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Abstract 

 

The post-translational modification of proteins is a major mechanism employed in 

eukaryotic cells to expand the functional diversity of the proteome.  Covalent modification of 

amino acid side chains confers new or altered functionality to the modified protein by creating 

new recognition surfaces on the protein for the interaction of nucleic acids or other proteins, 

modulating enzymatic activity, or altering cellular localization or half-life.  The post-

translational modification of proteins with ubiquitin (Ub) is an important mechanism of 

regulating protein function.  Ub is a 76-residue protein that is primarily attached to lysine 

residues in target proteins through an enzymatic cascade catalyzed by E1, E2, and E3 enzymes.  

Ub conjugation is important for fundamental cellular processes, including transcription, DNA 

repair, endocytosis, apoptosis, and signal transduction.  Ub conjugation is reversible.  Proteases 

termed deubiquitinating enzymes (DUBs) function to remove Ub from target proteins. 

Genome sequencing efforts have uncovered the existence of many predicted enzymes 

with unknown function.  Many enzymes have been assigned function based on sequence 

homology to proteins with known function without confirmation of enzymatic activity.  A 

powerful chemical approach to determine enzyme function from a complex mixture of proteins 

is activity-based protein profiling.  This method makes use of chemical probes that are active 

site-directed for the assignment of function to proteins.  We describe here the design and 

generation of an expanded set of Ub-based chemical probes with which we identified and 

recovered E1, E2, and E3 Ub ligases from cell lysates.  Furthermore, we describe the 

biochemical and structural characterization of the catalytic domain of one E3 Ub ligase we 

recovered, HUWE1, and the identification of a structural element within the catalytic domain of 

HUWE1 that modulates its activity.  Finally, we discuss a protein engineering method that we 

are applying to the HUWE1 catalytic domain to understand how the conformational flexibility of 

this domain is important to its function.  
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Introduction 

Post-translational modification of proteins is one of two major mechanisms employed by 

eukaryotic cells to expand the functional diversity of the proteome.  This mechanism, along with 

RNA splicing, increases the number of protein variants in the cell by one to two orders of 

magnitude over those encoded in the genome (Walsh, Garneau-Tsodikova et al. 2005; Walsh 

2006).  Covalent modification of amino acid side chains increases their heterogeneity and 

imparts new or altered functionality to the modified protein by creating new recognition surfaces 

on the protein for the interaction of nucleic acids or other proteins, modulating enzymatic 

activity, or altering cellular localization or half-life.  Post-translational modifications are utilized 

in all three major evolutionary lineages of life; however, the range of modifications and 

frequency of occurrence in eukaryotes far exceeds that in prokaryotes and archaea.  Here, we 

discuss the covalent modification of proteins with ubiquitin (Ub), an 8-kDa protein that is highly 

conserved in eukaryotes.  Ub is attached to protein targets through a sequential cascade of 

enzymatic reactions catalyzed by E1 activating, E2 conjugating, and E3 ligase enzymes.  The 

human genome encodes over 300 enzymes dedicated to Ub conjugation, and approximately 100 

Ub proteases, termed deubiquitinating enzymes, which function to remove Ub from modified 

proteins (Nijman, Luna-Vargas et al. 2005; Li, Bengtson et al. 2008) (Figure 1).  Ub conjugation 

is necessary for fundamental cellular processes, including cell cycle progression, transcriptional 

regulation, DNA repair, apoptosis, protein trafficking, endocytosis, and signal transduction, and 

thus represents an important form of post-translational modification in the cell (Pickart 2001; 

Kerscher, Felberbaum et al. 2006; Bernassola, Karin et al. 2008). 
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Figure 1.  

 

 

Figure 1 The ubiquitin-proteasome pathway. 

(A) Ubiquitin is a 76-amino acid protein that is activated and conjugated to target proteins by an 

enzymatic cascade of reactions catalyzed by E1, E2, and E3 enzymes.  E1 activates Ub by 

adenylating Ub’s C-terminal glycine in an ATP-dependent step and subsequently transfers Ub to 

its active site-cysteine.  The E1~Ub thioester complex associates with E2, transferring Ub to the 

E2 catalytic cysteine in a transthiolation reaction.  E3s facilitate the final step of Ub conjugation 

through one of two mechanisms.  The RING (and related U-box) E3s bring the E2~Ub thioester 

complex in proximity to substrate, whereas the HECT E3s form an E3~Ub intermediate on a 

catalytic cysteine.  Ub is generally attached in an isopeptide linkage via its C-terminus and the -

amino group of a lysine residue in the target, which may be a substrate protein or Ub itself.  

Deubiquitinating enzymes (DUBs) reverse Ub conjugation, generating free Ub monomers and 

substrate.   

(B) Substrates conjugated with a polyubiquitin chain containing at least four ubiquitin molecules 

linked through Lys48 are targeted to the 26S proteasome for degradation.  Figure adapted from 

(Hochstrasser 2009). 

 

Ubiquitin is the founding member of a family of small protein modifiers.  Members of 

this family share two structural features: a globular domain containing a characteristic three-

dimensional structure, termed the -grasp fold, and a flexible C-terminal tail ending in a glycine 
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residue (Dye and Schulman 2007).  The C-terminal glycine of Ub is typically attached to the -

amino group of a lysine in isopeptide linkage to target proteins; less frequently, Ub can be 

conjugated to the amino terminus of target proteins, including Ub itself (Kuo, den Besten et al. 

2004; Kirisako, Kamei et al. 2006; Tokunaga, Sakata et al. 2009), Cys (Cadwell and Coscoy 

2005; Ravid and Hochstrasser 2007), or Ser/Thr residues (Tait, de Vries et al. 2007; Wang, Herr 

et al. 2009).  An additional level of complexity arises in ubiquitin conjugation because ubiquitin 

itself contains seven lysine residues, which function as acceptor sites for building polyubiquitin 

chains.  Proteins can therefore be modified at a single lysine with one ubiquitin molecule 

(monoubiquitination), at several lysine residues with ubiquitin monomers (multi-

monoubiquitination), or through chains of lysine-linked polyubiquitin (polyubiquitination).  The 

modification of proteins with a single ubiquitin molecule, for example,  can serve as a signal for 

endocytosis and functions in DNA repair (Hicke 2001; Matsushita, Kitao et al. 2005).  

Polyubiquitin chains with specific linkages possess different three-dimensional 

conformations and distinct topologies.  Structural studies of Lys63-linked, Lys48-linked, and 

linear chains indicate that they adopt different conformations that are differentially read out by 

ubiquitin binding domains in partner proteins to confer specific functional consequences (Cook, 

Jeffrey et al. 1994; Eddins, Carlile et al. 2006; Ryabov and Fushman 2006; Dikic, Wakatsuki et 

al. 2009; Komander, Reyes-Turcu et al. 2009).  For example, polyubiquitin chains consisting of 

four or more Lys48-linked ubiquitin residues bind to the 26S proteasome receptor subunit S5a, 

thus targeting the ubiquitinated protein for proteasomal degradation (Thrower, Hoffman et al. 

2000).  In contrast, Lys63-linked polyubiquitin chains function to activate certain proteins for 

DNA repair, signal transduction, and endocytosis (Pickart and Fushman 2004; Chen and Sun 

2009), although there is some evidence that Lys63-linked polyubiquitin chains also function to 
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target proteins for proteasomal degradation (Saeki, Kudo et al. 2009).  Emerging roles for K11-

linked chains in ERAD (Xu, Duong et al. 2009) and cell cycle progression (Jin, Williamson et al. 

2008), and evidence for the existence of polyubiquitin chains containing all seven different 

linkages in cells (Peng, Schwartz et al. 2003; Xu, Duong et al. 2009) speak to the complexity of 

polyubiquitination signals and the diversity of functional outcomes it generates.   

 

Ubiquitin-like modifiers 

A growing family of proteins termed ubiquitin-like modifiers (Ubls) shares structural 

similarity with ubiquitin (Table 1).  Nine Ubls, including ISG15, Nedd8, and SUMO, have 

demonstrated capability of covalently modifying protein targets, and more are likely to possess 

this ability (Hochstrasser 2009).  Conjugation of most ubiquitin-like modifiers follows a similar 

mechanistic framework to ubiquitin and requires catalysis by dedicated E1, E2, and E3 enzymes.  

Like ubiquitin, these modifiers serve to alter protein function and function in a wide array of 

cellular processes.  The first Ubl identified was ISG15, a type I interferon-induced gene, 

encoding a 15-kDa protein composed of two ubiquitin-like domains (Narasimhan, Wang et al. 

2005).  ISG15 is activated by its E1 enzyme Uba7 and conjugated via its specific E2 UBE2L6 

and one of several E3s (Kim, Giannakopoulos et al. 2004; Zhao, Beaudenon et al. 2004; 

Nakasato, Ikeda et al. 2006; Wong, Pung et al. 2006; Zou and Zhang 2006; Durfee, Kelley et al. 

2008).  Nedd8 is activated by its own E1, the heterodimeric NAE1-UBA3 complex, and 

transferred to target proteins by one of two Nedd8 E2s and at least one E3, Dcn1 (Liakopoulos, 

Doenges et al. 1998; Osaka, Kawasaki et al. 1998; Gong and Yeh 1999; Kurz, Ozlu et al. 2005; 

Huang, Ayrault et al. 2009). Nedd8 is primarily conjugated to the cullin RING E3 ligases, the 

largest subfamily of E3s, and potently stimulates their activity (Duda, Borg et al. 2008; Saha and 
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Deshaies 2008).  Cullin RING E3s function in cell cycle progression, signal tranduction, DNA 

replication, and viral modulation (Petroski and Deshaies 2005).  Three human SUMO modifiers 

(SUMO1, SUMO2, and SUMO3) are activated by a dedicated SUMO E1 (the heterodimeric 

Aos1-UBA2 complex) and transferred to targets by one SUMO-specific E2 and one of several 

E3 enzymes.  SUMO modifies proteins involved in DNA replication and repair and serves as a 

binding site for proteins containing SUMO-interacting motifs (SIMs) (Johnson 2004; Kerscher 

2007).   

 

Table 1.  

 

 

Ubl conjugation pathways appear to originate from multiple rounds of duplication and 

divergence of enzymes and protein modifiers originating from prokaryotic biosynthetic pathways 

(Hochstrasser 2009).  Ubiquitin E1 enzyme shares sequence similarity with the bacterial proteins 

molybdopterin biosynthetic enzyme B (MoeB) and thiamine biosynthesis protein F (ThiF), 

proteins that are involved in the molybdopterin and thiamin cofactor biosynthesis, respectively.  

The synthesis of these cofactors requires incorporation of a sulphur atom into their precursor 

proteins.  This sulphur atom is donated from the sulphur-containing proteins molybdopterin-
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converting factor subunit 1 (MoaD) and thiamine biosynthesis protein S (ThiS), small proteins 

that possess the -grasp fold and C-terminal diglycine motif characteristic of ubiquitin and 

ubiquitin-like modifiers (Rudolph, Wuebbens et al. 2001; Wang, Xi et al. 2001).  In a manner 

reminiscent of the eukaryotic E1 activating enzyme, MoeB and ThiF catalyze the adenylation of 

MoaD and ThiS’s C-terminal glycine residue, respectively, activating it for subsequent 

conversion of the acyl-adenylate intermediate into a thiocarboxylate that serves as the source of 

sulphur for downstream reactions (Huang, Walden et al. 2004; Duda, Walden et al. 2005).  

Prokaryotic homologues of MoeB and ThiF enzymes suggest that E1-like enzymes may function 

in other biosynthetic or post-translational modification systems.   

In spite of the presence of proteasomes in prokaryotes and archaea, Ub and Ubls were 

unknown in these evolutionary lineages until recently.  A prokaryotic ubiquitin-like protein 

(Pup) was identified in Mycobacterium tuberculosis that is conjugated to substrates as a signal 

for proteasome-mediated degradation (Pearce, Mintseris et al. 2008).  Pup is a 64-amino acid 

protein that does not share sequence or structural homology with ubiquitin – it is mainly 

unstructured with the exception of an -helix near its C terminus.  Notably, the C terminus of 

Pup terminates in the residues Gly-Gly-Gln.  In the mycobacterial pupylation pathway, the C-

terminal glutamine residue is deamidated by deamidase of Pup (Dop) to generate a glutamic 

acid, which is conjugated via its side chain carboxylate group to the -amino group of substrate 

lysine residues (Sutter, Damberger et al.).  The mechanism of Pup conjugation is currently 

unknown.  The only protein known to be required for pupylation is proteasome accessory protein 

A (PafA), a protein with no homology to known E1, E2, or E3 enzymes (Pearce, Mintseris et al. 

2008).   

  The identification of the small ubiquitin-like proteins SAMP1 and SAMP2 shows that the 
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third evolutionary lineage of life, archaea, also utilize a ubiquitin-like conjugation system 

(Humbard, Miranda et al.).  SAMP1 and SAMP2 were identified in a search for proteins 

containing a -grasp fold and C-terminal di-glycine motif in the deduced genome of the archaeon 

Haloferax volcanii.  Of the five proteins with these characteristics, only SAMP1 and SAMP2 

were found to be capable of protein conjugation.  SAMP1 and SAMP2 are attached via their C-

terminal glycine to the -lysine group of at least nine substrates (Humbard, Miranda et al.).  

Interestingly, identification of SAMPylated proteins by tandem mass spectrometry revealed that 

several of the modified proteins share homology with enzymes in Ubl-conjugation and/or 

sulphur activation pathways.  Two of the SAMPylated proteins, HVO_0558 and HVO_0559, are 

homologues of Uba4, the E1 activating enzyme for the ubiquitin-like modifier Urm1 (Humbard, 

Miranda et al.).  HVO_0558 resembles Uba4’s N-terminal domain, and HVO_0559 resembles 

Uba4’s C-terminal domain.  It is unknown whether these proteins activate SAMPs for 

conjugation, and whether there exist SAMP E2 or E3 enzymes.  

 

Ubiquitin Activation and Conjugation Enzymes and Ligases 

Ubiquitin is conjugated to target proteins through a sequential series of reactions 

catalyzed by E1 activating enzyme, E2 conjugating enzyme, and E3 ligase (Pickart 2001).  E1 

enzyme binds Ub and Mg
2+

-ATP and catalyzes the adenylation of Ub’s C-terminal gycine 

residue.  Activated Ub undergoes nucleophilic attack by the E1 catalytic cysteine, forming an 

E1~Ub thioester (the tilde [~] is used here to refer to a covalent linkage).  Ub is then transferred 

to the E2 catalytic cysteine in a thioesterification reaction.  E3 ligases facilitate the final step of 

Ub conjugation by associating with both the E2~Ub thioester complex and substrate and 

promoting the transfer of Ub from the E2 to a substrate lysine residue.  The mechanism of this 
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final step of ubiquitin transfer depends on the type of E3 ligase catalyzing the reaction.  The 

majority of E3s belong to the RING (Really Interesting New Gene) class, which function as 

adaptor proteins to bring the Ub-loaded E2 enzyme in proximity to substrate.  In contrast, the 

HECT (homologous to E6AP C-terminus) domain-containing E3s form a Ub~thioester 

intermediate on a catalytic cysteine prior to transferring Ub to substrate.  A third class of E3s are 

neither RING nor HECT-type.  We will focus discussion on the RING and HECT E3s. 

 

Ubiquitin/Ubiquitin-like activating enzyme (E1) 

Crystal structures of ThiF-ATP, ThiF-ThiS, and several MoeB-MoaD complexes reveal 

that the first step of Ub/Ubl activation is highly conserved (Lake, Wuebbens et al. 2001; Duda, 

Walden et al. 2005; Lehmann, Begley et al. 2006).  MoeB and ThiF are homodimers with two 

symmetric catalytic centers.  MoeB and ThiF enzymes contain a four-stranded -sheet that binds 

a hydrophobic patch on MoaD or ThiS, respectively, that corresponds to the Ile44-centered 

hydrophobic patch on ubiquitin.  The C-terminus of ThiS or MoaD extends toward bound Mg
2+

-

ATP.  A catalytic Arg residue that functions in ATP binding is provided by the opposite MoeB 

or ThiS monomer and a conserved Asp residue coordinates Mg
2+

.  For the purpose of this 

discussion, we will focus on canonical E1 enzymes, defined as the E1 enzymes for ubiquitin 

(Ube1 and Uba6), SUMO (Aos1-UBA2), NEDD8 (APPBP1-UBA3), and ISG15 (Uba7), 

because of their shared structural and mechanistic features (Dye and Schulman 2007).  These 

canonical eukaryotic E1 enzymes are similar to MoeB and ThiF in that they contain a 

homodimeric or heterodimeric adenylation domain that recognizes the correct Ub/Ubl and 

catalyzes the adenylation of its C-terminal glycine.  Of these two domains, only one binds Mg
2+

-

ATP and Ubl; the second adenylation domain provides structural stability.  Canonical E1 
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enzymes possess, in addition, two domains that function in Ub/Ubl transfer: a ubiquitin fusion 

domain (UFD) that associates with E2 enzyme, and a catalytic cysteine domain, containing the 

active site cysteine residue that forms a thioester linkage with the Ub/Ubl C-terminus.  One 

unique feature among the canonical Ub/Ubl activation pathways is that the number of Ub/Ubl 

E1s differ.  For example, the ubiquitin pathway contains two E1 enzymes, Ube1 and UBA6.  The 

discovery of Uba6, expressed in vertebrates and sea urchins, challenged a long-held assumption 

that Ube1 is the only E1 for the Ub pathway (Chiu, Sun et al. 2007; Jin, Li et al. 2007; Pelzer, 

Kassner et al. 2007).  Uba6 can activate Ub and the Ubl, FAT10, and the two E1s show 

selectivity for the E2s that they charge with Ub.  In contrast, in the SUMO pathway, a single 

SUMO E1 enzyme activates SUMO-1, SUMO-2, and SUMO-3 (Desterro, Rodriguez et al. 1999; 

Gong, Li et al. 1999).  An important question is to understand how E1 enzymes selectively 

interact with the correct Ubl, and how the E1~Ub/Ubl complex mediates E2 selectivity.   

 The mechanism of catalysis by E1 enzyme involves two half-reactions: an adenylation 

reaction that harnesses the energy of ATP hydrolysis to generate a high-energy Ub/Ubl~AMP 

intermediate, and a thioesterification reaction (Figure 2).  E1 activates Ub/Ubl by catalyzing the 

adenylation of Ub/Ubl’s C-terminus, forming an acyl phosphate bond.  The Ub/Ubl~AMP 

intermediate undergoes nucleophilic attack by E1’s catalytic cysteine, preserving the energy in 

the activated Ub/Ubl C-terminus to form an E1~Ub/Ubl thioester intermediate.  The E1 enzyme 

then binds a second set of Ub/Ubl and ATP molecules and catalyzes the adenylation of the 

second Ub/Ubl’s C-terminus.  The ternary E1 complex, composed of one non-covalently bound 

Ub/Ubl~AMP (referred to as Ub/Ubl[A]) and one covalently bound Ub/Ubl~thioester 

intermediate (referred to as Ub/Ubl[T]), then recruits an E2 conjugating enzyme, permitting 

Ub/Ubl transfer to the E2 catalytic cysteine.  One reason for the requirement of doubly-loaded 
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E1 enzyme for Ub/Ubl transfer may be that coupling of the second adenylation reaction with 

Ub/Ubl transfer to the E2 promotes the latter reaction energetically or conformationally 

(Schulman and Harper 2009).  

 

Figure 2.   

 

Figure 2  E1 activating enzyme mechanism. 

(1) The E1 enzyme binds ATP, Mg
2+

, and Ub/Ubl, and adenylates the Ub/Ubl C-terminal 

glycine.   

(2) The E1 catalytic cysteine attacks the Ub~AMP, forming an E1~Ub thioester complex and 

releasing AMP. 

(3) The E1 catalyzes the adenylation of a second Ub/Ubl, resulting in an E1 doubly loaded with 

Ub/Ubl: one noncovalently bound at its adenylation site, and the other covalently bound at its 

active site cysteine.   

(4) The doubly Ub/Ubl-loaded E1 associates with E2 and transfers its thioester-bound Ub/Ubl to 

the E2 catalytic cysteine.  Figure from (Dye and Schulman 2007). 

 

 The structures of several E1 enzymes, either alone or in complex with Ub/Ubl, ATP, 

and/or E2 enzyme, have provided insight into the mechanisms of Ub/Ubl activation and the E1-

E2 Ub/Ubl transfer reaction (Figure 3a, b).  Olsen et al. generated two SUMO C-terminal 

electrophilic inhibitors and used these inhibitors to trap the SUMO E1 as if bound to its reaction 

intermediates.  Olsen synthesized SUMO with one of two non-hydrolysable synthetic analogs of 

AMP (AMSN and AVSN) attached to SUMO’s C-terminus.  SUMO~AMSN mimics the natural 

SUMO~AMP, the intermediate formed after the adenylation half-reaction.  SUMO~AVSN 

contains, in addition to the adenylate moiety, an electrophilic center, and thus covalently binds 
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the E1 active site cysteine to form a stable E1~SUMO~AVSN complex.  This complex mimics 

the enzyme after catalyzing the thioesterification of SUMO’s C-terminus but before the 

adenylate group has left.  The E1~SUMO~AVSN and E1-SUMO~AMSN structures display 

remarkably different conformations.  Prior to catalyzing the adenylation half-reaction, SUMO E1 

adopts an “open” conformation, allowing it to bind ATP and SUMO.  Formation of the 

SUMO~AMP intermediate triggers a substantial structural rearrangement of the E1 enzyme: in 

the E1~SUMO~AVSN structure, the catalytic cysteine domain undergoes a relative 130º rotation 

to a “closed” formation, placing the catalytic cysteine in what was formerly the adenylation 

domain.  Further structural remodeling in the closed complex allow the catalytic cysteine to gain 

access to the SUMO~AMP intermediate (Olsen, Capili et al.) (Figure 3a). 

Insight into the thioesterification half-reaction has also accumulated from structural 

studies.  The adenylation domain of E1s for ubiquitin, SUMO, and NEDD8 are structurally 

similar to those of MoeB and ThiF.  Structures of the E1 enzymes for Ub, SUMO, and NEDD8 

with Ub/Ubl non-covalently bound to the adenylation site revealed that the catalytic cysteine 

residue is separated by ~35 Å from the Ub/Ubl C-terminus, suggesting that E1 in complex with 

Ub/Ubl~AMP intermediate adopts an alternate conformation to promote the thioesterification 

reaction (Walden, Podgorski et al. 2003; Lois and Lima 2005; Lee and Schindelin 2008).  

Additionally, docking the structure of a complex between NEDD8 E1’s UFD and E2 enzyme 

onto a structure of a complex with APPBP1-UBA3 bound to NEDD8-AMP shows that the E1 

and E2 catalytic cysteines face in opposite directions (Huang, Hunt et al. 2007).  A model for the 

thioesterification reaction came from the structure of a trapped NEDD8 activation complex, in 

which APPBP1-UBA3 is bound to two NEDD8 molecules, one non-covalently at its adenylation 

site (NEDD8[A]), the second in thioester linkage to the catalytic cysteine (NEDD8[T]), and a 
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catalytic cysteine-to-alanine mutant of E2 Ubc12 (Huang, Hunt et al. 2007) (Figure 3b, right).  In 

this structure, the E2-binding UFD is rotated 120º relative to unloaded and singly Ubl(A) loaded 

E1 structures, unmasking a cryptic Ubc12-binding site on the UBA3 adenylation domain and 

placing the Ubc12 catalytic cysteine within 20 Å of the UBA3’s catalytic cysteine.  Thus, the 

authors describe a model for E1-E2 transthiolation: the doubly-NEDD8-loaded E1 undergoes 

conformational rearrangements that switch it into a state facilitating E2 recruitment and Ub 

transfer.  Following the transfer of Ubl(T) to the E2, the E1 enzyme is switched back to a state 

allowing release of the E2 (Huang, Hunt et al. 2007).   

 

Figure 3.  
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Figure 3 Structures of Ubl E1 activation enzymes reveal insight into the Ubl adenylation  

and thioesterification reactions.  

 

(A) Insight into the SUMO1 adenylation reaction catalyzed by the SUMO E1 is provided by the 

crystal structures of SUMO E1-SUMO1~AMSN adenylate analogue (left; PDB entry 3KYC) 

and the SUMO E1~SUMO~AVSN tetrahedral intermediate analogue (right; PDB entry 3KYD).  

Atoms from the catalytic cysteine, AMSN, and AVSN, are shown as spheres, and E1 domains 

and SUMO are labeled.  The adenylate analogue structure (left) is in the “open” conformation, 

and numerous structural changes convert the structure to the “closed” conformation observed for 

the tetrahedral intermediate analogue (right), including a 130° rotation of the Cys domain and 

the melting of several elements that were structured in the open conformation.  Figure from 

Olsen, Capili et al.   

(B) Insight into the thioesterification reaction from the crystal structures of singly loaded E1 

complex (APPBP1-UBA3-NEDD8-ATP, PDB entry IR4N, left) and a trapped activation 

complex, in which APPBP1-UBA3 is bound to two NEDD8 molecules – NEDD8(A) (yellow) 

and NEDD8 covalently bound to the active site cysteine (NEDD8(T); orange); Ubc12, and ATP-

Mg
2+

 (PDB entry 2NVU, right).  Rotation of the E1 UFD is revealed from the structure of the 

trapped activation complex.   The surfaces of APPBP1 and UBA3 are colored in light blue and 

gray, respectively, and the E2 Ubc12 is colored in turquoise on the right.  The UBA3 UFD 

domain is showed in ribbon representation colored black.  Figure adapted from (Riedinger 2009).   
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Ubiquitin/ubiquitin-like conjugating enzyme (E2) 

 E2 conjugating enzymes function centrally in the Ub conjugation cascade: they interact 

with the E1~Ub intermediate upstream and E3 ligases downstream (Figure 4).   

 

Figure 4.  

 

 

Figure 4  E2 conjugating enzyme mechanism. 

(1) E2 enzyme charged with Ub (E2~Ub) interacts with a HECT E3 to transfer Ub from the E2 

catalytic cysteine to the HECT E3 catalytic cysteine.   

(2) HECT E3s contain a catalytic cysteine residue that forms an E3~Ub thioester intermediate 

prior to transferring Ub to a lysine residue in the target protein. 

(3) E2~Ub can also interact with RING and other E3s to promote Ub conjugation.  The RING 

and other E3s function as adaptor proteins to bring E2~Ub complex in proximity to substrate.  

Figure adapted from (Dye and Schulman 2007). 

 

The SUMO and ISG15 pathways utilize a single E2 enzyme each (Ubc9 and UbcH8, 

respectively); the NEDD8 pathway employs two E2 enzymes (UBE2M and UBE2F); and, in 

contrast, over 30 E2s function in the ubiquitin pathway (Pickart and Eddins 2004).  Ub- and Ubl-

E2 conjugating enzymes possess a ~150-residue core, globular UBC domain, composed of four 

-helices, a four-stranded -sheet, and a short 310 helix that contains the catalytic cysteine (Ye 

and Rape 2009).  A small number of ubiquitin E2 variant (UEV) proteins contain the UBC 

domain but lack the active site-Cys residue, and associate with activate E2 enzymes (Hofmann 

and Pickart 1999; Deng, Wang et al. 2000; Moraes, Edwards et al. 2001; VanDemark, Hofmann 
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et al. 2001).  The UBC domain is sufficient for catalysis, although some E2s contain additional 

N- or C-terminal extensions in addition to the core UBC domain which may contribute to 

specificity of E1 binding (Huang, Miller et al. 2004).  These extensions may also regulate 

intrinsic E2 activity or E3 recruitment (Pickart and Fushman 2004). 

 Structural and biochemical studies of E1-E2 and E2-E3 complexes show that the E1 and 

E3 enzymes bind to overlapping sites on the E2 (Huang, Kinnucan et al. 1999; Zheng, Wang et 

al. 2000; Huang, Paydar et al. 2005; Reverter and Lima 2005; Zhang, Windheim et al. 2005).  E2 

enzymes therefore cannot be re-loaded with Ub while bound to the E3, and instead cycle 

between E1 and E3 to transfer multiple ubiquitin molecules or to build a polyubiquitin chain.    A 

crystal structure of a complex between the UFD of NEDD8’s E1, NAE1-UBA3, and the E2 

Ubc12 core domain showed that the N-terminal -helix (H1) and the loop between the first and 

second  strands ( 1 2 loop) of Ubc12 bind to a W-shaped surface created by four of the five  

strands and the 13 helix of the UFD domain (Huang, Paydar et al. 2005).  Mutation of the H1 

helix impairs E2~Ub thioester formation (Sullivan and Vierstra 1991; Pitluk, McDonough et al. 

