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On the Correlation between Forcing and Climate Sensitivity 
 

Andrei P. Sokolov*

 
Abstract 

The possible correlation between climate sensitivity and radiative forcing is studied using versions of 
the NCAR Community Atmospheric Model (CAM) model with different climate sensitivities. No such 
correlation was found for the CO2 forcing. A weak correlation for the direct sulfate aerosol forcing is 
associated with differences in cloud cover in control climate simulations with different versions of the 
model. Presented results suggest that correlation between sensitivity and radiative forcing in the 20th 
century simulations with different AOGCMs is not a reflection of physical reality but is a result of 
different treatments of forcing agents, primarily aerosols.  
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1. INTRODUCTION 

Kiehl (2007), Knutti (2008) and Anderson et al. (2010) showed that strengths of radiative 
forcing in the 20th century simulations with different AOGCMs are correlated with climate 
sensitivities of these models.   They, however, disagree on the nature of such correlation.  

Kiehl (2007) showed that differences in the total radiative forcing between AOGCMs are 
primarily due to differences in the aerosol forcing used by these models. Knutti (2008) suggests 
that choices concerning aerosol treatment (e.g., whether to include indirect aerosol effect) might 
have been made based on the results of historical climate change simulations. Knutti (2008) also 
indicated a possibility of correlation between indirect aerosol effect and climate sensitivity, but 
noted that only 7 out the analyzed 23 models included this effect. On the other hand, Anderson et 
al. (2010) seem to suggest an existence of physically based correlation between radiative forcing 
and climate sensitivity. In particular, they state that radiative forcing due to doubling of the CO2 
concentration will vary over a very wide range depending on the model climate sensitivity. They 
also state that not taking this correlation into account in probabilistic projections of climate 
change is likely to increase uncertainty of such projections. 

In the present study the relation between climate sensitivity and radiative forcing is 
investigated by means of numerical simulations using three versions of the CAM3 model with 
different climate sensitivities. The treatment of different forcing agents is identical in simulations 
with different CAM3 versions. Such simulations allow to test whether the found correlation 
between forcing and sensitivity is physically based or is an artifact of the different forcing 
representations in different models.  
                                                 
*Corresponding author Andrei Sokolov. E-mail: sokolov@mit.edu. Joint Program on the Science and Policy of 

Global Change, Massachusetts Institute of Technology, 77 Massachusetts Ave., E19-429g, Cambridge, MA 
02139.  
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2. MODEL AND METHOD  
The NCAR Community Atmospheric Model, version 3 (CAM3) (Collins et al., 2004) with 

T21 resolution was used in this study. Standard version of this model has sensitivity of 2.6oC to 
the doubling of CO2 concentration. Versions of the model with higher and lower sensitivity were 
obtained by changing the relative humidity of cloud formation for high and low clouds. As was 
noted by Sanderson (2009), CAM3 is rather insensitive to changes in the model’s parameters. As 
a result sensitivities of these two versions of CAM3 are not very different from the standard, 
namely 2.9 and 2.0oC.  

At first, two 90 year transient simulations were carried out with the standard version of the 
CAM3 coupled to an anomaly diffusing ocean model (Sokolov et al., 2003). During the first ten 
years of each simulation concentrations of GHGs and other forcing agents were held fixed. After 
that, in the first simulation the model was forced by the CO2 concentration increasing at 1% per 
year rate. In the second simulation the model was forced by an increase in the loading of sulfate 
aerosol, namely the default loading was scaled in time with a scaling coefficient increasing from 
1 to 5 in 70 years.†  

The sea surface temperature (SST) and sea ice distributions obtained in these two simulations 
were then used to evaluate the radiative forcing and implied ocean heat uptake following the 
approach of Anderson et al. (2010) using a set of AMIP type simulations. 

Two simulations were performed with each version of the CAM3 for each forcing case. In the 
first simulation, referred to as the AMIP simulation, the atmospheric model was forced by 
prescribed changes in SST and sea ice with the forcing fixed at its initial value. In the second 
simulations (AMIP+ATM) the model was forced by both changes in SST and corresponding 
forcing. Changes in the radiative balance (H) at the top of the atmosphere (TOA) in the first 
simulation can be written as: 

ΔHAMIP = -λ·ΔTAMIP,                                                                                                               (1) 
where λ is a feedback parameter and T is surface air temperature (SAT). Changes in the radiative 
balance at the TOA in the second simulation equal  

ΔHAMIP+ATM =F – λ·ΔTAMIP+ATM=OHU,                                                                                  (2) 
where F is radiative forcing and OHU is an implied ocean heat uptake required for the given 
version of atmospheric model to simulate prescribed changes in SAT. 

Value of λ can be estimated by regressing HAMIP against ΔTAMIP. Spencer and Braswell 
(2008), using a simple box model, demonstrated that the values of the feedback parameter 
estimated in such a way can be biased. Murphy and Forster (2010), however, showed that the 
accuracy of this approach is significantly higher than implied by Spencer and Braswell (2008). 
As will be shown below, climate sensitivities calculated from the results of AMIP simulations 
are very close to those estimated from the equilibrium 2xCO2 simulations with a slab ocean 
model.  
                                                 
† The CAM3 version available at NCAR website has a scaling option for carbon but not for sulfate aerosol. Scaling 

of the sulfate aerosol was implemented by Erwan Monier at MIT. 
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Finally, radiative forcing can be expressed from equation (2) as 
F= ΔHAMIP+ATM + λ·ΔTAMIP+ATM                                                                                             (3) 

Anderson et al. (2010), when estimating radiative forcing, ignored a small difference between 
ΔTAMIP and ΔTAMIP+ATM. In simulations discussed below this difference is larger due to stronger 
forcing (Figure 1) and should be accounted for. All variables are plotted as a difference from the 
average over the first ten years of simulation, during which forcing was held fixed. The averages 
of three simulations from different initial conditions are shown in Figures 2 and 3. 

