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Abstract 
 Anthropogenic activity is rapidly changing the global climate through the 
emission of carbon dioxide.  Ocean carbon and sulfur cycles have the potential to impact 
global climate directly and through feedback loops.  Numerical modeling, field and 
laboratory studies are used to improve our mechanistic understanding of the impact of 
natural variability on carbon and sulfur cycling.  Variability in ocean physics, specifically 
changes in vertical mixing, is shown to significantly impact both cycles. The impact of 
interannual variability on the detection and attribution of anthropogenic carbon (Canthro) 
and the storage of Canthro in the Atlantic Ocean is analyzed using a three-dimensional 
global ocean model. Several regions are identified where empirical methods used to 
estimating Canthro are not able to correct for natural variability in the ocean carbon system.  
This variability is also shown to bias estimates of long term trends made from 
hydrographic observations.  In addition, the storage of Canthro in North Atlantic mode 
waters is shown to be strongly influenced by water mass transformation during 
wintertime mixing events.  
 The primary mechanisms responsible for seasonal variability in 
dimethylsulfoniopropionate (DMSP) degradation and dimethylsulfide (DMS) production 
in the oligotrophic North Atlantic are investigated using potential enzyme activity and 
gene expression and abundance data.  Vertical mixing and UV radiative stress appear to 
be the dominant mechanisms behind seasonal variability in DMS production in the 
Sargasso Sea.  This thesis demonstrates the importance of and dynamics of bacterial 
communities responsible for DMSP degradation and DMS production in oligotrophic 
surface waters.  These findings suggest that modifications to current numerical models of 
the upper ocean sulfur cycle may be needed.  Specifically, current static 
parameterizations of bacterial DMSP cycling should be replaced with a dynamic bacterial 
component including DMSP degradation and DMS production. 
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Chapter 1 

 

Introduction 
 

“Human beings are now carrying out a large scale geophysical experiment of a kind that 

could not have happened in the past nor be reproduced in the future.” 

             - Roger Revelle and Hans Suess [1957] 

 

1.1 MOTIVATION 

Over the past century, mankind has unintentionally been conducting a global 

climate sensitivity experiment.  The release of ~330 Pg of anthropogenic derived carbon 

since the industrial revolution (1850-2006) has resulted in exponentially increasing 

atmospheric carbon dioxide concentrations [Canadell et al., 2007]. As a potent 

greenhouse gas, the accumulation of CO2 in the atmosphere alters the global radiative 

balance.  The predicted increase of atmospheric CO2 over the next century is projected to 
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significantly increase surface temperatures, resulting in shifts in regional and global 

climates [Hansen et al., 2006; IPCC, 2001]. This forcing will most likely result in 

substantial changes to the ocean ecosystem including increased sea surface temperatures, 

increased vertical stratification, and decreased nutrient concentrations [e.g. P. W. Boyd 

and Doney, 2002; Sarmiento et al., 2004]. In addition, currently ~ 30% of anthropogenic 

carbon emissions are sequestered in the oceans, with roughly half of the emissions 

remaining in the atmosphere and the remainder being sequestered in the terrestrial 

biosphere [Canadell et al., 2007; Sabine et al., 2004].  While the uptake of CO2 by the 

oceans dampens the atmospheric CO2 increase and resulting rise in temperature, 

increasing ocean dissolved inorganic carbon (DIC) concentrations is projected to 

significantly alter the pH of the oceans [Orr et al., 2005].  Ocean acidification has already 

been observed with surface pH values 0.1 pH units lower than in pre-industrial times 

[Fabry et al., 2008].  However, the greater impact of changes in ocean carbonate system, 

beyond reducing rates of calcification in calcifying organisms, is largely unknown [Fabry 

et al., 2008 and references therein]. 

The magnitude of climate induced changes on ocean physics and the impact of 

these changes on ocean biology will depend to a large part on feedback loops.  Positive 

feedback loops occur when climate induced changes result in more rapid climate change.  

Conversely, negative feedback loops occur when climate induced changes result in 

slowing of global climate change.  Two oceanic biogeochemical cycles have the potential 

to directly mediate global climate through ocean-atmosphere feedback loops: the carbon 

cycle and the sulfur cycle.  In order to understand the potential feedbacks of carbon and 
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sulfur cycles on climate, it is important to first have an understanding of the mechanisms 

driving these two biogeochemical cycles. 

 

1.2 THE CARBON CYCLE 

The ocean carbon cycle is integral to understanding and predicting atmospheric 

CO2 concentrations. The oceans remove carbon dioxide from the atmosphere via two 

pathways: the physical solubility pump and the biological carbon pump [Volk and 

Hoffert, 1985].  The physical pump consists of wind-driven circulation and water mass 

formation.  These physical processes remove CO2 from the atmosphere via air-sea gas 

exchange and sequester it in the ocean interior through seasonal ventilation of the 

thermocline, and water mass formation and convergence.  The biological pump transfers 

carbon from the surface ocean into the ocean interior through the export of organic matter 

from the surface into the deep ocean where it can be remineralized back to CO2. To date, 

the majority of anthropogenic carbon sequestration in the oceans has been the result of 

physical processes [e.g. Keeling and Peng, 1995].  In particular, wind-driven air-sea gas 

exchange has yielded high anthropogenic carbon (Canthro) inventories in surface waters 

[Sabine et al., 2004].  The formation of deep and intermediate waters at high latitudes 

also act to sequester a significant amount of Canthro in the ocean on time scales ranging 

from decades to centuries [Wallace, 2001]. Given the importance of the oceans as a sink 

for anthropogenic carbon, changes in either the solubility or biological pumps could 

significantly impact future atmospheric CO2 concentrations. 
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1.2.1 Carbon Cycle feed backs 

Two primary carbon cycle feedback loops have been proposed: 1) a decrease in 

the solubility pump due to increased surface water stratification (positive feedback), and 

2) changes in the biological pump due to biogeochemically driven changes in carbon 

fixation.  Physical changes are driven by shifts in circulation and increased stratification 

caused by global temperature rise.  These changes will most significantly impact polar 

regions where warming induced stratification, coupled with surface water freshening, 

may result in decreased water mass formation and subsequently decreased CO2 uptake 

[e.g. Sarmiento et al., 1998; Thorpe et al., 2001].  However, modeling work by Russell 

and co-authors [e.g. Russell et al., 2006] for the Southern Ocean suggests that the 

opposite hypothesis may also occur. They propose that the predicted poleward 

intensification of Southern Ocean westerly winds caused by warming climates will 

decrease stratification by increasing upwelling.  This increased ventilation would lead to 

an enhanced net sink of carbon in the Southern Ocean (negative feedback).  Opposing 

feedbacks to climate changes make it difficult to determine the net impact of these 

changes on the future of the ocean carbon sink.  Therefore, a mechanistic understanding 

of the processes driving changes in the physical carbon pump is needed in order to 

accurately predict future changes in the ocean carbon sink. 

Variations in global climate will also impact ocean ecosystems thereby impacting 

the biological carbon pump.  Warming induced stratification will reduce upwelling and 

thus the supply of nutrients to the surface ocean [Karl, 2002].  While decreased surface 
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nutrient concentrations has the potential to decrease primary production and carbon 

fixation (positive feedback), this change may be offset by a number of other 

biogeochemically driven shifts in ecosystem dynamics that may increase carbon fixation 

(negative feedback). Boyd and Doney [2003] provide a review of potential changes in the 

biological carbon pump that could affect carbon storage.  For example, elevated CO2 

levels may increase phytoplankton growth rates (carbon fertilization), cause shifts in 

species composition, and impact nutrient uptake stoicheometric ratios.  Shifts in species 

composition may in turn alter carbon export to the deep ocean, rates of organic matter 

remineralization, and the production of the climatically relevant trace gas dimethylsulfide 

(see discussion below).  Increased iron supply through dust deposition may increase 

primary production particularly in High Nutrient Low Chlorophyll regions.  Finally, 

decreased fixed nitrogen in surface waters resulting from the predicted increased 

stratification and increased iron from dust deposition may yield increased rates of 

nitrogen fixation. Due to the complexity of the ocean ecosystem and potential for 

interplay among various feedbacks, the absolute magnitude and even sign of these 

impacts remains unclear.  Further work is needed to elucidate the mechanisms driving 

these feedbacks. 

While it is extremely difficult to quantify these feedbacks in the field, numerical 

models can provide insight into how the ocean system may react to changes in climate 

forcings.  Specifically, the magnitude and signs of these feedbacks and interactions 

between physical and biogeochemical changes are being investigated using coupled 

carbon climate models.  Fung et al. [2005] suggest that reduced CO2 uptake caused by 
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changes in the physical pump are mitigated by increased uptake by the biological pump 

with a net positive feedback between the global carbon system and climate.  Similarly, a 

modeling study by Sarmiento et al. [1998] found evidence of a negative biological pump 

feedback in the Southern Ocean. However, the uncertainties in both the physical and 

biological responses to climate change are significant. An improved mechanistic 

understanding of anthropogenic carbon uptake and storage is needed in order to constrain 

these feedbacks and accurately predict future atmospheric CO2 and temperature increases. 

This thesis works towards this goal by studying mechanisms driving interannual 

variability in the uptake and storage of anthropogenic carbon and the implications of this 

variability on the detection of Canthro using observations. 

 

1.2.2 Estimates of the ocean carbon sink 

Current estimates of oceanic Canthro distributions and rates of change are made 

from hydrographic measurements and numerical model simulations.  Direct observations 

produce ‘snap shots’ views of the ocean system.  Since the 1970’s, several global surveys 

of the ocean carbon system have been conducted including the Geochemical Ocean 

Section Study (GEOSECS), and the World Ocean Circulation Experiment  (WOCE)/Joint 

Global Ocean Flux Study (JGOFS).  Currently, the US and International Climate 

Variability and Predictability (CLIVAR)/CO2 program is continuing to monitor changes 

in ocean carbon by repeating key hydrographic surveys from the WOCE/JGOFS era. The 

thousands of high precision carbon observations measured during these programs have 

provided a picture of the magnitude and variability of the ocean carbon sink.  However, 
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in order to estimate anthropogenic carbon from hydrographic measurements, the 

relatively small anthropogenic signal, about 5% of total dissolved inorganic carbon in 

surface waters in the 1990s [Sabine et al., 2004], must be separated from the background 

natural dissolved inorganic carbon (DIC).  In addition, the anthropogenic signal is further 

obscured by significant short-term variability in the ocean carbon system.   