1995), and a bioinformatics study has shown a high degree of conservation in the N-terminal H1 

for E2s of a particular Ubl (Sullivan and Vierstra 1991; Pitluk, McDonough et al. 1995; Winn, 

Religa et al. 2004).  Competitive binding experiments with three different human E2-E3 pairs 

showed that E1 and E3 bind mutually exclusively to E2s (Eletr, Huang et al. 2005).  

 The labile nature of the E2~Ub thioester makes the structural study of this complex 

challenging.  Thus, NMR has been instrumental in providing insight into the interaction between 

E2 and Ub.  The C-terminus of ubiquitin (residues 71 through 76) stretches through a shallow 

groove reaching the E2 active site cysteine (Miura, Klaus et al. 1999; Hamilton, Ellison et al. 
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2001; Brzovic, Lissounov et al. 2006).  This ubiquitin-interaction region is independent of the 

known E1 and E3-binding surfaces (Pickart and Eddins 2004; Dye and Schulman 2007).  

After the E2 interacts with E1~Ub and is charged with Ub, the E2~Ub thioester complex 

associates with an E3 enzyme to catalyze substrate ubiquitination.  Crystal structures of E2/E3 

pairs, in particular the complexes between the E2 UBE2L3 and the HECT domain of E6AP, 

UBE2L3 in complex with a 46-kDa portion of the RING E3 c-Cbl, and the U-box domain E3 

CHIP/Ubc13-Uev1a complex, and the NMR complex of the RING E3 CNOT4 bound to 

UbcH5B, show that E2 binds both classes of E3s in a remarkably similar manner (Huang, 

Kinnucan et al. 1999; Zheng, Wang et al. 2000; Dominguez, Bonvin et al. 2004; Zhang, 

Windheim et al. 2005).  The tips of the L1 and L2 loops and the H1 helix of the E2 contribute to 

binding E3 (Figure 5a).  Sequence variation in these regions among different E2 enzymes 

contributes to E2-E3 specificity (Ye and Rape 2009).  E2s may also interact with additional 

regions in the E3 outside of its RING or HECT domain: for example, Cdc34 uses its acidic tail to 

bind its E3, SCF (Kolman, Toth et al. 1992; Silver, Gwozd et al. 1992), and UBE2G2 is recruited 

to the E3 gp78 by binding to the G2BR peptide, outside of its RING domain (Chen, Mariano et 

al. 2006; Das, Mariano et al. 2009; Li, Tu et al. 2009).   

 The interaction between E2 and E3 enzymes is relatively weak, typically ranging from ~1 

μM to the 100 μM range (Ye and Rape 2009).  The Ub transfer cascade is driven forward by the 

selective interaction of different forms of the E2 enzyme with E1 and E3 enzymes.  E1s bind 

preferentially to unloaded E2s, and release E2~Ub thioester; E3s bind preferentially to E2~Ub 

thioester, and release free E2 (Dye and Schulman 2007; Deshaies and Joazeiro 2009; Ye and 

Rape 2009).  The vast majority of E2s in cells are charged at steady state, and the interaction of 
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charged E2s with E3 enzymes is thought to be rate-limiting for target ubiquitination (Jin, Li et al. 

2007; Schulman and Harper 2009) 

 In addition to interaction with E1, E3, and Ub, certain E2 enzymes interact with substrate 

and play a prominent role in catalyzing substrate ubiquitination.  Insights into substrate-E2 

interaction have been provided from studies of complexes between the SUMO E2, Ubc9, and its 

substrate RanGAP1 (Sampson, Wang et al. 2001; Johnson 2004; Yunus and Lima 2006).  In a 

structure of Ubc9 in complex with RanGAP1, substantial hydrophobic contacts between E2 and 

substrate contribute to binding (Bernier-Villamor, Sampson et al. 2002).  In addition, residues of 

Ubc9 directly contact the SUMO consensus target sequence KxD/E, where  is any 

hydrophobic residue and K is the lysine residue to be modified.  In the ubiquitination pathway, 

the E2/UEV complex Ubc13/Mms2 assembles Lys63-linked polyubiquitin chains.  In this 

example, Ub is the substrate.  A structure of Ubc13/Mms2 covalently bound to one Ub molecule 

at the Ubc13 active site shows that noncovalent interactions between Mms2 and Ub from an 

adjacent complex position the acceptor Ub’s Lys63 in the active site near the Ubc13~Ub linkage  

(VanDemark, Hofmann et al. 2001; McKenna, Moraes et al. 2003; Eddins, Carlile et al. 2006). 
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Figure 5. 

 

 

Figure 5.  Interactions of E2 conjugating enzymes and E3 ligases. 

(A) A close-up of the interaction between the E2, UbcH7, with the c-Cbl RING domain (panel a, 

left, from the crystal structure of c-Cbl in complex with the E2 UbcH7 and a phospho-peptide 

ZAP-70, PDB entry 1FBV) and the HECT E3, E6AP (panel b, right, from the crystal structure 

of a complex between UbcH7 and the E6AP HECT, PDB entry 1C4Z) shows that the helix H1 

and loops L1 and L2 of UbcH7 interact with both RING and HECT E3s.  The E3 surface is 

shown as a white net.  UbcH7 residue Phe63 inserts its side chain into a groove formed by the E3 

surface.  Figure from (Zheng, Wang et al. 2000).   
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(B) Structure of the RING E3 c-Cbl in complex with the E2 UbcH7 and a phospho-peptide ZAP-

70 (PDB entry 1FBV).  The RING domain interacts with the E2 using both its RING domain and 

its linker helix. Figure from (Zheng, Wang et al. 2000). 

 

 

Ubiquitin ligases (E3) 

 E3 Ub ligases catalyze the final step of Ub transfer to substrate. With over 300 members 

encoded in the human genome, E3 ligases comprise the largest class of Ub/Ubl conjugation 

enzymes (Li, Bengtson et al. 2008).  They are divided into three classes based on their 

mechanism of function: (1) RING and RING-like, (2) HECT, and neither RING nor HECT 

classes.  We focus our discussion on the RING and HECT classes here. 

 

RING E3 ligases 

 RING domains contain a cross-brace structure of eight conserved cysteine or histidine 

residues coordinating two zinc ions (Joazeiro, Wing et al. 1999; Lorick, Jensen et al. 1999; Seol, 

Feldman et al. 1999).  Variations in the number of zinc ions distinguish related domains.  The U-

box domain lacks zinc ions.  Charged and polar residues, instead of the cysteine and histidine 

residues, form salt bridges and hydrogen bonds that stabilize a similar cross-brace structure.  The 

RING-H2 domain contains three zinc-binding sites.   

 The RING domain of the E3 ligase recruits E2~Ub thioester complex.  The region of 

interaction between RING E3s and E2 enzymes was elucidated through structural studies of 

RING-E2 complexes (Dye and Schulman 2007; Deshaies and Joazeiro 2009).  A concave surface 

formed from the zinc-binding loops of the RING domain and a helix that connects the first and 

second Zn
2+

 coordination sites creates a concave surface to which E2s bind, using their H1 helix, 

loop 1, and loop 2, as described above (Zheng, Wang et al. 2000; Zhang, Windheim et al. 2005).  
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Hydrophobic interactions between a conserved proline-phenylalanine pair (P62 and F63 in 

UBE2L3) and the RING domain secure the interaction (Huang, Kinnucan et al. 1999; Zheng, 

Wang et al. 2000) (Figure 5b).  As mentioned above, additional regions outside of the RING 

domain can also mediate E2-RING interactions, and the interaction between E2 and E3s is 

typically weak (in the micromolar range).  Furthermore, the ability of a particular E2-E3 pair to 

bind does not always correlate with Ub ligase activity: for example, the BRCA1/BARD1 RING 

E3 ligase interacts with UBE2L3, but this pair is not functional in catalyzing E3 

autoubiquitination (Christensen, Brzovic et al. 2007).  A similar observation was made for the 

RING E3 heterodimer Ring1b/Bmr1 (Buchwald, van der Stoop et al. 2006), the U-box E3 CHIP 

(Zhang, Windheim et al. 2005), and the UbcH7-c-Cbl E2-RING pair (Huang, de Jong et al. 

2009). 

The role of RING E3 during catalysis is to bring the E2~Ub thioester in proximity of a 

lysine residue for modification.  RING domains may also play a more active role, however, than 

as just molecular scaffolds.  Evidence indicates that merely binding of E2 and RING E3s is not 

sufficient for catalysis (Deshaies and Joazeiro 2009; Huang, de Jong et al. 2009), and it is 

possible that the RING domain induces a conformational change in E2~Ub to promote Ub 

discharge.  A conserved Asn residue located near the E2 enzyme active site aids in RING-

dependent or E3-independent transfer of Ub to a substrate lysine.  This Asn residue functions to 

stabilize the oxyanion intermediate that forms during nucleophilic attack of the substrate lysine 

residue on the E2~Ub thioester (Wu, Hanlon et al. 2003).  RING E3s may function to 

allosterically activate the E2 by promoting a conformation change that positions the Asn residue 

in the oxyanion hole to stabilize the charged intermediate (Wu, Hanlon et al. 2003; Ozkan, Yu et 

al. 2005).  
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RING and RING-related domains often function in the context of multi-domain proteins 

or multi-subunit complexes.  In both cases, the substrate-binding and E2-binding functionalities 

are separated, with the substrate binding function mediated by various protein-protein interaction 

modules (Dye and Schulman 2007).  The multisubunit cullin-RING ligases (CRL), the largest 

superfamily of E3s, are an example.  In these complexes, a RING domain associates with one of 

seven different cullins via the cullin’s C-terminus.  The N-terminal portion of cullin recruits 

substrate-recruiting adaptor proteins.  CRL activity is subject to both positive and negative 

regulation.  Covalent attachment of NEDD8 to a Lys residue in the cullin C-terminal domain 

enhances activity, while binding of the inhibitor CAND1 prevents CRL assembly (Petroski and 

Deshaies 2005; Duda, Borg et al. 2008).  Modeling the complete complex by superimposing its 

subcomponents from known structures has raised the question of how catalysis occurs: ~50 Å 

separates the E2 active site Cys and the ends of substrate phosphopeptides (Dye and Schulman 

2007).  This situation recalls that of E1 enzyme: the distance between the adenylation site and 

active site Cys, and the distance between the Cys residues of E1 and E2, are not obviously 

juxtaposed for Ub transfer.  A crystal structure of a Neddylated Cul5 C-terminal domain with 

bound RING protein Rbx1 (NEDD8~Cul5
ctd

-Rbx1) shows that NEDD8 activates CRL activity 

by inducing a massive conformation shift in the cullin WHB and Rbx1 subdomains, removing 

the CAND1 binding site and switching the CRL from a “closed” state to an “open,” active state 

(Duda, Borg et al. 2008).  Kinetic experiments also showed that neddylation stimulates CRL 

activity through increased recruitment of E2~Ub, bridging the substrate to E2~Ub gap, and 

stabilizing the oxyanion transition state (Saha and Deshaies 2008).  
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HECT E3 ligases 

 In contrast to the large number of RING domain E3s, the human genome encodes 28 

HECT E3s (Huibregtse, Scheffner et al. 1995).  This class of enzymes is distinguished from 

RING E3s by its catalytic mechanism.  HECT E3s form an E3~Ub intermediate on a conserved 

catalytic cysteine contained within the HECT domain prior to catalyzing isopeptide bond 

formation.  The HECT (homologous to E6AP C-terminus) domain is a ~350 residue C-terminal 

domain catalytic defined by that of the founding member of the family, E6AP (Huibregtse, 

Scheffner et al. 1994).  The catalytic and substrate-binding functions of HECT E3s are typically 

separated in different domains, with substrate binding mediated by N-terminal protein-protein 

interaction modules.  HECT domains are classified into three subfamilies on the basis of their N-

terminal regions: HERC E3s containing RCC1-like domains (RLDs), C2-WW-HECT E3s with 

tryptophan-tryptophan (WW) domains, and SI(ngle)-HECT E3s lacking either RLDs or WW 

domains (Scheffner and Staub 2007).  The architecture of the HECT domain is composed of two 

lobes: the N-lobe, housing the E2-binding region, and the C-lobe, containing the catalytic 

cysteine. A peptide hinge connects the two lobes.  In the crystal structure of a complex between 

E6AP and UbcH7, the catalytic cysteines of E2 and E3 are separated by 41 Å (Huang, Kinnucan 

et al. 1999) (Figure 6, left).  Subsequent structures have shown that the orientation of the two 

lobes varies due to rotation of the C-lobe about a polypeptide linker connecting the N- and C-

lobes (Verdecia, Joazeiro et al. 2003; Ogunjimi, Briant et al. 2005; Kamadurai, Souphron et al. 

2009) (Figure 6).  In the structure of WWP1 HECT domain, a ~100º rotation of the N-lobe about 

the peptide hinge reduces the distance between the E3 and E2 catalytic Cys to16 Å (Verdecia, 

Joazeiro et al. 2003).  Furthermore, non-covalent interactions between the HECT C-lobe and Ub 

from the bound E2~Ub complex promote transfer of Ub from E2 to E3 (Kamadurai, Souphron et 
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al. 2009) (Figure 6, right).  These crystal structures raise the question as to why the HECT 

domain adopts a conformation in which the C-lobe is clearly too far from the E2~Ub to become 

charged with Ub.  One possibility is that the conformational flexibility of the HECT domain 

speaks to its mechanism of catalyzing polyubiquitination chains, discussed further in the section 

“Ub chain assembly” below.   

 

Figure 6.   

 

 

Figure 6  Structures of E3 HECT domains.  

Crystal structures of HECT E3-E2 interactions.  In the structure of a complex containing E6AP 

and UbcH7 (left, PDB entry 1C4Z), 41 Å separates E2 and E3 catalytic cysteines.  Rotation of 

the C-lobe about the peptide hinge connecting N- and C-lobes shortens the E2-E3 catalytic 

cysteine distance to 19 Å in HUWE1 (middle, PDB entry 3H1D) modeled with UbcH7.  In the 

structure of a complex of the NEDD4L HECT domain with UbcH5B containing Ub covalently 

bound to the E2 active site (UbcH5B~Ub-HECT
NEDD4L

, right, PDB entry 3JVZ) the catalytic 

cysteines of E2 and E3 are separated by 8 Å, and the C-lobe of NEDD4L HECT interacts 

noncovalently with Ub to facilitate the transthiolation reaction. 

 

Polyubiquitin chain assembly 

Despite evidence for the existence of polyubiquitin chains of each of the seven possible 

different linkages in vivo (Peng, Schwartz et al. 2003; Xu, Duong et al. 2009), and for the 
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distinct functional outcomes of different polyubiquitin linkages (Dikic, Wakatsuki et al. 2009), 

much remains unknown regarding the mechanisms of polyubiquitin chain synthesis.  There are 

several questions regarding the synthesis of a polyubiquitinated chain on a substrate.  For 

example, how does the E3 accommodate an increasingly long ubiquitin polymer near its active 

site?  How is the proper lysine residue of ubiquitin positioned to generate a polyubiquitin chain 

with a specific topology?  Furthermore, a polyubiquitin chain containing at least four ubiquitin 

monomers is required for efficient binding to the proteasome ubiquitin receptor, S5a, and 

substrates often acquire ubiquitin polymers containing over a dozen ubiquitin monomers 

(Varshavsky 2005).  Given the typically weak affinity between E3s and their substrates, how is a 

long polyubiquitin chain added to the substrate before it dissociates from the E3? 

 The choice of target lysine residues for ubiquitination is largely thought to be governed 

by steric considerations: access of the lysine residue to the E2~Ub or E3~Ub thioester.  There are 

several exceptions to this in which primary sequence motifs are recognized as consensus sites for 

modification.  One, noted above, is the SUMOylation of the consensus sequence KxD/E, 

where  is any hydrophobic residue and K is the lysine residue to be modified.  A second 

exception is the TEK box that occurs adjacent to ubiquitination sites in APC/C substrates (Jin, 

Williamson et al. 2008).   

Polyubiquitin chain formation can be separated into two processes: chain initiation and 

chain elongation.  During chain initiation, a lysine residue is targeted for attachment of the first 

molecule of ubiquitin, a choice presumably governed by steric considerations.  In the second 

phase, additional ubiquitin molecules are added to the initiating monomer to extend the 

polyubiquitin chain.  These two processes are often distinguished kinetically, in that the chain 

initiation is the slow step and chain extension occurs rapidly.  The two steps may also be 
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performed by different E2s, which function together to assemble the polyubiquitin chain 

(Deshaies and Joazeiro 2009).  For example, the yeast APC/C E3 ligase employs Ubc4 to 

monoubiquitinate substrate and Ubc1 to polymerize a Lys48-linked Ub chain (Rodrigo-Brenni 

and Morgan 2007).   A similar observation comes from studies of the BRCA1/BARD1 E3 ligase.  

Of the six E2s with which BRCA1/BARD1 interacts, four promote monoubiquitination of 

BRCA1, and the remaining two extend the ubiquitin polymer on the monoubiquitinated substrate 

(Christensen, Brzovic et al. 2007).  Some E2s can catalyze both Ub chain initiation and chain 

elongation, as in the case of the yeast E2 Cdc34.  Cdc34 functions in conjunction with the E3 

SCF to catalyze monoubiquitination of substrate, Sic1, in a slow step.  Cdc34 then rapidly 

extends a Lys48 polyubiquitin chain on monoubiquitinated Sic1 (Petroski and Deshaies 2005; 

Saha and Deshaies 2008).  

 The standard model for polyubiquitin chain formation is the sequential addition model.  

According to this model, a ubiquitin monomer conjugated to substrate provides the lysine residue 

for nucleophilic attack on an E2~Ub thioester (in the case of RING E3s) or E3~Ub thioester (in 

the case of HECT E3s).  In the course of repeated cycles, Ub monomers are added, one at a time, 

to the most distal ubiquitin in the polymer.  As mentioned above, one central question pertaining 

to this model is how long ubiquitin chains are added to substrate before it dissociates from the 

E3.  Furthermore, as the ubiquitin chain grows, the distal end of the chain providing the attacking 

lysine becomes further removed from the E2 or E3 active site.  Nonetheless, a theoretical 

methodology developed by Pierce et al. predicted that the SCF E3s functions with the E2 Cdc34 

to sequentially assemble a polyubiquitin chain on the engineered phosphopeptide substrate 

CYCE.  Kinetic experiments conducted in millisecond time resolution demonstrate sequential 

polyubiquitin chain assembly (Pierce, Kleiger et al. 2009). 
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Verdecia et al. proposed an alternative model following crystallization of the HECT 

domain of the E3 WWP1.  This model is based on the observation that HECT E3s can adopt a 

range of relative orientations due to rotation of the C-lobe about the peptide hinge connecting the 

N- and C-lobes, and that conformational flexibility of the domain is essential for its activity.  In 

the indexation model, the E3 enzyme adds ubiquitin monomers sequentially to the distal end of a 

polyubiquitin chain anchored at its active site Cys.  The growing Ub chain is accommodated by a 

progressive opening of the hinge connecting the two HECT lobes, until the chain is transferred 

en bloc to a substrate lysine residue (Verdecia, Joazeiro et al. 2003).  One prediction of this 

model is that a thioester-linked polyubiquitin chain linked to an enzyme active site should be 

detected, an observation that has been reported for the HECT E3 E6AP (Wang and Pickart 

2005).  Wang et al. find that synthesis of Lys48-linked diubiquitin by E6AP occurs through 

formation of a thioester-linked diubiquitin on E6AP’s active site.  Li et al. detect thioester-linked 

polyubiquitin chains on the E2 Ube2g2 in vitro (Li, Tu et al. 2007).  Ube2g2 functions with the 

E3 gp78 to assemble a Lys48-linked polyubiquitin chain anchored at the Ube2g2 active site 

before its transfer to the C-terminus of its substrate, HERP.  The Lys48 residue of one ubiquitin 

thioesterified to Ube2g2 attacks a second Ube2g2~Ub complex to form Lys48-linked 

diubiquitin, and repeated cycles assemble the Ub polymer.  This mechanism requires proximity 

of two Ube2g2~Ub complexes ; indeed, gp78 oligomerizes via two oligomerization sites, and the 

gp78 oligomer associates with multiple Ube2g2 molecules (Li, Tu et al. 2009).  It is unclear 

whether this mechanism of Ub chain assembly occurs in vivo.  The orthologous yeast E2, Ubc7, 

forms thioesterified polyubiquitin chains only when unstable, in which case the 

polyubiquitinated Ubc7 is targeted for degradation (Ravid and Hochstrasser 2007). 
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A final model of polyubiquitin chain formation to examine evokes the provision of a 

noncovalent ubiquitin binding site on the E2, E3, or other protein that anchors the polyubiquitin 

chain during its assembly (Hochstrasser 2006).  In this model, noncovalently bound ubiquitin is 

positioned such that the appropriate Lys residue is available for nucleophilic attack on either the 

E2~Ub thioester or E3~Ub thioester.  The assembled polyubiquitin chain is transferred to an 

enzyme active site prior to its en bloc attachment to a substrate lysine (Hochstrasser 2006).  An 

experimental piece of evidence to support this model comes from the crystal structure of the 

Ubc13-Mms2 heterodimer, described above, in which the noncovalent binding of Ub to the 

Mms2 acceptor site positions its Lys63 toward the active site Ubc13~Ub.  Furthermore, the 

HECT domains of three C2-WW-HECT E3s were recently found to contain an intrinsic 

ubiquitin-binding site (Ogunjimi, Wiesner et al. ; French, Kretzmann et al. 2009; Kamadurai, 

Souphron et al. 2009).  The N-lobe of Rsp5 binds Ub and was proposed to function in controlling 

the linkage and length of polyubiquitin chains assembled by Rsp5 HECT domain in in vitro 

autoubiquitination assays (French, Kretzmann et al. 2009).  A noncovalent ubiquitin binding site 

was also identified on the N lobe of another C2-WW HECT E3, Smurf2, and was shown to be 

required for efficient polyubiquitination of the HECT domain itself and its substrate, Smurf2.  

The authors thus propose that the ubiquitin binding site functions in positioning and stabilizing 

binding of mono-ubiquitinated substrate to the HECT (Ogunjimi, Wiesner et al.).  

An important parameter to consider in the context of polyubiquitin chain assembly is how 

the topology of the ubiquitin chain is generated.  The ubiquitin chain linkage preference has been 

documented for numerous RING and HECT E3s.  For example, some RING-E2 pairs 

exclusively synthesize polyubiquitin chains linked through Lys6 (Wu-Baer, Lagrazon et al. 

2003; Nishikawa, Ooka et al. 2004), Lys48 (Chau, Tobias et al. 1989; Feldman, Correll et al. 
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1997), and Lys63 (Hofmann and Pickart 1999).  The observation that E2 enzymes can direct 

polyubiquitin chain topology even in the absence of an E3, and that in cases where a single 

RING domain recruits different E2s, the chain topology is dictated by the E2’s known preference 

of lysine usage (David, Ziv et al. ; Christensen, Brzovic et al. 2007; Kim, Kim et al. 2007), 

suggests that for E2-RING pairs, chain topology is dictated by the E2.  There are a few notable 

exceptions, in which an E2 synthesizes different chain linkages with different partner E3s 

(Deshaies and Joazeiro 2009).   HECT E3s with known ubiquitin chain assembly specificity 

include human E6AP, which assembles Lys48-linked polyubiquin chains (Wang and Pickart 

2005; Kim, Kim et al. 2007), and S. cerevisiae Rsp5, which preferentially assembles Lys63-

linked polyubiquitin chains (Kee, Lyon et al. 2005; Kee, Munoz et al. 2006).  In contrast to the 

RING E3s, the HECT domain governs chain type specificity (Wang and Pickart 2005; Kim and 

Huibregtse 2009).   

 

Deubiquitinating enzymes/proteases 

Ub conjugation, like other post-translational modifications, is reversible.  Ubiquitin 

conjugation is counterbalanced by the action of deubiquitinating enzymes (DUBs).  DUBs are 

proteases that function in several different capacities to proteolyse ubiquitin polymers or remove 

ubiquitin from target proteins.  First, Ub is encoded in the human genome as head-to-tail fusions 

of several ubiquitin monomers or as an N-terminal fusion with ribosomal proteins.  After 

translation, Ub fusion proteins are proteolytically processed by DUBs to produce an active Ub 

monomer with a free C-terminus for conjugation.  Second, DUBs cleave mono- or polyubiquitin 

chains from ubiquitinated substrate proteins, thereby regulating their activity or rescuing them 

from proteasomal degradation.  Finally, DUBs remove ubiquitin chains from proteins targeted to 
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the proteasome for degradation, recycling Ub and preventing it from being degraded by the 

proteasome (Amerik and Hochstrasser 2004).  Ubiquitin-like modifiers are similarly processed or 

deconjugated from target proteins, although less is known about ubiquitin like-proteases.  

SUMO-specific proteases (SENPs) process newly synthesized SUMO precursor proteins and 

remove SUMO from target proteins (Mukhopadhyay and Dasso 2007).  The COP9 signalosome 

(CSN) and NEDP1 (DEN1) remove NEDD8 from specific substrate (Lyapina, Cope et al. 2001; 

Mendoza, Shen et al. 2003; Chan, Yoon et al. 2008).  A single ISG15-specific protease has been 

identified, UBP43/USP18 (Malakhov, Malakhova et al. 2002).  Some proteases possess dual 

specificity: for example, UCHL1, UCHL3 and USP21 deubiquitinating enzymes also function as 

deNeddylases (Gong, Kamitani et al. 2000; Amerik and Hochstrasser 2004; Hemelaar, 

Borodovsky et al. 2004).  

The human genome encodes ~100 DUBs, which fall into five families: four families of 

cysteine proteases, and one family of zinc-dependent metalloproteases (Nijman, Luna-Vargas et 

al. 2005).  The Cys protease families are: ubiquitin-specific proteases (USP), ubiquitin C-

terminal hydrolases (UCH), otubain proteases (OTU), and Machado/Joseph (MJD) proteases.  

Cys proteases utilize an active site-cysteine residue to catalyze nucleophilic attack on the 

carbonyl carbon of the scissile peptide bond.  The Cys is activated by a nearby His residue that 

lowers its pKa, and often a third residue, Asn or Asp, that positions and stabilizes the His 

residue.  The acyl-enzyme intermediate is resolved by nucleophilic attack of water to regenerate 

the free DUB and release product (Figure 7).  The Jab1/MPN (JAMM) family of 

metalloproteases employs a zinc-catalyzed mechanism of hydrolysis, in which a zinc atom, 

chelated by His and Asp residues, activates a water molecule in nucleophilic attack on the 

carbonyl carbon of the isopeptide bond (Amerik and Hochstrasser 2004).   



Chapter 1: Introduction 

 

39 

 

Figure 7. 

 

 

 

Figure 7  Catalysis by the cysteine protease DUBs. 

Deubiquitination of Ub-conjugated proteins by DUBs.  Enzymes of the UCH, USP, MJD, and 

OTU classes are cysteine proteases, whereas JAMMs are metalloproteases.  The active site 

cysteine residue of cysteine proteases performs a nucleophilic attack on the carbonyl carbon 

atom of Ub’s C-terminal glycine residue that is in isopeptide linkage to a substrate lysine residue.  

The resulting acyl-enzyme intermediate is resolved by the nucleophilic attack of water, allowing 

the release of free DUB and Ub.  Figure courtesy of Howard Hang. 

 

DUBs regulate numerous cellular processes, including signal transduction, chromatin 

remodeling, DNA repair, cell-cycle progression, and apoptosis (Wilkinson 2009).  Their 

importance to maintaining cellular function is underscored by the fact that mutation in or 

misregulation of specific DUBs is associated with malignant transformation and disease 

including ataxia (Nijman, Luna-Vargas et al. 2005).  The identification, and biochemical and 

structural characterization of DUBs has greatly benefited from the development of function-

dependent methodologies, and in particular, activity-based protein profiling (ABPP).  

