress states close to uniaxial tension and those close to equi-biaxial tension. 

The strain path for the notched tensile specimen features stress states close to transverse plane 

strain which exhibit the lowest ductility. As an alternative to showing the results in the !�, � ��'-
plane, we also computed the loading paths to fracture in terms of the principal plastic strains in 

the plane of the sheet. The minor and major strains shown in Fig. 4-18b are calculated from the 

in-plane components of the plastic strain tensor. Note that these strains are different from the 

eigenvalues of the plastic strain tensor (unless the out-of-plane shear strain components are zero). 

  
 (a) (b) 

Figure 4-18: Stress and strain histories for the 5 geometries 
(a) in the stress triaxiality versus equivalent plastic strain space,  

(b) in the in-plane major strain versus in-plane minor strain space. 

4.5.4 Effect of porosity 

All numerical results presented in this paper are obtained under the simplifying assumption 

that the effect of (micro-)porosity evolution on the effective plastic behavior can be neglected. 

There is strong theoretical evidence that the evolution of porosity changes the predicted stress 

triaxialities (e.g. Danas and Ponte Castaneda, 2009a). However, it is difficult to quantify the 

effect of porosity on the plastic behavior of the TRIP780 steel based on our macroscopic 

measurements (surface displacement fields and total force). At the same time, the numerical 

predictions of the non-porous plasticity model employed in this study agree well with all 

macroscopic measurements for various loading conditions.  
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(a) 

 

(b) 

Figure 4-19: Micrographs of the axial plane of symmetry of deformed notched tensile specimens. 
(a) R=20mm notch specimen strained to 98.3% of the fracture displacement, (b) R=6.67 mm 
notch specimen strained to 96.8% of the fracture displacement. The vertical and horizontal 
directions of the pictures correspond to the axial and thickness directions of specimen, 
respectively. 

 

The evolution of porosity clearly plays an important role as far as the onset of fracture is 

concerned. The initial microstructure is void free, but micrographs of highly deformed specimens 

indicate that voids initiate and grow throughout loading. Figure 4-19 shows micrographs of the 

axial plane of symmetry at the center of the notched specimens prior to fracture (after applying 

about 97% of the displacement to fracture). Voids and microcracks are clearly visible at this stage 

of deformation. Observe that the microcracks are aligned with the loading direction. This 
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observation may be explained using the anisotropic porous plasticity model of Danas and Ponte 

Castaneda (2009b). Their homogenization-based computations show that the severe elongation of 

initially spherical voids under transverse plane strain loading causes the loss of ellipticity of the 

effective porous medium. In other words, the axial microcracks may be considered as the result 

of the coalescence of highly elongated voids. However, in the present case, the onset of fracture 

is also affected by material heterogeneities at the microstructural level. Energy dispersive X-ray 

analysis revealed that the locations of the microcracks seen in Fig. 4-19 coincide with the 

position of Mn and Mo segregation bands. 

 

4.6 Conclusion 

Five different fracture tests have been performed on full thickness specimens extracted from 

TRIP780 sheets and analyzed in great detail to obtain reliable estimates of the loading path to 

fracture for stress triaxialities ranging from uniaxial tension to equi-biaxial tension. The main 

conclusions are: 

(1) Shell element simulations are not suitable for the evaluation of the local loading 

path after the onset of through-the-thickness necking. 

(2) Solid element simulations can provide accurate predictions. Both coarse and 

fine meshes predict usually the same overall force-displacement response, but it 

is important to evaluate the accuracy of an FE simulation through the 

comparison of the predicted strains within the neck with DIC surface strain 

measurements. For the present material and loading conditions, sixteen first 

order solid elements along the thickness direction provided sufficiently accurate 

results for the local fields.  

(3) It is important to identify the strain hardening curve for large strains from 

experiments. The analytical extrapolation (e.g. Swift law) based on data for 

uniaxial tension prior to necking is not sufficiently accurate. When data from 

hydraulic bulge tests is not available, we recommend the inverse identification 
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of the stress-strain curve using the results from the testing of uniaxial tensile 

specimen with a large central hole.  

(4) The stress-triaxiality is approximately constant all the way to fracture for a 

tensile specimen with a central hole and during a punch test; it increases 

monotonically throughout notched tensile tests.    
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Chapter 5.  

Fracture Testing under Combined  

Normal and Shear Loading 

5.1 Introduction 

In sheet metal forming, the failure of the sheet metal is typically predicting using Forming 

Limit Diagrams (FLDs), e.g. Keeler et al. (1964). The FLD defines the onset of necking as failure 

while the so-called Fracture Forming Limit Diagram (FFLD) concept has been introduced to 

predict the fracture after necking (Embury et al., 1977). Most experimental techniques for 

determining FLDs and FFLDs comprise a plurality of specimens that are inserted into a testing 

system of only one degree of motion. For instance, the Hasek (1978) test makes use of a family 

of circular specimens with different recesses that are inserted into a punch/die system. The axial 

motion of the punch is the only degree of freedom of the testing system. The Nakazima (1971) 

test relies on a similar punch/die system to load strips of different width all the way to fracture. In 

the hydraulic bulge test, only one type of specimen is used while different states of loading are 

achieved by varying the elliptical shape of the die. The common feature of these testing 

techniques is a single degree of freedom loading system. This degree of freedom is used to vary 

the intensity of loading, i.e. the position along a linear loading path. However, the loading path is 

preset by the combination of specimen and testing system. It cannot by changed throughout the 

experiment. Moreover, it is noted that none of the aforementioned testing techniques allows for 

the reversal of loading direction. In other words, the described experimental techniques for FLD 

and FFLD determination are limited to monotonic linear loading paths.  