Several empirical methods have been proposed to assist in the detection and 

attribution of anthropogenic carbon from hydrographic measurements.  Typically, 

observed DIC fields are corrected for changes in biology and circulation using tracers of 

these processes, such as changes in apparent oxygen utilization, nutrient concentrations, 

temperature and salinity.  Some approaches (e.g. !C* [Gruber et al., 1996]) make this 

correction using thermodynamic principles and biogeochemical assumptions, for example 

considering carbonate thermodynamics and organic matter remineralization 

stoichiometries.  Alternatively, a purely statistical method can be used to remove 

variability in DIC due to natural changes in circulation and biological respiration and 

remineralization (e.g. Multiple Linear Regression approach [Brewer et al., 1995; 

Wallace, 1995], see Chapter 2 for details).  Often different empirical techniques for 

determining Canthro give significantly different inventory estimates and spatial 

distributions.  However, determining the success or failure of the various methods is 

difficult as the ‘true’ anthropogenic signal is unknown.  Accurate monitoring of oceanic 

Canthro is not only essential for determining the magnitude of the ocean carbon sink, but 

also for validating models that are used to predict future changes in ocean uptake and 

atmospheric CO2 concentrations. In this thesis, models and observations are used 
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synergistically in order to provide insight into the limitations of the empirical methods 

and potential biases in our observational based estimates of Canthro (Chapter 2). 

Numerical models provide an invaluable tool for understanding natural variability 

in the ocean carbon system, providing a context for observations, and elucidating driving 

mechanisms for observed changes in Canthro and DIC.  The first three dimensional model 

estimates of the spatial distribution of Canthro uptake by the oceans were made by Maier-

Reimer and Hasselmann [1987], Bacastow and Maier-Reimer [1990], and Sarmiento et 

al. [1992].  The latter uses a primitive equation 3-D global general circulation model with 

annual mean forcing derived from observations and atmospheric CO2 concentrations 

prescribed using historical data and observations. These early models provided an initial 

estimate of the magnitude and spatial distribution of the ocean carbon sink.  However, 

they lacked fundamental components, such as seasonal and interannual variability in 

model forcing, biological fluxes, and climate feedbacks, which are essential for a more 

accurate determination of Canthro storage, spatial distributions, and future projections.  The 

subsequent generations of models included many of these components, for example the 

inclusion of a biological carbon pump [e.g. Sarmiento et al., 1995], and the inclusion of 

changes in radiative forcing due to changes in atmospheric CO2 [e.g. Sarmiento et al., 

1998].  The current generation of global climate models are fully coupled with ocean, 

atmosphere, terrestrial and sea-ice modules, seasonal cycles and interannual variability, 

full ocean carbonate systems, and multiple-component ecosystems [e.g. Fung et al., 

2005].  These models can be run either as fully coupled systems allowing for future 

projections of global carbon and climate system dynamics, or as hindcast simulations that 
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provide insight into the driving mechanisms behind observed interannual variability.  

Hindcast simulations are run using global ocean biogeochemical models forced with 

atmospheric reanalysis and satellite data products [e.g. Doney et al., 2007].  These 

models have been used to evaluate the mechanisms behind interannual variability in 

ocean temperature [e.g. Doney et al., 2007], air-sea CO2 flux [e.g. Doney et al., 2009; 

Thomas et al., 2008], and pre-industrial carbon concentrations [e.g. Doney et al., 2009].  

In this thesis, interannual variability of the ocean carbon system is investigated using both 

a fully coupled global carbon model and the hindcast simulation of this model.  We 

examine the mechanisms driving variability in anthropogenic carbon in the model and 

explore the implications of this variability on the detection and attribution of Canthro from 

hydrographic observations.  

 

1.3 THE SULFUR CYCLE 

Dimethylsulfide (DMS), a climatically relevant gas, is produced and cycled in 

coastal and open ocean ecosystems by the food web and is the predominant source of 

biogenic sulfur to the atmosphere.  Marine emissions of DMS constitute greater than 55% 

of the global non-anthropogenic biogenic sulfur flux, and greater than 90% of the marine 

biogenic sulfur flux [Andreae, 1990; Kelly and Smith, 1990].  Once ventilated to the 

atmosphere, DMS is oxidized to sulfate and methane sulfonate aerosols [Shaw, 1983], 

which act as cloud condensation nuclei.  Perturbations in DMS ventilation rates have the 

potential to alter aerosol abundance, cloud coverage, and cloud properties, which in turn 
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affect the atmospheric radiative balance and climate [Charlson et al., 1987].  In 1987, 

Charlson et al. proposed that marine phytoplankton regulate their environment through 

the production of DMS.  They hypothesized that, in response to radiative or temperature 

stress, marine phytoplankton increase DMS production. This, in turn, increases 

ventilation of DMS to the atmosphere, augments regional cloud cover, and ultimately 

decreases the radiative or temperature stress for the phytoplankton thereby forming a 

negative feedback loop.  The DMS cycle has proved to be significantly more complex 

than Charlson et al. originally suggested.  We now understand that the entire microbial 

food web is involved in DMS cycling and that bacteria, as well as phytoplankton, are 

important. 

It is believed that phytoplankton produce the primary precursor of DMS, 

dimethylsulfoniopropionate (DMSP).  The production of DMSP is hypothesized to be in 

response to environmental stresses such as osmotic, oxidative, grazing, or temperature 

stress. Several studies have shown that phytoplankton only convert a small fraction of 

their DMSP to DMS [Niki et al., 2000; Stefels and Dijkhuizen, 1996; Wolfe et al., 2002].  

The majority of phytoplankton intracellular DMSP is released into the water column via 

cell senescence, grazing, and viral lysis where it is then rapidly cycled by the bacterial 

community.  Due to non-DMS producing bacterial degradation of DMSP and bacterial 

DMS consumption, only a small percentage (1-2%) of DMSP produced by marine 

phytoplankton is ventilated to the atmosphere as DMS [Bates et al., 1994; Kwint and 

Kramer, 1996].  While we have come a long way from Charlson et al.’s [1987] initial 

hypothesis, we still have only a rudimentary understanding of the mechanisms driving 
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sulfur cycling dynamics in the surface ocean, in particular bacterial sulfur cycle 

dynamics. 

DMS concentrations in aquatic ecosystems are controlled by phytoplankton 

taxonomy, productivity and physiological status, bacterial transformations, 

photochemical oxidation and ventilation.   Therefore, changes in the physical and 

chemical properties of aquatic ecosystems, such as those projected to occur under high 

CO2 conditions, have the potential to affect DMS production.  In particularly, predicted 

changes in wind stress and radiative flux have the potential to impact community 

composition, rates of primary production, and biogeochemical cycling.  This response to 

anthropogenic induced changes could either offset or augment global temperature 

increases. As Charlson et al. [1987] initially proposed, increased DMS ventilation to the 

atmosphere may act as a negative feedback decreasing global temperatures.  However the 

converse is also possible; decreased DMS may decrease cloud formation and back-scatter 

of incoming solar radiation, and augment temperature increases. Similar to the carbon 

cycle, both the sign and magnitude of the potential sulfur cycle feedback is unknown.  

Previous studies have predicted both scenarios from a 14% increase in global DMS 

emissions by 2080 [Gabric et al., 2004] to a 10% decrease in global DMS emissions by 

2100 [Kloster et al., 2007]. The uncertainty in the response of the marine sulfur cycle to 

anthropogenic activity is due to our limited knowledge of the physical and chemical 

mechanisms driving DMS production in marine ecosystems.  Therefore, current DMS 

models are limited in their ability to accurately produce reliable predictions of future 

DMS emissions and how this will ultimately impact the radiative budget. 
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1.4 UNDERSTANDING VARIABILITY 

The oceans are dynamic and complex systems with significant variability on time-

scales ranging from hours to centuries.  This variability is reflected in both the carbon and 

sulfur cycles.  Identifying the driving mechanisms behind these changes provides an 

improved understanding of the biogeochemical cycle and allows for a more accurate 

prediction of the impact of climate change.  In this thesis, we focus on mechanisms 

driving seasonal and interannual variability in anthropogenic carbon accumulation and 

DMS production. 

Oceanic carbon and sulfur pools are impacted by chemical, physical and 

biological processes.  Therefore, in order to fully understand these cycles, it is necessary 

to pursue an interdisciplinary approach.  In addition, the use of observations in 

conjunction with numerical models can both validate the models, which are then used for 

future climate predictions, and provide a context and mechanistic explanation for the 

observations.  This thesis uses a unique combination of chemical, biological, genomic, 

and numerical techniques to increase our understanding of the variability in ocean carbon 

and sulfur cycling. 

 

1.5 RESEARCH STRATEGY 

Several questions motivated the carbon cycle research presented in this thesis: 1) 

How does interannual variability in the ocean carbon system impact our ability to observe 
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and quantify the uptake of anthropogenic carbon by the oceans? 2) How does interannual 

variability impact the magnitude of the ocean carbon sink and distribution of Canthro in the 

ocean interior?  and 3) What are the mechanisms behind the observed variability in ocean 

Canthro? These questions are addressed in Chapters 2 and 3.   Specifically, Chapter 2 uses 

the output of a global coupled climate model as an artificial dataset to test the accuracy of 

two empirical methods used to calculate anthropogenic carbon from hydrographic 

observations.  This chapter identifies regions where the empirical methods are not able to 

correct for natural variability in the carbon system, namely high latitude water mass 

formation regions, and suggests approaches that may minimize errors in anthropogenic 

carbon estimates.  Chapter 3 uses a suite of ocean model simulations to evaluate 

interannual variability in anthropogenic carbon storage in the North Atlantic.  This work 

focuses on the impact of the North Atlantic Oscillation, the dominant climate mode in the 

North Atlantic that oscillates between positive and negative phases, on the uptake of 

anthropogenic CO2 and changes in anthropogenic carbon inventories.  The results suggest 

that increased mode water transformation during positive North Atlantic Oscillation years 

results in increased storage of anthropogenic carbon.  Water mass transformation creates 

dense water masses through diapycnal mixing and surface water transformations via air-

sea buoyancy fluxes.  In this case, mode waters are formed from high anthropogenic CO2 

surface waters. This work implies that much of the anthropogenic carbon found in the 

ocean interior is from surface waters advected into the water mass formation region 

rather than from local gas exchange.  Therefore, interannual variability in ocean physics, 
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specifically wind-driven circulation and heat transfer, significantly impacts both the 

storage and detection of anthropogenic carbon in the ocean.   