 

Activity-based protein profiling (ABPP) 

 Genome sequencing efforts have tabulated an enormous catalogue of predicted protein 

products.  The assignment of function to these proteins is a challenging task: methods such as 
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bioinformatics and the genetic alteration of expression have generated insight into function, but 

are limited by pre-existing knowledge of protein families and perturbing expression to infer 

function, respectively (Evans and Cravatt 2006; Cravatt, Wright et al. 2008).  Proteomics 

methods, including profiling protein expression and modification state by LC-MS analysis, 

protein microarrays, and protein-protein interaction techniques, have further advanced 

knowledge of the proteome (Gygi, Rist et al. 1999; Washburn, Wolters et al. 2001; Ito, Ota et al. 

2002; MacBeath 2002; Zhu, Bilgin et al. 2003; Petricoin and Liotta 2004).  These methods, 

however, do not report directly report on the functional state of enzymes, whose activity can be 

regulated in many ways, for example, by proteolytic cleavage, post-translational modification, or 

subcellular localization.  A powerful method for the global analysis of protein expression and 

function is activity-based protein profiling (ABPP). 

 ABPP is a chemical strategy that employs active site-directed covalent probes to query 

the functional state of enzymes in complex mixtures (Cravatt, Wright et al. 2008) (Figure 8).  

ABPP can provide information on an active set of enzymes, not just the expressed set of 

enzymes, under physiological conditions, during a cell state change, or in pathogenic settings.  

Activity based probes are designed to target a subset of the proteome, usually sharing similar 

catalytic features.  A dozen different enzyme classes have been targeted by ABPs, including 

kinases, phosphatases, oxidoreductases, and proteases (Cravatt, Wright et al. 2008).  The design 

of an ABP relies on three components: a chemical moiety designed to react covalently with a 

catalytic residue in the enzyme active site; a binding group to target the ABP to a specific class 

of enzymes; and an analytic handle, such as a fluorophore or haemagluttinin (HA) tag, for 

visualization or recovery of probe-reacted enzyme complexes.  Thus, the design of an ABP 

requires some knowledge of the target enzyme class: its catalytic mechanism, preference for 
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binding small molecules or substrate, and/or structure.  Knowledge of these properties facilitates 

the design of a “mechanism-based” inhibitor to selectively target a specific enzyme class, as well 

as a high-affinity binding group to guide probe specificity.  Enzymes that are less well-

characterized can be targeted using a “non-directed” strategy in which a library of probes 

containing less potent electrophiles and a variety of binding groups is used to target a broad  

group of enzyme classes (Evans and Cravatt 2006).   

 

Figure 8.  

 

Figure 8.  A typical activity-based protein profiling (ABPP) experiment.   

A typical activity-based protein profiling experiment makes use of an active site-directed 

chemical probe that covalently binds to an active site residue of a subset of enzymes in a 

complex proteome.  The probe is incubated with cell lysate, and the analytical handle is used to 

retrieve labeled complexes.  The complexes are separated by SDS-PAGE and visualized by 

silver stain.  A cartoon of an ABPP result is shown, in which incubation of lysate with the 

HAUbVME probe is seen to label numerous species.   Enzymes labeled with HAUbVME can be 

identified by tandem mass spectrometry to obtain a list of candidate Ub proteases expressed in 

cells.   

 

DUB-specific activity-based probes evolved from the development of DUB substrates 

consisting of Ub with C-terminal modifications: Ub ethyl ester (Wilkinson, Cox et al. 1986) and 

the fluorogenic derivative Ub-AMC (Dang, Melandri et al. 1998), and DUB inhibitors Ub-

aldehyde (Pickart and Rose 1986; Hershko and Rose 1987; Lam, Xu et al. 1997) and Ub-nitrile 
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(Lam, Xu et al. 1997).  An intein-based protein ligation system was later developed for Ub probe 

synthesis.  Epitope-tagged Ub is expressed with an intein-chitin binding domain fused to its C-

terminus for purification and introduction of glycine-based electrophilic groups (Borodovsky, 

Ovaa et al. 2002).  These electrophiles, chosen for their reactivity with Cys nucleophiles, have 

included vinyl methylsulfone, vinyl methylester, alkyl halides, and vinyl cyanide (Figure 9).  

Following recovery of probe-labeled complexes using the analytic handle, the identity of labeled 

proteins is determined by MS/MS sequencing and database searching of peptide hits.   

Figure 9.   
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Figure 9.  Synthesis of Ub-based chemical probes. 

(A) HAUb-derived probes are synthesized using an intein-based chemical ligation.  Recombinant 

HA-tagged Ub/Ubls are expressed with a C-terminal intein-chitin binding domain for 

purification using chitin agarose.  Bound proteins are eluted with a thiol agent, such as -

mercaptoethane solfonic acid (MESNa), resulting in a Ub-thioester capable of chemical ligation.   

(B) Table of glycine-based electrophiles synthesized for attachment to the C-terminus of HAUb 

probes, used in (Borodovsky, Ovaa et al. 2002).  Figure from (Love, Catic et al. 2007). 

 

ABPP of ubiquitin proteases was first undertaken in a murine thymoma (EL-4) cell line 

and identified 23 DUBs (Borodovsky, Ovaa et al. 2002).  Subsequently, Ub active site-directed 

probes have successfully identified bacterial, viral, and parasite-encoded DUBs (Kattenhorn, 

Korbel et al. 2005; Schlieker, Korbel et al. 2005; Zhou, Monack et al. 2005; Artavanis-Tsakonas, 

Misaghi et al. 2006; Misaghi, Balsara et al. 2006; Catic, Misaghi et al. 2007; Frickel, Quesada et 

al. 2007; Rytkonen, Poh et al. 2007).  The existence of pathogen-encoded DUBs suggests that 

microbes may utilize protease activity to confer selective advantages during infection and to 

reverse the ubiquitination of host proteins required for the host’s defense against microbes 

(Angot, Vergunst et al. 2007; Rytkonen and Holden 2007; Wilkinson 2009).  DUB profiling 

using activity-based probes has also been used to inform how Ub protease activity changes 

during malignant transformation in B cell malignancies (Ovaa, Kessler et al. 2004) and in human 

papillomavirus (HPV) cervical carcinoma (Rolen, Kobzeva et al. 2006).   

Activity-based probes are invaluable tools for the structural analysis of DUBs.  The 

deubiquitinating enzyme HAUSP, which removes ubiquitin from the tumor suppressor protein 

p53, was crystallized alone and bound to its inhibitor, Ub aldehyde (Hu, Li et al. 2002).  These 

structures revealed that inhibitor binding triggers a major conformational change in the enzyme 

active site, rearranging the catalytic residues for productive catalysis.  The crystal structure of 

UCHL3 bound at its active site to UbVME confirmed the probe’s mechanism of inhibition and 
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illustrated the conformational changes that occur in UCHL3’s N-terminus to accommodate Ub 

binding (Misaghi, Galardy et al. 2005).  Finally, the crystallization of the murine 

cytomegalovirus M48(USP) was only possible in its inhibitor-bound state.  This structure 

revealed a novel configuration of active site residues and Ub-interaction surface that established 

it as a founding member of a new class of DUBs – the herpesvirus tegument USP (Schlieker, 

Weihofen et al. 2007).   

Because earlier campaigns using Ub C-terminal electrophilic probes identified 

approximately half of the ~100 proposed mammalian DUBs, we hypothesized that incorporation 

of “warheads” with greater electrophilicity should retrieve a larger number of DUBs.  In Chapter 

2, we report the design and use of an expanded set of Ub C-terminal electrophilic probes, and 

their utility in recovering enzymes of the Ub activating, conjugating, and ligase classes.  One 

ligase we identified, termed HUWE1, was particularly intriguing due to its misregulation in 

several tumor types and its reported role in regulating cell proliferation and apoptosis.  We 

therefore chose this enzyme for further biochemical and structural characterization (Chapter 3). 

 

HUWE1 E3 Ub ligase 

 HUWE1 (HECT, UBA, and WWE domain containing 1) is a large (482-kDa) E3 Ub 

ligase of the SI(ngle) class (Figure 10).  This protein functions in many cellular pathways: cell 

proliferation, apoptosis, DNA damage response, base excision repair, and cell attachment 

(D'Arca, Zhao et al. ; Zahreddine, Zhang et al. ; Adhikary, Marinoni et al. 2005; Chen, Kon et al. 

2005; Zhong, Gao et al. 2005; Hall, Kow et al. 2007; Herold, Hock et al. 2008; Zhao, Heng et al. 

2008; Zhao, D et al. 2009).  It is overexpressed in several tumor types, including breast and lung 

(Adhikary, Marinoni et al. 2005; Chen, Kon et al. 2005).  HUWE1 overexpression has also been 
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identified in colon carcinomas, where its expression directly correlates with tumor stage, and 

inversely correlates with p53 protein levels (Adhikary, Marinoni et al. 2005; Yoon, Lee et al. 

2005).  Despite the number of reports on HUWE1 function and substrates, its cellular role is still 

under investigation.  The first two reports identifying this E3 ligase described opposite 

phenotypes as a result of its knockdown in the same cell line (Chen, Kon et al. 2005; Zhong, Gao 

et al. 2005).  One report observed increased survival, by linking HUWE1 function to its substrate 

Mcl-1 (an antiapoptotic protein), whereas another group observed increased apoptosis, as a 

consequence of its substrate p53 (a proapoptotic protein) (Chen, Kon et al. 2005).  HUWE1 

functions in the DNA damage response by ubiquitinating its substrates CDC6, TopBP1, and 

DNA polymerase beta (Pol beta), the major base excision repair DNA polymerase (Hall, Kow et 

al. 2007; Herold, Hock et al. 2008; Parsons, Tait et al. 2009).  HUWE1 is reported to build 

Lys63-linked polyubiquitin chains on the oncoprotein c-Myc, thus promoting recruitment of its 

coactivator p300 and c-Myc-dependent gene transactivation (Adhikary, Marinoni et al. 2005).  

However, another group reported that HUWE1 ubiquitinates N-myc in vivo, thereby regulating 

neural proliferation and promoting neuronal differentiation (D'Arca, Zhao et al.; Zhao, Heng et 

al. 2008; Zhao, D et al. 2009).  Because this ligase plays a fundamental role in critical cellular 

pathways, we chose this enzyme for biochemical characterization following its recovery in 

immunoprecipitations with Ub C-terminal electrophiles (Love, Pandya et al. 2009). 

Figure 10. 
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Figure 10.  Domain structure of the HUWE1 E3 Ub ligase. 

HUWE1 is a large (482-kDa) protein that is composed of multiple domains: from the N-

terminus, two domains of unknown function; a UBA domain; that associates with Ub, a WWE 

domain, which has been found in E3 ligases; a BH3 domain, which binds one of its substrates, 

the anti-apoptotic Bcl-2 family member Mcl-1; and the catalytic HECT domain.  Shown are 

residue numbers indicating the positions of these domains. 

 

 

Conclusions 

 In this thesis, I will describe work relating to the development of an expanded class of Ub 

C-terminal electrophilic probes (Chapter 2), the structural characterization of the HECT domain 

of the E3 Ub ligase HUWE1 (Chapter 3), and a method that we hope will be useful to probe the 

role of conformational flexibility to HECT domain function (Chapter 4).  The work in Chapter 2 

was motivated by the observation that the first generation of activity-based Ub electrophiles 

recovered deubiquitinating enzymes from cell lysates, but not Ub conjugating enzymes, despite 

the presence of active site-cysteine residues in the latter class of enzymes.  As discussed above, 

the functional identification of Ub conjugation enzymes will prove useful to complement 

existing bioinformatics and gene manipulation studies to identify enzyme function.  Our work in 

solving the structure of the HUWE1 HECT domain (Chapter 3) was motivated, in part, to 

understand why the HUWE1 HECT domain reacted with Ub electrophilic probes at multiple 

cysteines, and also to crystallize a complex between the HECT domain and the Ub electrophile.  

Finally, the results in Chapter 4 give an example of a methodology that we are developing to 

study how conformational changes are important for enzyme function.   
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Abstract 

Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of 

activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific 

destruction of proteins.  Deubiquitinating enzymes (DUBs) deconjugate substrates modified with 

Ub/Ubls and recycle Ub inside the cell.  Genome mining based on sequence homology to 

proteins with known function has assigned many enzymes to this pathway without confirmation 

of either conjugating or DUB activity.  Function-dependent methodologies are still the most 

useful for rapid identification or assessment of biological activity of expressed proteins from 

cells.  Activity-based protein profiling (ABPP) uses chemical probes that are active-site directed 

for the classification of protein activities in complex mixtures.  Here we show that the design and 

use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify 

members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and 

DUBs with previously unverified activity.  We show that epitope-tagged Ub-electrophilic probes 

can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity 

studies of purified enzymes identified from complex mixtures in cell lysate.  Furthermore, the 

reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that 

multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of 

Ub to self or to a substrate protein. 
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Introduction 

The addition of ubiquitin (Ub), a 76 amino acid polypeptide, or a ubiquitin-like modifier 

(Ubl) to proteins via a primary amino group serves to modulate protein function in a variety of 

ways.  Mono- and multi-ubiquitination play a critical role in transcriptional activation(1), as well 

as receptor internalization and trafficking(2-4), while poly-ubiquitination typically leads to 

protein degradation by the proteasome and is therefore important for regulation of many cellular 

functions(5).  Dysregulation of Ub/Ubl substrate modification has been implicated in a growing 

number of human diseases, including cancer(6, 7) and neurodegenerative disorders(8-11).   

Ub/Ubls are installed on substrate proteins in a complex cascade involving Ub/Ubl-

activating enzymes (E1 enzymes), Ub/Ubl-conjugating enzymes (E2 enzymes), and Ub/Ubl-

ligating enzymes (E3 enzymes)(12, 13).  E1 enzymes activate the C-terminus of Ub/Ubl for 

nucleophilic attack via ATP-dependent thioester formation with an active site cysteine.  This 

activated Ub/Ubl intermediate is then transferred from E1 to E2 as a thioester and is finally 

installed on a recipient lysine by an E3 ligase, which contains a substrate binding region and 

ultimately confers specificity.  The action of the ligation machinery is balanced by the activity of 

deubiquinating enzymes (DUBs) and Ubl-specific proteases (ULPs) – proteases that remove 

Ub/Ubl from modified substrates, thereby rescuing proteins from proteasomal degradation(14, 

15).  DUBs/ULPs themselves may be key players in disease pathology, as they are known 

regulators of the cell cycle machinery and can act as either oncoproteins(16) or tumor 

suppressors(17, 18).  The identification of members of this pathway is important for 

understanding substrate specificity, regulation of the Ub-proteasome system, and ultimately for 

the development of specific inhibitors for possible use in treatment of disease(19, 20). 
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Activity-based protein profiling (ABPP) has proved an essential complement to in silico 

efforts for the identification of DUBs/ULPs(14).  Novel members of this class of proteases were 

previously identified by Ub-based active site-directed probes(21).  The recombinant expression 

of an epitope-tagged Ub fusion protein allowed the installation of electrophilic groups at the C-

terminus via intein-based chemical ligation.  Incubation of these first generation probes with cell 

lysate led to the isolation and identification of 23 known DUBs by MS/MS analysis(21).  

Additionally, an OTU domain-containing protein was isolated on the basis of probe reactivity 

and was shown to have DUB-like activity in vitro.  An ABPP-based approach was also used to 

identify DUBs and ULPs encoded by both viral(22, 23) and bacterial genomes(24, 25), as well as 

eukaryotic pathogens like Plasmodium falciparum(26) and Toxoplasma gondii(27).  This 

strategy proved essential for the identification of the M48
USP

 – a DUB within the N-terminal 500 

residues of the large tegument protein of the herpes simplex virus 1 (HSV1), which bears no 

homology to any known host DUBs(28).  UbVME was confirmed to be a mechanism-based 

suicide inhibitor as it was crystallized covalently bound to the active site cysteine of UCH-

L3(29) and M48(28). 

Since earlier campaigns using the C-terminal electrophilic probes identified no more than 

half of the ~100 proposed mammalian DUBs (21, 30, 31), we postulated that incorporation of 

“warheads” with greater electrophilicity should retrieve a larger number of DUBs.  Here we 

report the synthesis and reactivity of an expanded set of Ub-based chemical probes.  Enzymes 

modified by the probes were isolated from whole cell lysate and identified by tandem mass 

spectrometry.  While several new DUBs were recovered, including two members of the 

Josephin-domain subfamily (JOS1 and JOS2)(32), we were surprised to recover numerous 

members of the Ub/Ubl conjugating machinery including a gene product containing a HECT 
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(homologous to E6-AP carboxy terminus) domain, but with no reported ligase activity.  

Previously, only recombinantly expressed and purified E1, E2 or E3 enzymes had shown any 

reactivity with electrophilic Ub derivatives(21, 33).  One E3 ligase we identified, ARF-BP1, was 

particularly intriguing due to recent interest in one of its target proteins, Mcl-1, as a potential 

tumor marker(34).  Further characterization of the binding interaction between hemagluttinin 

(HA)-tagged UbVME and the HECT domain of ARF-BP1 revealed that the probe modified 

cysteines present in this domain.  Mutagenesis of probe-labeled cysteines indicates that several 

residues in the HECT domain may participate in the transfer of Ub to self or substrate proteins, 

with, as expected, a dominant role in the reaction for the catalytic cysteine.  

  

Results and Discussion 

Synthesis and Characterization of Second Generation HAUb-Electrophilic Probes 

Known Ub-based active site-directed probes were synthesized as previously reported 

(Figure 1A)(21).  Three new glycine-based electrophiles were synthesized (see the Supporting 

Information available with this article online for schemes of chemical syntheses and compound 

characterization) and installed using an intein-based chemical ligation on a recombinantly 

expressed HAUb lacking the C-terminal glycine (G76).  The product of each ligation reaction 

was purified using cation-exchange chromatography and characterized by mass spectrometry 

(LC-ESI-MS, see Supporting Information).  These second generation glycine derivatives, 

including a vinylethoxysulfone (OEtVS), a -lactone (35) and a 2,6-

trifluoromethylbenzyloxymethylketone (TF3BOK) were chosen for increased electrophilicity as 

compared to compounds synthesized earlier(21), and the likelihood to retain specificity for 

cysteine over serine proteases in reactions with complex mixtures of proteins(36).  All three 
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HAUb probes should react at the position corresponding to the C-terminal carbonyl group of the 

G76, as this is the position of conjugation between Ub and peptide substrates.  HAUbVME, 

which is the most reactive first generation probe in retrieval of diverse DUBs, was used as a 

comparison for probe reactivity. 

 

Profiling and Identification of Enzymes Modified by Newly Synthesized HAUb-Electrophilic 

Probes in EL-4 and HMLE Cell Lysate 

To identify potentially uncharacterized DUBs using an ABPP approach, our new set of 

probes was used to label whole-cell lysate.  The EL-4 mouse thymoma cell line was initially 

chosen(21) since it is known to express a diverse set of DUBs/ULPs(37), and was selected for 

sake of comparison with previous ABPP experiments.  For identification of human orthologs of 

particular DUBs/ULPs reactive with our HAUb electrophilic probes, we chose the immortalized 

human mammary epithelial cell line (HMLE)(38).  Cell lysate was incubated with HAUb-

derived probes and enzymes modified were visualized by anti-HA immunoblotting (Figure 2).  

Titrations and time courses were conducted to determine the optimal concentrations of each 

probe and the optimal time for labeling enzymes present in EL-4 cell lysate (data not shown).  

Significant enrichment of probe-reactive material was observed by immunoblotting of samples 

incubated with 0.2 μg of each HAUb electrophile per 30 μg cell lysate for more than 3h.  

Extended reaction times or increased quantities of probe beyond 0.2 μg per 30 μg cell lysate, 

however, did not affect the number of distinct polypeptides retrieved.  HAUb-derived probes 

have different activities and specificities using otherwise identical labeling conditions and probe 

concentrations (Figure 2).  Furthermore, the pattern of labeled DUBs/ULPs differs between the 

two cell types – as expected, EL-4 and HMLE cells contain diverse and differentially expressed 
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DUBs/ULPs.  In all cases, labeling could be blocked by preincubation of lysate with the 

alkylating agent N-ethylmaleimide (NEM) (Supplementary Figure 1), consistent with active site 

cysteine modification by the HAUb-derived probes.  The increased electrophilicity of our newly 

synthesized probes did not translate into greater reactivity with proteins in cell lysates – the first 

generation HAUbVME probe was still the most broadly reactive (Figure 2).  The increased 

chemical reactivity of these newly synthesized probes likely means they are also more quickly 

hydrolyzed during the labeling reaction, which may explain their seemingly lower reactivity with 

cell lysates. 

To isolate the proteins modified by each of the HAUb probes, we immunoprecipitated 

labeled proteins from either EL-4 or HMLE cell lysate using agarose-conjugated anti-HA 

antibody as described(21).  Precipitated proteins were separated by reducing SDS-PAGE (10%) 

and visualized by silver staining (data not shown).  Polypeptides were excised from the gel, 

trypsinized and analyzed by MS/MS.  MS/MS data were subjected to database searches using the 

US NCBI expressed sequence tag (EST) databases.  Proteins identified were corrected for 

nonspecific interactions with the antibody and agarose against untreated, immunoprecipitated 

cell lysate using the MScomp program(39).  29 DUBs were identified from EL-4 cell extracts 

and 23 DUBs and one NEDD8-specific ULP were identified from HMLE cell extracts (see 

Supplementary Table 1).   

We observed selective reactivity with DUBs for each HAUb-electrophilic probe, with 

HAUbVME being the most diversely reactive probe.  HAUbTF3BOK was the next most DUB-

reactive probe and showed significant overlap of labeled species with HAUbVME in EL-4 

lysate.  Ubiquitin C-terminal hydrolases, including UCH-L1, -L3, and -L4 displayed broad 

reactivity with all probes in EL-4 lysate, while UCH-L3 and -L5 had similar reactivity in HMLE 
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extracts.  Several DUBs not previously identified using this ABPP approach were recovered:  

Otubain-domain containing DUB Cezanne 2 (OTUD-7A) and U2afl-rs1, an uncharacterized 

peptidase C19 family member with putative DUB activity toward polyubiquitinated peptides, 

were identified in EL-4 cell lysate using HAUbVME and HAUbLac respectively.  Otubain-

domain containing DUBs OTUD4 (isoform 3) and OTUD5 were identified from HMLE extracts 

using HAUbVME, as were Josephin domain (JD)-containing DUBs JOS1 and JOS2(32).  

Josephin-type DUBs represent a new class of DUBs to be identified using a chemical biology 

approach.  Finally, the identification of one ULP, SENP8 – a NEDD8 specific protease, in 

HMLE extracts using HAUbVME was not surprising considering the fact that Ub and NEDD8 

contain the same 4 C-terminal residues and share ~60% sequence identity(40).  Reactivity of 

HAUbVME toward a different subset of DUBs, as compared to those identified previously, 

could be attributed to either altered DUB expression particular to this EL-4 cell culture, or to the 

longer incubation times with probe and increased probe concentrations used here, which allows 

the retrieval of enzymes that contain more weakly nucleophilic active site cysteines.   

Recovery of diverse members of the Ub/Ubl conjugation machinery was also observed 

(Table 1).  Since previous experiments failed to retrieve any such enzymes from cell lysate, this 

observation was surprising, but not altogether unexpected – most Ub/Ubl conjugating enzymes 

also contain an active site cysteine that participates in the conjugation of these modifiers to 

substrate peptides.  Ub/Ubl installation on substrate lysines via the E1 to E2 to E3 thioester 

cascade hinges on reversible interaction of the active site cysteines in these enzymes with the 

Ub/Ubl C terminus.  In fact, the pKa of the active site cysteine residue of several E2 enzymes is 

approximately 2 pH units above that of a free cysteine, likely preventing these residues from 

reacting non-specifically with other thiol-reactive groups in the cell(41).  The increased potency 
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of the newly synthesized HAUb probes should encourage labeling of more weakly nucleophilic 

cysteine residues; indeed, HAUbTF3BOK was the most reactive probe toward these types of 

proteins.  Representative members of all three classes of conjugating enzymes, including E1s and 

E2s for both Ub and Ubls and both HECT and RING domain E3 Ub ligases, were identified in 

EL-4 and HMLE lysate.  One protein we recovered, Trip 12, contains both WWE and HECT 

domains characteristic of a Ub E3 ligase, but its activity as such had not been verified either in 

vivo or in vitro.  We expressed the HECT domain of Trip12 (expressed as a GST fusion to 

improve solubility) and confirmed that it has autoubiquitination activity that is E1/E2 dependent 

(Supplementary Figure 2)(42, 43). 

While active site cysteines capable of being modified by HAUb-electrophilic probes do 

exist in most classes of conjugating enzymes, some proteins might be retrieved as part of larger 

multi-protein complexes containing only a single probe-reactive species.  This may apply in 

particular to RING ligases, which do not utilize an active site cysteine, but rather activate 

Ub/Ubls using two zinc ions coordinated in the active site by eight conserved cysteine and 

histidine residues(13).  For example, the RING ligases containing CUL-4A and CUL-4B consist 

of a multi-subunit complex containing the cullin scaffold with C-terminally associated substrate 

binding proteins and an N-terminally associated RING-domain protein, which recruits the E2-

conjugating enzyme to form the active ligase complex(44).  While the cullin scaffold itself is not 

capable of reacting with Ub-based electrophiles, reaction of the E2 protein with probe could lead 

to recovery of these associated scaffold proteins in our immunoprecipitations as performed using 

non-denaturing conditions.  Indeed, this is the case for one example RING E3, UBAC1, which 

can be identified in EL-4 lysate by immunoblotting, but unreactive with HAUbVME as indicated 

by the presence of a single unmodified species following incubation with probe (Supplementary 
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Figure 3).  UBC9 and other Ubl-conjugating enzymes may be retrieved either due to cross 

reactivity with Ub(45) under the in vitro labeling conditions, or as part of a complex with its 

interacting E1, which in the case of UBC9 was also recovered from EL-4 lysate (Aos1). 

 

HAUb-Electrophilic probes are activity-based probes for E3 Ub ligases 

After demonstrating the capability of our panel of probes to identify Ub conjugating machinery, 

we were interested in validating the utility of these proteins for mechanistic study of purified 

enzymes.  The HECT Ub E3 ligase that was recovered with the most diverse panel of 

electrophilic probes using both types of cell lysate was the protein ARF-BP1.    ARF-BP1 (Mule) 

is a 482 kD HECT-domain-containing Ub E3 ligase that has several known substrates: p53(46), 

Cdc6(47), Mcl-1(48, 49), N-Myc(50), C-Myc(51), TopBP1 (51), and histones (52).  ARF-BP1 is 

a key player in both p53-dependent and independent functions of the ARF tumor suppressor(46) 

and regulates DNA damage-induced apoptosis(47-49).  ARF-BP1 is interesting not only because 

its substrates function in multiple pathways, but also because a catalytic mutant of ARF-BP1 in 

which the active site cysteine is mutated to alanine (C4341A) or serine (C4341S)(51) reduces, 

but does not abolish ligase activity.  We therefore selected this protein for verification of 

reactivity with HAUbVME and confirmation of enzyme activity as an E3 Ub ligase. 

To verify that HAUbVME does indeed bind to the active site-cysteine of ARF-BP1, we 

incubated HAUbVME for three hours with recombinantly expressed ARF-BP1 HECT domain 

(residues 4012-4374).  The reaction mixture was separated by reducing 10% SDS-PAGE and 

visualized by coomassie stain.  We observed multiple species, each corresponding to covalent 

modification of ARF-BP1 (Figure 3, panel A) which appear to occur only in the context of 

folded HECT domain – modification of ARF-BP1 by HAUbVME following denaturation in 6.4 
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M urea is nearly abolished.  In contrast, incubation of recombinant DUB enzymes with 

HAUbVME invariably produces a single modified species (53).  We identified the nature of the 

modified species using MS/MS analysis of polypeptides excised from the gel.  Three out of the 

six cysteines within the expressed HECT domain were modified by HAUbVME: C4099, C4341, 

and C4367 (hereafter called Cys 1, Cys 5, and Cys 6 in reference to their sequential position 

from the N terminus of the HECT domain).  The modification of Cys 5 was expected, as it was 

identified as the likely catalytic residue based on multiple sequence alignment (54).  We 

reasoned that the modification of the other two residues should correlate with the ability of these 

cysteines to contribute to product formation.  To investigate this possibility, we expressed and 

purified ARF-BP1 HECT domain mutants (residues 4012-4374) in which cysteines 1, 5, and 6 

were mutated to alanine either singly or in combination.  We then tested the activity of these 

proteins in vitro using one of two assays: autoubiquitination, or ubiquitination of the anti-

apoptotic protein Mcl-1, a substrate of ARF-BP1 (54). 