Due to this limitation, the effect of non-linear and/or non-monotonic loading paths can only 

be studied by these techniques when the specimens are cut from pre-deformed sheets. Laukinis 
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and Gosh (1978) studied the failure under uniaxial tension of equibiaxialy pre-strained aluminum 

killed steel and 2036-T4 Aluminum specimens. Llod and Sang (1979) performed uniaxial tensile 

pre-straining followed by uniaxial tension in the orthogonal direction on 2036-T4 and 5182-0 

Aluminum sheets. More recently, Graf and Hosford (1994) characterized the influence of strain 

path changes on the FLD of 6111-T4 Aluminum sheets by pre-straining their specimens under 

either uniaxial, transverse plane strain or equibiaxial tension. All experimental studies reported a 

significant dependence of failure on strain-path changes. 

Mohr and Henn (2007) proposed an experimental technique that makes use of an universal 

biaxial loading device to test a flat specimen under different states of loading. This technique is 

fundamentally different from the established FLD tests in the sense that the state of loading is 

varied by changing the displacement boundary conditions rather than the shape of the specimen. 

In conjunction with a dual actuator system (e.g. Mohr et al., 2008), this experimental technique 

can be employed to perform fracture tests along non-linear loading paths. The original specimen 

design by Mohr and Henn (2007) featured a flat gage section of uniform thickness that has been 

designed such that cracks are most likely to initiate within the specimen center. Bai (2008) 

modified this geometry by including a second curvature, the specimen featuring a non-flat gage 

section. Both use of the specimen by Mohr and Henn as well as the specimen by Bai in a biaxial 

loading device require a hybrid experimental-numerical approach to determine the stress and 

strain states at the onset of fracture.  

In the present chapter, the original design of the specimen by Mohr and Henn (2007) is 

revisited. After optimizing some characteristic geometrical features, a series of experiments is 

performed on a TRIP780 steel and analyzed in detail. The results show that the validity of the 

proposed hybrid experimental-numerical technique is very sensitive to machining imperfections. 

Furthermore, it is shown that the local stress and strain fields within the specimen gage section 

cannot be computed with high accuracy at very large strains. Thus, it is recommended to interpret 

the fracture data from butterfly experiments as lower bounds rather than “exact”. 
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5.2 Specimen design 

Figure 5-1 shows a schematic of the proposed fracture specimen. The specimen features a 

thickness jump between the gage section of thickness t and the shoulders. Different states of 

stress and strain may be achieved within the specimen gage section by applying different 

combinations of normal loading ./  and tangential loading .2  to the top and bottom specimen 

boundaries. An attempt is made to optimize the specimen geometry such that the cracks initiate 

within the flat (   )¡ large central area of the gage section.  

In a plane stress specimen, the stress state is always uniaxial tension along the free 

boundaries, irrespective of the state of stress at the specimen center. This can pose a challenge 

when characterizing the onset of fracture at low stress triaxialities since early cracks may initiate 

along the specimen boundaries rather than at the specimen center. The boundaries of the 

proposed specimen are curved to avoid the crack initiation at the gage section boundaries. Here, 

we perform a short parametric study to gain further insight into the effect of the boundary 

curvatures on the stress and strain distributions within the gage section.  

 

 

Figure 5-1: Schematic of the proposed specimen. 
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5.2.1 Theoretical range of loading states 

The (x,y)-reference frame in Fig. 5-1 denotes the so-called machine coordinate systems. Prior 

to necking, the state of stress near the specimen center is plane stress in the (x,y)-plane with the 

superposed transverse plane strain constraint in the x-direction. For an isotropic rigid plastic 

Levy-von Mises solid, the corresponding stress tensor in the machine coordinate system (see Fig. 

5-1) may be written as 

5 � G0.5 5 7 07 5 00 0 0H (5.1)  

The transverse plane strain condition implies that the strain along the specimen width 

direction (corresponds to x-direction in Fig. 5-1) is zero, �1 - 0. Throughout our discussion, we 

use the stress triaxiality � and the Lode angle parameter ¢� to characterize the stress state. The 

stress triaxiality is defined by the negative ratio of hydrostatic pressure � � <*�!9' 3⁄   and the 

von Mises equivalent stress, 5;/�,  

� � < �5;/� � ��N\!5'
X3 # 12 V75WD

 
(5.2)  

The stress triaxiality is zero for shear dominated loading (5 7⁄ £ 0 ) while it approaches 

asymptotically its maximum value of � � 1/√3 - 0.58 as the normal stress becomes dominant 

!5 7⁄ £ ∞'.  
The Lode angle parameter ¢� is defined by the ratio of the third and second stress deviator 

invariants,  

¢� � 272 det!9 # �¨'5;/�E �
274 5|7|

©34 V57WD # 3ªED
 (5.3)  

Unlike the stress triaxiality, the Lode angle parameter is not a monotonically increasing function 

in 5/7. We have ¢� � 0 for both 5 7⁄ £ 0  (pure shear) and 5 7⁄ £ ∞ (transverse plane strain 

tension), while it reaches its maximum of ¢� � 1 for 5 7⁄ - 1.38, which corresponds to uniaxial 
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tension. The theoretical relationship between the Lode angle parameter and the stress triaxiality 

for the present type of experiment is shown in Fig. 5-2. In addition, the biaxial loading angle, 	, 

defined as  

tan	 � ./.2 - 57  (5.4)  

is depicted as curve parameter in Fig. 5-2. In this notation, 	 � 0° corresponds to pure shear, 

while 	 � 90° corresponds to transverse plane strain tension.  