 Similar to the carbon cycle work presented in Chapters 2 and 3, Chapters 4 and 5 

attempt to determine the primary mechanisms driving seasonal variability in the upper 

ocean sulfur cycle.  Specifically, this study focuses on understanding the chemical and 

physical mechanisms controlling bacterial cycling of DMSP in open ocean, oligotrophic 

waters.  As described briefly above, the majority of DMSP produced by phytoplankton is 

released into the water column and cycled by the bacterial community.  This community 

degrades DMSP via two pathways, a cleavage pathway which produces DMS and a 

demethylation pathway which excludes DMS as a product [Cantoni and Anderson, 1956; 

Kiene and Taylor, 1988].  In addition, bacterial DMS degradation is the primary loss 

process for DMS below the surface layer [Simo, 2004].  Therefore, the release of DMS to 

the atmosphere strongly depends on the activity of the bacterioplankton community. A 

new method was developed to measure the activity of bacterial DMS producing enzymes 

in field samples (Chapter 4).  In addition, a series of sensitivity tests were conducted to 

optimize the protocols for the Sargasso Sea and to understand the limitations of the 

methods (Chapter 4).   

Seasonal variations in the two bacterial DMSP degradation pathways were 

quantified in a 10-month time-series at the Bermuda Atlantic Time-series Study site 

(Chapter 5).  During monthly cruises, depth profiles of the DMSP demethylation 

pathway were quantified through the expression and abundance of 5 subclades of the 

bacterial DMSP demethylation gene dmdA.  The DMSP cleavage pathway was quantified 
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both through gene expression and abundance analyses (dddP gene) and through the 

bacterial DMSP cleavage potential enzyme activity assay.  In addition, monthly 

phytoplankton DMS production was measured using the phytoplankton DMSP lyase 

potential enzyme assay.  Based on this work, a modified conceptual model for the open 

ocean, oligotrophic sulfur cycle is proposed. Bacteria are shown to play a significant role 

in DMS and DMSP cycling with substantial bacterial DMS production in the upper water 

column, particularly in the late summer and early fall (Chapter 5).  In addition, DMSP 

degradation is shown to be carried out by a diverse group of bacteria and the potential for 

bacterial subclade niche differentiation is suggested (Chapter 5).  Finally, the importance 

of UV radiative stress in oligotrophic organic sulfur cycling by both phytoplankton and 

bacteria is suggested (Chapter 5). 
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ABSTRACT 

Estimates of temporal trends in oceanic anthropogenic CO2 rely on the ability of 

empirical methods to remove the large natural variability of the ocean carbon system. A 

coupled carbon-climate model is used to evaluate these empirical methods. Both the !C* 

and MLR techniques reproduce the predicted increase in dissolved inorganic carbon for 

the majority of the ocean and have similar average percent errors for decadal differences 

(24.1% and 25.5% respectively). However, this study identifies several regions where 

these methods may introduce errors. Of particular note are mode and deep water 

formation regions, where changes in air-sea disequilibrium and structure in the MLR 

residuals introduce errors. These results have significant implications for decadal repeat 

hydrography programs, indicating the need for sub-annual sampling in certain regions of 

the oceans in order to better constrain the natural variability in the system and robustly 

estimate the intrusion of anthropogenic CO2. 

 

2.1 INTRODUCTION 

 Since the start of the industrial revolution, anthropogenic activity, such as fossil 

fuel combustion, has resulted in the emission of large quantities of carbon dioxide (CO2) 

into the atmosphere. The resulting increase of atmospheric CO2 over the past several 

centuries has been well documented from high-resolution ice cores [e.g. Etheridge et al., 

1996] and, starting in 1957, direct measurements [e.g. Keeling and Whorf, 1994; Keeling 

et al., 1976]. As CO2 is a potent greenhouse gas, increased atmospheric concentrations 
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are projected to increase surface temperatures, resulting in shifts in regional and global 

climates [e.g. Hansen et al., 2006; IPCC, 2001]. Consequently, there is great interest in 

quantifying the current and future rates of increase of atmospheric CO2 and predicting the 

effect of these increased concentrations on the global climate [e.g. Dilling et al., 2003]. 

Not all anthropogenic CO2 remains in the atmosphere. Current estimates are that 

the oceans and terrestrial biosphere have each removed ~30% of anthropogenic CO2 

emissions over the past 20 years [IPCC, 2001; Sabine et al., 2004b]. Due to large 

uncertainties on these estimates, there are ongoing efforts to better quantify the 

magnitude of these two sinks using a combination of field programs, empirical methods, 

and numerical models. For the oceans, a major focus is on directly measuring the 

temporal change in the oceanic dissolved inorganic carbon (DIC) inventory through time-

series and repeat hydrographic sections [Peng et al., 1998; Wallace, 1995; 2001]. The 

U.S. and international CLIVAR/CO2 programs (http://ushydro.ucsd.edu; 

http://ioc.unesco.org/ioccp), for example, are monitoring the oceans’ response to 

anthropogenic CO2 and climate change through reoccupation on approximately a decadal 

time-scale of key sections from the 1990’s WOCE/JGOFS Global CO2 Survey. 

The ocean carbon system exhibits significant natural climate variability on sub-

annual to decadal and longer time scales. This natural variability complicates efforts to 

constrain oceanic anthropogenic CO2 uptake via direct measurements of DIC temporal 

changes. For example, an estimate of the increase in DIC due to anthropogenic CO2, 

!Canthro, can be computed by differencing observed DIC concentrations at two sampling 

times: 
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However, this estimate will alias vertical and lateral heave of isopycnal surfaces 

associated with mesoscale eddies and frontal oscillations [Haine and Gray, 2001; 

Peacock et al., 2005] as well as shifts in water masses and water mass properties 

associated with interannual climate modes such as the El Nino Southern Oscillation 

[Feely et al., 1999; Le Quere et al., 2003]. This is particularly a problem for field 

programs such as CLIVAR/CO2, which sample on limited spatial and temporal time 

scales and so greatly under-sample the natural variability of the ocean carbon system. 

However, these programs are currently one of the only ways of acquiring basin-scale, 

full-depth ocean coverage.  

Two broad categories of methods have been proposed to correct observed DIC 

fields for natural variability in biology and circulation in order to detect secular trends in 

anthropogenic CO2 storage. The first approach estimates total anthropogenic CO2 

(Canthro), defined as the DIC concentration difference between current and pre-industrial 

conditions. Empirical methods for estimating Canthro, first introduced by Brewer [1978] 

and Chen and Millero [1979], take the general form: 

! 

Canthro = Cobs "Ceq "Cbio "Cdiss       (2) 

where Cobs is the observed DIC, Ceq
 
is the equilibrium DIC concentration for a pre-

industrial atmosphere (280ppm), Cbio is the change in DIC due to remineralization of 

organic matter, and Cdiss is the change in DIC due to the dissolution of calcium carbonate. 

Gruber et al. [1996] modified equation 2 by adding a term, Cdiseq, to account for the CO2 

air-sea disequilibrium experienced by a water parcel when it was last at the surface: 
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! 

Canthro

C*
= "C *#Cdiseq         (3) 

where !C* equals Canthro in equation 2. This technique (termed the !C* method) corrects 

DIC for changes in rates of remineralization and dissolution using other tracers for these 

processes, such as apparent oxygen utilization (AOU) and the change in alkalinity. This 

requires the assumption that changes in AOU and alkalinity can be converted to changes 

in DIC using fixed ratios. In addition, the !C* method does not account for changes in 

DIC resulting from isopycnal heave and so is typically be applied along isopycnal 

surfaces to avoid biases in the estimate of Canthro [Gruber et al., 1996]. 

The !C* method is commonly used for estimating Canthro albeit with subtle 

difference in application [Coatanoan et al., 2001; Gruber, 1998; Lee et al., 2003; Lo 

Monaco et al., 2005; Sabine and Feely, 2001; Sabine et al., 2004a; Sabine et al., 1999; 

Sabine et al., 2002; Wanninkhof et al., 1999]. Several other empirical methods have been 

proposed for estimating total anthropogenic CO2, including the TrOCA approach 

[Touratier and Goyet, 2004a; b; Touratier et al., 2005] and the MIX approach [Goyet et 

al., 1999]. Estimates of total anthropogenic CO2 can also be used to estimate the temporal 

change of Canthro, !Canthro, by differencing Canthro from two sampling times; for example 

[Peng et al., 1998; Sabine et al., 2004a]: 
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The second approach for correcting observed DIC fields in order to estimate the 

temporal change in anthropogenic carbon, 

! 

"C
anthro

, utilizes multiple linear regression 

(MLR) analysis [Friis et al., 2005; Goyet and Davis, 1997; Peng, 2005; Peng et al., 

2003; Sabine et al., 2004a; Sabine et al., 1999; Wanninkhof et al., 2006a]. This technique, 
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introduced by Brewer et al. [1995] and Wallace [1995], is a purely statistical method for 

removing variability in DIC due to natural changes in circulation and biological 

respiration and remineralization. The MLR method fits observed DIC as a function of 

physical (temperature, salinity) and biogeochemical (oxygen, phosphate, nitrate, silicate) 

properties. !Canthro is then estimated as the residual between the observed DIC and an 

MLR calculated DIC, which is representative of some earlier time (see details is section 

2.3.2): 
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The basic assumption is that temporal variability in DIC due to natural processes will 

follow the linear spatial relationships derived using the MLR, while DIC changes due to 

anthropogenic activity will not. In theory, the MLR should remove the majority of the 

DIC variability caused by heaving of isopycnal surfaces or shifts in fronts between water 

masses.  

 As an alternative to the above mentioned empirical techniques, tracer-based proxy 

methods are often used to estimate the temporal evolution of anthropogenic CO2 in the 

ocean. These approaches use tracers, such as #13
C and chlorofluorocarbons, as proxies for 

anthropogenic CO2 [e.g. McNeil et al., 2003; Quay et al., 2003; Wallace, 1995; Waugh et 

al., 2006]. Often different empirical techniques and tracer approaches give significantly 

different inventory estimates and spatial distributions of anthropogenic carbon. Several 

studies have compared Canthro estimates made by these various techniques [Lo Monaco et 

al., 2005; Peng, 2005; Peng et al., 2003; Sabine et al., 1999; Wanninkhof et al., 1999]. 

However, determining the success or failure of these methods is difficult as the ‘true’ 
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anthropogenic signal is unknown. Several studies [e.g. Matsumoto and Gruber, 2005; 

Waugh et al., 2006] have addressed this problem by using the output of a global climate 

model as a synthetic dataset to compare empirical based estimates of Canthro to the “true” 

anthropogenic signal in the model. Matsumoto and Gruber [2005] use this approach to 

conclude that the largest error in the !C* estimate of Canthro is due to the uncertainty in 

the air-sea disequilibrium term. 

The objective of this study is to evaluate our ability to accurately estimate the 

increase of oceanic anthropogenic CO2 over time, !Canthro. To do this, we use the output 

of a coupled-carbon-climate model as an artificial dataset to which we apply commonly 

used empirical methods for estimating 

! 