When wild-type ARF-BP1 is incubated for ten minutes at room temperature in the 

presence of recombinant E1, the E2 UbcH7, [
32

P]-Ub, and an ATP-regenerating system, the E3 

efficiently catalyzes polyubiquitination of itself (Figure 3, panel B).  Following separation of 

reaction mixture on 10% SDS-PAGE, ubiquitinated products are quantified using 

phosphoimaging (Figure 3, panel D).  Mutation of the catalytic cysteine (Cys 5) to alanine 

greatly reduces activity but does not abolish it; the mutant forms 8.2% of wild-type product after 

a 10 minute reaction.  Mutation of Cys 6 reduces product formation in the autoubiquitination 

assay to 56.27% of the wild type level.  Finally, the mutation of Cys 1 alone does not affect 

activity.  The mutation of Cys 1 in combination with either Cys 5 or Cys 6 does dramatically 

alter autoubiquitination activity: in combination with a Cys 6 mutation, activity is restored; in the 
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context of a Cys 5 mutation, ARF-BP1 fails to ubiquitinate itself.  Finally, mutation of all three 

probe-labeled cysteines (1, 5, and 6) abolishes all activity.   

Although we cannot exclude that these cysteine mutations affect binding to Ub or 

UbcH7, these results suggest that mutation of probe-labeled cysteines affects activity of the 

ARF-BP1 HECT domain.  We next asked whether this holds true for ARF-BP1-catalyzed 

ubiquitination of its substrate protein Mcl-1.  In this case, ARF-BP1 is incubated with 

recombinant E1, the E2 UbcH7, Ub, an ATP-regenerating system, and [
32

P]-Mcl-1 for one hour 

at 37ºC as described(48).  Reaction mixtures are separated on SDS-PAGE and quantified as 

described above.  Wild-type ARF-BP1 catalyzes multi-ubiquitination of Mcl-1 as reported 

(Figure 1, panel C).  We observed that the cysteine-to-alanine mutants of ARF-BP1 show a 

similar pattern of reduced activity as seen in the autoubiquitination assay; however, the relative 

contributions of cysteines 5 and 6 toward total activity differ in this assay as compared to the 

autoubiquitination assay.  As in the autoubiquitination assay, mutation of Cys 1 has no effect on 

activity toward Mcl-1.   More significantly, mutation of either Cys 5 or Cys 6 reduces activity to 

a similar extent (30% and 40.7%, respectively) after a 1 h incubation, suggesting that both of 

these residues participate in ubiquitination of Mcl-1.  The pattern of activity of the double 

mutants in the autoubiquitination assay resembles the pattern for substrate activity: the 1,6 

mutant resembles wild-type ARF-BP1, whereas the 1,5 mutant is inactive.  Again, the triple 

mutant lacking cysteines 1, 5, and 6 shows no activity. 

  

Multiple Cysteines in ARF-BP1 form Thioesters with Ub 

The mechanism of catalysis by HECT E3 ligases involves several steps.  The E3 enzyme 

binds Ub-loaded E2, followed by Ub transfer from the E2 catalytic cysteine to the E3 catalytic 
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cysteine.  The E3 then catalyzes isopeptide bond formation between Ub and a recipient lysine 

residue on substrate, which may be the E3 itself, Ub, or another protein.  A crucial determinant 

in isopeptide bond formation is the presence of a conserved phenylalanine located four amino 

acids from the C terminus of most HECT E3s (55).  Truncations which remove this residue 

abolish Ub transfer to substrate, trapping the E3 with the catalytic cysteine in a thioester linkage 

to Ub (55).  We reasoned that if more than one cysteine is capable of receiving Ub from the 

associated E2, we should be able to detect the presence of multiple Ub-thioesters in an ARF-BP1 

HECT domain truncation mutant (ARF-BP1 4) lacking the conserved phenylalanine.  

We therefore expressed and purified two versions of the ARF-BP1 HECT domain lacking 

the terminal four amino acids: wild-type (WT 4) and a Cys5 to Ala mutant (C5A 4) and 

assayed these mutants, along with the full-length ARF-BP1 HECT domain (WT FL) for Ub 

thioester formation.  In this assay, ARF-BP1 is incubated with recombinant E1, the E2 UbcH7, 

Ub, and an ATP regenerating system for 10 minutes at room temperature. The reaction is 

quenched by urea denaturation followed by addition of SDS-PAGE loading buffer with or 

without -mercaptoethanol, separated on 10% SDS-PAGE, and analyzed by anti-Ub 

immunoblot.  Under these conditions, WT FL ARF-BP1 efficiently catalyzes autoubiquitination 

(Figure 4, panel A).  In contrast, WT 4 ARF-BP1 forms a mono-ubiquitylated species when the 

reaction is quenched with reducing sample buffer, indicating that the activity of this protein is 

compromised by the truncation.  The ability of the WT 4 ARF-BP1 to form a 

monoubiquitylated species depends on Cys 5 (Figure 4).   Interestingly, quenching the reaction 

with non-reducing sample buffer preserves multiple Ub-thioesters on WT 4 ARF-BP1.  We 

detect the persistence of a single Ub-thioester in the C5A 4 ARF-BP1 mutant, which is likely 

due to Ub binding to a cysteine in the HECT domain.  The apparent thioester formation 
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catalyzed by both WT 4 and C5A 4 ARF-BP1 is E1/E2 dependent (Figure 4, panel B).  These 

results indicate that at least two cysteines in ARF-BP1 simultaneously can form Ub-thioesters 

and that one of these cysteines is Cys 5.   

We predicted that the 4 truncation would abolish the ability of ARF-BP1 to ubiquitinate 

Mcl-1, and indeed we find this to be the case (Figure 4, panel C).  WT 4 ARF-BP1 catalyzes 

monoubiquitylation of Mcl-1 in a manner dependent on Cys 5 and the presence of E1 and E2 

enzymes (Figure 4, panel D).  As this small amount of ligase activity persists after complete 

denaturation of samples in 4 M urea, it must correspond to covalent lysine modification.   

Given that our probes were designed to act as electrophiles capable of reaction with local 

nucleophiles following specific binding by Ub-reactive proteins, it is likely that the probe’s 

reactivity with cysteines other than the catalytic residue means that these residues are close in 

proximity to the electrophilic warhead within the tertiary structure of the ARF-BP1 HECT 

domain.  We proceeded to construct a threaded structure based on the structures available for the 

HECT domains of WWP1 (56) and SMURF2 (57), the HECT domains with highest homology to 

ARF-BP1 ( > 40% identity, data not shown).  In our threaded structure, Cys 6 appears to be 

equidistant to Cys 5 in proximity to the E2 binding site and all three reactive cysteines are along 

a single face of the domain.  We next ask if these three residues from the human ARF-BP1 

sequence are conserved across eukaryotes (Figure 5).  As expected, Cys 5 is conserved across all 

species examined, and Cys 6 is conserved within the animal kingdom.  Cys 1, the most weakly 

reactive residue toward our Ub-based electrophiles, is conserved only through bony fishes 

(Danio rerio), but is also observed in Hydra.  Altogether, these data link the ability of our probes 

to identify residues with the potential to react with Ub, either due to catalytic activity or 

proximity. 
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Conclusions 

The ubiquitin-proteasome system is critical for the regulation of protein function in 

eukaryotes.  Here we extend an earlier effort to allow the isolation and identification of members 

of all enzyme classes that comprise the ubiquitin-proteasome system.  While we continue to find 

novel enzymes of the DUB family, we have also demonstrated the utility of Ub-based 

electrophiles as activity-based probes for certain HECT domain E3 ligases.  In studying the 

covalent modification of the HECT domain of E3 ligase ARF-BP1 with HAUbVME, we 

observed that the probe covalently labels three out of the six cysteines found in the ARF-BP1 

HECT domain (C4099 (Cys 1), C4341 (the canonical catalytic residue, Cys 5), and C4367 (Cys 

6)).  We provide evidence for the formation of multiple thioester-linked Ub molecules during 

catalysis by wild-type ARF-BP1 HECT domain, supporting the notion that the HAUbVME 

probe is capable of identifying residues that are competent nucleophiles for Ub tranfer.  We are 

eager to see our hypotheses about the positioning of nucleophilic residues in the ARF-BP1 

HECT domain confirmed with structural data.  The utility of Ub electrophilic probes as 

mechanism-based chemical tools to study E3 ligase structure and function will likely provide 

further insights into the mechanism employed by ARF-BP1 and other HECT E3 Ub ligases.   
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Methods 

Synthesis and Purification of HAUb-electrophilic Probes 

Electrophilic glycine analogs 4-amino but-1-enyl ethoxysulfonate, serine- -lactone, and 2,6-

trifluoromethylbenzyloxy glycine methyl ketone were synthesized according to literature 

procedures (58-60) (see Supporting Information for synthesis details and compound 

characterization).  HAUb75-MESNa (500 μL, ~10-15 mg/mL), synthesized as previously 

reported(21) from an Ub-intein-chitin domain fusion protein, was treated with 1 mM N-

hydroxysuccinimide, immediately followed by 0.5 mM of the desired electrophilic glycine 

analog in 1.1 mL (total volume) of a 1 M NaHCO3 (pH 8.0) solution. These conjugation 

reactions were incubated overnight at 37°C.  The resulting products were dialyzed and purified 

as previously reported(21).  Each purified HAUb-electrophilic probe was characterized by 

LC/MS using a Michrom Paradigm MS4 HPLC equipped with a Waters Symmetry C8 2.1 mm X 

50 mm column using standard reverse-phase gradients.  The effluent from the column was mass 

analyzed using a Waters LCT Electrospray Time-OF-Flight Mass Spectrometer (see Supporting 

Information for MS characterization). 

 

Preparation of EL-4 and HMLE Cell Lysate and Labeling with HAUb-electrophilic Probes 

EL-4 cells (cultured in DMEM supplemented with 10%  IFS and 1% penicillin/streptomycin at 

37°C with 5% CO2) were harvested, washed once with culture media and once with PBS.  Cell 

pellets were lysed with glass beads as previously reported(21).  30 μg of protein extract was 

incubated with 0.2 μg of each HAUb-electrophilic probe (2 μM, 10 μL total volume per sample) 

for 5 h at room temperature.  After terminating the reactions with reducing SDS-PAGE sample 
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buffer and boiling 10 min, reaction mixtures were separated by SDS-PAGE (10%) and analyzed 

by immunoblotting with anti-HA antibody (3F10, Roche). 

 

The immortalized, nontransformed HMLE line, expressing the SV40 large-T oncogene, and 

hTERT, was cultured as previously described(38) using a 2:1:1 mixture of mammary epithelial 

growth medium (MEGM, Clonetics), DMEM, and F12 medium supplemented with EGF (10 

ng/ml), insulin (10 g/ml), and hydrocortisone (1 g/ml).  Cells were harvested at a confluence 

of 90% and washed once with PBS.  Cell pellets were lysed with glass beads as previously 

reported(21).  7.5 mg of cell lysate were incubated with 1 μg of each HAUb-electrophilic probe 

(0.2 μM) 5 h at room temperature.  A sample of labeled proteins (30 μg protein extract) were 

separated by SDS-PAGE (8%) and analyzed by immunoblotting with anti-HA antibody (3F10, 

Roche).   

 

Anti-HA Immunoprecipitation of Labeled Proteins and Identification by Tandem Mass 

Spectrometry 

EL-4 and HMLE lysate were prepared as above.  7 mg EL-4 protein extract or 7.5 mg HMLE 

protein extract were incubated with 1 μg (0.2 μM) of each HAUb-electrophilic probe for 5 h at 

room temperature in 50 mM Tris (pH 8.0), 150 mM NaCl.  Anti-HA agarose (3F10 antibody, 

Roche) was incubated with the samples overnight at 4°C.  The immunoprecipitations were 

washed extensively with NET buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 5 mM EDTA, 0.5% 

NP40) and the bound proteins were eluted by boiling for 10 min with reducing SDS-PAGE 

sample buffer, separated by SDS-PAGE (10%), and visualized by silver stain using standard 

conditions.  Bands were excised, reduced, alkylated and digested with trypsin at 37°C overnight.  
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The resulting peptides were extracted, concentrated and injected onto a Waters NanoAcquity 

HPLC equipped with a self-packed Jupiter 3 μm C18 analytical column (0.075 mm by 10 cm, 

Phenomenex).  Peptides were eluted using standard reverse-phase gradients.  The effluent from 

the column was analyzed using a Thermo LQT linear ion trap mass spectrometer (nanospray 

configuration) operated in a data dependent manner.  The resulting fragmentation spectra were 

correlated against the known database using SEQUEST.  Bioworks browser was used to provide 

consensus reports of the proteins identified. 

 

ARF-BP1 Labeling with HAUbVME 

Recombinantly expressed and purified ARF-BP1 HECT domain (5 μg) was incubated with 

HAUbVME (2.0 μM) in 50 mM Tris, 150 mM NaCl, pH 8.0 for 3h at room temperature.  The 

specificity of probe labeling was tested by first denaturing the ARF-BP1 HECT domain with 6.4 

M urea (30 min incubation at 30°C) and then diluting the sample to 0.6 M urea before the 

addition of HAUbVME (2.0 μM).  Activity of HAUbVME was tested with ARF-BP1 in 50 mM 

Tris, 150 mM NaCl, pH 8.0 containing 0.6 M urea to ensure that probe reactivity was not 

compromised in dilute concentrations of urea.  All of the above labeling reactions were quenched 

by addition of reducing sample buffer, boiled for 10 min and separated by SDS-PAGE (10%).  

Labeled and unlabeled species were visualized by coomassie staining and bands were excised 

and treated as above for MS/MS analysis.  Modified cysteine residues were identified by the 

presence of the mass change corresponding to the C-terminus of the VME probe ( = 172.08 Da). 

 

ARF-BP1 Autoubiquitination and Substrate Ubiquitination Assays with Wild-type and Mutant 

HECT Domain proteins 
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Autoubiquitination activity was tested in a 20 μL reaction by incubating ARF-BP1 HECT 

domain (10 μg) with 100 ng human E1 (Ube1, Boston Biochem), 1 μg UbcH7, and 10 μg [
32

P]-

Ub (see Supporting Information for plasmid construction, protein expression and purification 

conditions, and [
32

P]-labeling) with an ATP regenerating system (50 mM Tris [pH 7.6], 5 mM 

MgCl2, 5 mM ATP, 10 mM creatine phosphate, 3.5 U/mL creatine kinase) for 10 min at room 

temperature.  Substrate ubiquitination activity was tested by adding 1 μg [
32

P]-Mcl-1 (see 

Supporting Information for plasmid construction, protein expression and purification conditions, 

and [
32

P]-labeling) to the above reaction containing 100 μg non-radiolabeled Ub and incubating 

the mixture for 1 h at 37°C.  A control reaction was run without ARF-BP1 HECT domain, but 

containing all other reaction components for each case.  After terminating the reactions with 

reducing SDS-PAGE sample buffer and boiling 10 min, reaction mixtures were separated by 

SDS-PAGE (10%) and analyzed by phosphorimaging.  Product formation by ARF-BP1 HECT 

domain mutants was calculated as a percentage of total (background corrected) [
32

P] counts 

attributable to ubiquitinated product in the wild type HECT domain.  The average and standard 

deviation of 9 experiments is shown.  

  

Ub-thioester assays 

To test ARF-BP1 thioester formation, reaction mixtures (10 L) were set up in duplicate 

containing 100 ng human E1 (Ube1, Boston Biochem), 1 g UbcH7, 10 g ARF-BP1 4 HECT 

domain, 10 g Ub, 50 M DTT, and an ATP regenerating system, and incubated for 10 min at 

room temperature.  Reactions were terminated with 10 L 8M urea and incubated 15 min at 

30°C.  One set of samples received reducing SDS-PAGE sample buffer, the other set received 

non-reducing SDS-PAGE sample buffer, and were then boiled 10 min, separated on 10% SDS-
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PAGE, and analyzed by immunoblotting with anti-Ub antibody (Sigma).  To test the activity of 

the ARF-BP1 4 proteins against substrate, reactions were set up as above except with 100 g 

Ub and 1 g Flag-Mcl-1 and were incubated 1 hr at 37°C.  Reactions were terminated as above, 

separated on 10% SDS-PAGE, and analyzed by immunoblotting with anti-Flag antibody 

(Sigma).   
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Figure and Table Legends 

 

Figure 1.  ABPP approach for identifying DUBs, Ub/Ubl activating enzymes, conjugating 

enzymes and ligases.   

(a)  Synthesis of HAUb-derived probes using an intein-based chemical ligation.  Recombinant 

HA-tagged Ub was expressed as a C-terminal fusion with an intein-chitin binding domain (CBD) 

for purification and introduction of reactive groups.  Addition of -mercaptoethane sulfonic acid 

(MESNa) to the chitin agarose (CA) with bound HAUb fusion protein results in elution of a 

species containing a thioester capable of chemical ligation.   

(b)  A table of new glycine-based electrophiles synthesized for attachment to the C-terminus of 

HAUb.  HAUbVME, a first generation probe, was used for comparison of second generation 

probe reactivity.  Figure adapted with permission from Nature Chemical Biology, ref. 14. 

 

Figure 2.  Different HAUb-derived probes show distinct activities and labeling profiles.   

(a) EL4 cell lysates (30 μg) were incubated with 0.2 μg of each HAUb (2 μM) probe for 5 h at 

room temperature (22°C).  The labeled proteins were resolved by SDS-PAGE (10%) under 

reducing conditions and immunoblotted with anti-HA antibody.  The HAUbVME probe is the 

most reactive as visualized by labeling intensity in this immunoblot.   Labeling is not observed 

using HAUbLac at the concentration used.  

(b) HMLE cell lysates (7.5 mg) were incubated with 1 μg of each HAUb probe (0.2 μM) for 5 h 

at room temperature (22°C).  A sample of labeled proteins (30 μg protein extract) were resolved 

by SDS-PAGE (8%) under reducing conditions and immunoblotted with anti-HA antibody.  The 

amount of sample loaded onto the gel and the exposure times of this immunoblot were varied to 
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account for differences in the reactivity and decomposition of the C-terminal electrophiles in 

each Ub-based probe. 

 

Table 1.  Ub/Ubl activating enzymes (E1s), conjugating enzymes (E2s) and ligases (E3s) 

identified from (a) mouse lymphoma (EL4) and (b) human mammary epithelial cell lysates 

(HMLE). 

 

Figure 3.  Biochemical analysis of probe-labeled cysteines in ARF-BP1.   

(a) Incubation of HAUbVME with recombinant ARF-BP1 HECT domain covalently labels 

multiple cysteines as identified using tandem M/S analysis.  5 g recombinant ARF-BP1 HECT 

domain was incubated with 2.0 μM HAUbVME for 3 h at 22°C.  Labeled species were resolved 

by 10% SDS-PAGE and detected by coomassie staining.  The labeled peptides were excised 

from the gel, trypsizined, and subject to MS/MS analysis.  Residues C4099 (Cys 1), C4341 (Cys 

5), and C4367 (Cys 6) were modified by probe.  Probe labeling is specific for these sites, as 

HECT domain denatured in 6.4 M urea for 30 minutes at 30°C and then diluted with reaction 

buffer to 0.6 M urea before probe addition no longer efficiently binds HAUbVME.   ARF-BP1 

HECT domain and HAUbVME retain activity when incubated initially with 0.6 M urea.  Ub 

ligase activity of wild-type (6) or cysteine-to-alanine mutant ARF-BP1 HECT domains was 

assayed using (b) [
32

P]-Ub for autoubiqutination or (c) [
32

P]-Mcl-1 for substrate ubiquitination.  

Reaction components contained recombinant UBE1, UbcH7, an ATP regenerating system, and 

either no ligase (N), WT, or a mutant ligase as indicated.  Ligation reaction mixtures were 

separated by 10% SDS-PAGE and visualized by phosphorimaging.   
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(d) Product formation by wild type or mutant ARF-BP1 in the autoubiquitination assay or Mcl-1 

ubiquitination assay was calculated by averaging the percent wild-type activity quantified using 

phosphorimaging data from nine independent experiments. 

 

Figure 4.  Detection of Ub-thioesters in ARF-BP1 HECT domain.   

(a) Ub-thioester assay with the indicated ARF-BP1 HECT domain proteins.  Purified ARF-BP1 

HECT domain proteins were incubated with recombinant E1 and E2 (UbcH7), an ATP 

regenerating system, and Ub.  Reactions were stopped with 4 M urea and either reducing (left 

panel) or non-reducing (right panel) SDS-PAGE sample buffer, separated by SDS-PAGE, and 

analyzed by immunoblot with anti-Ub antibody.   

(b) Ub thioester assay with the indicated ARF-BP1 truncation proteins was performed with all 

necessary components; without UBE1; or without UbcH7.   

(c) Substrate ubiquitination assay using the indicated ARF-BP1 HECT domain proteins and 

recombinant Mcl-1 as substrate.  Reactions contained recombinant UBE1, UbcH7, Ub, an ATP 

regenerating system, and 1 g recombinant Flag-labeled Mcl-1.  Reaction mixtures were 

quenched as above, separated on SDS-PAGE and analyzed by anti-Flag immunoblot.  

(d) Substrate ubiquitination assay using the indicated ARF-BP1 HECT domain with all 

components; no UBE1; and no UbcH7. 

 

Figure 5.  Multiple sequence alignment of ARF-BP1 HECT domain.   

Sequence conservation of ARF-BP1 HECT domain across diverse eukaryotes.  The region 

depicted represents two portions of ARF-BP1 C-terminus and includes Cys 1 (C4099), Cys 5 

(C4341), and Cys 6 (C4367), each marked above with an asterik.  Residues depicted in red are 
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small or hydrophobic, those depicted in blue are acidic, those depicted in magenta are basic, and 

the remainders are depicted in green.  Alignment made with Clustal W(35). 
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Table 1.  

A. 

Protein identified Protein activity Accession 
number 
(NCBI) 

Predicted 
MW (kDa) 

HAUb probe 
used for 
retrieval  

UBE1 E1 Ub-activating 

enzyme 

267190 118 TF3BOK  

UBE1-L2 E1 Ub-activating 

enzyme 

27370032 118 TF3BOK  

UBE1 

(Chromosome X) 

E1 Ub-activating 

enzyme 

148878383 118 TF3BOK  

UBA2 E1 Ubl-activating 

enzyme 

32493410 70.5 TF3BOK  

Aos1 E1 Ubl-activating 

enzyme 

18490720 38.5 TF3BOK  

UBC9 E2 Ubl-conjugating 

enzyme 

54039792 18 TF3BOK  

UBC12 E2 Ubl-conjugating 

enzyme 

46577656 21 TF3BOK  

UBC13 E2 Ub-conjugating 

enzyme 

18017605 17 TF3BOK  

UB2V1 E2 Ub-conjugating 

enzyme 

51702141 16 TF3BOK  

UB2V2 E2 Ub-conjugating 

enzyme 

51702142 16 TF3BOK  

UBE2-L3 (UbcM4) E2 Ub-conjugating 

enzyme 

54039806 18 TF3BOK  

UBE2S E2 Ub-conjugating 

enzyme 

53734650 24 TF3BOK  

UBE2O E2 Ub-conjugating 

enzyme 

50234896 141 TF3BOK  

E6-AP (Ube3A) HECT E3 Ub ligase 76880500 97.5 VME 

Nedd4 (Rsp5) HECT E3 Ub ligase 32172436 103 OEtVS, 

TF3BOK  

 

ARF-BP1 (Mule) HECT E3 Ub ligase 73915354 482 VME, Lac, 

TF3BOK  

Trip12 Putative HECT E3 

Ub ligase 

91932791 224 VME, 

TF3BOK  

UBAC1 (KPC2) RING E3 Ub ligase 19527050 45 VME  

UBR2 RING E3 Ub ligase 73622074 199 TF3BOK  

CUL-4A RING E3 Ub ligase 108936014 88 OEtVS  

TRAF2 RING E3 Ub ligase 83921633 56 OEtVS  
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B. 
 

Protein 
identified 

Protein activity Accession 
number 
(NCBI) 

Predicted 
MW (kDa) 

HAUb probe 
used for 
retrieval  

UBE1 E1 Ub-activating 

enzyme 

24418865 117.8 VME, OEtVS, 

TF3BOK  

UBC1 E2 Ub-conjugating 

enzyme 

46577658 22.4 VME, Lac, 

TF3BOK 

UB2E2 E2 Ub-conjugating 

enzyme 

47606201 22.2 VME, TF3BOK  

UBE2N E2 Ub-conjugating 

enzyme 

46577660 17.1 VME, Lac, 

TF3BOK 

UBE2S E2 Ub-conjugating 

enzyme 

23829978 23.8 TF3BOK  

UBE2C (isoform 

4) 

E2 Ub-conjugating 

enzyme 

32967289 46.4 TF3BOK  

UBE2T E2 Ub-conjugating 

enzyme 

73622065 22.5 TF3BOK  

E6-AP (isoform 3, 

Ube3A) 

HECT E3 Ub ligase 19718764 100 VME  

ARF-BP1 HECT E3 Ub ligase 73915353 481.6 VME, TF3BOK  

Trip12 Putative HECT E3 

Ub ligase 

2499839 220.3 TF3BOK  

RN138 RING E3 Ub ligase 74733576 28.2 Lac  

CUL-4A RING E3 Ub ligase 108936013 87.6 Lac  

CUL-4B (isoform 

2) 

RING E3 Ub ligase 121114302 102.2 VME, Lac  

SH3R2 Putative RING E3 

Ub ligase 

122070123 79.2 Lac, TF3BOK 
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Abstract 

E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous 

cellular processes.  The HECT class of E3 Ub ligases directly transfers Ub from bound E2 

enzyme to a myriad of substrates.  The catalytic domain of HECT Ub ligases has a bilobal 

architecture that separates the E2-binding region and catalytic site.  An important question 

regarding HECT domain function is the control of ligase activity and specificity.  Here we 

present a functional analysis of the HECT domain of the E3 ligase HUWE1, based on crystal 

structures, and show that a single, N-terminal helix significantly stabilizes the HECT domain.  

We observe that this element modulates HECT domain activity, as measured by self-

ubiquitination induced in the absence of this helix, as distinct from its effects on Ub conjugation 

of substrate Mcl-1.  Such subtle changes to the protein may be at the heart of the vast spectrum 

of substrate specificities displayed by HECT domain E3 ligases.  
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Introduction 

Ubiquitin (Ub) conjugation regulates many cellular processes, including protein stability, 

cell cycle control, DNA repair, transcription, signal transduction, and protein trafficking (2-4). 

An enzymatic cascade consisting of Ub activating enzyme (E1), Ub conjugating enzyme (E2), 

and Ub ligase (E3) is responsible for catalyzing Ub conjugation to target proteins.  The E1 

enzyme activates Ub for transfer by adenylating its C terminus in an ATP-dependent step.  Ub is 

then transferred to the E1 active site cysteine, forming a thioester bond between E1 and Ub.  The 

activated Ub is transferred to E2 enzyme in a transthiolation reaction and is conjugated to target 

proteins by the action of E3 Ub ligases (4).  The E2 and E3 enzymes provide substrate specificity 

to the Ub conjugation reaction (5).  Approximately 600 E3s exist in the human proteome, 28 of 

which belong to the HECT (homologous to E6AP C terminus) domain family (6). HECT domain 

E3s possess a ~350 amino acid C-terminal HECT domain containing a conserved catalytic 

cysteine that participates in the transfer of Ub to substrate.  Mutation, abnormal expression, or 

misregulation of these enzymes predisposes to the development of cancer and disease (2,7). 

Structural studies describe the canonical HECT domain architecture and provide insight 

into its mechanism of catalysis (8-10).  HECT domains are composed of two subdomains 

connected by a flexible peptide linker.  The N-terminal (N) lobe contains the E2 binding region, 

and the C-terminal (C) lobe contains the catalytic cysteine.  In the structure of the E6AP-UbcH7 

complex (Protein Data Bank (PDB) codes IC4Z and ID5F), the catalytic cysteines of E2 and E3 

are separated by 41 Å, suggesting that a substantial conformational rearrangement is required to 

achieve Ub transfer (8).  Analysis of the structure of the WWP1 HECT domain (PDB code 

1ND7) partially addresses how Ub is transferred from the E2 to the E3 catalytic cysteine by 

illustrating conformational flexibility of the HECT domain (10).  In the WWP1 structure 
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modeled in a complex with UbcH5, the C-lobe is rotated about the hinge region, placing it in 

closer proximity to the E2 cysteine, and closing the distance between active site cysteines to 16 

Å.  Mutations in this hinge loop that restrict HECT domain rotation decrease activity (10).  