 

Figure 5-2: Lode angle parameter as a function of the stress triaxiality for plane stress conditions. 
The labels next to the solid dots indicate the corresponding biaxial loading angle. 

 

5.2.2  Parametric study on specimen geometry 

The exact geometry of the proposed fracture specimen is described by three geometric 

parameters: the shoulder radius �e, the lateral radius �« and the fillet radius �¬. The gage section 

thickness t and height h are not considered as a model parameter. From a theoretical point of 

view, the thickness does not affect the stress distribution in a plane stress specimen. The width is 
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important and should be as large as possible for stress field uniformity. In view of the force 

limitations of real testing systems, it is usually advantageous to increase the specimen width at 

the expense of thickness. Here, a gage section thickness of * � 0.5��  is chosen. This 

corresponds to lower limit which can still be machined within reasonable dimensional tolerances 

(e.g. thickness variations of less than 5%). In order to produce transverse plane strain conditions 

near the specimen center, the distance h between the top and bottom shoulders needs to be small. 

Furthermore, the risk of buckling under shear loading may be lowered by choosing a small gage 

section height. In the present design, a minimum thickness of ( � 2�� is chosen to provide a 

sufficiently large flat area for two-dimensional DIC measurements.    

The implicit finite element program Abaqus/standard (2007) is used to compute the stress 

and strain fields within specimens of different geometry. The linear plane stress elements CPS4R 

and CPS3 are used in two-dimensional models while the solid elements C3D8R and C3D6 are 

employed to discretize three-dimensional geometries. It will be shown in Section 4 that very fine 

meshes are needed to provide an accurate estimation of all local stress and strain fields. Within 

the framework of this subsection, rather coarse finite element meshes are employed; they are 

chosen such that the effect of various geometric features can be studied with satisfactory 

accuracy.  

5.2.3 Effect of the shoulder curvature 

The main reason for introducing the shoulder radius �e is to reduce the amount of plastic 

deformation towards the free specimen boundaries to avoid premature fracture away from the 

specimen center. Since this problem is most critical for pure shear loadings, we performed all 

simulations for this loading condition. Three different radii are considered to demonstrate the 

effect of the shoulder curvature: �e � 50��, �e � 100�� and �e � 200��. Figures 5-3 to 

5-5 show plots of the variation of the equivalent plastic strain and stress triaxiality along the x-

direction at an advanced stage of deformation. Each solid dot represents the result at one 

integration point of the plane stress mesh. The plot of the stress triaxiality shows a narrow zone at 

the specimen center with very small (� � 0  0.01) variations in stress triaxiality. The width of 

this zone in x-direction increases as the shoulder radius increases (compare Figs. 5-3 to 5-5). The  
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Figure 5-3: Equivalent plastic strain and stress triaxiality near the specimen center for �e � 50��. 
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Figure 5-4: Equivalent plastic strain and stress triaxiality near the specimen center for �e � 100��. 
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Figure 5-5: Equivalent plastic strain and stress triaxiality near the specimen center for �e � 200��. 

 

  



 

83 

corresponding equivalent plastic strain plots show more pronounced variations. For instance, for 

�e � 50��, the equivalent plastic strain varies from 0.135 to 0.15 within a central zone of 

)¡ � 2��. Note that the equivalent plastic strain reaches its maximum at the tangential point 

between the flat and curved boundary of the central gage section. The homogeneity of the strain 

distribution can be improved by increasing the shoulder radius (see Fig. 5-5). Since the small 

increase in the equivalent strain appears to be due to the change in curvature between the flat and 

round shoulder region, we considered a boundary of clothoidial shape where the curvature 

increases linearly with the distance from the specimen center. Figure 5-6 shows the smooth 

plastic strain profile which is obtained for the clothoidally shaped boundary with the shape 

parameter √�i � 47�� (R is the radius of curvature and L is the length along the clothoidal 

boundary). 

 

  

Figure 5-6: Influence of the shoulder curvature. 