"C
anthro

; our approach is similar to that of 

Matsumoto and Gruber [2005] but with an emphasis on temporal changes. To replicate 

the sampling schemes of repeat hydrography programs, which are reoccupying ocean 

sections on a ~10 year time scale, we sample model output for two months 10 years apart. 

We use this synthetic dataset to determine where these methods may succeed and may 

fail in the context of ocean carbon variability and the current CLIVAR/CO2 Repeat 

Hydrography Program.  

This study compares the two most widely used techniques: !C* and MLR. We 

find that both methods have similar average percent errors and RMS errors, and do a 

reasonable job reproducing the temporal trends of the predicted anthropogenic signal. 

However, the !C* method is unable to remove some of the natural variability in the 

ocean carbon cycle, particularly in high latitude deep convection regions, resulting in 

estimates of 

! 

"C
anthro

 which deviate from the predicted values by up to ±10µmol/kg per 
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decade. This signal is comparable to or larger than the predicted secular trends over the 

10 year sampling period. The MLR technique also has shortcomings primarily in its 

interpretation. Both methods have known problems in the upper 200m and so cannot be 

applied robustly to this region.  

 

2.2 COUPLED-CARBON-CLIMATE-MODEL 

 The CSM1.4-Carbon model [Doney et al., 2006] output is used as a synthetic 

dataset to address the question of anthropogenic CO2 detection and attribution. The 

model has fully coupled physical climate and carbon cycle modules for the ocean, 

atmosphere and land. The CSM1.4 model was developed in the framework of the 

National Center for Atmospheric Research (NCAR) Community Climate System Model 

(CCSM) [Blackmon et al., 2001]. The physical model is comprised of the NCAR Ocean 

Model (NCOM), the NCAR Land Surface Model (LSM), the Community Climate Model 

(CCM) and the Community Sea Ice Model (CSIM), which are coupled together so that 

mass and energy exchanges among the different reservoirs are conserved. The ocean 

model [Gent et al., 1998] is non-eddy resolving with a grid spacing of 3.6° longitude and 

0.8 to 1.8° latitude with 25 vertical levels. The land and atmospheric model resolution is 

~3.75° with 18 vertical levels (for the atmosphere). The carbon module for each 

component is spun up individually in order to minimize drifts in the global carbon 

inventories. The land biogeochemical model is a modified version of the Carnegie-Ames-

Stanford-Approach (CASA) model. The ocean biogeochemical model is derived from the 
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OCMIP II biotic model described in Najjar et al. [1999; 2007]. Prognostic variables 

include DIC, dissolved organic matter (DOM), particulate organic matter (POM), 

phosphate (PO4), dissolved organic phosphorus, oxygen (O2), total dissolved inorganic 

iron, and alkalinity. Three significant modifications were made to the OCMIP II model: 

production (DOM, POM) is prognostically computed as a function of light, temperature, 

phosphate, and iron; iron is added as a limiting nutrient of biological production; and an 

iron cycle is incorporated into the model. Though ecosystem dynamics are not explicitly 

calculated in the model, model equations are fully prognostic.  Therefore, there is no 

nudging or restoring of variables during the model runs. A full description of the 

coupled-climate model, including model biogeochemical equations, can be found in 

Doney et al. [2006]. 

A 1000-year control simulation of the CSM1.4 model compares reasonably well 

against observations, displaying stable surface temperatures (±0.10 K) and atmospheric 

CO2 concentrations (±1.2ppm), and relatively little deep ocean drift [Doney et al., 2006; 

Fung et al., 2005]. The largest discrepancies between the model and observations are in 

the equatorial Pacific Ocean in which CCM atmospheric dynamics create a dual ITCZ 

resulting in unrealistic precipitation patterns. Also in the equatorial Pacific, simulated 

ocean biogeochemistry results in unrealistically low export production due to excessive 

iron limitation and problems with upwelling parameterizations [Doney et al., 2006].  

We focus on two model simulations: a 1000 year control run and the final 100 

years from a transient run (1820-2100) forced with historic fossil fuel CO2 emissions up 

to 2000 and then the Intergovernmental Panel on Climate Change (IPCC) ‘business as 
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usual’ (A2) emissions scenario [IPCC, 2001; Nakicenovic et al., 2000]. The transient run 

(1820-2100) was started on year 101 of the control run. Because the simulations use 

prescribed CO2 emissions rather than prescribed atmospheric CO2 trajectory, the model 

years do not exactly match actual calendar years. The simulated atmospheric CO2 

concentration in year 2000, therefore, is somewhat low compared to observations (~346.5 

ppmv compared with ~367 ppmv), lagging about 12 years behind reality.  While the 

model CO2 concentrations cannot be directly matched to calendar years, the overall CO2 

temporal trends for the 21
st
 century and the year 2100 CO2 concentration (~765 ppmv) 

are comparable to those from other carbon-climate projections [Friedlingstein et al., 

2006; Fung et al., 2005].  

 Anthropogenic CO2 is not explicitly tracked in the CSM1.4 model, therefore, the 

intrusion of anthropogenic CO2 into the ocean must be calculated from the model output. 

There are two approaches for this calculation.  The first method computes Canthro by 

differencing the transient simulation and the corresponding time in the control run. 

However, because the physics of the fully coupled simulations evolve independently, the 

high frequency variability is not coherent between the control and transient simulations. 

Therefore, for the CSM1.4 model, this is not an ideal method. We follow the second 

approach, which takes advantage of the temporal-scale separation between natural 

variability and anthropogenic secular trend by applying a low pass filter to the high 

temporal resolution (monthly) output of the model. This removes the natural short term 

variability in the ocean carbon cycle revealing the underlying ‘anthropogenic’ increase. 
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This smoothed estimate of Canthro is imperfect as it misses short term variations in the 

anthropogenic inventory caused by isopycnal heave.  

The magnitude of the short term variability in Canthro is investigated using a pair of 

historical (1958-2004) ocean-only simulations [Lovenduski et al., 2007; Moore et al., 

2004]. We compare the true Canthro estimate, calculated by differencing a control run and 

a transient run with identical surface forcing and nearly identical physical circulation, to a 

low-pass filter estimate of Canthro calculated using a spline fit to the transient run.  The 

true Canthro estimate and the low-pass filter estimate of Canthro for three representative 

latitudes are shown in Appendix A.  This analysis indicates that the mean error introduced 

by the low-pass filter approximation of Canthro is 0.37µmol/kg per decade for the depth 

range 200-2000m. The mode RMS deviation of the low-pass filter estimate from the true 

value for the ocean-only simulations is 0.13µmol/kg per decade (200-2000m). These 

errors are considerably smaller than either the natural variability or the errors in the !C* 

and MLR techniques, emphasized below. While the ocean-only simulations allow us to 

more accurately quantify Canthro, the coupled-carbon model allows for the exploration of 

future carbon scenarios that include changing ocean dynamics. For this study, a spline fit 

to CSM1.4 model output is used to calculate the low-pass filter estimate of Canthro, 

! 

"Canthro

predicted . Figure 2.1 shows CSM1.4 model DIC output for the A2 transient run and the 

corresponding 100 years of the control run for three representative model cells. Plotted in 

black are the spline fits used to estimate 

! 

"Canthro

predicted .  

In the surface ocean (upper 50m), the A2 transient run exhibits an average DIC 

increase of 1.36µmol/kg/yr for the model period corresponding to the decade with an 
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average atmospheric CO2 of 375ppm (approximately calendar years 2000-2010). This is 

in agreement with present day observed surface ocean DIC increases [Peng et al., 1998; 

Sabine et al., 2004a]. The accumulation of anthropogenic CO2 decreases rapidly with 

depth to an average value of 0.13 µmol/kg/yr (2500-5000m) during this period. The 

spatial distribution of anthropogenic CO2 in the model is also consistent with Sabine et 

al. [2004a] who estimate that 23% of anthropogenic ocean carbon is stored in the North 

Atlantic (in the model 26% is in the North Atlantic), 9% is stored in the Southern Ocean 

(in the model 9% is in the Southern Ocean), and 50% is found in the upper 400m (in the 

model 54% is above 400m). 

We focus much of our analysis on a representative hydrographic section in the 

Atlantic Ocean. Monthly model output is extracted along a north-south transect at 

approximately 25°W, corresponding to the WOCE A16 cruise track [Johnson and 

Gruber, 2007; Johnson et al., 2005; Peltola et al., 2005; Wanninkhof et al., 2006b]. This 

track was chosen because it bisects the Atlantic Ocean and includes both the North 

Atlantic Deep Water and Antarctic Intermediate water formation regions, two important 

portals for CO2 injection into the deep ocean. To mimic the sampling strategy of the 

repeat hydrography programs, the A16 transect analysis is conducted using A2 transient 

run model output for two months exactly 10 years apart (mean atmospheric 

CO2=375ppm). The arrows in Figure 2.1 indicate the months used for the A16 transect 

analysis. Similar to field data, this sampling scheme aliases model DIC variability on 

time scales from monthly to decadal. A global analysis is also conducted (section 2.7) 
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using annual mean model output extracted for two years exactly 10 years apart; this 

aliases DIC variability on time scales from interannual to decadal. 

 

2.3 CALCULATIONS 

2.3.1 !C* and 

! 

"C
anthro

C*  

 The !C* analysis was conducted using Gruber et al.’s [1996] formulation of 

equation 2: 

!C*= C – Ceq (S,", Alk
0
)|ƒCO2=280ppm + rC:O2(O2

sat 
– O2) + 1/2[(Alk

0
 – Alk) + rN:O2(O2

sat
 – 

O2)]             (6) 

where rC:O2 and rN:O2 are the Redfield stoichiometric ratios for Corg:O2 and N:O2 

respectively. In order to be consistent with the ocean biogeochemical model, Anderson 

and Sarmiento’s [1994] modified Redfield ratios are used, P:N:Corg:O2= 1:16:117:-170. 

O2
sat

 is the oxygen saturation concentration and is calculated using the equations of Weiss 

[1970]. Ceq is the equilibrium DIC concentration given a pre-industrial atmosphere 

(atmospheric CO2=280ppm) and is calculated as a function of potential temperature ($), 

salinity (S), preformed alkalinity (Alk
0
), and pCO2 (280ppm) using the CO2 System in 

Seawater code written by Zeebe and Wolf-Gladrow [2001; 2004]. Alk
0
 is the preformed 

alkalinity and is calculated using a multiple linear regression fit to upper ocean salinity 

(S), phosphorus (P), and oxygen (O2) for years 101-450 of the control run. Model 

concentrations are converted from volume normalized units to conventional mass 
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normalized units using a constant conversion factor (1026 kg/m
3
). Results are presented 

in µmol/kg for depth profiles and mol/m
2
 for column inventories.  