Additional structural elements within the HECT domain that modulate conformation or activity 

remain unknown. 

HUWE1 (also called ARF-BP1, Mule, Lasu1, Ureb1, E3 histone, and HectH9) is a large 

482-kDa HECT domain E3 Ub ligase implicated in the regulation of cell proliferation, apoptosis, 

DNA damage response, and base excision repair (11-17). We recovered this enzyme in 

immunoprecipitations using Ub C-terminal electrophilic probes (18).  Following an initial 

biochemical characterization (18), we completed a structural and biophysical analysis of the 

HECT domain to understand modulation of its robust in vitro activity.  Here we present crystal 

structures of the HUWE1 HECT domain and characterize a structural element that both stabilizes 

this domain and modulates its activity.  This structural element, the 1 helix, is an important 

component of the HECT domain that largely restricts its autoubiquitination activity, while only 

nominally affecting Mcl-1 ubiquitination activity.  

 

Results  

Structure of the HUWE1 HECT domain.   

We first attempted to crystallize the HUWE1 HECT domain using a fragment defined by 

the founding member of the HECT domain E3 ligase family, E6AP (PDB codes 1C4Z and ID5F) 

(8). The crystals diffracted to only 3.5 Å (data not shown), with fairly high temperature factors 

indicating vibrational disorder within the protein crystals.  By sequence comparison, we noted 

the significance of a conserved N-terminal helix that seals the hydrophobic core of the N-lobe in 
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the structures of WWP1, Smurf2, and Nedd4-like (residues 546-560 in WWP1 and 371-387 in 

Smurf2) (9,10).  The presence of this helix is conserved in over 13 HECT domain E3 ligases 

based on sequence comparison (Figure 1a) and (10), highlighting its structural importance. The 

1 helix has been previously described as a critical element for structural stability, yet an 

element dispensable for HECT domain function (8,10).  Initial model-building into the 3.5 Å 

electron density showed a noticeable hydrophobic groove on the surface of helices 5, 11, 12, and 

13, possibly indicating an additional helix being bound here.  As sequence conservation drops off 

N-terminal of this 1 helix (Figure 1b), we hypothesized that this element is an important part of 

the HECT domain. We note that expression of the HECT domain of Nedd4 yielded soluble 

folded product when the homologous helical segment was included in the expression construct, 

but was not successful in its absence (E. Maspero and S. Polo, personal communication). We 

therefore asked whether addition of helix 1 would not only assist in our crystallographic efforts 

but also affect the catalytic activity of the HECT domain.  

Addition of helix 1 greatly stabilizes the HECT domain, as made evident in thermal 

denaturation experiments (Figure 1c), shifting the transition midpoint by 16°C from 44 °C to 

60°C.  Although thermal stability differs between the two versions of the HECT domain, the 

level of secondary structure remains the same (Figure 1d), indicating that the absence of helix 1 

does not lead to unfolding, but to less rigidity of the domain.  We solved the structure of the 

helix-extended HECT domain by molecular replacement using the E3 ligase WWP1 (10) as a 

search model.  The final model (R/Rfree 16.6%/22.9%) was built and refined to 1.9 Å resolution 

(Table 1).  The structure of HUWE1 HECT domain closely resembles that of WWP1, with 

which it shares 41.3% sequence identity (Figure 2a).  The HUWE1 HECT domain contains two 

distinct lobes similar to previously determined HECT domain structures (E6AP, Smurf2, 
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WWP1).  The larger N lobe (residues 3993-4252) contains the E2 binding region, and the 

smaller C lobe (residues 4259-4374) contains the conserved catalytic cysteine (C4341).  The N 

lobe is composed of 13 -helices and 7 -strands, and the C lobe is composed of 4 -helices and 

4 -strands.  Residues 4253-4258 form the hinge that connects the two lobes.  A rotary 

movement about this linker likely repositions the N and C lobes to bring the catalytic cysteine of 

the cognate Ub-loaded E2 in proximity to its E3 counterpart (10).  Like WWP1, HUWE1 is 

oriented in an inverted T shape ( ), in which the C lobe is positioned over the middle of the N 

lobe, with approximately 800 Å
2
 of contact surface area (Figure 2b). Hydrogen bonds between 

Glu4248 (N lobe) and Ser4304 (C lobe), as well as Gln4245 (N lobe) and Gln4298 (C lobe), and 

a salt bridge between Glu4246 and Lys4295, stabilize the  conformation.  The  conformation 

is further stabilized by water-mediated hydrogen bonds between the two lobes, involving 

residues Arg4130, Glu4147, Ser4148, and Glu4244 from the N lobe and Gln4298, Thr4340, 

Gly4302, and Lys4295 in the C lobe.  The orientation of the N and C lobes of the HUWE1 

HECT domain differs from the more open conformation observed in the crystal structures of 

E6AP and Smurf2 (Figure 2c) (8,9), although we cannot exclude the possibility that crystal 

contacts influence the observed orientation of the C lobe.  The stabilizing nature of helix 1 is 

apparent from the extended structure, as it closes the hydrophobic core of the N-lobe (Figure 2a, 

d).  

The most notable difference between HUWE1 HECT domain and previously solved 

structures concerns the E2 binding region (residues 4150-4200).  Most of the hydrophobic 

residues in WWP1 that mediate contact with the E2 are similar to those in HUWE1, obvious 

from the alignment between HECT E3 ligases (Figure 2e).  The HUWE1 E2 binding region 

differs from that of WWP1, in that it contains additional structured elements – mainly ordered -
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strands not previously identified.  The well-ordered -strands in the E2 binding region of the 

HUWE1 HECT domain extend farther from the helical core of the protein than seen in the 

structure of WWP1, and the loop is folded back on itself to complete the 3 strand and form the 

8 helix (Figure 2a).  It is possible that HUWE1 uses its unique E2 binding region to interact 

with a specific set of E2 enzymes in vivo that differ from WWP1.  

A comparison of our two HUWE1 HECT domain structures shows that they are nearly 

identical with respect to the positioning of the N and C lobes (Supplementary Figure 1a, b).  For 

the structure lacking the 1 helix, the additional -strands and -helix seen in the E2 binding 

region remain unresolved, likely due to the low resolution data and high temperature factors. 

 

Catalytic activity of the HECT domain.   

As addition of the 1 helix to the HECT domain stabilized the protein, we asked whether 

the presence of this structural element affected HECT domain catalytic activity.  We 

hypothesized its addition might confer altered catalytic properties to the HECT domain 

compared to its helix-lacking counterpart.  We therefore examined the ability of the HECT 

domain to catalyze self-ubiquitination in the presence of E1 and E2 (UBE2L3) enzymes, an ATP 

regenerating system, and [
32

P]-Ub (Figure 3).  The use of [
32

P]-Ub allowed us to quantify the 

amount of Ub adducts formed and calculate initial rates of product formation in HECT-domain 

limiting conditions.  In this assay, the HECT domain catalyzes the formation of a complex 

mixture of self-ubiquitinated species (Figure 3a, b) that are not observed in absence of the HECT 

domain (lane marked “N”).  Immunoblotting using an anti-His antibody confirmed that these 

species are ubiquitinated E3 enzyme, as it is the only species in this reaction that contains a 

polyhistidine tag (data not shown).  The pattern of autoubiquitination observed is similar 
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regardless of the presence of the 1 helix – both versions form multi- and polyubiquitinated 

species (Figure 3a, b).  Although the pattern of product formation is similar, the presence of the 

1 helix suppresses the autoubiquitination activity of the HECT domain by more than 25-fold 

(Figure 3c).  As autoubiquitination is observed for many Ub ligases and is often used as a 

criterion of E3 Ub ligase activity, we sought to further characterize the reasons for its 

modulation. 

The autoubiquitination reaction described above produces a complex mixture of products.  

We examined HECT domain activity in a single-turnover reaction to monitor the first round of 

Ub addition to the HECT domain.  This assay encompasses two steps.  In the first step, E2~Ub 

thioester is generated by incubating E1, E2, an ATP regenerating system, and Ub.  After the 

E2~Ub thioester has formed, this reaction is quenched by the addition of EDTA to prevent 

further E1-catalyzed activation of Ub.  In the second step, the HUWE1 HECT domain is added, 

and Ub is chased from the E2~thioester onto the HECT domain (22).  The use of a mutant 

version of Ub, in which all lyines are mutated to arginine (K0 Ub), prevents polyubiquitin chain 

formation on the HECT domain.  Ub-conjugated HECT domain is visualized using anti-Ub 

immunoblot (Figure 3d).  We find that the HUWE1  1 HECT domain shows increased 

activity under single turnover conditions compared to the HECT domain containing helix 1 

(Figure 3d), confirming the rate differences observed in the autoubiquitination assay.   

 

Thioester formation in the HECT domain.   

Catalysis by HECT domain E3 enzymes is a multi-step process.  The E3 enzyme binds 

Ub-loaded E2 and substrate, followed by Ub transfer between the E2 and E3 catalytic cysteines.  

The E3 then catalyzes isopeptide bond formation between Ub and a lysine residue on the 
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substrate, which may be the E3 itself, Ub, or another protein.  We next determined whether the 

presence of the 1 helix affects this upstream step, in which the catalytic cysteine of the E3 

enzyme forms a thioester bond with ubiquitin.   

We first attempted to assay thioester formation using the wild-type HECT domain, but 

the enzyme efficiently catalyzes formation of the isopeptide bond on a time scale too fast to 

measure (23,24).  Instead, we analyzed thioester formation using a four-amino acid, C-terminal 

truncation of the HECT domain (25).  This truncation removes a crucial determinant for 

isopeptide bond formation, a conserved phenylalanine located four amino acids from the C 

terminus of most HECT E3s (25).  HUWE1 4 displays a diminished rate of isopeptide bond 

formation, allowing us to monitor formation of thioester-linked Ub to the enzyme.  After 

incubation of the HECT domain with E1, the E2 UBE2L3, Ub, and an ATP regenerating system, 

the reaction is quenched with SDS-PAGE loading buffer with or without -mercaptoethanol, and 

following electrophoretic resolution, is analyzed by anti-Ub immunoblot.  The presence of the 

1 helix greatly reduces the rate of thioester formation (Figure 4), proportional to its suppression 

of autoubiquitination activity.  The 1 helix, located on the back surface of the N lobe, is clearly 

not sufficiently close to interact with the E2 binding region of the HECT domain (Figure 2a), 

suggesting that the vibrational disorder in this protein contributes to the HECT domain-E2 

interaction.  

 

Substrate ubiquitination catalyzed by the HECT domain.  

 Having seen that removal of helix 1 destabilizes the HECT domain and increases its 

autoubiquitination activity, we asked whether this effect is also observed during substrate 

ubiquitination.  The anti-apoptotic Bcl-2 family member Mcl-1 is an in vivo target of HUWE1 
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(15).  HUWE1 recruits Mcl-1 via its BH3-domain, while the HECT domain presented here 

catalyzes Mcl-1 ubiquitination.  Although Mcl-1 is a substrate of the full-length HUWE1, we use 

this assay with the isolated HECT domain here as a measure of non-self ubiquitination activity 

with an in vivo verified substrate of HUWE1.  We examined initial rates of product formation, 

under HECT-domain limiting conditions, to determine whether the intrinsic activity of the HECT 

domain toward substrate is altered by the destabilizing effect of removing the 1 helix (Figure 

5a, b).  We find that the HECT domain lacking 1 helix is ~5-fold more active in catalyzing 

Mcl-1 ubiquitination than the more stable HECT domain containing helix 1 (Figure 5c).  These 

results also suggest that autoubiquitination of the HECT domain does not impair catalytic 

activity toward substrate.  The two versions of the HUWE1 HECT domain, which differ 25-fold 

in autoubiquitination rates, show only a 5-fold difference in their Mcl-1 ubiquitination rates.   A 

similar observation was made for the heterodimeric complex of the minimal catalytic domains of 

Ring1a/Bmi1, in which autoubiquitination of the Ring1b protein did not affect E3 ligase activity 

toward its substrate, histone H2A, in an in vitro reconstituted system (26).  We also observe 

similar differences in autoubiquitination and Mcl-1 ubiquitination activity between the two 

versions of the HECT domain at 37°C (Figure 6).  

 

Catalytic activity of the C4341A mutants.   

Mutation of the conserved catalytic cysteine to alanine (C4341A) abolishes activity of the 

HECT domain (Supplementary Figure 2).  In the case of the helix-lacking HECT domain, we 

consistently observed that the C4341A mutant is capable of transferring a single ubiquitin to self  

(Supplementary Figure 2a) or Mcl-1 (Supplementary Figure 2c).  These species are not generated 

when the HECT domain is omitted from the reaction (lane marked “N”).  Although the failure of 



Chapter 3: A structural element within the HUWE1 HECT domain modulates self-ubiquitination 

and substrate ubiquitination activities 

 103 

mutation of the catalytic cysteine to abolish activity has been previously observed (11), 

quantification of the monoubiquitinated species shows that this activity represents at best a minor 

fraction of wild-type activity (Supplementary Figure 2e, f). 

 

Discussion 

We present here crystal structures of the HUWE1 HECT domain and identify a 

conserved structural element, helix 1, which stabilizes the HECT domain and tightly modulates 

its activity.  Helix 1 is present in the structure of the WWP1 HECT domain (referred to in the 

WWP1 structure as H1’) (10), where the authors note that it plays an obvious role in contributing 

to HECT domain stability.  As the H1’ helix is oriented between the C lobe and domains N-

terminal to the HECT domain that presumably mediate protein-protein interactions, the authors 

suggested that H1’ helix contributes to target protein specificity in reactions catalyzed by the 

HECT domain. We confirm that the 1 helix is indeed crucial for stability and identify a role for 

this structural element in modulating HECT domain activity, as judged by autoubiquitination and 

Mcl-1 ubiquitination assays. Further experiments will determine whether this conserved helix 

modulates activity of other members of the HECT domain family. 

In the absence of the N-terminal 1 helix, the HUWE1 HECT domain gains activity 

relative to its helix-extended counterpart.  What could be the reason for this unexpected 

behavior?  Deletion of helix 1 might expose hydrophobic residues that trigger assembly of 

HUWE1 HECT domains into oligomers.  Such behavior has been observed in the crystals of 

E6AP (PDB codes 1C4Z and 1D5F) (8).  However, HUWE1 HECT  1 behaves as a monomer 

and is properly folded in solution, as judged by several criteria (Figure 1d and data not shown).   
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 Our structural data on HUWE1 shows that the HECT domain adopts the same 

conformation regardless of the presence of helix 1, and both variants contain the same helical 

content (Figure 1d).  HUWE1  1, however, is far more active in catalyzing self-ubiquitination 

and in single-turnover assays. It also accepts Ub from the E2 UBE2L3 more readily than the 

helix-extended HECT domain.  Furthermore, we observed elevated temperature factors, 

indicative of conformational flexibility, in the crystal structure of HUWE1 HECT  1; a similar 

observation was made in the crystals of the E3 Ub ligase IpaH from the bacterial pathogen 

Shigella flexneri (23).  We favor the interpretation that removal of helix 1 destabilizes the 

HECT domain to produce a more relaxed version of the enzyme that exhibits greater intra-

domain flexibility.  This increased flexibility allows the enzyme to sample more conformational 

states, thereby increasing its level of activity.  Some of these conformational states may resemble 

the extended HECT domain structures observed in the crystal structures of Smurf2 and E6AP, in 

which the C-lobe has rotated about the flexible linker that connects the two subdomains of the 

HECT domain.  In this scenario, removal of the 1 helix is analogous to the linker-extension 

mutations made in WWP1 (10).  The removal of helix 1 may also shift the conformational 

equilibrium of the HECT domain into an orientation that facilitates the E2-HECT interaction or 

product release.  This possibility is supported by evidence that enzymes exist in a dynamic range 

of conformations, and the equilibrium between these different conformers can be shifted by 

mutation (27).  

We did not anticipate that destabilization of the HECT domain would increase enzymatic 

activity.  The Ub transfer reaction involves defined regions including the ordered -strands that 

describe the E2 binding region and the catalytic site surrounding residue C4341.  However, other 

steps, such as product release, may contribute to catalytic rate and may be influenced by 
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increased conformational flexibility (28).  A correlation between conformational flexibility and 

promiscuous activity has been observed for several other proteins (28).  An example of a flexible 

enzyme is cytochrome P450, which can adopt a range of different conformations that allow it to 

act upon a variety of substrates.  Among the P450 family of enzymes, the rigid CYP2A6 enzyme 

exhibits limited substrate specificity, whereas the highly flexible CYP3A4 is far more 

promiscuous (28).  In the case of HUWE1 HECT domain, the 1 helix may serve to impose a 

constraint on the inherent flexibility of the catalytic domain, thus fine-tuning enzymatic activity. 

Autoubiquitination is often used as a criterion of E3 Ub ligase activity and, for some 

ligases, has been proposed as a mechanism of self-regulation of stability and downstream 

signaling functions (29,30). Our data show that this type of activity can be largely suppressed by 

minor extensions of what has been considered the core catalytic domain.  We note, however, that 

our study focuses on the HECT domain of a multi-domain protein, and there may exist other 

structural elements in the 482-kD Huwe1 protein that affect its activity.  This has been observed 

for the E3 Ub ligases Smurf2 (30), IpaH9.8 (23), and SspH2 (31), in which domains N-terminal 

to the catalytic domain suppress autoubiquitination activity. While autoubiquitination is clear 

evidence of catalytic activity of Ub ligases, the functional relevance of this reaction remains to 

be established for many E3s, including HUWE1. The increase in activity seen in the absence of 

helix 1 appears to stem from increased conformational flexibility in the enzyme.  It is difficult 

to rationalize this behavior from static crystal structures, yet increased thermal motion observed 

in the helix 1 structure is at least an indirect indicator.  The significance of thermal motion 

within a protein with respect to reaction parameters is an emerging theme (32).  HECT domains 

may have diverged to arrive at their extant spectrum of substrates by modulating flexibility (28), 

in addition to more tractable changes of surface properties.  We conclude that the activity of the 
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HUWE1 HECT domain is tightly modulated, through restriction of conformational space rather 

than steric considerations, by the presence of a 19-residue helix 1.   
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Experimental procedures  

Plasmids.   

HECT domain constructs of HUWE1 (amino acids 3993-4374 or amino acids 4012-4374) were 

cloned into a modified pET-28a plasmid (Novagen) containing a human rhinovirus 3C (HRV3C) 

protease site to generate an N-terminal His6 fusion protein for use in biochemical assays.  The 

catalytic mutants C4341A and C4099A/C4184A/C4367A were generated using site-directed 

mutagenesis (Stratagene).  For biochemical assays with radiolabeled substrate, Flag-Mcl-1 

(amino acids 1-327) and Ub were both cloned with an N-terminal protein kinase A (PKA) site 

for [
32

P]-labeling into pET-16b and pET-28a with the HRV3C site, respectively, as previously 

reported (18).  UBE2L3 was cloned into the pET-28a plasmid  (Novagen). 

 

Bacterial protein expression and purification.   

All versions of the HUWE1 HECT domain were expressed and purified as previously reported  

(18). [
32

P]-labeled proteins were purified and labeled as previously described (18).  Native 

UBE2L3 was expressed in Rosetta (DE3) cells (Novagen).  UBE2L3 was precipitated from 

bacterial lysate by addition of saturated ammonium sulfate to 90%.  The precipitated protein was 

resuspended in 50 mM HEPES pH 7.4, 200 mM NaCl and purified by gel filtration (Superdex 75 

PC 3.2/30, GE Healthcare).   

 

Circular Dichroism.   

HUWE1  1 and HUWE1 + 1 HECT domains were dialyzed into 5 mM HEPES pH 7.5, 100 

mM NaCl immediately prior to the scanning and melting CD experiments using an AVIV model 

202 CD spectrometer.  HUWE1  1 HECT domain at 2.4 μM and HUWE1 + 1 HECT 
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domain at 2.8 μM were used for scanning experiments between 195 and 280 nm at 25°C.  CD 

signal at 222 nm of 4.8 μM HUWE1  1 and 5.6 μM HUWE1 + 1 was recorded every 2 

degrees over a 20-94 °C temperature ramp with 2 minutes of equilibration time at every step.  

 

Biochemical Assays.   

Reaction mixtures (10 l) for HUWE1 autoubiquitination assay contained 100 nM human E1 

(Ube1, Boston Biochem), 5.6 M E2 (UBE2L3), HECT domain, and 60 M [
32

P]-Ub with an 

ATP regenerating system (50 mM Tris [pH 7.6], 5mM MgCl2, 5 mM ATP, 10 mM creatine 

phosphate, 3.5 U/ml creatine kinase).  Reactions were incubated at room temperature and 

aliquots were removed after the indicated amount of time and terminated in reducing SDS-PAGE 

sample buffer.  Samples were boiled 10 min. and separated on 8% Tris-tricine SDS-PAGE.  

Dried gels were exposed to a phosphor screen.  [
32

P]-Ub bands were visualized by 

autoradiography and quantitation of data was performed using a phosphorimager.  Background 

correction for each sample was performed by subtracting the counts from an equivalent area of 

the gel from a lane containing all reaction components except E3 enzyme (lane marked “N”).  

The [
32

P]-Ub signal from this lane was used to convert the observed sample counts to a 

concentration value.  The concentrations of HUWE1-[
32

P]-Ub were measured and rates of 

product formation determined by fitting the initial linear data points to a least squares regression 

line.  

 

Mcl-1 Ubiquitination Assay.   

Reaction mixtures (10 l) for the Mcl-1 ubiquitination assay were set up as above except with 

the addition of 5 M [
32

P]-Flag-Mcl-1 and 100 M Ub (Sigma).  Reactions were quenched with 
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reducing sample buffer and separated on 10% SDS-PAGE.  Bands from dried gels were analyzed 

as above.   

 

Thioester assay.  

Reaction mixtures for the thioester assay (10 l) contained 100 nM human E1 (Ube1, Boston 

Biochem), 5.6 M E2 (UBE2L3), 2 M HUWE1 4 HECT domain, and 60 M Ub (Sigma) 

with an ATP regenerating system described above.  Reactions were incubated at room 

temperature and aliquots were removed after the indicated amount of time and terminated in 4M 

urea and incubated 15 min. at 30°C, or terminated in reducing SDS-PAGE sample buffer.  

Samples were boiled 10 min., separated on 10% Tris-glycine SDS-PAGE, and analyzed by 

immunoblot using anti-Ub antibody (Sigma). 

 

Single-turnover assay.   

For the single-turnover assay, the E2~Ub thioester was generated in a 20 μl reaction containing 

200 nM E1 (Boston Biochem), 8 μM E2, ATP regenerating system described above, 60 μM 

mutant Ub in which all lysines are mutated to arginine (K0 Ub) (Boston Biochem), and 1 μg/μl 

BSA incubated 25 min. at room temperature.  Formation of the E2~Ub thioester was quenched 

with 50 mM EDTA on ice for 5 min.  The E2~Ub thioester was diluted into chase mixture 

containing 2 μM HECT domain, 100 mM NaCl, 50 mM EDTA, and 1 μg/μl BSA, or the same 

reaction components lacking the HECT domain (labeled “N”).  Reactions were incubated at 

room temperature and aliquots were removed after the indicated amount of time and terminated 

in either 4 M urea and incubated 15 min. at 30°C, or in reducing SDS-PAGE sample buffer.  
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Samples were boiled 10 min., separated on 10% Tris-glycine SDS-PAGE, and analyzed by 

immunoblot using anti-Ub antibody (Sigma). 

 

Crystallization of HUWE1 HECT domain.   

Crystallization experiments with purified HUWE1 HECT domain including the N-

terminal His6 tag, HRV3C protease site and with C4099A, C4184A, and C4341A mutations, 

were set up in 96-well sitting drop trays using commercially available sparse-matrix screens 

(Hampton Research, Qiagen).  The initial crystals were improved in hanging-drop vapor 

diffusion setups.  The HUWE1 + 1 HECT domain crystallized by mixing 1 l of protein 

sample concentrated to 17 mg/ml with a 1 l solution containing 0.1 M citric acid (pH 5.2) and 

1.8 M (NH4)2SO4.  Birefringent crystals in the shape of thick rods with dimensions of 

approximately 80 x 40 x 40 μm grew within two days of incubation at 18 °C.  The HUWE1  1 

HECT domain crystallized by mixing a 1 l solution containing (Na/K)2PO4 (pH 6.5) and 1.4 M 

(Na/K)2PO4.  Thin rod-shaped crystals grew within 10 days at 23°C.  

 

Data Collection and Processing.   

For native X-ray diffraction studies, crystals were cryoprotected by soaking in 0.1 M citric acid 

(pH 5.2), 1.8 M (NH4)2SO4, 12% glycerol for 30 sec prior to vitrifying in liquid nitrogen.  X-ray 

diffraction data were collected on a single cryogenized crystal at beamline 24ID-E, Advanced 

Photon Source (Argonne, IL, USA), summarized in Table 1.  Data were processed using DENZO 

and SCALEPACK (19). The crystals belong to the monoclinic space group C2 and diffracted to 

1.9 Å.  Initial phases were obtained by molecular replacement using PHASER from the CCP4 

crystallographic program suite (1,20), with the coordinates of the E3 ligase WWP1 (PDB 
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accession code 1ND7) as search model.  The final model was refined at resolution of 1.9 Å using 

PHENIX with four TLS groups (10). Details of refinement are given in Table 1.  Figures were 

made using PyMol (21). 
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Figure Legends 

Figure 1.  The 1 helix stabilizes the HUWE1 HECT domain. 

(a)  Multiple sequence alignment of helix 1 with a diverse set of human HECT E3 ligases.  

Residue conservation is indicated by degree of shading ranging from orange (most conserved) to 

light yellow (least conserved).  Secondary structure is illustrated with -helices as cylinders and 

-sheets as arrows. 

(b) Multiple sequence alignment with a diverse set of human HECT E3 ligases indicating that 

sequence conservation drops off N-terminal to the 1 helix.  The N-terminus of the HECT 

domain + 1 helix is indicated.  

(c)  Thermostability of the HUWE1 HECT domain was measured in a CD melting experiment.  

HUWE1 HECT domain, +/  1 helix, wild-type or with cysteine mutations, was heated in a 

circular dichroism cuvette and unfolding measured at 222 nm as a loss of helical content.  

Deletion of helix 1 results in a drastic reduction of thermostability.  

(d)  CD scan experiment demonstrates the structural similarities of the +/  1 helix versions of 

the HECT domain.   

 

Figure 2.  Structure of the HUWE1 HECT domain. 

(a) Stereo view of HUWE1 HECT domain (residues 3993-4374) showing the N- and C-lobes 

connected by the hinge loop.  Helix 1 is colored green. The N-lobe contains the E2 binding 

region and the C-lobe contains the catalytic cysteine (C4341).   

(b) Overlay of HUWE1 (blue) and WWP1 (orange; PDB 1ND7) crystal structures. 

(c) Overlay of HUWE1 (blue) and Smurf2 (orange; PDB 1ZVD) crystal structures.  
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(d) Helix 1 plays a significant role in mediating hydrophobic contacts that maintain the core of 

the HUWE1 HECT domain.  Hydrophobic residues in the 1 helix, Phe3994 and Phe4001, pack 

into hydrophobic pockets in the N lobe.  Arg3998 and Asp4009 form hydrogen bonds stabilizing 

the N-lobe.  Lys4014 and Tyr4119, C-terminal to the 1 helix, orient the 1 helix to further 

stabilize the N-lobe.  

(e) Multiple sequence alignment of E2 binding region with a diverse set of human HECT E3 

ligases.  Residues important for E2 binding are indicated with blue circles. 

 

Figure 3.  E3 ubiquitin ligase activity of HUWE1 HECT domain.   

 (a,b) The autoubiquitination activity of HUWE1 HECT domain was tested using 60 M [
32

P]-

Ub as substrate and (a) 2 M WT  1 or (b) 2.9 M WT + 1 HECT domains incubated with 

UBE1, UBE2L3, and an ATP regenerating system.  (Note the different time scale for the two 

variants of the HECT domain).  HECT domain is omitted in the lane marked “N”.  Asterisk 

denotes a likely ubiquitin polymer; double asterisk denotes likely mono-ubiquitinated UBE2L3.  