 

5.2.4 Effect of the lateral boundary curvature 

The effect of the lateral boundary is investigated for the clothoidal shoulder geometry. The 

curvature of the lateral boundary is described by the radius �� in Fig. 5-1. The same intersection 

points of the lateral boundaries with the specimen shoulders are chosen for all calculations while 
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the lateral boundary radius �� is varied. Figure 5-7 depicts the variation of the equivalent plastic 

strain at that boundary along the vertical direction (� � 0  corresponds to the specimen center 

line) for macroscopic shear loading (	 � 0°). The thick solid line shows the strain distribution for 

a straight boundary, i.e. �� � ∞ (configuration “D”). The strain distribution is non-uniform and 

increases monotonically from 0.0 at the specimen center to values as high as 0.1 near the 

specimen shoulder. Increasing the lateral boundary radius decreases the strain near the specimen 

shoulder (Fig. 5-7). Observe from curves A, B and C that the location of maximum strain is no 

longer at the corner with the specimen shoulder. It appears that configuration B with a radius of 

�� � 10�� provides the lowest maximum value of the equivalent plastic strain along the lateral 

boundary. In Fig. 5-7, we also show the results for negative curvatures, i.e. configurations where 

the gage section features an outward notch as initially proposed by Mohr and Henn (2007). The 

simulation results clearly show that these configurations (E and F) lead to very high strain 

concentrations near the specimen shoulders and should thus be avoided.     

 

A  

B  

C  

D  

E  

F  

 
 

Figure 5-7: Variation of the lateral boundary curvature. 

(A) �� � 5�� ; (B) �� � 10�� ; (C) �� � 20�� ; (D) �� � ∞ ; (E) �� � <10�� ;  

(F) �� � <5��. 
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5.2.5 Effect of the fillet radius 

A 3D solid element model is used to investigate the effect of the fillet radius between the 

specimen gage section and the specimen shoulders for macroscopic tensile loading (	 � 90°). 
Figure 5-8 shows the distribution of the stress triaxiality and the equivalent plastic strain in the 

central vertical cross-section (corresponds to section A-A in Fig. 5-1). The simulation results for 

�u � 0.5��, �u � 1.0 and �u � 2.0�� demonstrate that the equivalent plastic strain decreases 

faster from the gage section to the shoulder area for smaller fillet radii. On the other hand, small 

fillet radii induce a peak in stress triaxiality within the radius area. For instance, in the case of 

�u � 0.5��, the stress triaxiality increase from 0.58 within the gage section to about 0.8 in the 

radius region. However, the plot of the equivalent plastic strain versus stress triaxiality reveals 

that the corresponding plastic strains at high stress triaxialities are very small. Thus, it is 

concluded that the choice of the fillet radius has only a little effect on the experimental results 

and should be made based on manufacturing constraints.  

 

     

 
Figure 5-8: Influence of the fillet curvature on the stress triaxiality and equivalent plastic strain. 
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5.2.6  Final specimen geometry 

The final specimen has the following dimensions: gage section thickness * � 0.5�� , 

minimum gage section height ( � 2��, maximum gage section height h � 8��, gage section 

width ) � 57�� , uniform gage section width )¡ � 0 , free distance between clamps � �
12��, lateral boundary radius of �� � 10�� and fillet radius of �u � 2��. The shape of the 

clothoidal boundary !�¡ , �¡' in the first quadrant is given by the dimensionless Fresnel integrals  

�¡!i' � ��cos �D ��«
"

 (5.5)  

�¡!i' � (2 # �� sin �D ��«
"

 (5.6)  

with the curve coordinate L and the curvature parameter � � 67��.  

5.3 Hybrid experimental-numerical analysis procedure 

Specimens of the final geometry are prepared and tested in a dual actuator system under 

various loading configurations. In this section, the underlying hybrid experimental-numerical 

analysis procedure is presented. The corresponding experimental results are discussed in Section 

5.4.    

5.3.1  Specimen preparation 

The specimens are extracted from the 1.5mm thick sheet material by waterjet cutting. The 

thickness reduction of the gage section is then performed by CNC-machining. A first set of 

specimens is machined using a ball end mill of hemispherical shape; a second set is machined 

using a corner radius end mill. Unlike the ball end mills, the corner radius end mill featured a 

small flat area at the bottom of the end mill.    
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5.3.2  Dual actuator system   

The tests are performed using a newly-developed dual actuator system (Mohr and Oswald, 

2008). The custom-made dual actuator system applies tangential and normal loads to the 

boundaries of the butterfly specimen, which is clamped using high pressure grips. The horizontal 

actuator applies the tangential force to the lower specimen boundary. As shown in Fig 5-9, the 

lower specimen clamp is mounted onto a low friction sliding table. A load cell positioned 

between the horizontal actuator and the lower specimen clamp measures the tangential force. The 

normal force is applied through the vertical actuator in the upper cross-head. Two additional load 

cells have been integrated into the lower sliding table to measure the total vertical force. 

Combined tension-shear experiments are performed for biaxial loading angles 	 between 0° and 

90°. In all experiments, we observe a sudden drop in force level which is considered as the instant 

of the onset of fracture.  

 

 

 

Figure 5-9: Schematic of the dual actuator system. 
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5.3.3  Optical strain and displacement measurements 

During the tests, Digital Image Correlation is used to measure the surface displacement and 

strain fields. For that purpose two digital cameras (QImaging Retiga 1300i with 105mm Nikon 

Nikkor lenses) take about 500 pictures (resolution 1300x1030 pixels) of the speckle painted front 

and back surfaces of the specimen. The pictures of the front camera are used to determine the 

displacements of the specimen boundaries (translations and rotation). The front camera is 

positioned at a distance of 1.25m to take pictures of the entire specimen (square pixel edge length 

of 50µm). The photographs of the back face are used to perform accurate DIC measurements of 

the displacement field at the center of the specimen gage section. For that purpose, the second 

camera is positioned at a distance of 0.25m which reduces the square pixel edge length to 9µm. 