The pre-industrial air-sea disequilibrium term Cdiseq (Eq. 3) is assumed to remain 

constant with time along an isopycnal surface such that Cdiseq(t1)= Cdiseq(t0) [Gruber et 

al., 1996]. Therefore from equations 3 and 4: 

! 

"Canthro

C*
= ("C * (t

1
) #Cdiseq (t1)) # ("C * (t0) #Cdiseq (t0)) = "C * (t

1
) #"C * (t

0
)   (7) 

!C* and 

! 

"C
anthro

C*  are calculated along isopycnal surfaces using monthly mean model 

output roughly following the A16 transect and then projected back into depth space.  The 

error introduced by this remapping is approximately 1.0µmol/kg. For the global 

calculations, !C* and 

! 

"C
anthro

C*  are calculated in depth space using annual mean model 

output due to computational constraints. We compare !C* and 

! 

"C
anthro

C*  calculated in 

depth and isopycnal space and conclude that, while small differences exist, both the 

magnitude of the 

! 

"C
anthro

C*  estimate and the major trends are the same for both 

calculations. 

 

2.3.2 Multiple Linear Regression and 

! 

"C
anthro

MLR  

There is no standard set of physical and biogeochemical variables for DIC MLR. 

Therefore, the optimized MLR parameters differ depending upon the chosen variables 

and ocean region [Brewer et al., 1995; Friis et al., 2005]. As neither nitrate nor silicate is 

explicitly included in the model, we use oxygen and phosphate as the biogeochemical 

variables to compute the estimated DIC concentration, C
MLR

: 
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C
MLR

= a + b" + cS + dO2 + ePO4      (8) 

where a-e are the optimized MLR parameters (p). Model concentrations are converted 

from volume normalized units to conventional mass normalized units (!mol/kg) using a 

constant conversion factor (1026 kg/m
3
). Due to seasonal variability in the upper water 

column and differences between the hydrographic properties of thermocline and deep 

water masses, the MLR fits are done using temperature, salinity and nutrient output from 

200-2000m. [Brewer et al., 1995; Sabine et al., 1999; Wallace, 1995]. Though these fits 

are then applied to the entire water column, our analysis focuses on the results from 200-

2000m, see discussion below. We perform a stepwise MLR (after Brewer et al. [1995]) to 

determine the number of variables needed to fit model DIC concentrations. The “best fit” 

is determined by comparing the r
2
 value and the root mean squared error (RMSE) of 

MLR fits using 1-4 variables. For CSM1.4 model output, including all four variables 

(r
2
=0.99; standard deviation of residual for t0 ±4.98µmol/kg) statistically improves the 

MLR fit to the DIC concentrations relative to regressions using only a subset of the 

variables.  

Two types of MLR analyses have been used to estimate 

! 

"C
anthro

 (Eq. 5). The 

MLR method most commonly used by previous studies [Goyet and Davis, 1997; Peng, 

2005; Peng et al., 2003; Sabine et al., 1999; Wallace, 1995] uses the MLR parameters fit 

at time t0, p(t0), and the data from time t1, data(t1), to compute C
MLR

(t1). The estimated 

DIC concentration for t1 is then differenced from the observations at t1: 

! 

"Canthro

MLR
= Cobs(t1) #C

MLR
[p(t

0
),data(t

1
)]      (9) 
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The extended MLR analysis (eMLR), introduced by Friis et al. [2005], replaces the DIC 

observations at time t1 with a second MLR estimate using parameters and data from t1:  

! 

"Canthro

eMLR
= C

MLR
[p(t

1
),data(t

1
)]#C

MLR
[p(t

0
),data(t

1
)]    (10) 

 The eMLR method results in a much smoother !Canthro field. However, this 

smoother field is not necessarily more realistic. The MLR (Eq. 8) represents only that 

fraction of the total DIC variance that projects linearly onto the chosen physical and 

biogeochemical variables; the remaining variance falls into the regression residuals:  

! 

Cresid

MLR
ti( ) = Cobs ti( ) "CMLR

p ti( ),data ti( )[ ]     (11) 

which include both random noise and real geochemical signals. By analyzing the 

components of the MLR individually, we find that the MLR variables are highly 

correlated leading to large cancellations between the terms in equation 8. Substantial 

coherence between the MLR variables indicates that they are non-orthogonal and so poor 

basis functions for DIC. Coherence increases the likelihood that real DIC signals will not 

be mapped onto the MLR variables and therefore potentially valuable information will be 

left in the residuals.  

The difference between the 

! 

"C
anthro

MLR  (Eq. 9) and 

! 

"C
anthro

eMLR  (Eq. 10) fields equals the 

MLR residuals for time t1:  

! 

"Canthro

MLR
#"Canthro

eMLR
= Cobs(t1) #C

MLR
[p(t

1
),data(t

1
)]= Cresid

MLR
(t
1
)   (12) 

The eMLR field is smoother because the “noise” of the residuals has been removed. Any 

coherent pattern in the residuals can lead to biases in MLR the estimate of 

! 

"C
anthro

. The 

traditional MLR estimate of anthropogenic CO2 is biased because the MLR residuals 

from t0, 

! 

C
resid

MLR
(t
0
) , are incorporated into the estimate of 

! 

"C
anthro

MLR . The eMLR is biased 
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because it assumes that 

! 

C
resid

MLR
(t
1
) and 

! 

C
resid

MLR
(t
0
)  will cancel. This assumption is difficult to 

justify as the residual fields are quite sensitive to the different regression parameters at 

the different times. These biases are inherent to the MLR technique and so apply to 

estimates of 

! 

"C
anthro

MLR  and 

! 

"C
anthro

eMLR  for both the model simulations and field observations. 

 

2.3.3 Upper Water Column Variability 

High seasonal variability in the upper water column makes it difficult to detect 

changes in anthropogenic carbon inventories in this region.  Both the !C* and MLR 

methods have known issues in the upper 200m leading to less reliable estimates of 

!Canthro [e.g. Matsumoto and Gruber, 2005; Wallace, 1995].  To avoid errors introduced 

by seasonal variability and to maintain consistency with the typical application of the 

!C* and MLR methods, we focus our analysis on the region below 200m. For the decade 

under study (average atmospheric CO2 of 375ppm), very little anthropogenic carbon has 

penetrated below 2000m, hence we further limit our focus region to 200-2000m. Tables 

2.1 and 2.2 present results for both the 1-2000m and 200-2000m intervals. Inclusion of 

the upper 200m significantly increases both the DIC RMS 1" value for the control run, a 

measure of the natural variability in the system, and the RMS difference between the 

estimated and predicted !Canthro values. This confirms that the upper water column has 

increased variability and that empirical methods are not robust in this region.  Unless 

otherwise stated, all further analysis will be done for the 200- 2000m depth range, 

including all anthropogenic carbon inventory calculations. 
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2.4 REMOVING NATURAL VARIABILITY IN THE MODEL 

OCEAN CARBON SYSTEM 

 The primary function of empirical methods like !C* and MLR is to remove the 

natural variability of the carbon system in order to reveal the underlying anthropogenic 

signal. To characterize the inter-annual to decadal variability in the model, we calculate 

the DIC RMS variability for the CSM1.4 model control run using mean monthly output. 

A 350 year period which spans the two transient runs is used for this analysis (control run 

years 101 to 450).  For each model grid cell, the data is detrended by removing the model 

drift using a low pass filter and by removing the average seasonal cycle. Figure 2.2a 

shows a contour plot of the DIC 1" values for the section. The mean DIC RMS 

variability is ±4.59µmol/kg (1", 0-2000m) or 2.29µmol/kg (1", 200-2000m). The mode 

of the RMS variability for the entire transect, representative of the RMS variability in the 

deep ocean, is ±0.62µmol/kg. The surface ocean and high latitude North Atlantic are 

regions of high variability, with 1" values reaching ±23.37µmol/kg (0-2000m).  

To determine the processes driving these large natural shifts in DIC, we examine 

the correlation between DIC anomalies and physical (temperature, salinity and air-sea gas 

exchange) and biogeochemical (oxygen, phosphorous, export production) properties.  We 

analyze the properties controlling the month to month evolution of DIC using property-

property plots and covariance and multiple linear regression analysis. The near surface 

variability, particularly at high latitudes, is driven by vertical or lateral shifts in the 



 55 

boundary between water masses and by changes in water mass air-sea disequilibrium. A 

histogram of the mean monthly variance (not shown) exhibits high variability in the 

North Atlantic deep and mode water formation region, 40-60°N is driven by large 

anomalies in the spring following the winter-convection period. Finally, a spectral 

analysis indicates that interannual and decadal scale variability in subpolar regions is 

modulated on centennial time scales by model climate state; the interannual to decadal 

variability in subtropics and tropics is more uniform over the simulation. 

We evaluate the ability of the !C* method to remove the natural variability in the 

model carbon cycle by calculating a spatial map of RMS !C* for the monthly outputs 

over a 350 year period of the control run. Non-zero 1" values reflect either errors in the 

!C* construct or changes in air-sea disequilibrium (Cdiseq). The !C* method is able to 

reduce but not fully eliminate the natural variability in surface waters, at the equator, and 

in the North Atlantic Deep Water formation region, indicating areas where potential 

biases may arise in 

! 

"C
anthro

C*  (Figure 2.2b). We perform a similar test of the two MLR 

techniques, calculating maps of RMS 

! 

"C
MLR  and 

! 

"C
eMLR  for the same model time 

period. The baseline MLR parameters p(t0) (Eq. 8) are computed using the mean DIC, 

nutrient, and physical fields. For the 200-2000m region, the MLR and eMLR reduce the 

natural RMS variability of the inorganic carbon system by 2.5 and 7 fold respectively, a 

greater reduction than is achieved using the !C* method (Table 2.1). However, direct 

comparison of the (e)MLR and 

! 

"C
*  RMS values may be somewhat misleading as the 

MLR regressions do not capture all of the variance of original fields as discussed above. 

The highest 1" MLR and eMLR values are observed in the upper 200m (Figure 2.2c & 
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2.2d), where the MLR technique is not robust. Similar to the !C* method, the MLR 

displays high 1" values in the North Atlantic Deep Water formation region indicating 

that the 

! 

"C
anthro

MLR  estimate will most likely be biased for this region because the MLR fit 

does not capture a substantial amount of the natural variability. The mean, maximum and 

mode 1" values for the control run, the !C* method, and the MLR techniques are 

presented in Table 2.1.  

  

2.5 DETECTING AND ATTRIBUTION OF TEMPORAL TRENDS 

IN ANTHROPOGENIC CO2 

The ability of the !C* and the MLR techniques to accurately estimate 

! 