Concentrations of HECT domain were chosen to obtain initial rate conditions.  

(c) Ligation activity of the WT  1 and WT + 1 HECT domains in the autoubiquitination 

assay.  Activity is given as the ratio between initial velocity (pmol total [
32

P]-Ub product/min) 

and total enzyme concentration E (pmol).  Errors are the standard deviations calculated from 

three independent experiments, shown in parenthesis.  

(d) Single turnover assay monitoring transfer of Ub from the UBE2L3~Ub thioester to a lysine in 

the WT  1 and WT + 1 HECT domains.  The UBE2L3~Ub thioester is generated in a pulse 

reaction containing E1, UBE2L3, ATP regenerating system, and a Ub mutant in which all lysines 

are mutated to arginine (K0 Ub).  Ub is chased from the E2 enzyme to HECT domain added to 
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the reaction.  Ub-conjugated HECT domain is visualized by anti-Ub immunoblot.  Samples were 

terminated in reducing or non-reducing sample buffer as indicated.  Panel marked “N” is a chase 

reaction performed in absence of HECT domain and terminated in non-reducing sample buffer.  

 

Figure 4.  Detection of Ub~thioesters in the HUWE1 HECT domains. 

Ub-thioester assay with the indicated HUWE1 HECT domain proteins.  Purified HECT domains 

containing a C-terminal truncation of the last four amino acids were incubated with E1, 

UBE2L3, an ATP regenerating system, and Ub for the indicated amount of time.  Reactions were 

stopped with 4M urea and non-reducing sample buffer (upper panel) or reducing sample buffer 

(lower panel), separated by SDS-PAGE, and analyzed by immunoblot with anti-Ub antibody.  

 

Figure 5.  Substrate Ubiquitination activity of the HUWE1 HECT domains. 

(a,b) The Mcl-1 ubiquitination activity of HUWE1 HECT domain was tested using 5 M [
32

P]-

Mcl-1 as substrate and (a) 100 nM WT  1 or (b) 300 nM WT + 1 HECT domains incubated 

with UBE1, UBE2L3, Ub, and an ATP regenerating system.  HECT domain was omitted from 

the lane marked “N”.  Concentrations of HECT domain were chosen to obtain initial rate 

conditions.  

(c) Ligation activity of the HECT domains in the Mcl-1 ubiquitination assay. Activity is given as 

the ratio between initial velocity (pmol total [
32

P]-Ub product/min) and total enzyme 

concentration E (pmol).  Errors are the standard deviations calculated from three independent 

experiments, shown in parenthesis. 

(d. e) Graph showing percent ubiquitinated Mcl-1 as a function of time in the reactions shown in 

panels (a) and (b) catalyzed by HUWE1  1 (d) or HUWE1 + 1 (e) HECT domains.  
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Figure 6.  Ubiquitination Activity of the HUWE1 HECT domains at 37°C. 

(a) The autoubiquitination activity of HUWE1 HECT domain at 37°C was tested using 60 M 

Ub as substrate and 2 M WT HECT domains incubated with UBE1, UBE2L3, and an ATP 

regenerating system.  (Note the different time scale for the two variants of the HECT domain).  

Reaction mixtures were separated on SDS-PAGE and analyzed by anti-Ub immunoblot. 

(b) The Mcl-1 ubiquitination activity of HUWE1 HECT domain at 37°C was tested using 5 M 

Flag Mcl-1 as substrate and 100 nM WT HECT domains incubated with UBE1, UBE2L3, Ub, 

and an ATP regenerating system.  Reaction mixtures were separated on SDS-PAGE and 

analyzed by anti-Flag immunoblot. 

 

 

 

  



Chapter 3: A structural element within the HUWE1 HECT domain modulates self-ubiquitination 

and substrate ubiquitination activities 

 118 

Table 1.  Data collection and refinement statistics. 

 

 

Data Set HUWE1 HECT + 1  

 
Data Collection   
Wavelength 0.9793 
Space group C2 
Cell dimensions:   
    a,b,c (Å) 119.6, 56.6, 69.6 

    β (°) 122.5 

Unique reflections 30,847 
Resolution (Å) 30-1.9 (1.93-1.9) 
Rsym

a 0.069 (0.392) 
Rr.i.m.

b
 0.084 (0.493) 

Rp.i.m.
c
 0.048 (0.295) 

Completeness 98.3 (96.3) 
Redundancy 3.2 (2.5) 

I/σ 17.2 (2.1) 
 Wilson B factor (Å

2
) 25  

  
Refinement   
Resolution (Å) 30-1.9 
Nonhydrogen Atoms 3190 

Water Molecules 357 

Rwork
d
 16.6 

Rfree
e
 22.9 

R.m.s. deviations  

    Bond lengths (Å) 0.01 
    Bond angles (°) 1.20 
B factors 

 
(Å

2
) 

 

    Protein 30.0 

    Water 39.4 
Coordinate error (Å) 0.68 

Ramachandran plot
f
  

     Most favored  376 

     Allowed  5 

     Outliers 0 
 

a
 Rsym = |Ii - <Ii>|/ Ii, where Ii is the intensity of the ith observation and 

<Ii> is the mean intensity of the reflection. 
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b 
Rr.i.m. = hkl[N/(N – 1)]

1/2
 i |Ii(hkl) - <I(hkl) >|/ hkl i Ii(hkl), where Ii(hkl) is the observed intensity and 

<I(hkl)> is the average intensity of multiple observations of symmetry-related reflections. 
c
 Rp.i.m. = hkl[1/(N – 1)]

1/2
 i |Ii(hkl) - <I(hkl) >|/ hkl i Ii(hkl), where Ii(hkl) is the observed intensity and 

<I(hkl)> is the average intensity of multiple observations of symmetry-related reflections. 
d 
Rwork = (||Fobs| - |Fcalc|| / |Fobs|) 

e
 Rfree = R value for a randomly selected subset (5%) of the data that were  

not used for minimization of the crystallographic residual. 

Highest resolution shell is shown in parenthesis. 
f
 Numer of residues calculated with the program MolProbity (33).  
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Abstract 

E3 Ub ligases catalyze the transfer of Ub to target proteins, providing a significant means of 

altering protein function in eukaryotes.  The HECT class of Ub ligases interacts with E2~Ub 

thioester complex and substrate, forming a HECT~Ub thioester intermediate prior to catalyzing 

substrate ubiquitination.  Crystal structures of E2-HECT complexes have shown that a 

significant rotation of the HECT C-lobe is required to bring E2 and E3 catalytic Cys in proximity 

to permit the transfer of Ub between active sites.   We explored the requirement of 

conformational flexibility for HECT domain function using sortase-mediated circularization of 

the HECT domain.  By ligating the N-and C-termini of the protein in a peptide linker of varying 

lengths, we show that restraining the motion of the HECT domain lobes perturbs HECT domain 

function, and we predict that function can be restored to circular HECT protein by increasing the 

length of the linker connecting the termini. 
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Introduction 

 The covalent attachment of ubiquitin (Scheffner and Staub) to target proteins regulates 

fundamental processes in eukaryotic cells, including cell cycle progression, signal transduction, 

DNA repair, and protein trafficking (Pickart 2001; Hershko 2005; Kerscher, Felberbaum et al. 

2006; Bergink and Jentsch 2009; Broemer and Meier 2009).  A sequential cascade of enzymatic 

reactions involving E1 activating enzyme, E2 conjugating enzyme, and E3 ligase catalyze Ub 

conjugation.  The E1 enzyme binds ATP and Ub and catalyzes adenylation of Ub’s C-terminus.  

The activated Ub is then transferred to the E1 active site-cysteine.  The E1 enzyme interacts with 

a cognate E2 conjugating enzyme and transfers Ub to the E2 catalytic cysteine in a trans-

thioesterification step.  The final step of Ub conjugation is carried out by E3 Ub ligases, which 

bind both the E2~Ub (~ represents a covalent, high-energy thioester bond) and substrate and 

catalyze isopeptide bond formation between the Ub C-terminal glycine and a lysine residue in 

the substrate (Kerscher, Felberbaum et al. 2006).  The human genome encodes approximately 28 

E3 Ub ligases in the HECT (homologous to E6AP C terminus) class, which is defined by an 

~350 amino acid C-terminal HECT domain containing a conserved catalytic cysteine that forms 

a thioester intermediate with Ub prior to its conjugation to a target lysine residue (Li, Bengtson 

et al. 2008).   HECT domain E3 ligases serve numerous physiological roles – for example, in 

regulating cellular proliferation, apoptosis, and immune responses – and disruption of their 

function is associated with cancer and disease pathologies (Scheffner and Staub 2007; 

Bernassola, Karin et al. 2008).  

An important question in discerning the mechanism of Ub conjugation is how Ub is 

transferred across the relatively large distance of juxtaposed enzyme active sites, a theme 

observed at multiple points in the Ub enzymatic cascade (Dye and Schulman 2007).  For 
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example, a distance of 35 Å separates the Ub C terminus in the Ub E1 adenylation active site 

from the E1’s active-site cysteine (Protein Data Bank (PDB) entry 3CMM (Lee and Schindelin 

2008)); in the crystal structure of the E6AP-UbcH7 complex (PDB codes 1C4Z and 1D5F), the 

catalytic cysteines of E2 and E3 are separated by 41 Å (Huang, Kinnucan et al. 1999).  Insights 

into the mechanism of Ub transfer have come from structural and biochemical studies of Ub 

enzymatic machinery.  In the case of HECT domain E3 Ub ligases, structures of the WWP1 

HECT domain, and more recently, the UbcH5B~Ub-HECT
NEDD4L

 complex, have contributed to 

our understanding of this problem (Verdecia, Joazeiro et al. 2003; Kamadurai, Souphron et al. 

2009).  The WWP1 HECT domain, in comparison to the E6AP HECT domain, exhibits a ~100º 

rotation of the C-lobe with respect to the N-lobe about a flexible linker connecting the two 

subdomains, placing the E3 catalytic cysteine within 16 Å of the E2 UbcH5 modeled into its 

binding site on WWP1 (Verdecia, Joazeiro et al. 2003).  The UbcH5B~Ub-HECT
NEDD4L

 

complex structure shows how, in addition to the conformational flexibility of the HECT domain, 

non-covalent interactions between the HECT C-lobe and UbcH5~Ub contribute to the E2 to E3 

Ub transfer reaction.  In the structure of this complex, the NEDD4L active site cysteine is 8 Å 

from the Ub C-terminus (Kamadurai, Souphron et al. 2009).  

 The HECT domain E3 ligase HUWE1 (also called ARF-BP1, Mule, Lasu1, E3 histone, 

and HectH9) is a large, 482-kDa protein that functions in the regulation of cell proliferation, 

apoptosis, DNA damage response, and base excision repair (Adhikary, Marinoni et al. 2005; 

Chen, Kon et al. 2005; Zhong, Gao et al. 2005; Hall, Kow et al. 2007; Herold, Hock et al. 2008; 

Zhao, Heng et al. 2008; Parsons, Tait et al. 2009).  Following structural and biochemical 

characterization of the HUWE1 HECT domain (Pandya, Partridge et al.), we sought to gain 

insights into its mechanism of function that are difficult to obtain from static crystal structures.  
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We chose to employ a protein engineering method, sortagging (Popp, Antos et al. 2007), in an 

effort to perturb the conformational flexibility of the HECT domain and follow the consequences 

to its activity.  Specifically, we applied sortase-catalyzed circularization (Antos, Popp et al. 

2009) to the HECT domain. We reasoned that ligation of the HECT domain N- and C-termini 

would be a means of restraining the dynamic movement of the N- and C-lobes, with attendant, 

measurable consequences for activity.  We report here our novel application of the sortagging 

technique to the study of HECT domain function.  

 

Results and Discussion 

Circularization of HUWE1-sortag1 

Inspection of the HUWE1 crystal structure (PDB code 3H1D) shows that ~13.3 Å 

separates the N- and C-termini.  As the eight residues at the C-terminus are not visible in the 

structure, this is the distance between the first residue in the native structure and E4366, the C-

terminal most visible residue.  We reasoned that this distance could be spanned by insertion of a 

minimal linker encoding the sortase recognition sequence.  Addition of the sortase recognition 

sequence (LPETG) to a target protein’s C-terminus permits sortase to catalyze site-specific 

installation of exogenously added, oligoglycine nucleophiles (Figure 1a  (Popp, Antos et al. 

2009)).  If the oligoglycine nucleophile is appended to the target protein’s N-terminus instead of 

provided exogenously, sortase catalyzes a circularization of the target protein through ligation of 

the N- and C-termini (Figure 1b; (Antos, Popp et al. 2009)).  We designed a construct (referred 

to as HUWE1-sortag1) capable of undergoing sortase-catalyzed circularization by appending 

three glycines at the N-terminus of HUWE1, and the sortase recognition sequence (LPETG) 

followed by a short linker (GGS) and a His6 tag at the C-terminus (GGG-HUWE1-LPETGGGS-
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His6).  Incubation of recombinant HUWE1 containing these sequences with sortase A resulted in 

~50% conversion to a product that migrated more rapidly on SDS-PAGE (Figure 2a, lane 2).  

Incubation of the reaction mixture with NiNTA depleted unreacted HUWE1 and sortase A, 

enriching for the putative circular HUWE1 (Figure 2a, lane 3).  Evidence of circularization was 

provided by mass spectral characterization of the input and circular HUWE1 proteins, revealing 

a loss of 1098 Da after sortase-catalyzed circularization (Figure 2b).  This mass change 

correlates well with that calculated from the expected loss of the C-terminal peptide GGGSHis6 

(MW = 1099.1 Da) following sortase cleavage and transpeptidation reaction. MS/MS sequencing 

of proteolytic peptides obtained from circular HUWE1 showed ligation of the termini (Figure 

2c).   

Previous reports noted that circular proteins possess increased thermal stability compared 

to their linear counterparts (Iwai and Pluckthun 1999; Scott, Abel-Santos et al. 1999; Iwai, 

Lingel et al. 2001; Antos, Popp et al. 2009).  Consistent with these observations, the melting 

temperature of circular HUWE1 (58.2 ºC) is 2.1 ºC greater than linear HUWE1 (56.1 ºC, Figure 

2d).  Although the magnitude of thermal stability gained by HUWE1 upon circularization is 

small, it suggests that circularization has not greatly destabilized the protein.   

 

Biochemical characterization of circular HUWE1-sortag1 

We hypothesized that ligation of HUWE1’s N- and C-termini may have functional 

consequences for HUWE1 activity.  We first examined the ability of linear and circular HUWE1 

proteins to bind the ubiquitin C-terminal electrophile HA-UbVME, a probe consisting of HA-

tagged ubiquitin derivitized at the C-terminus with the electrophilic vinyl methyl ester moiety.  

HA-UbVME covalently reacts with multiple cysteines in HUWE1, including its catalytic 
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cysteine (C4341), and only reacts with HUWE1 HECT domain in its native folded state (Love, 

Pandya et al. 2009).  Incubation of linear and circular HUWE1 with HA-UbVME produced a 

nearly identical pattern of covalently labeled species (Figure 3a), suggesting that the overall fold 

of the circular protein is intact.  To determine the biochemical consequences of ligation of the 

HUWE1 termini, we examined the autoubiquitination activity of wild-type HUWE1 HECT 

domain, a control version of the HECT domain that contains the three N-terminal glycines and a 

C-terminal LPET sequence, and the circular protein.  The control protein was added for 

comparison because it has been shown that minor extensions to or deletions from the C-terminus 

of HECT domains impair activity (Salvat, Wang et al. 2004).  Incubation of wild-type HUWE1 

HECT domain with Ube1, the E2 UBE3L3, ATP, and Ub, results in robust autoubiquitination of 

HUWE1, as determined by anti-Ub immunoblot (Figure 3b).  The control HUWE1 HECT 

domain with the C-terminal LPET sequence exhibits reduced activity, as expected, but still 

retains the ability to add up to two ubiquitin moieties to itself.  In contrast, the circular protein is 

inactive in this assay (Figure 3b).  Taken together, these results suggest that although the circular 

HUWE1-sortag1 retains its proper fold in solution, it is unable to catalyze isopeptide bond 

formation between Ub and target lysines in itself. 

Catalysis by HECT domain Ub ligases involves multiple steps. The E3 enzyme binds Ub-

loaded E2 and substrate followed by Ub transfer between the E2 and E3 catalytic cysteines.  The 

E3 then catalyzes isopeptide bond formation between Ub and a lysine residue on the substrate, 

which may be the E3 itself, Ub, or another protein.  We asked whether the lack of 

autoubiquitination activity in circular HUWE1 was due to impairment in the immediate upstream 

step, in which the catalytic cysteine of the E3 enzyme forms a thioester bond with ubiquitin.  We 

examined HECT domain activity in a single-turnover reaction to monitor the ability of the HECT 
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domain to accept Ub from the E2. This assay encompasses two steps. In the first step, E2  Ub 

thioester is generated by incubating E1, E2, an ATP regenerating system, and Ub.  After the E2  

Ub thioester has formed, this reaction is quenched by the addition of EDTA to prevent further 

E1-catalyzed activation of Ub.  In the second step, the HUWE1 HECT domain is added, and Ub 

is chased from the E2 thioester onto the HECT domain (Eletr, Huang et al. 2005).  The use of a 

mutant version of Ub, in which all lysines are mutated to arginine (K0 Ub), prevents 

polyubiquitin chain formation on the HECT domain.  Ub-conjugated HECT domain is visualized 

using anti-Ub immunoblot (Figure 3c).  The wild-type enzyme rapidly catalyzes isopeptide bond 

formation, preventing detection of a Ub-thioester intermediate on the E3, as previously observed 

(Figure 3c, lower panel; (Pandya, Partridge et al.).  The control (C-terminally LPET modified) 

HUWE1, which exhibits reduced autoubiquitination activity, forms E3~Ub thioester 

intermediates readily detected within three minutes, indicating that this version of the protein is 

still able to accept Ub from UBE2L3 (Figure 3c, middle panel).  Circular HUWE1, however, is 

unable to accept Ub from UBE2L3 (Figure 3c, upper panel).  Although we must verify that the 

circular protein binds the E2 enzyme with similar affinity as the wild-type HUWE1 (for 

example, by isothermal titration calorimetry), these results suggest that ligation of the termini of 

HUWE1 may restrain the dynamic motion of the N- and C-lobes during catalysis, preventing the 

catalytic cysteine of circular HUWE1-sortag1 from accepting Ub from UBE2L3.  

If our hypothesis that circularization of HUWE1 restricts the motion of the N- and C-

lobes is true, we should be able to restore conformational flexibility to circular HUWE1 by 

increasing the length of the linker between the N- and C-termini and observe a corresponding 

restoration of autoubiquitination activity to control levels.  We therefore cloned and expressed 

recombinant HUWE1 in which we appended an additional four residues (GGGS) to the N-
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terminus alongside the existing three glycines (GGGSGGG-HUWE1-LPETGGGSHis6; termed 

HUWE1-sortag2).  We may find that this circularized version of HUWE1 fails to regain 

autoubiquitination activity, in which case we will continue to extend the number of residues at 

the N-terminus of HUWE1 to determine if a sufficiently long linker will restore activity to the 

circularized HUWE1.   

An additional property of sortase-catalyzed circularization of HUWE1 that remains to be 

verified is its reversibility (Antos, Popp et al. 2009).  The LPETG recognition sequence is intact 

in the circular protein and therefore should be available for sortase-catalyzed cleavage and 

transpeptidation upon inclusion of an oligoglycine nucleophile and sortase in the reaction.  

Although incorporation of a high concentration (>100 mM) soluble Gly3 peptide in the reaction 

mixture with linear HUWE1-sortag1 allows quantitative sortase-catalyzed transacylation of Gly3 

onto HUWE1’s C-terminus, this re-opening reaction proceeds inefficiently, if at all, with circular 

HUWE1-sortag1 (data not shown).  It has been shown that sortase is capable of cleaving at 

LPETG motifs outside of the target protein’s C-terminus if they are placed within flexible, 

surface-exposed loops (Antos, Popp et al. 2009).   Given that the overall stability of circular 

HUWE1 is similar to linear HUWE1 (Figure 2d), we hypothesize that the LPETG motif in 

circular HUWE1 is locked in a conformation inaccessible to sortase.  It is possible that use of a 

stronger nucleophile, such as hydroxylamine (NH2OH), will allow the re-opening reaction to 

proceed to a further extent. 

Structural studies have revealed mechanistic information on the enzymatic activation and 

conjugation of Ub (Dye and Schulman 2007).  A major theme that has emerged from these 

studies is that a considerable conformational change is required to juxtapose enzyme active sites 

to achieve Ub transfer.  This is particularly true for the HECT class of E3 Ub ligases.  A 
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comparison of the WWP1 and E6AP structures revealed that two major motions of the WWP1 

C-lobe distinguish the different conformations of the HECT domain in these structures: a 100º 

rotation of the C-lobe about an imaginary y-axis running through the hinge loop connecting N- 

and C-lobes, and an approximately 30º tilt of the C lobe toward the N lobe (Verdecia, Joazeiro et 

al. 2003).  Mutational analysis of the WWP1 flexible hinge loop (extensions and deletions) was 

conducted to determine the functional relevance of the observed conformational differences to 

HECT domain autoubiquitination activity and suggested that the ability of the C-lobe to rotate 

with respect to the N-lobe is critical for HECT E3 Ub ligase activity.  We present here a novel 

method of examining conformational flexibility of HECT domain E3 Ub ligases.  

We hypothesized that sortase-mediated circularization of the HECT domain could be 

used to probe the role of conformational flexibility in HECT domain function.  Examination of 

existing HECT domain structures shows that the distance between N- and C-termini varies 

substantially (13 Å for HUWE1; 41 Å for Smurf2) and does not correlate with the distance 

between E2 and E3 active sites (for example, in the structure of the UbcH5B~Ub-HECT
NEDD4L

 

complex, E2 and E3 active sites are separated by 8 Å, while the Nedd4L HECT domain termini 

are 26 Å apart).  We reasoned that, at least in the case of HUWE1, ligation of the N- and C-

termini may restrain the dynamic movement of the HECT N- and C-lobes, and consequently 

reduce or abolish activity of the HECT domain.  We therefore designed a construct containing a 

minimal number of residues required to achieve circularization (seven residues, predicted to span 

approximately 25 Å), and we indeed find that this circularized protein loses activity (Figure 3b, 

c).  A prediction of our hypothesis is that a sufficiently long linker joining the N- and C-termini 

of HUWE1 will permit a normal range of rotation between N- and C-lobes, and hence restore 

activity to control levels.  We have therefore designed a construct containing an additional four 
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residues at the N-terminus to generate an eleven-residue long linker, and we eagerly anticipate 

testing the autoubiquitination activity of a circular HUWE1 containing this extended linker.   

Circularization of the HUWE1 HECT domain represents a novel method to probe the role 

of conformational flexibility in E3 Ub ligase function.  Previously, conformational dynamics of 

Ub pathway enzymes have been explored through a variety of methods.  Duda et. al. used a 

combination of structure determination, small-angle X-ray scattering (SAXS) analysis, and 

proteolytic mapping to obtain insights into how covalent attachment of the ubiquitin-like 

modifier Nedd8 to Cullin-RING ligases (CRLs) affords conformational control of CRL activity 

(Duda, Borg et al. 2008).   NMR (Hamilton, Ellison et al. 2001; Wang, Lee et al. 2009) and 

amide hydrogen exchange mass spectrometry (HX-MS) (Graf, Stankiewicz et al.) have also been 

used to gain insight into E2 and E3 enzyme function and conformation.  We now add sortase-

mediated engineering of HECT domain E3 Ub ligases to the list of methodology that can be used 

to obtain mechanistic information on Ub transfer in the E1-E2-E3 enzymatic cascade.  
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Experimental Procedures 

Cloning and Protein Expression 

Sortase A (residues 26-206) was cloned into pQE30 (Qiagen) containing an N-terminal His6 tag 

for use in purification.  HUWE1 HECT domain (residues 3993-4374) was cloned into a modified 

pET-28a plasmid (Novagen) containing a human rhinovirus 3C (HRV3C) protease site.  Two 

constructs were generated to circularize the HUWE1 HECT domain (termed HUWE1-sortag1 

and HUWE1-sortag2).  The N-terminus of both constructs contained three glycines followed by 

either no spacer (HUWE1-sortag1) or a short spacer, SGGG (HUWE1-sortag2).  The C-terminus 

of both constructs contains the sortase A recognition site, followed by a short spacer and a 

hexahistidine tag (GGG-HECT-LPETGGGSHHHHHH or GGGSGGG-HECT-

LPETGGGSHHHHHH, respectively).  UBE2L3 was cloned into the pET-28a plasmid to 

generate an untagged protein for bacterial protein expression.   

 

Bacterial Protein Expression and Purification 

UBE2L3 and both version of HUWE1 HECT domain were purified as previously described 

(Pandya, Partridge et al.).  Sortase A was purified as described (Popp, Antos et al. 2009), and 

eluted protein was further purified by gel filtration (Superdex 75 PC 3.2/30, GE Healthcare) in 

50 mM Tris pH 8.0, 150 mM NaCl with 10% (w/v) glycerol. 

 

MS/MS sequencing of Proteolytic Fragments from Circular Proteins 

Protein was excised for analysis from a coomassie-stained SDS-PAGE gel and digested with 

AspN at 37 ºC overnight.  The proteolysed peptides were extracted, concentrated, and injected 

onto a Waters NanoAcquity HPLC equipped with a self-packed Jupiter 3 uM C18 analytical 
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column (0.075 mm X 10 cm, Phenomenex).  Peptides were eluted using standard reverse-phase 

gradients.  The effluent from the column was analyzed using a Thermo LQT linear ion trap mass 

spectrometer in a nanospray configuration operated in a data-dependent manner.  The resulting 

fragmentation spectra were correlated against the known database using SEQUEST.  

 

ESI-MS analysis of linear and circular HUWE1 proteins 

Intact Molecular weight was determined by RP-HPLC/ MS (Reversed Phase High Performance 

Liquid Chromatography Mass Spectrometry).  A 2.1 x 50 mm Waters Symmetry C18 column 

was used with a Michrom Bioresources Paradigm4 HPLC.  Buffer A consisted of 0.1% Formic 

Acid in water and buffer B was acetonitrile. The flow was set to 150 ul / min. with a gradient of 

5% to 45% B in 10 min. The column effluent was coupled directly to the ESI (electrospray 

ionization) source on a Waters (Micromass) LCT Time-of-Flight Mass Spectrometer operated at 

a resolution of 5000 (FWHM).  Data was acquired over the range of 400 – 1800 m/z. Data 

acquisition used Water’s MassLynx software and deconvolution was performed using Waters 

MaxEnt1 software add-on.  

 

Melting temperature assay 

The melting temperature of HUWE1 was measured in a Roche LightCycler 480 assay.  4.4 μm 

HUWE1 in 50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2, 2 mM DTT, and 10% glycerol 

was mixed with 5 μL 100x Sypro Orange dye (Molecular Probes/Invitrogen) in 25 μL total 

volume per well of a 96-well plate.  Melting curves were recorded on the LightCycler 480 

instrument using 465/580 nm filters with continuous heating from ambient temperature to 95ºC.  

Data were exported in text format and analyzed using Microsoft Excel.  Melting points are 
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defined as half maximal value of the unfolding curve, corresponding to the curve’s inflection 

point as determined by the minimal value of the –(dFluoresence/dT) plot.  Shown are the average 

and standard deviation of three replicates. 

 

Sortase-catalyzed circularization reactions 

To circularize the HUWE1 HECT domain, 50 μM HECT domain was incubated with 50 μM 

sortase A in sortase reaction buffer (50 mM Tris pH  7.5, 150 mM NaCl, 10 mM CaCl2) with 

10% (w/v) glycerol and 2 mM DTT for 7.25 hours at 24 ºC.  Sortase A and unreacted HECT 

domain were removed by incubation of the reaction with NiNTA (GE Healthcare) for 1 hour at 4 

ºC.  Unbound protein was concentrated (Amicon, 10 kD cutoff) and further purified by gel 

filtration (Superdex 75 PC 3.2/30, GE Healthcare) in 50 mM Tris pH 7.5, 150 mM NaCl, 5 mM 

MgCl2, 2 mM DTT, 10% (w/v) glycerol. 