The average speckle size is about 70µm on both faces. The displacement field is calculated by 

DIC (VIC2D, Correlated Solutions) based on the assumption of a quadratic transformation of the 

35x35 pixel neighborhood of each point of interest. The engineering axial and shear strains at the 

center of the specimen are computed from the relative horizontal and vertical displacements Δ® 

and Δ� of two points located at the center of the specimen 

�� � Δ�Δ� (5.7)  

��� � Δ®Δ� (5.8)  

Both points are located on the vertical axis of symmetry at an initial distance of Δ� � 20������ 

(180µm). 

5.3.4  Finite Element model 

Simulations of each experiment are carried out using the explicit version of the finite element 

analysis software Abaqus (2007). The material constitutive model is implemented in a user 

subroutine for an explicit time integration scheme (VUMAT for Abaqus/Explicit). Reduced 

integration 3D solid elements (types C3D6R and C3D8R from the Abaqus element library) are 

used to mesh the specimen. Exploiting the symmetry of the specimen geometry, only half of its 
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thickness is modeled. Note that the portion of the specimen shoulders between the clamps are not 

included in the mesh as DIC measurements have shown that the slip between the specimens and 

the high pressure clamp is negligibly small.  

The translations and rotations of the straight boundary line between the clamps and the 

specimen shoulders are measured by DIC during each experiment. Subsequently, the measured 

translation and rotation histories are imposed on the boundaries of the computational model. 

Figure 5-10 shows the corresponding time histories for pure transverse loading (	 � 0°). Due to 

the high rigidity of the testing machine, the rotations are very small. Assuming zero rotations in 

the FEA model does not change the predicted force-displacement curves, but it has a significant 

effect on the fracture strain: in case of shear loading (	 � 0°), the fracture strain is about 5% 

higher when imposing both translations and rotations. 

Double precision simulations are run up to the experimentally measured instant of the onset of 

fracture. The loading velocity has been artificially modified in order to complete the 

computational analysis after about 600,000 time increments. The specimen meshes are designed 

to reduce spatial discretization errors inherent to a finite element analysis (see Chapter 3): mesh 

size is chosen such that dividing all elements’ dimensions by two does not change the fracture 

 

        

 
Figure 5-10: Boundary conditions during a pure transverse loading (	 � 0°). 

Translation (black line) and rotation (blue line) of the lower clamp (a) and the upper clamp (b). 
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strain prediction by more than 0.5%. Because spatial discretization errors are mostly significant 

in regions where strain gradients are steep, different meshes are used for tension-dominated 

loadings (	 � 90°  and 63°) and for shear-dominated loadings (	 � 0°  and 25°). In tension-

dominated experiments, strains localize through the thickness at the center of the gage section; 

consequently, the corresponding mesh features a dense mesh in the through-thickness direction. 

On the other hand, the meshes used to simulate shear-dominated experiments have only few 

elements through the thickness, while an increased mesh density along the width of the gage 

section is required. Both meshes are made of about 70,000 elements. Their main characteristics 

are summarized in Table 5-1. Note that both meshes are very fine, with elements dimensions 

close to the actual grain size of the TRIP steel.  

 

Table 5-1: Characteristics of meshes used in Finite Element Simulations 

Loading 
Number of elements in the gage section Size of the critical element [µm] 

Height Width Thickness Height Width Thickness 

Shear-dominated 60 210 4 36 215 65 

Tension-dominated 80 54 8 26 788 32 

 

5.4 Results 

5.4.1  Effect of the milling procedure 

The sensitivity of the experimental results with respect to the machining process is 

investigated for pure shear loading experiments (	 � 0°). Figure 5-11.a shows the measured 

force-displacement curves for specimens machined with ball and corner end mills, respectively. 

Observe that the horizontal displacement at which fracture occurs is about 55% lower for the 

specimen machined with ball end mills (red line in Fig. 5-11.a). The two specimens machined 

with corner radius end mills (black line in Fig. 5-11.a) feature almost the same fracture  
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(a) 

 

(b) 

Figure 5-11: Influence of the specimen machining on a pure transverse loading experiment (	 � 0°). 
(a) Force displacement curves for a specimen prepared with ball end mills (red line) and for two 
specimens prepared with corner radius end mills (black lines) submitted to a pure transverse 
loading: 	 � 0°. (b) Engineering shear strain along the vertical symmetry axis of the specimen as 
measured by DIC on the surface of the specimen prepared with ball end mills (red points) or 
prepared with corner radius end mills (black points), and as computed by FEA for a mesh with a flat 
gage section (black line) or with a 10µm groove along the fillets (red line). The position 0 
corresponds to the horizontal axis of symmetry of the specimen. 
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displacement, highlighting a good repeatability of this test. Note that the difference in the force 

level is due to small variations of the average gage section thickness from one specimen to 

another.  