"C
anthro

 is 

tested by comparing the empirical estimates of the temporal change of anthropogenic 

CO2 (

! 

"C
anthro

C* , 

! 

"C
anthro

MLR , 

! 

"C
anthro

eMLR ) to the predicted value for transient simulations, 

! 

"Canthro

predicted . This comparison is done for a 10 year period for which average Northern 

Hemisphere atmospheric CO2 is approximately 375ppm [GLOBALVIEW-CO2, 2005]. 

The following analysis highlights issues and potential biases in the two techniques.  

However, the magnitude of the errors for actual field data may differ somewhat due to 

errors, such as sampling and analytical errors, that are not accounted for in the model.  

Similar to observations from repeat hydrography cruises [e.g. Wanninkhof et al., 

2006a], the natural variability in the ocean carbon system leads to spatial noise in the plot 

of !DIC for any particular occupation (Figure 2.3a). This ‘snap-shot’ change in DIC 

differs substantially from the predicted invasion of anthropogenic CO2, 

! 

"Canthro

predicted (Figure 
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2.4a), which is calculated using the low-pass filter as described above. The RMS error of 

the estimated 

! 

"C
anthro

 values from the predicted value is given by: 

! 

" =
#Canthro

estimate $#Canthro

predicted( )
2

%
N $1( )

      (13) 

where N is the number of values being compared. The RMS error for each technique is 

given in Table 2.2. Figures 2.4b, 2.4c, and 2.4d show the difference between 

! 

"C
anthro

C* , 

! 

"C
anthro

MLR , 

! 

"C
anthro

eMLR  and 

! 

"Canthro

predicted , respectively. The average percent error is calculated as: 

! 

%error =
"Canthro #"Canthro

predicted

"Canthro

predicted
$100       (14) 

using only points with significant anthropogenic carbon, 

! 

"Canthro

predicted
"3µmol/kg/decade. 

The average percent error for decadal differences for the MLR, eMLR and !C* methods 

are 82.0%, 25.5%, and 24.1%, respectively. These errors are consistent with previous 

error estimates for these techniques [Friis et al., 2005; Gruber et al., 1996]. While the 

average errors for the eMLR and !C* techniques are similar, the distribution of the errors 

differ substantially.  The eMLR errors are evenly distributed over the entire transect 

whereas the !C* method performs better overall but has regions with extremely large 

deviations from 

! 

"Canthro

predicted .  

The !C* method is able to account for the majority of the natural variability in 

the system and provides a fairly accurate estimate of anthropogenic CO2 at low and mid 

latitudes (40°S to 30°N). However, at the high latitudes, 

! 

"C
anthro

C* differs from the 

predicted value by up to 11µmol/kg. These errors are large relative to the mean and 
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maximum predicted anthropogenic signal [

! 

"Canthro

predicted (mean)= 3.02 µmol/kg, 

! 

"Canthro

predicted

(max)= 12.75µmol/kg)]. This discrepancy could be due to either errors in the !C* 

construct or in the assumptions made about the constancy of the air-sea disequilibrium 

term (Cdiseq) along isopycnal surfaces. 

We look at changes in temperature, salinity, phosphorus, and oxygen over the 10 

year study period to explain the discrepancy between  

! 

"C
anthro

C*  and 

! 

"Canthro

predicted  at high 

latitudes. While temperature, salinity, and phosphorus exhibit only small changes over 

this time period, there are large changes in apparent oxygen utilization (AOU= O2 sat – 

O2, Figure 2.3b). At high latitudes, areas with large changes in AOU correlate well with 

regions in which 

! 

"C
anthro

C*  deviates from 

! 

"Canthro

predicted . In particular, large positive changes in 

AOU are associated with !C* underestimating the increase in anthropogenic CO2. Figure 

2.5 shows the strong correlation between 

! 

"Canthro

predicted
#"Canthro

C*  and !AOU for the high 

latitudes (40-70°S and 30-90°N). Both 

! 

"C
anthro

C*  and !AOU are calculated using mean 

monthly model output in isopycnal space and then mapped back into depth space.  

In the case where the !C* method reproduces the predicted !Canthro signal, the 

data points in a plot of 

! 

"Canthro

predicted
#"Canthro

C*  vs. !AOU will fall along the x-axis 

(represented by the light gray line in Figure 2.5). Movement along this line is caused by 

changes in Cbio (Eq. 2), where increases in Cbio move data points to the right and 

decreases in Cbio move points to the left (represented by the light gray arrow in Figure 

2.5). Deviations from this ideal case are caused by changes in O2 and DIC air-sea 

disequilibrium, for DIC represented by the Cdiseq term (Eq. 3). The !C* method assumes 

that oxygen is always saturated in surface waters, and therefore incorrectly attributes O2 
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air-sea disequilibrium (non-zero surface AOU values) to biologic activity. An increase in 

AOU disequilibrium, water leaving the surface with less O2 and a higher AOU, is thus 

treated as an increase in biologic activity and results in an underestimate of !Canthro, and 

vice versa. This moves data points off of the x-axis with a slope of rC:AOU, 117:170, 

(represented by the black arrow in Figure 2.5). The !C* method also assumes that the 

pre-industrial DIC air-sea disequilibrium remains constant with time; 

! 

Cdiseq (t1) "Cdiseq (t0)  

from equation 7 equals zero as discussed above. Therefore, an increase in Cdiseq, water 

leaving the surface with more DIC, will result in an overestimate of !Canthro, and vice 

versa. This moves data points in the 

! 

"Canthro

predicted
#"Canthro

C*  vs. !AOU plot vertically 

(represented by the dark gray arrow in Figure 2.5). The best-fit line in Figure 2.5 (plotted 

as a dashed black line) is therefore an amalgamation of the AOU disequilibrium line (the 

black arrow) and the 

! 

"Cdiseq  line (the dark gray arrow). We conclude that the majority of 

the discrepancy between  

! 

"C
anthro

C*  and 

! 

"Canthro

predicted  at high latitudes is due to variability in 

AOU disequilibrium in the surface waters which is not accurately accounted for by the 

!C* method. This bias is partially offset by changes in the 

! 

"Cdiseq term, which is also not 

accounted for by the !C* method. These findings are similar to the findings of 

Wanninkhof et al. [2006a]. 

 The bias in the !C* calculation due to O2 air-sea disequilibrium can be eliminated 

by using PO4 instead of O2 to correct for changes in the biologic pump [Gruber and 

Sarmiento, 2002]. This can be accomplished by substituting the change in phosphorus, 

rC:PO4(PO4
0
 – PO4) where PO4

0
 is preformed PO4, for rC:O2(O2

sat 
– O2) in equation 6. 
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Unfortunately this substitution introduces a new set of difficulties. Namely, we do not 

have a direct method for determining PO4
0
. Hydrographic surveys also face the problem 

that the fractional uncertainties for PO4 measurements are high and studies have shown 

that C:P ratios vary with depth due to preferential remineralization of phosphorus [e.g. 

Martin et al., 1987]. Here we estimate 

! 

"C
anthro

 using 

! 

"C
anthro

C*
PO4  by assuming that PO4

0
 

remains constant along isopycnal surfaces and therefore cancels in the calculation of 

! 

"C
anthro

C*
PO4 . Due to the inaccuracies of this assumption, the 

! 

"C
anthro

C*
PO4  estimate still differs 

significantly from 

! 

"Canthro

predicted  (Table 2.2).  

For the same 10 year period, we calculate 

! 

"C
anthro

 using both the MLR and the 

eMLR techniques. The MLR coefficients and their 1" errors for t0 (time0) and t1 (time1) 

are given in Table 2.3. The residual error for the MLR fit to the model DIC 

concentrations at t0 is ±4.98 µmol/kg (r
2
=0.990, n=1194) and at t1 is ±5.81 µmol/kg 

(r
2
=0.985, n=1194). These errors are approximately the same as the residual error for 

MLR fits to field observations, ~6µmol/kg [Brewer et al., 1995; Friis et al., 2005]. 

However, the model MLR residual error is most likely small due to a tight correlation 

between changes in PO4 concentration and biologic activity in the model. For field 

observations, including either nitrate or silicate as MLR parameters is often necessary to 

obtain a low residual error [Brewer et al., 1995; Friis et al., 2005]. As neither nitrate nor 

silicate is tracked in the model, we are forced to use only oxygen and phosphorus as 

biological variables.  

While 

! 

"C
anthro

MLR  accurately reproduces the spatial distribution of anthropogenic CO2 

along the section, it significantly over-estimates the magnitude of the predicted signal by 
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greater than 15µmol/kg in the upper 2000m (Figure 2.6a, 2.4c). The RMS error of 

! 

"C
anthro

MLR  relative to 

! 

"Canthro

predicted  is 5.04 µmol/kg, significantly greater than all other 

empirical methods tested in this study (Table 2.2). This error is caused by large MLR 

residuals that bias the 

! 

"C
anthro

MLR  estimate, as discussed above. The residuals for the MLR fit 

to t1 are shown in Figure 2.6b. By subtracting the MLR t1 residuals from the 

! 

"C
anthro

MLR  

estimate, one arrives at 

! 

"C
anthro

eMLR  (Eq. 12) which better matches 

! 

"Canthro

predicted . The difference 

between 

! 

"Canthro

predicted  and 

! 

"C
anthro

eMLR  is shown in Figure 2.4d. The eMLR estimate displays 

both the same spatial distribution and magnitude as the predicted signal. However, as 

discussed above, the eMLR method produces a biased !Canthro estimate when there is 

structure in the MLR residuals.  

 

2.6 EFFECTS ON INVENTORIES 

 Estimates of anthropogenic carbon are most frequently presented as either 

column, basin, or global inventories with different methods providing significantly 

different inventory estimates. Here we compare the predicted temporal change in the 

column inventory calculated from 

! 

"Canthro

predicted  to the column inventories calculated from 

the 

! 

"C
anthro

C* , 

! 

"C
anthro

MLR , and 

! 

"C
anthro

eMLR  estimates for the model output extracted along the A16 

transect for a decade approximately equal to 2000-2010 (Figure 2.7). The MLR inventory 

estimates deviate significantly from the predicted inventory for the majority of the section 

with the largest overestimate occurring in the North Atlantic between 40°-60°N and the 

largest underestimate occurring between 0°-40°N and >80°N. The !C* and eMLR 
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methods more accurately reproduce the predicted inventory. At low and mid latitudes 

(40°S- 40°N), the !C* inventory matches the predicted inventory and the eMLR slightly 

overestimates the column inventory. In the Southern Ocean, the eMLR reproduces the 

predicted inventory whereas the !C* estimate displays significant deviations from the 

predicted inventory. Finally, in the North Atlantic, the !C* technique overestimates the 

anthropogenic inventory and the eMLR underestimates the anthropogenic inventory. Our 

previous analysis showed that !C* significantly underestimates !Canthro concentrations in 

the upper 500m between 40 and 60°N relative to the predicted signal (Figure 2.4b). 