 

Reaction of HUWE1 with HAUbVME probe 

11 μM HUWE1 (linear or circularized) was incubated with 0.5 μg HAUbVME in 50 mM Tris 

pH 8.0, 150 mM NaCl in a 10 μl reaction volume for 3 hours at 24 °C.  The reaction was 

quenched with reducing sample buffer, boiled 10 minutes, and separated on 10% SDS-PAGE.  

Proteins were visualized by coomassie blue staining. 

 

Biochemical Assays 

Autoubiquitination assay 

Reaction mixtures (10 μl) for HUWE1 autoubiquitination assay contained 100 nM human E1 

(Ube1, Boston Biochem), 5.6 μM E2 (UBE2L3), 2.8 μM HECT domain, and 60 μM Ub (Sigma) 
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with an ATP-regenerating system (50 mM Tris pH 7.6, 5 mM MgCl2, 5 mM ATP, 10 mM 

creatine phosphate, 3.5 units/mL creatine kinase). Reactions were incubated at room 

temperature, and aliquots were removed after the indicated amount of time and terminated in 

reducing SDS-PAGE sample buffer.  Samples were boiled for 10 min, separated on 10% Tris-

glycine SDS-PAGE, and analyzed by immunoblot using anti-Ub antibody (Sigma).  

 

Single-turnover Assay 

 

For the single-turnover assay, the E2 Ub thioester was generated in a 20-μl reaction containing 

200 nM E1 (Boston Biochem), 8 μM E2, the ATP regenerating system described above, 60 μM 

mutant Ub in which all lysines were mutated to arginine (K0 Ub) (Boston Biochem), and 1 

μg/μL bovine serum albumin incubated for 25 min at room temperature. Formation of the E2 Ub 

thioester was quenched with 50 mM EDTA on ice for 5 min. The E2 Ub thioester was diluted 

into a chase mixture containing 4 μM HECT domain, 100 mM NaCl, 50 mM EDTA, and 1 

μg/μL bovine serum albumin.  Reactions were incubated at room temperature, and aliquots were 

removed after the indicated amount of time and terminated in either 4 M urea and incubated for 

15 min at 30 °C or in reducing SDS-PAGE sample buffer. Samples were boiled for 10 min, 

separated on 10% Tris-glycine SDS-PAGE, and analyzed by immunoblot using anti-Ub antibody 

(Sigma).  
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Figure Legends 

Figure 1.  Sortase-catalyzed circularization of the HUWE1 HECT domain. 

(a) Site-specific labeling of target protein C-termini through sortase-catalyzed transpeptidation.  

Sortase A recognizes the LPXTG motif at the C-terminus of the target protein and cleaves 

between the threonine and glycine to generate an acyl-enzyme intermediate.  This covalent 

intermediate is resolved by the nucleophilic attack of the amino-group of a modified 

oligoglycine-based probe to form the transpeptidation product with the probe installed at the 

target protein C-terminus.  Figure adopted from (Popp, Antos et al. 2009). 

 

(b) Sortase A catalyzes intermolecular transpeptidation as described in (a) when the oligoglycine 

nucleophile is provided exogenously.  If one or more glycines is instead appended to the target 

protein’s N-terminus, sortase will catalyze an intramolecular reaction to generate a circular 

protein.  Figure adapted from (Antos, Popp et al. 2009).  

 

C) Structures of the HECT domains of Smurf 2 (PDB entry 1ZVD), Huwe1 (PDB entry 3H1D), 

and UbcH5B~Ub-HECT
NEDD4L

 (PDB entry 3JW0)
 
with the E3 catalytic cysteine highlighted in 

yellow and the distance between N- and C-termini indicated.  

 

Figure 2. Circularization of HUWE1-sortag1. 

 

(a) Input HUWE1-sortag 1 (50 μM) (lane 1) was incubated with sortase A (50 μM) for 7 hr at 

room temperature in sortase reaction buffer as described (lane 2).  Unreacted HUWE1-sortag1 
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and Sortase A were depleted by incubation with NiNTA to purify circular HUWE1 (lane 3).  

Proteins were separated by SDS-PAGE and visualized by coomassie blue staining. 

 

(b) ESI-MS characterization of input (left) and circular (right) HUWE1 molecular weight 

revealed the expected change in mass after circularization results in loss of the C-terminal ten 

residues as well as a water molecule. 

 

(c) MS/MS spectrum of an AspN fragment of circular HUWE1-sortag1 showing the ligation of 

the N-terminal residues to the C-terminal LPET motif.  Expected masses for y and b ions are 

listed above and below the peptide sequence.  Ions that were positively highlighted in the 

MS/MS spectrum are highlighted in blue and red.   

 

(d) Thermal stability of linear and circular HUWE1.  Protein is incubated with a fluorescent dye 

that binds exposed hydrophobic regions of unfolded protein.  Normalized fluorescence is 

measured as a function of temperature as the protein is heated from 25ºC to 95ºC.  Shown is the 

plot of the first derivative of the unfolding curve against temperature, used to calculate the 

curve’s inflection point.  

 

Figure 3.  Biochemical characterization of HUWE1-sortag1. 

 

(a) 11.0 μM HUWE1-sortag1 (linear or circular) was incubated with 0.5μg HA-UbVME for 3 hr 

at room temperature.  The reaction was quenched with reducing sample buffer and separated by 



Chapter 4: Sortase-catalyzed circularization of HUWE1 HECT domain 

146 

SDS-PAGE.  Proteins were visualized by coomassie-blue staining.   Covalently bound, probe-

labeled species are indicated.  

 

(b) Autoubiquitination activity of wild-type, control (LPET), and circular HUWE1-sortag1 was 

tested using 60 μM Ub as substrate and 2.8 μM HECT domains incubated with UBE1, UBE2L3, 

and an ATP regenerating system.  Ubiquitinated proteins were visualized by anti-Ub 

immunoblot. 

 

(c) Thioester formation of wild-type, control (LPET), and circular HUWE1-sortag1 was tested in 

a single-turnover pulse-chase assay monitoring transfer of Ub from the UBE2L3 Ub thioester to 

the catalytic cysteine in the HECT domain. The UBE2L3 Ub thioester is generated in a pulse 

reaction containing E1, UBE2L3, ATP regenerating system, and a Ub mutant in which all lysines 

are mutated to arginine (K0 Ub).  Ub is chased from the E2 enzyme to the HECT domain added 

to the reaction. Ub-conjugated HECT domain is visualized by anti-Ub immunoblot. Samples 

were terminated in reducing or non-reducing sample buffer as indicated.  The wild-type HECT 

domain transfers Ub to one or more lysines in the time scale of the reaction, obscuring detection 

of the HECT~Ub intermediate.  
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Summary 

 

 Covalent attachment of the small, highly conserved protein ubiquitin (Ub) to target 

proteins is an important means of regulating eukaryotic protein function.  Ub conjugation can 

alter a protein’s half-life, subcellular localization, enzymatic activity, or its ability to interact 

with other proteins.  A sequential cascade of enzymatic reactions catalyzed by Ub activating 

(E1), Ub conjugating (E2), and Ub ligase (E3) enzymes is required to achieve Ub conjugation.  

In general, Ub is covalently attached via its C-terminal glycine residue to a lysine residue in a 

target protein in an isopeptide linkage.  The human genome encodes two Ub E1 activating, ~30 

Ub E2 conjugating, and over 300 Ub E3 ligase enzymes (Li, Bengtson et al. 2008).  The 

identification and biochemical characterization of these enzymes and their substrates has 

provided insight into the mechanism of Ub conjugation and its cellular function, although 

important questions remain to be answered.  In this thesis, we describe the design of Ub-based 

electrophilic probes and their use to identify Ub conjugation machinery from cell extracts.  

Incubation of Ub-electrophilic probes with cell lysates from either a human mammary epithelial 

cell line or a murine thymoma cell line covalently labeled the active sites of representative 

members of the Ub protease family, as well as E2 and E3 enzymes, allowing for their retrieval 

and identification by tandem mass spectrometry.  This work shows that Ub-based probes can be 

useful not only for the identification of Ub proteases from cell lysates, as previously shown, but 

also for enzymes responsible for Ub conjugation.  Following our recovery of the E3 Ub ligase 

HUWE1, we undertook a biochemical and structural analysis of this enzyme.  Our results 

provide a definition of the HECT domain boundary and show how minor extensions of what was 
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once considered the core HECT domain have important consequences for HECT domain 

activity.  In the following section, we discuss additional areas to be explored following our work.  

 

Activity-based inhibitors of Ub conjugation enzymes 

Development of activity-based protein probes for Ub conjugation machinery 

 The use of active site-directed covalent probes is a powerful chemical strategy to query 

the functional state of enzyme families in proteomes.  The architecture of a typical activity-based 

probe consists of a reactive group that covalently binds to the active site of a subset of enzymes 

in the proteome with shared catalytic features; a binding group to direct the probe to this specific 

subset of enzymes; and an analytic handle to facilitate detection and retrieval of probe-labeled 

enzyme complexes (Evans and Cravatt 2006).  Our work describes an expanded class of Ub C-

terminal electrophilic probes that were designed to bind active site thiol-containing enzymes that 

also bind ubiquitin.  Using these probes, we recovered members of the Ub protease family, 

including novel enzymes not previously identified using a chemical biology approach (OTUD-

7A, OTUD4, OTUD5, U2afl-rs1, JOS1, JOS2).  We recovered, in addition, representative 

members of the Ub conjugation families – E1, E2, and E3 enzymes – the first time these 

enzymes were recovered from a complex proteome using a chemical biology approach.  

Surprisingly, we recovered Ub conjugation enzymes that do not contain relevant active 

site residues for labeling – members of the RING domain family of E3 Ub ligases, as well as two 

ubiquitin E2-variant (UEV) enzymes.  This latter class of E2 enzymes possesses the core UBC 

domain, but lack the active site-cysteine required to become charged with Ub.  UEV enzymes 

associate with canonical E2 enzymes to enhance Ub transfer.   We hypothesize that these 

enzymes were recovered as part of a complex of associated proteins containing a single probe-
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labeled species, as our IPs were performed under non-denaturing conditions, but did not 

explicitly test this assumption. 

 An additional unexpected feature of our Ub C-terminal electrophilic probes is that they 

covalently label, in addition to the conserved, catalytic cysteine residue, at least three cysteines 

in the HECT domain E3 Ub ligase HUWE1 (Chapter 2), as well as the E2 UBE2L3 (data not 

shown) in vitro.  These additional cysteine residues are partially surface-exposed, providing a 

likely explanation for the ability of HAUbVME to react with them.  If it is a completely non-

specific reaction of probe with surface-exposed cysteines, however, this reaction only occurs in 

the context of properly folded HUWE1 (Chapter 2, Figure 3a).  This behavior is not observed 

with Ub proteases, for which the probe invariably reacts with the single, active site cysteine 

residue (Kattenhorn, Korbel et al. 2005).  These properties of our expanded set of Ub 

electrophilic probes – that they behave more like affinity-based probes – limit their utility as 

mechanism-based inhibitors.  For example, our attempts at purification of a complex between 

HUWE1 singly bound at its catalytic cysteine with HAUbVME proved challenging due to the 

formation of a complex mixture of probe-labeled species.  Furthermore, a mutant HUWE1 in 

which all surface exposed Cys were mutated to Ala, leaving intact only the catalytic cysteine, 

reacted inefficiently (5-10%) with probe (data not shown).   

Recently, two activity based-inhibitors were developed for the SUMO E1 activating 

enzyme (Lu, Olsen et al.) that trap the SUMO E1 as if bound to intermediates.  SUMO was 

synthesized with one of two non-hydrolysable synthetic analogs of AMP (AMSN and AVSN) 

attached to its C-terminus.  As explained in the Introduction, the E1~SUMO~AMSN complex 

mimics the enzyme bound to the SUMO~AMP intermediate in the first half-reaction, and the 

E1~SUMO~AVSN complex mimics the E1~SUMO~AMP transition state after thioesterification 
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has occurred, but prior to AMP release (Lu, Olsen et al.).  For the SUMO and Ub E1s, inhibitors 

based on the second half-reaction, in which the Ub/Ubl-adenylate is transferred to the active site-

cysteine in thioester linkage (Ub/Ubl containing a C-terminal vinyl sulfonamide electrophile), 

were developed.  Interestingly, though our Ub C-terminal electrophilic probes lack the adenylate 

in Lu et al’s probes, they nevertheless label and permit recovery of Ub E1 from cell lysates.  

 

Structural insights into Ub conjugation using activity-based inhibitors 

An important question to understand the mechanism of the E1-E2-E3 Ub conjugation 

cascade is how Ub is transferred between juxtaposed active sites – either different active sites 

within the same enzyme, or active sites in two different enzymes.  A common theme observed 

repeatedly in the Ub/Ubl enzymatic cascade is that these distances are in the tens of angstroms: 

for example, between the adenylate domain and catalytic cysteine in E1 activating enzyme, 

between the E1 and E2 catalytic cysteines, and E2 and HECT E3 catalytic cysteines.  One 

approach to understand Ub transfer is through structures of enzyme reaction intermediates – for 

example, enzyme~Ub thioester intermediates.  A significant challenge in the purification of 

reaction intermediates is, of course, that they are labile.  After adenylation of the Ub/Ubl C-

terminus, the E1 active site cysteine immediately attacks Ub/Ubl-AMP to form the Ub/Ubl-

thioester intermediate, thus preventing the non-productive hydrolysis of the activated Ub/Ubl-

AMP.  The E1~Ub/Ubl thioester intermediate is also subject to hydrolysis during purification.  

The use of active site-directed probes can help to overcome these challenges by permitting 

purification of stable reaction intermediate analogs.  Numerous examples of structures of Ub 

proteases in complex with activity-based inhibitors exist in the literature (Hu, Li et al. 2002; 
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Misaghi, Galardy et al. 2005; Schlieker, Weihofen et al. 2007); however, the examples for 

conjugating enzymes are elegant but few (Brownell, Sintchak et al. ; Olsen, Capili et al.).  

The development of a mechanism-based inhibitor would aid the study of HECT E3 

ligases. Two avenues could be employed to attempt purification of a stable reaction intermediate 

(HECT~Ub): One would be to mutate the HECT domain catalytic cysteine to a serine, and purify 

a HECT~Ub oxyester intermediate, rather than an Ub thioester intermediate (Kamadurai, 

Souphron et al. 2009).  A second approach would be to utilize a Ub activity-based inhibitor.  

This strategy would prevent the rapid nucleophilic attack on the Ub~thioester intermediate by a 

lysine in the HECT domain, as observed during autoubiquitination, and hydrolysis of the 

HECT~Ub thioester during purification.  The HECT~Ub intermediate represents a part of the E3 

Ub ligase reaction cycle that has so far not been examined structurally, and would provide 

insight into numerous questions: Is there a structural rearrangement in the E2 binding region on 

the HECT domain that promotes dissociation of the newly-unloaded E2 enzyme after Ub 

transfer?  How is Ub positioned on the HECT active site Cys?  Does its orientation reveal 

information about the assembly of polyubiquitin chains?  How does the E3 active site 

accommodate Ub, and does this reveal information about Ub/Ubl selectivity?  A comparison of 

structures of complexes between an E2~Ub and HECT E3 and a HECT~Ub intermediate, would 

greatly aid in answering these questions, and require the development of a true mechanism-based 

inhibitor of HECT E3 enzymes. 

 

Improvements to Ub C-terminal electrophilic probes 

Activity-based probes are becoming increasingly sophisticated and promise to provide a 

greater level of insight into enzyme function in cells, tissues, and even in whole-body animal 
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experiments.  One area of design improvement lies in the method of elution of 

immunoprecipitated probe-enzyme complexes.  Elution has been performed using SDS-PAGE 

sample buffer for the HA-Ub electrophilic probes, which releases all bead-bound proteins, 

including non-specifically bound complexes.  The use of biotin-labeled probes requires harsh 

elution conditions.  The incorporation of a chemically cleavable diazobenzene linker joining the 

binding group and electrophilic moiety allows for chemoselective release of probe-bound 

proteins under mild elution conditions (Fonovic, Verhelst et al. 2007).  A second development in 

ABPP technology is the development of quenched fluorescent activity-based probes targeting the 

papain-family cysteine proteases.  These qABPs only fluoresce upon covalent binding to target 

proteins.  Furthermore, they are stable in vivo, allowing non-invasive, whole-body imaging of 

cysteine protease activity (Fonovic, Verhelst et al. 2007).   The development of cell-permeable 

ABPP opens an avenue of research for in vivo studies of enzyme activity (Blum, Mullins et al. 

2005; Yee, Fas et al. 2005).  Cell-permeable ABPs are enabled in a two-step reaction in which 

proteins are first labeled in vivo with a small molecule specific for the enzymatic class of 

interest, and the visualization or affinity tag is appended in a second step using, for example, the 

Staudinger ligation (Saxon and Bertozzi 2000) or Huisgen [3 + 2] cycloaddition (“click 

chemistry”) (Wang, Chan et al. 2003).  The development of these bioorthogonal labeling 

reactions permits the labeling of enzymes in vivo, and ABPs incorporating click chemistry was 

used to visualize Cathepsin cysteine protease activity in living cells during microbial infection 

(Hang, Loureiro et al. 2006). 
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Identification of Ubl conjugation enzymes using activity-based inhibitors 

The discovery of ubiquitin over three decades ago has been followed by the identification 

of numerous, structurally related small proteins (called ubiquitin-like modifiers, or Ubls) in 

eukaryotes.  These Ubls do not necessarily share high sequence homology with Ub but all 

possess the -grasp fold characteristic of ubiquitin’s three-dimensional structure.  Ubls that have 

been demonstrated to become conjugated to target proteins contain the di-glycine motif at their C 

terminus, similar to Ub (Hochstrasser 2006).  Dedicated Ubl-E1, E2, and E3 enzymes have been 

identified through bioinformatics and biochemical approaches for several of these modifiers, 

such as SUMO, Nedd8, and ISG15.  Enzymes responsible for the conjugation of other Ubls, 

however, are unknown.  Furthermore, the recent discovery of a Ubl in prokaryotes (Prokaryotic 

ubiquitin-like protein, or Pup) and in archaeon Haloferax volcanii (SAMP1, SAMP2) suggests 

that ubiquitin-like modification systems exist in the other two major evolutionary lineages of life 

besides eukaryotes (Humbard, Miranda et al.; Pearce, Mintseris et al. 2008).  Sequence profile 

searches combined with structural analysis have identified E1-like adenylating enzymes and Ub-

conjugating enzyme related proteins in prokaryotes (Iyer, Burroughs et al. 2006).  The discovery 

of these Ubls leads to the question of how these modifiers are attached to target proteins, a 

question that could be addressed through the use of active site-directed probes.  Only one protein 

(PafA) is known to be required for pupylation in prokaryotes; a putative SAMP E1 enzyme was 

identified, but not functionally characterized (Humbard, Miranda et al.).  A functional 

proteomics approach conceptually similar to ours, using either a broadly reactive probe 

(HAUbVME) or probes with increased electrophilicity (HAUbLactone, HAUbTF3Bok, and 

HAUbOEtVS) for extended incubation times could be applied to the identification of candidate 

Ubl-conjugation machinery for eukaryotic Ubls with unknown conjugation enzymes as well as 
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newly discovered prokaryotic and archaeal Ubls.  Although it is not known what type of 

conjugation machinery (if any) these modifiers are expected to use, it is not an unreasonable 

hypothesis that they use thiol-containing catalytic residues.  If not, a non-directed approach in 

which a library of Ubl-small molecule conjugates is used to interrogate the proteome may 

recover candidate Ubl conjugation and ligase enzymes. 

 

Role of non-covalent interactions during Ub transfer 

Recent biochemical and structural work on HECT domain E3s have shown that certain 

HECT domains (Smurf2, NEDD4L, and Rsp5) interact non-covalently with Ub (Ogunjimi, 

Wiesner et al. ; French, Kretzmann et al. 2009; Kamadurai, Souphron et al. 2009) or substrate 

(Lee, Oestreich et al. 2009).  All three enzymes belong to the C2-WW-HECT subclass of HECT 

domain E3s.  The location, and function, of this ubiquitin-binding site differs among the HECT 

domains: for NEDD4L, Ub (bound to E2 active site) interacts with the HECT C-lobe; for Rsp5 

and Smurf2, the Ub interaction maps to the N-lobe, and appears to be important for the ability to 

catalyze polyubiquitination of itself or substrate.  These observations suggest that non-covalent 

interactions between certain HECT domains and Ub or substrate may underlie mechanistic 

differences between Ub conjugation, but this observation would benefit from more complete 

structures of Ub-loaded HECT domains alone or in complex with substrate, in the case of Rsp5.   

These interactions have not been reported for the other classes of HECT domains.  

 

Probing conformational flexibility of HECT domains using sortase-mediated protein 

engineering 
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 Based on several crystal structures of isolated HECT domains alone or in complex with 

E2 enzyme, it is clear that rotation of the HECT C-lobe about a flexible linker connecting the 

two HECT lobes, as well as non-covalent interactions between the HECT C-lobe and Ub bound 

to the active site of the E2 enzyme, are critical for E2 to E3 Ub transfer (Pandya, Partridge et al. ; 

Huang, Kinnucan et al. 1999; Verdecia, Joazeiro et al. 2003; Ogunjimi, Briant et al. 2005; 

Kamadurai, Souphron et al. 2009). Are there new methods that can be used to investigate the role 

of conformational flexibility to HECT domain function to complement these structural 

approaches?  We discuss a potential method (Chapter 4) using the enzyme Sortase A from the 

bacteria Staphaloccus aureus to catalyze a circularization of the HUWE1 HECT domain (Antos, 

Popp et al. 2009).  Using this system, sortase A can be used to ligate the N- and C-terminus of 

the HECT domain, thereby restraining the motion of the C-lobe in a manner dependent on the 

length of the connecting linker.  This question could also be monitored by installing a 

fluorescence resonance energy transfer (FRET) pair on the two lobes of the HECT domain to 

monitor conformational transitions occurring in solution, or occurring upon binding of unloaded 

or Ub-loaded E2 enzyme.  A combination of approaches could yield insight into HECT domain 

function: the installation of a FRET pair on the N- and C-lobes of various circular versions of the 

HECT domain, would allow one to correlate any increase in activity of circular HECT domains 

containing extended linkers with the magnitude of observed FRET.    

 

Physiological functions of E3 Ub ligases 

 E3 Ub ligases function in diverse processes in the cell.  The biological role of many E3 

Ub ligases, however, is obscure, and an important area of research centers on defining their 

physiological role: identifying their substrates and the E2 enzymes with which they function, 
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characterizing their biological role, and the phenotypic consequences to their mutation or 

absence.  The HUWE1 E3 Ub ligase, as discussed in the introduction, has had a number of 

substrates ascribed to it since its identification as an E3 Ub ligase in 2005, including p53, Mcl-1, 

CDC6, N-myc, c-myc, TopBP1, DNA polymerase beta, and histones (Adhikary, Marinoni et al. 

2005; Chen, Kon et al. 2005; Zhong, Gao et al. 2005; Hall, Kow et al. 2007; Herold, Hock et al. 

2008; Zhao, Heng et al. 2008; Parsons, Tait et al. 2009).  As some of these substrates suggest 

that HUWE1 functions in opposing pathways in the cell, more work is required to understand the 

physiological function of this E3 enzyme. 

 

Identification of physiologically relevant E2-E3 pairs 

 E2 enzymes function centrally in the Ub cascade, as they select the correct Ub/Ubl-

loaded E1 enzyme with which to interact and the proper E3 enzyme to charge with Ub/Ubl (ref).  

E2 enzymes also influence several aspects of Ub chain formation: length of the polyubiquitin 

chain, its topology, and the processivity of chain formation (Ye and Rape 2009).  In the SUMO 

pathway, E2 also contributes to substrate selection (Sampson, Wang et al. 2001; Johnson 2004).  

It is therefore important when studying E3 ligase function and regulation in vitro to use the 

physiologically relevant E2 partner enzyme(s).  Studies describing the ubiquitin ligase activity of 

HUWE1 have employed the widely used UbcH5 and UBE2L3 enzymes (Adhikary, Marinoni et 

al. 2005; Chen, Kon et al. 2005; Zhong, Gao et al. 2005; Hall, Kow et al. 2007; Zhao, Heng et al. 

2008), and, with one exception (Parsons, Tait et al. 2009), there are no data to indicate that these 

E2 enzymes are the true in vivo partners of HUWE1.  One approach to identify the relevant E2 

enzyme(s) is to screen the ~30 known human E2 enzymes, for both interaction with the E3 by 

yeast two hybrid or NMR (Christensen, Brzovic et al. 2007), fluorescence polarization or 
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isothermal titration calorimetry (Eletr, Huang et al. 2005), and activity with the E3.  Surprisingly, 

these two properties do not always correlate – for example, the RING E3 heterodimer 

BRCA1/BARD1 was shown to interact with UBE2L3 by both yeast two hybrid and NMR, but 

this E2-E3 pair was not active in catalyzing BRCA1 ubiquitination (Christensen, Brzovic et al. 

2007).  Candidate E2 enzymes identified as interacting with and promoting E3 Ub ligase 

substrate ubiquitination activities must be followed up in cellular studies, using genetic 

manipulation of expression, for example, to confirm an effect on E3 function.  Other factors, 

such as co-localization of E2 and E3, could be used to validate functional pairs.   

 

Identification of E3 ligase substrates 

 An important aspect in understanding E3 Ub ligase function is to identify the cellular 

context in which they function and their physiological substrate(s).  In the case of HUWE1, its 

substrates have been identified through a variety of methods: yeast two-hybrid or biochemical 

interaction (Chen, Kon et al. 2005; Hall, Kow et al. 2007; Zhao, Heng et al. 2008), genetic 

approaches using conditional inactivation or knockout in mice (D'Arca, Zhao et al.; Zhao, D et 

al. 2009), or an RNAi screen (Zahreddine, Zhang et al.).  Other approaches start with a known 

ubiquitin-regulated substrate and used a biochemical fractionation approach to identify the 

responsible Ub ligase (Zhong, Gao et al. 2005; Parsons, Tait et al. 2009).  Low affinities between 

E3 and substrate, as well as low intracellular levels of substrate, can render biochemical 

interaction studies challenging.  Recently developed genetic approaches are promising methods 

of identifying new substrates.  One strategy employs a library of yeast strains in which each 

strain expresses one open reading frame (ORF) tagged at its endogenous locus with green 

fluorescent protein (GFP).  This library is crossed to a strain deleted for a particular E3 ligase of 
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interest, and the resulting population is screened for proteins that accumulate as indicated by 

increased GFP fluorescence (Benanti, Cheung et al. 2007).  A second genetic approach uses a 

high-throughout approach to measure proteome-scale protein turnover, termed global protein 

stability (GPS) analysis.  A reporter construct contains a single promoter that, with an internal 

ribosome entry site (IRES), allows the translation of two fluorescent proteins from a single 

mRNA transcript.  The first fluorescent protein is Discosoma sp. red fluorescent protein 

(DsRed), an internal control.  The second fluorescent protein is a fusion between enhanced green 

fluorescent protein (eGFP) and a protein of interest.  After integration of this construct into cells, 

the eGFP/DsRed ratio in these cells is a measure of stability of protein of interest that is not 

affected by transcriptional changes.  This ratio can be measured upon knockdown or inactivation 

of a particular E3 ligase to identify candidate substrates (Yen and Elledge 2008; Yen, Xu et al. 

2008).   

 

Conclusions 

 Chemical biology and protein engineering methods have converged to provide important 

mechanistic insight into the function of ubiquitin conjugation machinery.  The increasing 

sophistication of activity-based probes must be applied to probes for Ub conjugation enzymes to 

identify new members that escape detection using bioinformatics approaches, their interacting 

partners and regulators, and mechanism of catalysis.  The discovery of Ub conjugation enzymes 

in prokaryotes and archaea will inform the evolutionary development of Ub conjugation.  Do 

these branches of life contain the antecedents of E2 and E3 enzymes?  Detailed structures have 

been solved for representative members of Ub pathway enzymes, although more complete 

structures of enzyme-substrate complexes and pathway intermediates are needed.  In the case of 
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HECT E3s, there are no structures that include the upstream regions encompassing substrate-

recruitment domains, and visualizing these regions will help dissect the mechanism of substrate 

ubiquitination.  How is the growing ubiquitin chain accommodated in an E3-substrate complex?  