Figure 5-11.b depicts the engineering shear strain evolution at the surface for each type of 

specimen; it is plotted along the vertical axis of symmetry for a horizontal displacement of 

1.5mm. In the specimen machined with the ball end mill (red dotted line in Fig. 5-11.b), the strain 

is constant at the center of the gage section, but it exhibits an important peak near the boundary  

between the gage section and the specimen shoulder. The specimen machined with the corner 

radius end mill (black points in Fig. 5-11.b) shows a more or less constant strain throughout the 

entire gage section. Here, it is speculated that the use of a ball end mill has created a groove at the 

boundary of the clothoidally-shaped shoulder region. The effect of a possible groove can also be 

predicted by our finite element model. We introduced a 10�� deep groove into the finite element 

mesh and ran the simulation to the same horizontal displacement as in the experiment. The 

corresponding simulation results confirm the experimentally observed localization of shear 

deformation (red solid line in Fig. 5-11.b), while a uniform shear strain distribution is observed 

for a simulation without groove (black solid line in Fig. 5-11.b). Based on these observations, all 

subsequent experimental results are reported for specimens that have been machined using a 

corner radius end mill.  

5.4.2  Experimental results 

Force-controlled experiments are performed for four different loading conditions: 	 �
0°, 25°, 63° and 90°. During the experiments for 	 � 63° and 90°, the control mode is switched 

to displacement control before the onset of localized necking. From each experiment, we obtain 

tangential force versus horizontal displacement and axial force versus vertical displacement 

curves. In addition, the evolution of engineering shear and axial strains is recorded. The measured 

force-displacement curves are depicted with black points (blue points for strain evolution) in Fig. 

5-12.b (	 � 0°), Fig. 5-12.e-f (	 � 25°), Fig. 5-12.c-d (	 � 63°) and Fig. 5-12.a (	 � 90°).  
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Figure 5-12: Experimental (dots) and simulation (lines) results. 

 (a): 	 � 90°. (b): 	 � 0°. (c) and (d): 	 � 63°. (e) and (f): 	 � 25°. The force displacement curves 
are depicted in black, while engineering surface strains are plotted in blue. 
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In experiments with tension dominated loading ( 	 � 63°  and 	 � 90° ), the force-

displacement curves exhibit a force peak prior to fracture (black dots Fig. 5-12.a and 5-12.c). 

This maximum seems to coincide with the onset of localized necking. Note that this force peak is 

also associated with a noticeable surface strain rate increase at the center of the gage section (blue 

dots in Fig. 5-12.a and 5-12.c-d). The deformation localizes at the center of the specimen which 

leads to a pronounced thickness reduction in the form of a neck and subsequent onset of fracture. 

The measured force-displacement curves increase monotonically until fracture for the shear-

dominated experiments (	 � 0° and 	 � 25°). At the same time, the engineering surface strains 

at the specimen center increase linearly with respect to the displacement (blue dots in Fig. 5-12.b 

and 5-12.e-f). However full field DIC shows that, for large deformations, the deformation 

localizes along the clothoidally shaped shoulder, away from the vertical axis of symmetry of the 

specimen. Figure 5-13.a shows a contour plot of the maximal principal surface strain as measured 

by DIC on the last picture before failure of a specimen submitted to a loading angle of 	 � 25°. 
For shear dominated loadings, fracture initiates along the fillet. 

5.4.3  Comparison of simulations and experiments 

Figure 5-12 shows the corresponding simulation results for all four loading conditions. The 

simulated force-displacement curves are depicted with black solid lines, while the evolution of 

engineering axial and shear strains are plotted with blue solid lines. In case of the pure tension 

loading (	 � 90°, in Fig. 5-12.a), the correlation between simulation and experimental results is 

good for small displacements. However, the force level predicted by FEA is to too high for 

displacements larger than 0.3mm. At the onset of fracture, the vertical force prediction is higher 

than the experimental measurement by 9%. Note also that the characteristic force peak, which 

corresponds to the onset of through-the-thickness localization, occurs later in the simulation. As a 

result, the axial engineering surface strain at the onset of fracture is about 18% lower in the 

simulation than in the experiment. The numerical results for 	 � 63° (Fig. 5-12.c-d) are in good 

agreement with experimental results. The simulation is able to predict accurately the vertical and 

horizontal forces histories, including the drop in force level prior to fracture. Shear and axial 

strains are also predicted with great accuracy. The relative difference between strains computed 

by FEA and those measured by DIC is less than 11%. 
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(a) 

 

 

(b) 

 

Figure 5-13: Principal strain at the surface of a specimen loaded with an angle 	 � 25° at failure.  
(a) measured by DIC and (b) computed by FEA. Black dotted lines depict the axes of symmetry. 
Note that DIC measures Lagrangian strains while FEA computes logarithmic strains. 

 

 

The simulation results for shear-dominated experiments (	 � 0° in Fig. 5-12.b and 	 � 25° 
in Fig. 5-12.e-f) agree well with the experimental measurements up to about 85% of the fracture 

displacement. However, an important increase of strain rate can be observed on numerical results 

of both simulations prior to fracture, while experimental shear and axial strains increase linearly 

all the way to fracture in both cases. As a result, at the onset of fracture, surface strains predicted 

by FEA are much higher than experimental measurements at the center of the gage section. For 

the 	 � 25° loading, the predicted engineering axial and shear strains at fracture are respectively 

0.15 and 1.56, compared to 0.14 and 1.11 measured by DIC. It is also noticed that, for the 
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	 � 25°  experiment, this increase of strain rate is correlated with a drop of the predicted 

horizontal force (black line in Fig. 5-12.f) and a large increase of the predicted vertical force (Fig. 