 
Figure 1. SAT changes in the AMIP (dashed lines) and AMIP+ATM (solid lines) simulations 

for (a) CO2 and (b) sulfate aerosol forcings. Blue, green and red lines are for the model 
version with high, standard and low sensitivity respectively. 

Use of the SST from model simulations with changes in CO2 and sulfate aerosol, described 
above, has some advantages compared to the use of the observed 20th century SST. First, 
simulated SST changes are significantly larger than observed, while inter-annual variability is 
smaller. This leads to higher accuracy of calculations, as well as amplifies the difference between 
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simulations with different model versions. Second, it allows studying separately forcing 
associated with different forcing agents. 

3. RESULTS AND CONCLUSIONS 
Figure 2 shows results of the simulations for the CO2 forcing case. Changes in the radiation at 

the TOA (Figure 2a) are noticeably different in the simulations with different versions of the 
model. Values of climate sensitivity (S= λ-1) derived for AMIP simulations are given in Table 1.  

Table 1. Values of climate sensitivity for different CAM3 versions evaluated from AMIP 
simulations for CO2 and sulfate aerosol forcing cases and from equilibrium simulations 
with doubled CO2 concentration.  

Simulation HS SS LS 
AMIP CO2 0.77 0.62 0.50 

AMIP aerosol 0.73 0.62 0.54 
Equilibrium 2xCO2 0.75 0.67 0.53 

On the other hand, the forcing associated with CO2 increase (Figure 2b and Table 2) is 
practically identical in all simulations being equal to about 3.8 W/m2 at the time of CO2 
doubling. According to results of Anderson et al. (2010), it should be changing from 3.7 to 5.4 
W/m2 (see their Figure 7). Sensitivities for 2xCO2 case (Table 1) were calculated using forcing at 
the time of CO2 doubling estimated from the equation (3) and changes in SAT from equilibrium 
simulations with a slab ocean model. As can be seen they are very close to the estimates obtained 
from AMIP simulations, confirming validity of the regression approach. 

Table 2. Values of radiative forcing for different CAM3 versions evaluated from AMIP 
simulations for CO2 and sulfate aerosol forcing cases for years 76-85 and forcing for 5 
time aerosol loading calculated in the control climate simulations. 

Simulation HS SS LS 
AMIP CO2 3.88 3.73 3.74 

AMIP aerosol -3.60 -3.32 -3.17 
Control simulation -3.63 -3.37 -3.27 

The implied heat uptake by the deep ocean, required to simulate imposed changes in SAT 
(Figure 2c), increases with climate sensitivity, as should be expected for identical radiative 
forcing.  

Simulations with changes in the sulfate aerosol loading do show some dependency between 
forcing and climate sensitivity (Figure 3b). The dependency is, however, rather weak and does 
not eliminate differences in implied ocean heat uptake (Figure 3c).  

As noted above, sensitivity of the CAM3 model was changed by varying parameters affecting 
cloud formation. As a result cloud cover in the control simulations with different model versions 
is rather different. This is a main reason for the differences in the sulfate aerosol forcing. The 
values of the aerosol forcing evaluated from AMIP simulations at the time of fivefold increase in 
aerosol loading are very similar to the values of the forcing calculated in the control climate 

 4



simulations by means of passive radiation calculation (Table 2). If different model parameters 
had been used for changing model sensitivity this dependency might not have existed. There are, 
however, studies indicating a correlation between climate sensitivity and cloud cover in control 
climate simulations for some GCMs (e.g. Volodin, 2008; Yokohate et al., 2010 ), which can lead 
to weak correlation between aerosol forcing and climate sensitivity. It should be noted that 
CAM3 does not include indirect aerosol effects. 

 
Figure 2. (a) Changes in the radiative balance at the TOA in the AMIP (dashed lines) and 

AMIP+ATM (solid lines) simulations;( b) annual radiative forcing (dashed lines) and five 
years running mean (solid lines); (c) implied cumulative heat uptake by the ocean for 
the CO2 forcing case. Blue, green and red lines are for the model version with high, 
standard and low sensitivity respectively.  
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Results presented above suggest that there is no physically based correlation between 
radiative forcing and climate sensitivity. When forcings associated with different forcing agents 
are treated in the identical way such correlation is not present for CO2 (and most likely other 
GHGs, such as CH4 and N20) forcing and is rather weak for an aerosol forcing. Correlation 
between forcing and sensitivity in the 20th century simulations with different AOGCMs found in 
the number of recent studies ( Kiehl, 2007; Knutti, 2008; Anderson et al., 2010) is likely a result 
of different treatment of forcings, primarily aerosol forcing.  

 
Figure 3. The same as Figure 2, but for sulfate aerosol forcing. 
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As have been already stated by Knutti (2008), an adjustment of aerosols forcing based on the 
results of historical climate change simulations is a completely legitimate approach. Probability 
distributions for the strength of aerosol forcing and climate parameters defining the model 
response to the forcing, e.g. climate sensitivity and the rate of heat uptake by the ocean, obtained 
with models of intermediate complexity based on the consistency between simulated and 
observed 20th century climates (Knutti et al., 2002; Forest et al., 2006), show significant 
correlation between parameters. Uncertainty in GHGs and other non-aerosol forcings are ignored 
in these studies because they are much smaller than uncertainty in aerosol forcing (Forster et al., 
2007) 

Correlation between climate parameters should be (and is) taken into account in probabilistic 
projections of future climate change (Webster et al., 2003; Knutti et al., 2005; Sokolov et al., 
2009). 
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