However, the column inventory for this region shows that !C* overestimates the !Canthro 

inventory (Figure 2.7). Similarly, the model transect analysis showed that the eMLR 

approach reproduces the predicted signal in the North Atlantic (Figure 2.4d) whereas the 

inventory analysis indicates that the eMLR significantly underestimates !Canthro in this 

region (Figure 2.7). The discrepancies between the depth distribution of !Canthro along 

the model transect and the column inventories for the model transect highlights the fact 

that small errors in these methods can result in significant discrepancies in inventory 

calculations when integrated over large depth ranges.  

 

2.7 GLOBAL ANALYSIS 

 As a final check of the !C* and MLR techniques, we analyze their ability to 

estimate both spatial patterns in water column inventory and the global inventory of 

anthropogenic carbon in the oceans by applying them to the global output of the CSM1.4 
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model. The natural variability of the global carbon system is estimated by calculating the 

RMS variability of the DIC column inventories for control run model years 101 to 450 

using detrended annual mean model output. The highest variability occurs in the mode 

and deep water formation regions; the North Atlantic, the North-west Atlantic, and the 

North-west Pacific Ocean (Figure 2.8a). The boundary between the Southern Ocean and 

the Indio-Pacific Oceans is also a region of increased variability. Similar to the transect 

analysis, we test the ability of the !C* and MLR techniques to remove the natural 

variability in the model ocean carbon system by calculating 

! 

"C
anthro

C* , 

! 

"C
anthro

MLR , and 

! 

"C
anthro

eMLR  for the control run using detrended annual mean model output for model years 

101 to 450. The MLR calculations are done by basin (Atlantic, Pacific, Southern Ocean, 

Indian, and Arctic) as different water masses display different regional relationships 

between temperature, salinity and the nutrients. This basin approach reduces the RMS 1" 

difference between 

! 

"Canthro

predicted  and 

! 

"C
anthro

MLR  column inventories by 16.73 mol/m
2
 compared 

to the RMS difference for a single MLR fit. All MLR fits are done for 200-2000m and 

baseline MLR parameters p(t0) (Eq. 8) are computed using the mean DIC, nutrient, and 

physical fields. The results are similar to those of the model transect analysis. The !C* 

method is able to remove the majority of the natural variability in the ocean carbon 

system but fails to account for some variability in the mode and deep water formation 

regions, particularly in the North Atlantic (Figure 2.8b). The MLR approaches also 

reduce the natural DIC variability but fail to account for some of the variability in the 

North Atlantic, South Atlantic and North Indian Ocean (Figure 2.8c and 2.8d). These 

areas, where the empirical methods are unable to remove all the variability in the natural 
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carbon system, indicate regions where these empirical methods might not produce an 

accurate estimate of !Canthro. 

  Using a low-pass filter applied to the annual mean model output for each model 

cell, we estimate the predicted anthropogenic signal for the global output of the transient 

run, 2000-2100, and calculate the change in the column inventories for the decade with 

an average atmospheric CO2 of 375ppm. The predicted estimate of the global 

accumulation of anthropogenic carbon is 23.2 PgC/decade or 12.1 PgC/decade for 200-

2000m. The spatial distribution of the predicted accumulation for 200-2000m is shown in 

Figure 2.9a. The difference between the column inventories of the model DIC output for 

the decade under study yields a similar column inventory of 22.7 PgC/decade or 11.7 

PgC/decade for 200-2000m. However, there are significant discrepancies between the 

predicted distribution of anthropogenic CO2 and the ‘snap-shot’ difference in DIC. 

Applying the !C*, MLR and eMLR techniques to the global model output yields global 

inventory estimates for 200-2000m of 14.3, 14.8 and 13.6 PgC/decade respectively. The 

differences between 

! 

"Canthro

predicted and 

! 

"C
anthro

C* , 

! 

"C
anthro

MLR , and 

! 

"C
anthro

eMLR  are shown in Figure 

2.9b, 2.9c and 2.9d respectively. Both methods capture the basic trends of the predicted 

signal but tend to overestimate !Canthro in some regions and underestimate !Canthro in 

others. For example, the !C* method overestimates !Canthro in the North Atlantic and 

South Pacific and slightly underestimates !Canthro in regions of the Southern Ocean. On 

the other hand, the eMLR underestimates 

! 

"C
anthro

in the North Atlantic and overestimates 

! 

"C
anthro

 in the South Atlantic. The MLR shows the largest deviations from the predicted 

values (note the scale difference in Figure 2.9c) with large overestimates in the North 
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Atlantic and North Indian Ocean and large underestimates in the tropical Atlantic, South-

west Pacific and along the Southern Ocean boundary. 

 

2.8 DISCUSSION AND SUMMARY 

Using the output of a coupled carbon-climate model, we evaluate the ability of 

empirical techniques to accurately estimate the uptake of anthropogenic carbon, !Canthro, 

on decadal time scales in the presence of natural variability. This analysis shows that the 

!C* and the extended MLR techniques have similar average errors for decadal 

differences (24% and 26% respectively), similar RMS errors (but somewhat different 

error sources and patterns), and both reproduce the spatial and temporal trends of the 

predicted anthropogenic signal for the majority of the ocean.  However, this study also 

identifies regions where the empirical estimates of !Canthro may introduce errors. 

Specifically the !C* estimates of !Canthro may contain errors at high latitudes, 

particularly in mode and deep water formation regions, due to variations in O2 and DIC 

air-sea disequilibrium. The MLR techniques are biased by structure in the MLR residuals 

resulting from coherence between the MLR variables. Similar to the !C* method, this is 

particularly apparent in mode and deep water formation regions where the residuals show 

significant degrees of structure. In addition, both empirical methods have difficulty in the 

upper 200m due to high seasonal variability. Due to these potentially substantial errors in 

the empirical estimates of !Canthro, we suggest that multiple empirical techniques should 

be used to estimate increases of anthropogenic carbon in the ocean.  Specifically, careful 
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attention should be paid to regions with significant differences between empirical 

estimates as this indicates that neither estimate is particularly robust and that further 

investigation is needed to fully characterize the underlying natural variability of the 

system. 

The results of this study also have significant implications for repeat hydrography 

programs, such as CLIVAR/CO2. While decadal occupations might be sufficient to 

estimate the temporal change in Canthro for some regions of the ocean, this study suggests 

that there are regions where more frequent observations may be needed in order to better 

constrain the natural variability of the carbon system and therefore the anthropogenic 

signal; for example in mode, intermediate and deep water formation regions, such as in 

the subpolar North Atlantic. With increased temporal resolution, short term natural 

variability in the ocean carbon system can be separated from the longer term 

anthropogenic trend using approaches similar to the spline-fitting method presented 

above or by using the detailed record to more accurately attribute changes in DIC to 

biological and physical processes.  

A semivariogram analysis indicates that highly variable regions, such as the 

subpolar North Atlantic, have very short correlation timescales, on the order of half a 

year (Figure 2.10), indicating that sub-annual sampling is necessary to capture the full 

variability of the system.  This is confirmed by an analysis of the fraction of the total 

variance captured under a variety of sampling scenarios ranging from every 2 months to 

every 10 years. In regions with low variability (e.g. 29°S, 415m), sub-sampling once 

every two years captures nearly all of the variability in the system (not shown). However, 
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in regions of high variability (e.g. 55°N, 245m), sub-sampling once a year captures only 

78% of the total variability when raw data is analyzed and 86% of the total variability 

when de-seasonalized data is analyzed (Figure 2.10). As such sub-annual sampling is 

impractical using traditional ship-based methods, we recommend that reoccupations be 

augmented, where possible, with alternative sampling platforms (e.g. moorings and 

profiling floats) and coherence with other biogeochemical variables such as O2 and 

nutrients.  
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Carbon Cycle Variability 

RMS 

Method mean 

(0-2000m) 

mean         

(200-2000m) 
mode 

max  

(0-2000m) 

max 

(200-2000m) 

DIC output 4.59 2.29 0.62 23.37 13.09 

!C* 1.88 1.22 0.27 14.16 6.51 

MLR 3.55 0.88 0.28 53.83 6.26 

eMLR 0.65 0.31 0.16 2.86 1.04 

 

Table 2.1: The mean, mode and maximum of model DIC RMS variability (1") in 

µmol/kg for model DIC output and the !C*, MLR, and eMLR techniques. 1" values are 

calculated using years 101-450 of the 1000 year CSM1.4 control run extracted along the 

A16 transect. Mode and mean values are based on grid cell values. As the empirical 

estimates are not robust above 200m, the mean and maximum values for 200-2000m are 

also given. The mode is representative of the deep ocean variability. 
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Comparison of Anthropogenic Techniques 

Anthropogenic Increase 
RMS 

(estimated-predicted) 

Method 
mean 

(0-

2000m) 

mean         

(200-

2000m) 

max  

(0-

2000m) 

max  

(200-

2000m) 

Whole 

section 

0-

2000m 

200-

2000m 

predicted 

!Canthro 
5.48 3.02 15.22 12.75 -- -- -- 

!C* 4.71 3.11 20.43 15.78 2.24 2.36 1.58 

!C* using         

       PO4 

4.48 3.16 25.45 17.04 4.15 4.19 2.59 

MLR 9.01 3.29 96.93 32.43 12.50 13.49 5.04 

eMLR 6.51 2.76 24.89 11.64 3.21 3.60 1.50 

 

Table 2.2: The mean, mode, and maximum of the predicted model !Canthro in µmol/kg 

and the !Canthro estimates in µmol/kg calculated using the !C*, 

! 

"C
PO4

*
, MLR, and eMLR 

techniques. !Canthro values are calculated for a 10yr period with an average atmospheric 

CO2 of 375ppm using mean monthly model output extracted along the A16 transect. The 

RMS error for each estimate relative to 

! 