5-12.e), both phenomena that are not observed experimentally. Those strain rates increases at the 

center of the gage section and force level variations can be explained in both simulations by the 

development of a narrow band (about 3 elements wide) where shear strains reach very high 

values (up to 1.6 in the simulation of the 	 � 25° experiment). This “shear band” crosses the 

specimen gage section in diagonal, to join areas of maximal strains located on the upper and 

lower limits of the gage section, along the fillets. It is clearly visible in Figure 5-13.b, which 

depicts the contour plot of the maximal principal strain on the surface of a specimen submitted to 

a loading angle of 	 � 25°, as computed by FEA at the instant of fracture. However, this shear 

band does not appear on DIC measurements (Fig. 5-13.a).  

5.4.4  Local stress and strain histories 

Figure 5-14 shows the evolution of the equivalent plastic strain ��� as a function of the stress 

triaxiality �  (Fig 5-14.a) and the Lode angle ¢�  (Fig 5-14.b) at the location where fracture is 

assumed to initiate, for the four different loading conditions. The critical element where fracture 

initiates is considered to be the element where the equivalent plastic strain is the highest when the 

fracture displacement measured experimentally is reached. In tension-dominated experiments 

(	 � 90°, in black in figure 5-14 and 	 � 63°, in red), stress triaxiality is first constant and then 

increases continuously beyond the onset of localize necking, to reach about 0.68 at the onset of 

fracture in both case. This increase is due to the development of a three-dimensional stress state 

inside the neck. The pure tension loading features a constant Lode angle of zero. In shear-

dominated experiments, both stress triaxiality and Lode angle are approximately constant 

throughout loading. Note that the TRIP780 material exhibits a very large ductility, with fracture 

strains higher than 1.0 in both shear-dominated experiments, and 0.92 for the loading 	 � 63°. 
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(a) 

 

(b) 

 

Figure 5-14: Loading paths for the 4 loading conditions at the critical element of the specimen. 
The critical element is the point of highest equivalent plastic strain at fracture displacement. 
(a) Evolution of equivalent plastic strain with respect to stress triaxiality.  
(b) Evolution of equivalent plastic strain with respect to Lode angle.  
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5.5 Discussion 

5.5.1  Strain localization during loading 

Experiments have shown that strain field localizes both in tension-dominated and shear-

dominated experiments. Localization during tension-dominated loadings is due to necking and 

results in thickness reduction and development of three dimensional stress and strain states in the 

neck. This type of localization cannot be avoided in most fracture experiments based on tensile 

loading of flat specimens. To the best knowledge of the author, modified Nakazima experiments 

(Walters, 2009), or other experimental procedures based on membrane loading of sheet materials, 

are the only way to reduce or eliminate the effect of necking for stress states ranging from 

uniaxial to equibiaxial tension. 

In shear-dominated experiments, strain localization appears for large displacement along the 

curved boundary line between the gage section and the specimen shoulder. It is worth noting that 

even for large deformations (engineering shear strains of 1 or more), the strain field is 

approximately homogeneous at the center of the gage section. This type of localization has not 

been observed on experiments using the present geometry of the butterfly specimen on a less 

ductile material (martensitic 22MnB5 boron steel), for which the horizontal displacement during 

a pure transverse loading experiment (	 � 0°) did not exceed 1.3mm (Mohr & Ebnoether, 2009). 

Very fine mesh densities are required to accurately describe strain gradients due to localization, 

which significantly increases the computational cost of the hybrid experimental-numerical 

analysis needed to determine the loading path to fracture. It is emphasized that using coarser 

meshes would result in significant errors on numerical results and especially on the fracture 

strain. 

The main issue with localization of stress and strain fields prior to fracture is that the validity 

of standard plasticity theory may break down due to the presence of presence of steep strain 

gradients and porosity (and/or microcracks). Strain gradient formulations of the constitutive 

modeling (e.g. Gurtin & Anand, 2005) or advanced porous plasticity models with microstructural 

evolution (Danas and Ponte Castaneda, 2009) may overcome these limitations at the expense of 

computational efficiency. 
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5.5.2  Accuracy of the hybrid experimental numerical analysis 

The accuracy of the predicted loading path to fracture can be evaluated by comparing surface 

strains measured by DIC to strains computed by FEA (Dunand & Mohr, 2009). Such a 

comparison permits to expect a satisfactory accuracy for tension-dominated loadings. As far as 

shear-dominated loadings are concerned, the significant difference observed between measured 

and computed strains do not imply that the corresponding loading paths are inaccurate, because 

fracture does not occur where strains are measured (at the center of the gage section). In shear-

dominated experiments, fracture initiates along the thickness reduction fillet. Because of the non-

flat surface of the specimen, three dimensional Digital Image Correlation techniques are required 

to measure strains at this location. Those measures have not been performed during experiments, 

making an evaluation of the accuracy of loading paths depicted in Fig. 5-14 difficult. 