Is the polyubiquitin chain built up on the E3 active site, or does the position of the bound 

substrate favor the sequential addition of polyubiquitin chains?  Finally, a large challenge is to 

deduce the physiological role of the hundreds of E3 Ub ligases in the cell.  The answers to these 

questions will provide insight into the function of the ubiquitin pathway in fundamental cellular 

processes. 
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Supporting Information and Methods 

 

Ubiquitin C-terminal electrophiles are activity-based probes for identification and 

mechanistic study of ubiquitin conjugating machinery 

 

Kerry Routenberg Love, Renuka K. Pandya, Eric Spooner, and Hidde L. Ploegh 

 

Synthesis and Characterization of Electrophilic Glycine Analogs 

 

General Methods.  All chemicals were reagent grade and used as supplied unless otherwise 

noted.  HPLC-grade, low moisture organic solvents (Dri Solv), including N,N’-

dimethylformamide (DMF), dichloromethane (CH2Cl2), tetrahydrofuran (THF), methanol 

(MeOH), and diethyl ether (Et2O), were purchased from EMD Chemicals.  Analytical thin-layer 

chromatography was performed on E. Merck silica gel 60 F254 plates (0.25 mm).  Compounds 

were visualized by dipping the plates in a cerium sulfate-ammonium molybdate solution or a 

ninhydrin solution followed by heating.  Liquid flash column chromatography was performed 

using forced flow of the indicated solvent on EMD Chemicals silica (200-400 mesh).  
1
H NMR 

spectra were obtained using a 400 MHz spectrometer and are reported in parts per million ( ) 

relative to CDCl3 (7.27 ppm) or MeOD (4.87 ppm, 3.31 ppm). 
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4-amino-but-1-enyl ethoxysulfonate (3).  N-tert-butyloxycarbonyl (Boc) protected glycinal was 

prepared as previously reported[1] and was subjected to sodium metaperiodate-mediated 

oxidative cleavage[2] to obtain N-Boc-glycinal (2), which was used without further purification.  

A solution of sodium hydride (258 mg, 10.2 mmol) in THF (60 mL) was cooled to 0°C before 

the dropwise addition of triethyl -phosphonylmethanesulfonate (2.66 g, 10.2 mmol)[3], 

followed by a 5 mL rinse of the phosphonate-source vessel[4].  The reaction mixture was stirred 

for 20 min at 0°C before adding the above prepared N-Boc-glycinal (2) as a neat solid.  The 

reaction mixture was allowed to warm to room temperature and was stirred for 6 h before 

quenching with water (50 mL) and extracting with ethyl acetate (3  50 mL)  The combined 

organic extracts were dried over Na2SO4, filtered and concentrated.  The resulting crude residue 

was purified using flash column chromatography by elution with 25% ethyl acetate/hexanes, 

yielding 0.8 g (60%) pure N-Boc-4-amino but-1-enyl ethoxysulfonate.  
1
H NMR: 6.78 (dt, 1H), 

6.34 (d, 1H), 4.82 (br s, 1H), 4.17 (q, 2H), 3.99 (br s, 2H), 1.45 (s, 9H), 1.39 (t, 3H).  Removal of 

the Boc group was accomplished using three equivalents dry p-toluenesulfonic acid as 
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described[5] to yield 3 as the sulfonic acid salt of the deprotected amine.  ESI-MS: Calculated; 

[M + H]
+
 = 166.05.  Observed; [M + H]

+
 = 166.05. 
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Serine- -lactone (5).  N-(benzyloxycarbonyl[Z])-D-serine- -lactone (4) was prepared as 

previously reported[6].  Removal of the Z group was accomplished in quantitative yield by 

hydrogenation over Pd/C in methanol.  
1
H NMR: 4.23 (m, 1H), 4.12 (m, 2H), 3.54 (m, 1H), 1.41 

(appd, 1H).  ESI-MS: Calculated; [2M + H]
+
 = 177.09.  Observed; [2M + H]

+
 = 177.09. 
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2,6-trifluoromethylbenzyloxy glycine methyl ketone (8).  Boc-protected glycine (6) was 

converted to the amino acid diazomethyl ketone as previously reported[7] via addition of a cold 

solution of diazomethane to a mixed anhydride formed by treatment of the protected amino acid 

with isobutyl chloroformate in the presence of N-methyl morpholine.  The diazomethyl ketone 

was easily converted to the chloromethyl ketone (7) by addition of a solution of HCl in Et2O[8].  

N-Boc-glycine chloromethyl ketone 7 (430 mg, 2.07 mmol) was treated with potassium fluoride 

(361 mg, 6.21 mmol) in DMF (20 mL), followed by 2,6-trifluorobenzoic acid (587 mg, 2.28 

mmol) overnight at room temperature[9].  After 12 h the reaction was diluted with Et2O and 

ethyl acetate (50 mL each) and washed with water, aqueous NaHCO3 (sat.) and brine.  The 

organic layer was dried over Na2SO4, filtered and concentrated to yield 0.69 g (78%) of 

compound 8, which was used without further purification.  
1
H NMR: 7.95 (appd, 2H), 7.76 (appt, 

1H), 5.22 (br s, 1H), 4.90 (s, 1H), 4.13 (m, 2H), 1.40 (s, 9H).  Removal of the Boc group was 

accomplished using three equivalents dry p-toluenesulfonic acid as described[5] to yield 8 as the 

sulfonic acid salt of the deprotected amine.  ESI-MS: Calculated; [M + H]
+
 = 330.06.  Observed; 

[M + H]
+
 = 330.06. 

 

Synthesis and Characterization of HAUb-electrophilic Probes 

HAUb-electrophilic probes were made using the electrophilic glycine analogs synthesized above 

as described in the Experimental Procedures.  The FPLC purified HAUb-electrophilic probes 

were characterized by ESI-LC/MS and multi-charged species were observed for each probe.  

Probe yields were estimated using traces obtained during FPLC purification.  HAUbOEtVS 

(quant. yield) ESI-MS: Calculated; [M + 11H]
11+

 = 937.  Observed; [M + 11H]
11+

 = 936.7266.  

HAUbLac (50% yield) ESI-MS: Calculated; [M + 11H]
11+

 = 931.  Observed; [M + 11H]
11+

 = 
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931.4602.  HAUbTF3BOK (80% yield) ESI-MS: Calculated; [M + 11H]
11+

 = 952.  Observed; [M 

+ 11H]
11+

 = 952.0001. 

 

EL-4 Cell Lysate Labeling and Blocking of Labeling with NEM (N-ethylmaleimide) 

30 μg of protein extract (see Methods section for cell culture and lysate harvesting conditions) 

treated with NEM (10 mM) for 30 min at room temperature.  Following this treatment, 0.2 μg of 

HAUb-electrophilic probe (2.0 μM in each sample) was added and the reactions were incubated 

for 5 h at room temperature.  Control reactions were run for each probe without prior addition of 

NEM to observe the extent of labeling in 5 h.  Reactions were quenched by addition of reducing 

sample buffer, boiled 10 min and separated by SDS-PAGE (10%).  Results were analyzed by 

immunoblotting with an anti-HA antibody (3F10, Roche). 

 

EL-4 Cell Lysate labeling and Detection of RING Ligase UBAC1 Modification by Gel Shift.  

30 μg EL-4 lysate was incubated with indicated quantities of probe (concentrations are 2.3μM, 

4.6 μM, 9.2 μM, and 18.4 μM) in buffer containing 50mM Tris pH 8.0, 150mM NaCl for 4 hr at 

room temperature (24°C).  Reactions were quenched by addition of reducing sample buffer, 

resolved by SDS-PAGE analyzed by immunoblot using either a UBAC1 antibody (Novus 

Biologicals) or a UCH37 antibody (polyclonal rabbit) for comparison. 

 

 

Plasmid Construction 

The C-terminal residues of ARF-BP1 (amino acids 4012-4374) were subcloned into vector 

pet28a for expression and purification as an N-terminal His6 fusion protein using forward primer 

5’-ccgcatatgctccggaaagaagacatgg and reverse primer 5’-ccggaattcttaggccagcccaaagcc.  Single, 

double, and triple cysteine-to-alanine ARF-BP1 HECT domain mutants at residues C4099, 

C4341, C4367, were generated using site-directed mutagenesis (Stratagene). A truncated version 

of ARF-BP1 (ARF-BP1 4) (residues 4012-4370) was cloned into pet28a for Ub-thioester 

assays using the forward primer listed above and the reverse primer 5’-

cgcggatccttagccttcagagcactcctg. 

       

The C-terminal residues of Trip12 (amino acids 1629-2040, KIAA0045, Kazusa DNA Research 

Institute) were subcloned with an N-terminal His6 tag into the vector pGEX-6P-1 (GE 

Healthcare) for expression and purification as an N-terminal GST fusion protein using forward 

primer 5’-cgcggatccggacatcatcatcatcatcacagcagcggcagagttgcacctagattgg and reverse primer 5’- 

cgcgtcgactcaggaaagatggaacgactg.   

 

The N-terminal residues of Mcl-1 (amino acids 1-327) were cloned with an N-terminal PKA 

(protein kinase A) recognition sequence into the vector pet16b for expression and purification as 

an N-terminal His10 fusion protein using forward primer 5’-

ccgcatatggactacaaggacgacgacgacaaggcaggacgtcgtgcatctgttggatcctttggcctcaaaagaaacgcgg and 

reverse primer 5’-cgcggatccctagccaccttctaggtcctctac. 

 

Ubiquitin was cloned with an N-terminal PKA (protein kinase A) recognition sequence into the 

vector pet28a for expression and purification as an N-terminal His6 fusion protein using forward 

primer 5’-ccgcatatgcgtcgtgcatctgttggatccatgcagatcttcgtcaagacg and reverse primer 5’-

cgcggatcctcatcccccacgcagtc. 
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Protein Expression and Purification of ARF-BP1 HECT domain and PKA-Mcl-1  

ARF-BP1 HECT domain and FLAG-Mcl-1 containing plasmids were transformed into Rosetta 

competent cells (DE3(PLysS), Novagen) and cells were plated on LB-agar supplemented with 50 

μg/mL kanamycin (ARF-BP1) or 100 μg/mL ampicillin (Mcl-1) and 20 μg/mL chloramphenicol.  

A single colony for each protein was used to inoculate a 1.5 L liquid culture (LB, Miller) and 

cultures were grown to late log (OD600 > 0.8) at 37°C.  Cultures were induced with 0.5 mM 

IPTG at 22°C overnight.  Cells were pelleted and washed once with PBS before resuspending in 

25 mL lysis buffer (50 mM Tris [pH 8.0], 300 mM NaCl, 10 mM imidazole).  DNAse was added 

to a final concentration of 10 μg/mL and the cells were lysed under pressure (1500 psi) using a 

French press.  Cell debris was pelleted and the supernatant was purified using Ni-NTA beads 

(Qiagen) for His-tag-based purification.  Eluted proteins were further purified by gel filtration 

(Superdex 75 PC 3.2/30, GE Healthcare) using a buffer containing 50 mM Tris (pH 7.5), 150 

mM NaCl, 2 mM EDTA, 5 mM MgCl2, 2 mM DTT, and 5% glycerol.  

 

Protein Expression and Purification of Trip12 HECT domain 

Trip 12 HECT domain-containing plasmid was transformed into Rosetta competent cells 

(DE3(PLysS), Novagen) and cells were plated on LB-agar supplemented with 100 μg/mL 

ampicillin and 20 μg/mL chloramphenicol.  A single colony for each protein was used to 

inoculate a 1.5 L liquid culture (LB, Miller) and cultures were grown to late log (OD600 > 0.8) at 

37°C.  Cultures were induced with 0.5 mM IPTG at 22°C overnight.  Cells were pelleted and 

washed once with PBS before resuspending in 25 mL PBS supplemented with DNAse (final 

concentration of 10 μg/mL) and 1 mM MgCl2.   Cells were lysed under pressure (1500 psi) using 

a French press.  Cell debris was pelleted and the supernatant was purified using Glutathione 

Separose 4B beads (GE Healthcare) for GST-tag-based purification.  Eluted proteins were used 

without further purification. 

 

Protein Expression and Purification of PKA-Ub 

PKA-Ub-containing plasmid was transformed into Rosetta competent cells (DE3(PLysS), 

Novagen) and cells were plated on LB-agar supplemented with 50ug/mL kanamycin and 

20ug/mL chloramphenicol.  A single colony was used to inoculate 6L liquid culture (LB, Miller) 

and cultures were growth to late log (OD600 > 0.8) at 37°C.  Cultures were induced with 0.5 mM 

IPTG at 30°C for 3.5hr.  Cells were pelleted and washed once with PBS before resupsending in 

lysis buffer (50mM Tris pH 8.0, 500mM NaCl, 20mM imidazole, 10ug/mL DNase).  Cells were 

lysed under pressure (1500 psi) using a French press.  Cell debris was pelleted and the 

supernatant purified using Ni-Sepharose (High Performance, GE Healthcare) for His-tag-based 

purification.  Eluted proteins were further purified by gel filtration (Superdex 75 PC 3.2/30, GE 

Healthcare) using a buffer containing 50mM Tris pH 7.5, 150mM NaCl, and 5% glycerol. 

 

 

Synthesis of [
32

P]-labeled proteins 

Recombinant proteins (1 mg Ub or 120 ug Mcl-1) bound to Ni-sepharose (High Performance, 

GE Healthcare) were washed once in HMK buffer (20mM Tris pH 7.5, 100mM NaCl, 12mM 

MgCl2) and incubated with the catalytic subunit of cAMP-dependent Protein Kinase (PKA, New 

England Biolabs; 50,000 U for Ub or 25,000 U for Mcl-1), and a 10-fold molar excess of ATP in 
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a ratio of 1:100 (Ub) or 1:10 (Mcl-1) -[
32

P]-ATP (6000 Ci/mmol, 10mCi/mL, PerkinElmer) to 

unlabeled ATP, in HMK buffer containing 1 mM DTT in a final volume of either 200 ul (Ub) or 

100 ul (Mcl-1) for 3 hours at 25°C.  The phosphorylation reaction was terminated by incubation 

of proteins with HMK stop buffer (10mM sodium phosphate pH 8.0, 10mM sodium 

pyrophosphate, 10mM EDTA, 1mg/ml bovine serum albumin) for 5 min at 25°C.  Proteins were 

washed 5 times with NET buffer and eluted in 50mM Tris pH 8.0, 250mM NaCl, 250mM 

imidazole.   

 

Autoubiquitination Assay with GST-Trip12 HECT Domain 

Recombinantly expressed and purified GST-Trip12 HECT domain (10 μg) (see above for 

plasmid construction, protein expression and purification conditions) was incubated with 100 ng 

human E1 (Ube1, Boston Biochem), 1 μg UbcH7, and 10 μg Ub with an ATP regenerating 

system (50 mM Tris [pH 7.6], 5 mM MgCl2, 5 mM ATP, 10 mM creatine phosphate, 3.5 U/mL 

creatine kinase) for 10 min at room temperature.  After terminating the reactions with reducing 

SDS-PAGE sample buffer and boiling 10 min, reaction mixtures were separated by SDS-PAGE 

(8%) and analyzed by immunoblotting using an anti-Ub antibody (Sigma).  Control reactions 

were run without either E1 or E2. 
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Supplementary Figure 1.  Labeling of EL-4 cell lysate with Ub electrophilic probes is 

efficiently blocked by preincubation with NEM (10 mM).   

 

Supplementary Figure 2.  Autoubiquitination activity of recombant HECT domain of GST-

Trip12.  Ubiquitinated Trip 12 HECT domain was resolved by SDS-PAGE (8%) and visualized 

by immunoblotting with an anti-Ub antibody. 

 

Supplementary Figure 3.  (a) RING ligase UBAC1, present in EL-4 cell lysate, is not directly 

modified by HAUbVME, suggesting that RING E3s are retrieved in immunoprecipitations of 

probe-labeled lysate as part of multi-subunit complexes where 1 or more members binds probe 

directly.  (b)  UCH37 (UCH-L5), by comparison, is efficiently and quantitatively labeled when 

lysate containing this DUB is treated with HAUbVME as seen by a ~10 kD increase in its 

apparent molecular weight. 
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Supplementary Table 1. 
Supplementary Table 1. 
 
A. Proteins identified from EL-4 cell lysates. 

 

Protein 
identified 

Protein activity Accession 
number 
(NCBI) 

Predicted 
MW (kDa) 

HAUb probe 
used for retrieval 
(number of 
peptide matches 
/ sequence 
coverage) 

USP4 DUB 2851531 108 VME (52/59.8%), 

OEtVS (2/5%), 

Lac (4/7%), 

TF3BOK 

(26/31.9%) 

USP5 (IsoT) DUB 3024764 96 VME, TF3BOK 

(6/7.9%) 

USP7 (HAUSP) DUB 51491860 128 TF3BOK (2/1.5%) 

USP8 DUB 122890054 122.5 VME (26/26.4%) 

USP9X DUB 123296796 290 VME (21/9.9%), 

TF3BOK (3/1.5%) 

USP10 DUB 6678493 87 VME (6/9.1%) 

USP11 DUB 123229791 105 VME (16/25.6%), 

TF3BOK (7/12.6%) 

USP 14 DUB 20178168 56 VME (2/7.1%) 

USP14 (isoform2) DUB 84452155 52 VME (24/57.4%), 

TF3BOK (8/19.9%) 

USP15 DUB 28558361 112 VME (42/34%), 

OEtVS (5/4.8%), 

Lac (6/8.9%), 

TF3BOK 

(15/20.4%) 

USP19 DUB 123791392 150 VME (12/13%), 

TF3BOK (3/5.1%) 

USP24 DUB 123858181 294 VME (2/1.5%) 

USP25 DUB 31980712 121 VME (18/21.2%) 

USP28 DUB 78103330 119 VME (3/2.9%) 

USP29 DUB 114145573 98 VME (2/3.3%) 

USP38 DUB 34328301 116 VME (8/9.8%) 

USP47 DUB 48928014 157 VME (14/15.5%) 

CYLD1 DUB 27734060 106.5 VME (7/12.4%) 

UCH-L1 DUB 6755929 25 VME (32/62.3%), 

OEtVS 

(13/59.6%), Lac 
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(20/58.3%), 

TF3BOK 

(24/60.1%) 

UCH-L3 DUB 17380334 26 VME (9/27%), 

OEtVS (5/23.5%), 

Lac (9/28.7%), 

TF3BOK 

(18/37.4%) 

UCH-L4 DUB 19924308 26 VME (24/47.6%), 

OEtVS (9/32.6%), 

Lac (13/43.3%), 

TF3BOK 

(27/47.6%) 

UCH-L5 (UCH37) DUB 9625047 37.5 VME (9/34.3%), 

OEtVS (2/5.8%) 

OTUB1 DUB 44888264 31 VME (5/23.6), Lac 

(7/24%), TF3BOK 

(4/19.2%) 

OTUB2 DUB 44888287 27 VME (2/9.8%) 

OTUD-6B DUB 22779903 34 VME (6/21.1%) 

OTUD-7A 

(Cezanne 2) 

DUB 51701338 100 VME (2/1.9%) 

OTUD-7B 

(Cezanne) 

DUB 71043959 92 VME (9/19.2%), 

TF3BOK (2/3.7%) 

VCIP135 DUB 42559967 134 VME (2/3.3%) 

U2afl-rs1 DUB 151357946 409.5 Lac (2/0.8%) 

UBE1 E1 Ub-activating 

enzyme 

267190 118 TF3BOK 

(10/12.3%) 

UBE1-L2 E1 Ub-activating 

enzyme 

27370032 118 TF3BOK (7/12.7%) 

UBE1 

(Chromosome X) 

E1 Ub-activating 

enzyme 

148878383 118 TF3BOK 

(52/53.5%) 

UBA2 E1 Ubl-activating 

enzyme 

32493410 70.5 TF3BOK (4/8.5%) 

Aos1 E1 Ubl-activating 

enzyme 

18490720 38.5 TF3BOK (5/12.6%) 

UBC9 E2 Ubl-

conjugating 

enzyme 

54039792 18 TF3BOK (2/16.5%) 

UBC12 E2 Ubl-

conjugating 

enzyme 

46577656 21 TF3BOK (5/31.1%) 

UBC13 E2 Ub-

conjugating 

enzyme 

18017605 17 TF3BOK (3/26.3%) 
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UB2V1 E2 Ub-

conjugating 

enzyme 

51702141 16 TF3BOK (2/21.1%) 

UB2V2 E2 Ub-

conjugating 

enzyme 

51702142 16 TF3BOK (2/17.2%) 

UBE2-L3 

(UbcM4) 

E2 Ub-

conjugating 

enzyme 

54039806 18 TF3BOK (2/7.1%) 

UBE2S E2 Ub-

conjugating 

enzyme 

53734650 24 TF3BOK (4/21.5%) 

UBE2O E2 Ub-

conjugating 

enzyme 

50234896 141 TF3BOK (3/2.7%) 

E6-AP (Ube3A) HECT E3 Ub 

ligase 

76880500 97.5 VME (3/4.7%) 

Nedd4 (Rsp5) HECT E3 Ub 

ligase 

32172436 103 OEtVS (2/3%), 

TF3BOK (2/2%) 

ARF-BP1 (Mule) HECT E3 Ub 

ligase 

73915354 482 VME (6/2.7%), 

Lac (4/0.9%), 

TF3BOK (4/1.4%) 

Trip12 Putative HECT E3 

Ub ligase 

91932791 224 VME (2/0.9%), 

TF3BOK (2/1.2%) 

UBAC1 (KPC2) RING E3 Ub 

ligase 

19527050 45 VME (2/4.9%) 

UBR2 RING E3 Ub 

ligase 

73622074 199 TF3BOK (3/2.5%) 

CUL-4A RING E3 Ub 

ligase 

108936014 88 OEtVS (3/5.1%) 

TRAF2 RING E3 Ub 

ligase 

83921633 56 OEtVS (2/4.2%) 

 

 

B.  Proteins identified from HMEC cell lysates. 

 

Protein 
Identified 

Protein Activity Accession 
Number 
(NCBI) 

Predicted 
MW (kDa) 

HAUb probe used 
for retrieval 
(number of 
peptide matches / 
sequence 
coverage) 

USP4 DUB 116242839 20.6 VME (14, 20.6%) 

USP5 (isoform 

2) 

DUB 148727247 93.2 TF3BOK (2, 2.9%) 
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USP7 DUB 150378533 128.2 VME (2, 2.7%), 

Lac (2, 1.9%) 

USP8 DUB 731046 127.4 VME (8, 9.5%) 

USP14 (isoform 

2) 

DUB 82880645 52.3 VME (14, 31.8%) 

USP15 DUB 28381406 112.3 VME (27, 30.5%) 

USP22 DUB 78103328 59.9 VME (4, 11.4%) 

USP24 DUB 149192845 27.7 VME (3, 2%) 

USP25 DUB 20141973 125.7 VME (17, 20.5%) 

USP28 DUB 20140700 122.4 VME (8, 9.5%) 

CYLD1 DUB 14165258 107.2 VME (2, 2.4%) 

UCH-L1 DUB 136681 24.8 VME (7, 28.7%) 

UCH-L3 DUB 5174741 26.2 VME (27, 64.8%), 

OEtVS (8, 31.7%), 

TF3BOK (13, 

54.8%), Lac (14, 

56.1%) 

UCH-L5 

(UCH37) 

DUB 108936023 37.6 VME (5, 14%), 

OEtVS (3, 9.7%,), 

TF3BOK (12, 

43.2%), Lac (3, 

14%,) 

OTUB1 DUB 44888286 31.3 VME (9, 35.4%), 

OEtVS (9, 31.7%), 

TF3BOK (7, 

31.7%), Lac (8, 

26.9%) 

OTUB2 DUB 44888285 27.2 VME (3, 15.8%) 

OTUD4 (isoform 

3) 

DUB 156630992 117 VME (3, 7.2%) 

OTUD5 DUB 74731791 60.6 VME (2, 7.7%) 

OTUD-6B DUB 74729149 33.8 VME (4, 20.1%) 

OTUD-7B 

(Cezanne) 

DUB 118026942 92.5 VME (2, 5.5%) 

VCIP135 DUB 42560002 134.2 VME (13, 13.6%) 

JOS1 DUB 3123051 23.2 VME (2, 13.4%) 

JOS2 DUB 29840785 20.7 VME (3, 13.8%) 

SENP8 NEDD8 protease 26006881 24.1 VME (2, 5.2%) 

UBE1 E1 Ub-activating 

enzyme 

24418865 117.8 VME (6, 10.2%), 

OEtVS (5, 10.2%), 

TF3BOK (7, 12.1%) 

UBC1 E2 Ub-conjugating 

enzyme 

46577658 22.4 VME (3, 22.5%), 

TF3BOK (3, 24%), 

Lac (5, 47%) 

UB2E2 E2 Ub-conjugating 47606201 22.2 VME (2, 9.5%), 
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enzyme TF3BOK (2, 9.5%) 

UBE2N E2 Ub-conjugating 

enzyme 

46577660 17.1 VME (2, 20.4%), 

TF3BOK (6, 

42.8%), Lac (4, 

29.6%) 

UBE2S E2 Ub-conjugating 

enzyme 

23829978 23.8 TF3BOK (2, 14.9%) 

UBE2C (isoform 

4) 

E2 Ub-conjugating 

enzyme 

32967289 46.4 TF3BOK (6, 46.4%) 

UBE2T E2 Ub-conjugating 

enzyme 

73622065 22.5 TF3BOK (2, 11.7%) 

E6-AP (isoform 

3, Ube3A) 

HECT E3 Ub 

ligase 

19718764 100 VME (8, 11.8%) 

ARF-BP1 HECT E3 Ub 

ligase 

73915353 481.6 VME (43, 13.9%), 

TF3BOK (22, 6.6%) 

Trip12 Putative HECT E3 

Ub ligase 

2499839 220.3 TF3BOK (3, 1.8%) 

RN138 RING E3 Ub 

ligase 

74733576 28.2 Lac (2, 13.9%) 

CUL-4A RING E3 Ub 

ligase 

108936013 87.6 Lac (2, 3%) 

CUL-4B 

(isoform 2) 

RING E3 Ub 

ligase 

121114302 102.2 VME (2, 3.4%), 

Lac (2, 2.7%) 

SH3R2 Putative RING E3 

Ub ligase 

122070123 79.2 TF3BOK (6, 

10.3%), Lac (4, 

8.5%) 
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Supplementary Information for “A structural element within the HUWE1 HECT domain 

modulates self-ubiquitination and substrate ubiquitination activities” 

 

Supplementary Figure 1.  Both HUWE1 1 and HUWE1 + 1 HECT domains maintain 

the  conformation.   

(a) Overlay of the C  backbone of the HUWE1 + 1 HECT domain (orange) and HUWE1  1 

HECT domain (blue). 

(b) The C  backbone of the HUWE1 + 1 HECT domain fit into electron density of the HUWE1 

 1 structure demonstrates the similarity of these structures.  

 

Supplementary Figure 2.  Mutation of the catalytic cysteine (C4341) to alanine abolishes 

activity of the HECT domain.  

(a, b) The autoubiquitination activity of C4341A HECT domain was tested using 60 M [
32

P]-

Ub as substrate and (a) 11.6 M C4341A  1 or (b) 12.1 M C4341A + 1 HECT domains 

incubated with UBE1, UBE2L3, and an ATP regenerating system.  Aliquots of the reaction mix 

were removed after the indicated amount of time, quenched in reducing SDS sample buffer, and 

separated on SDS-PAGE.  HECT domain is omitted in the lane marked “N”.  Asterisk denotes a 

likely ubiquitin polymer.   

(c, d) Substrate ubiquitination activity was measured using 5 M [
32

P]-Mcl-1 as substrate and (a) 

11.6 M C4341A  1 or (b) 12.1 M C4341A + 1 HECT domains incubated with UBE1, 

UBE2L3, Ub, and an ATP regenerating system.  HECT domain is omitted in the lane marked 

“N”. 

(e, f) Ligation activity of the HECT domains in the (e) autoubiquitination or (f) Mcl-1 

ubiquitination assay. Activity is given as the ratio between initial velocity (pmol total [
32

P]-Ub 
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product/min) and total enzyme concentration E (pmol).  Errors are the standard deviations 

calculated from three independent experiments, shown in parenthesis.  
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