5.5.3  Determination of the fracture locus 

Loading histories have been plotted in Figure 5-14 with the assumption that fracture initiates 

where the accumulated plastic strain is the highest. However the present butterfly specimen 

generally features a highly inhomogeneous stress field. Figure 5-15 depicts the stress and strain 

states for the 4 different loadings at the instant of fracture in the !�, � ��' space (Fig 5-15.a) and in 

the !¢�, � ��' space (Fig 5-15.b). In case of the loading 	 � 25° (in green in Fig. 5-15), equivalent 

plastic strain shows almost no variations in the thickness direction, while stress triaxiality 

increases from 0.18 on surface to 0.37 at mid-thickness where plastic strain is maximal. Recall 

that in shear-dominated experiments highest plastic strains are reached along the fillet, where the 

stress state, being affected by the fillet geometry, is not uniform in the thickness direction. 
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(a) 

 

(b) 

 

Figure 5-15: Stress and strain states at the onset of fracture for the 4 loading conditions. 
(a) in the stress triaxiality – equivalent plastic strain space. (b) in the Lode angle – equivalent plastic 
strain space. Each dot stands for an integration point. Large dots represent the element with the 
highest equivalent plastic strain. Elements with low plastic strains are not included.  
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5.6 Conclusion 

The experimental technique by Mohr and Henn (2007) has been revisited. The specimen 

design has been optimized to provide more homogeneous stress and strain fields in the area of 

fracture initiation. An hybrid experimental-numerical analysis of specimens submitted to four 

different loading conditions has permitted to characterize the loading path to fracture in the 

TRIP780 steel for loading states ranging from shear to transverse plane stress tension. Some 

remarks can be made based on this analysis: 

 

(1) Test results, especially under transverse-dominated loading conditions, are 

very sensitive to machining imperfections. It is recommended to perform the 

thickness reduction of the gage section with a milling accuracy of at least 

10��. 

(2) The proposed geometry permits to get approximately constant stress and 

strain fields within the gage section for small deformations of the specimen. 

However, because of the important ductility of the TRIP material, specimens 

undergo large deformations before fracture. This leads to the development of 

stress and strain localizations in both transverse and tension dominated 

loading conditions. Analyses have shown that the numerical model used in 

this work is not able to predict with great accuracy the stress and strain states 

in the areas of localization. 
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Chapter 6.  

Conclusion 

This thesis is concerned with the accurate determination of the stress and strain histories in 

fracture experiments to provide an experimental data basis for the future development of ductile 

fracture models. The loading path to fracture in TRIP780 steel sheets has been identified for nine 

different multi-axial loadings, covering stress states from pure shear to equi-biaxial tension. The 

analysis of full thickness experiments has shown that the stress and strain histories prior to 

fracture can neither be estimated from the force history measurements using simple analytical 

formulas nor from optical surface measurements. In the present work, the loading histories have 

been characterized using a hybrid experimental-numerical approach. 

An extensive experimental program has been carried out to investigate the inelastic behavior 

of the TRIP780 material under large deformations. Almost the same stress-strain curve has been 

determined from uniaxial tensile tests performed for seven different specimen orientations. 

However, the plastic flow (as characterized by Lankford’s r-ratios) is direction dependent and its 

modeling requires the use of an anisotropic quadratic flow potential function. Here, a constitutive 

model with a planar isotropic quadratic yield function and a non-associated anisotropic flow rule 

is employed. Biaxial plasticity experiments have demonstrated that this constitutive model yields 

accurate predictions of the mechanical response under multi-axial loading. 

Fracture experiments have been performed on three types of full thickness specimens, 

covering stress states from uniaxial to equi-biaxial tension. The errors affecting the determined 

loading histories have been quantified. In most experiments, through-the-thickness necking 

develops before fracture. An accurate description of the stress and strain fields within the neck 

region requires very fine solid element meshes and cannot be achieved using shell elements. To 

investigate the material fracture properties for stress triaxialities lower than 1/3, the experimental 

technique by Mohr and Henn (2007) has been used. Butterfly-shaped specimens have bee subject 
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to non-linear loading paths by applying combinations of normal and transverse forces at the 

specimen boundaries. A parametric study has been performed to choose a specimen geometry 

that guarantees the onset of fracture near the center of the specimen gage section. The proposed 

design is characterized by concave lateral edges and a flat gage section of reduced thickness 

delimited by two clothoidally-shaped shoulders. The hybrid experimental numerical 

determination of the loading path to fracture has been conducted for four different loading states, 

ranging from pure shear to transverse plane strain tension. The results show that the validity of 

the proposed hybrid experimental-numerical technique is very sensitive to machining 

imperfections. Furthermore, the computational model needs to be improved to provide accurate 

prediction of the local strain fields at very large strains.  
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Annex A 

Biaxial plasticity tests: Experiment and simulation 

results 

The following figures depict normal stress-strain curves (left column) and shear stress-strain 

curves (right column) for different specimen orientations and biaxial loading angles. The 

experimental results are shown by dashed curves while the solid lines depict the model 

predictions. 
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Figure A-1: Biaxial plasticity results – Model #1 
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Figure A-2: Biaxial plasticity results – Model #2 
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Figure A-3: Biaxial plasticity results – Model #3 

 



 

115 

 

 

 

 

Figure A-4: Biaxial plasticity results – Model #4 
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Figure A-5: Biaxial plasticity results – Model #5 

 