"Canthro

predicted is also given.  
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MLR Parameters 

 r
2
 RMSE Intercept !  S O2 PO4 

time0 
0.9903 4.98 

400.39 

  ±21.83 

-4.26  

  ±0.10 

49.26  

  ±0.58 

-0.23 

  ±0.01 

77.22  

  ±0.86 

time1 
0.9854 5.81 

456.02  

  ±25.76 

-3.36  

  ±0.11 

47.75 

  ±0.68 

-0.19  

  ±0.01 

77.61 

  ±1.02 

 

 

Table 2.3: The r2 values, the root mean squared error (RMSE) in µmol/kg, the MLR 

parameters, and the parameter 1" errors for the MLR fits to model output at time0 (t0) and 

time1 (t1), where t1-t0 is a 10yr period with an average atmospheric CO2 of 375ppm. 
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Figure 2.1: Time-series of CSM1.4 
model output along the A16 transect at 
245 m and (a) 54.9°N, (b) 2.2°S, and (c) 
29.1°S.  The model output, with the drift 
removed, for control run years 280-380 is 
shown in blue, model output for the ‘A2’ 
transient run is shown in black, and the 
low-pass filter estimate of Canthro is shown 
in red. Arrows indicate the times at which 
the model was sampled for the decadal 
analyses.
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Chapter 3: 
 

 

The Impact of Interannual Variability on the 

Uptake and Accumulation of Anthropogenic 

CO2 in the North Atlantic 
 

 

 

ABSTRACT 
 

 The North Atlantic accounts for a significant portion of the global oceanic 

anthropogenic carbon sink.  This basin experiences significant interannual variability 

primarily driven by the North Atlantic Oscillation (NAO).  A suite of coupled numerical 

model simulations is used to analyze the impact of interannual variability on the uptake 

and storage of anthropogenic carbon (Canthro) in the North Atlantic.  Regional differences 

are observed in the response of Canthro inventories to NAO forcing.  Increases in 

subtropical and subpolar Canthro inventories correspond to increased mode water 

formation due to greater winter mixing during positive NAO years.  Our analysis 

suggests that changes in mode water Canthro inventories are primarily due to water mass 

transformation rather than local air-sea CO2 exchange. This implies that much of the 
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anthropogenic carbon found in the ocean interior is from surface waters advected into the 

water mass formation region rather than from local gas exchange.   Interannual variability 

in Canthro storage increases the difficulty of Canthro detection and attribution through 

hydrographic observations, which are biased by sparse sampling of subsurface waters in 

time and space. 

 

 

3.1 INTRODUCTION 

 Since the industrial revolution, human activity has released large quantities of 

carbon dioxide (CO2), which has resulted in increased atmospheric concentrations [e.g. 

Keeling and Whorf, 1994; Keeling et al., 1976].  However, the observed atmospheric 

increase accounts for only approximately half of anthropogenic carbon emissions 

[Canadell et al., 2007; Sabine et al., 2004].  The remaining anthropogenic CO2 has been 

taken up by the oceans and terrestrial biospheres, with approximately 30% of 

anthropogenic CO2 emissions being sequestered in the oceans [Sabine et al., 2004].  The 

future trajectory of atmospheric CO2, and the resulting impact on the global climate, is 

therefore dependent on the magnitude and stability of the ocean and terrestrial carbon 

sinks [Friedlingstein et al., 2006; Fung et al., 2005].   

Over the past three decades, the oceanographic community has devoted 

significant time and resources to accurately detecting both the accumulation of 

anthropogenic carbon (Canthro) in the ocean and variability in the ocean carbon sink.  

Several global surveys of the ocean carbon system have been conducted including the 

Geochemical Ocean Section Study (GEOSECS) in the 1970s and the World Ocean 

Circulation Experiment  (WOCE)/Joint Global Ocean Flux Study (JGOFS) surveys in the 
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1990s.  Currently, the US and International Climate Variability and Predictability 

(CLIVAR)/CO2 program is continuing to monitor changes in ocean carbon by repeating 

key hydrographic surveys from the WOCE/JGOFS era.  The thousands of high precision 

carbon observations made during these programs have provided a picture of the 

magnitude and variability of the ocean carbon sink. However, while significant headway 

has been made, the detection of Canthro in the ocean still faces several major challenges.   

The Canthro signal is superimposed on top of a large dissolved inorganic carbon 

(DIC) background, with Canthro accounting for only about 5% of DIC in surface waters in 

the 1990s [Sabine et al., 2004].  In addition, significant short term natural variability in 

the ocean carbon system makes the detection of relatively small, long-term temporal 

trends in Canthro difficult [Levine et al., 2008]. Several empirical methods have been 

proposed to deconvolve the Canthro signal from natural variability in the ocean carbon 

system [e.g. Friis et al., 2005; Gruber et al., 1996; Matsumoto and Gruber, 2005].  

However, each of these methods has their own biases resulting in significant uncertainties 

in Canthro estimates particularly in regions of water mass formation [Levine et al., 2008; 

Vazquez-Rodriguez et al., 2009].   Finally, hydrographic cruises are expensive and 

provide limited temporal and spatial resolution. 

The use of numerical models in conjunction with observations has become an 

invaluable tool for understanding the ocean carbon sink.  Models provide increased 

spatial and temporal resolution in addition to insight into the underlying mechanisms 

controlling the uptake and accumulation of Canthro [e.g. Sarmiento et al., 1995].  This 

study uses the output of a global ocean model to investigate the impact of interannual 
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variability on the uptake and storage of Canthro in the North Atlantic and to provide a 

context for observations of Canthro in this basin.  Nearly 25% of anthropogenic carbon 

sequestered in the ocean is found in the North Atlantic, despite the fact that this basin 

only accounts for 15% of the global area [Sabine et al., 2004].  Changes in uptake and 

accumulation of carbon in this region therefore have the potential to significantly impact 

the global inventory.  In addition, North Atlantic dynamics may be relevant to interannual 

variability in other ocean basins.  Understanding the underlying mechanisms driving 

Canthro trends will also help improve models used to forecast future changes in 

atmospheric CO2 and global climate. 

An important mechanism of Canthro sequestration in the North Atlantic is through 

the formation of deep and intermediate water in the subpolar gyre (e.g. North Atlantic 

Deep Water).  These waters form during the winter and carry high CO2 water into the 

ocean interior where residence times range from decades to centuries [Wallace, 2001].  

Subpolar mode waters (SPMW) form during deep winter mixing events in the subpolar 

gyre and are the dominant water mass above the permanent pycnocline [Brambilla and 

Talley, 2008; McCartney and Talley, 1982; L D Talley and McCartney, 1982].  Dense 

SPMW formed in the eastern subpolar gyre travels counter-clockwise around the gyre 

and into the Labrador Sea where some of it ultimately becomes part of the Labrador Sea 

Water (LSW), a component of North Atlantic Deep Water [Brambilla et al., 2008; 

McCartney and Talley, 1982; L D Talley and McCartney, 1982].  Hence, the properties of 

LSW are highly dependant on the properties and history of the densest SPMW 

[McCartney and Talley, 1982].  The formation of SPMW occurs primarily through water 
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mass transformation (formation through diapycnal mixing and surface buoyancy flux) 

rather than through subduction (formation through water mass convergence) [Brambilla 

et al., 2008]. Therefore, wintertime mixed layer depths (MLD) play an important role in 

SPMW formation [Brambilla and Talley, 2008; J C Marshall et al., 1993; McCartney 

and Talley, 1982]. 

A number of studies have quantified changes in the subpolar ocean carbon sink 

based on observations of surface pCO2 [Corbiere et al., 2007; Lefevre et al., 2004; Omar 

and Olsen, 2006; Schuster and Watson, 2007] and profiles of DIC [Friis et al., 2005; 

Olsen et al., 2006; Perez et al., 2008].  The observed temporal rates of change of CO2 

uptake and Canthro accumulation, which range in different analyses and for different 

regions from an increase in the North Atlantic carbon sink to a decrease in the basin sink, 

are highly dependent on the time-period of observation (section 3.6.3).  A modeling study 

by Thomas et al. [2008] proposes that changes in the dominant atmospheric climate mode 

(the North Atlantic Oscillation) have resulted in significant interannual variability in the 

subpolar and basin-scale air-sea CO2 flux.  They further suggest that estimates of long-

term trends from the limited observational records, which sample discrete time-periods, 

are potentially aliased by the sampling regime. 

The circulation, heat transport and biogeochemical properties of subtropical gyres 

are driven primarily through the formation and transport of subtropical mode waters 

which fill in the region between the seasonal and permanent thermoclines [J Marshall et 

al., 2009].  The primary subtropical mode water in the western North Atlantic is the 

Eighteen Degree Water (EDW), which forms south of the Gulf Stream during the winter 
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months [e.g. L Talley and Raymer, 1982].  Variability in EDW formation and CO2 uptake 

has been shown to correlate to climate modes such as the North Atlantic Oscillation 

(NAO) [e.g. Bates, 2007; Bates et al., 2002; Gruber et al., 2002; Joyce et al., 2000].  

However, the driving mechanisms behind these correlations remain unclear [Bates, 

2007].  A summary of previous findings in the context of this study is presented in 

section 3.6.2. 

Here we use a suite of model simulations to deconvolve the mechanisms driving 

interannual variability in the North Atlantic Canthro inventory in the subpolar and 

subtropical gyres.   Shifts in the NAO, the primary climate mode in this region, result in 

deeper mixing in mode water formation regions in both gyres.  This in turn increases the 

anthropogenic CO2 flux and rates of water mass transformation resulting in increased 

Canthro inventories along mode water isopycnals.  The impact of NAO shifts on mode 

water Canthro inventories has implications for the future of the North Atlantic carbon sink 

as Intergovernmental Panel on Climate Change models predict an increased frequency of 

positive NAO years [Meehl et al., 2007]. 

 

3.2 METHODS 

3.2.1 Model Description 

 The ocean Biogeochemical Element Cycle (BEC) component of the National 

Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM-

3) is used for this study [Doney et al., 2009a; Doney et al., 2009b].  The model is non-
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eddy resolving with a grid spacing of 3.6° longitude by 0.8°-1.8° latitude and 25 vertical 

levels.  Mesoscale eddies are parameterized according to Gent and McWiliams [1990].  

The model contains a full ecological module [Moore et al., 2004] with several 

phytoplankton function groups and multi-nutrient limitation including iron limitation.  

Fourteen components are included in the model:  small/pico phytoplankton, large 

phytoplankton/diatoms, nitrogen fixing diazotrophs, zooplankton, suspended and sinking 

detritus, nitrate, ammonia, phosphate, iron, silicate, oxygen, DIC and alkalinity.  The 

biogeochemistry module [Doney et al., 2006; Doney et al., 2009a] includes full carbonate 

system thermodynamics, CO2 air-sea gas exchange, a dynamic iron cycle, and dust 

deposition from an atmospheric transport model. Neither photosynthesis nor calcification 

is dependent on CO2 variables. 

 For this study, monthly model output from the following four model simulations 

are used: 

! Transient CO2 Variable Physics: The model is integrated for a historical 

hindcast simulation from 1958-2004 forced with atmospheric reanalysis and 

satellite data products [Doney et al., 2007; Doney et al., 2009a].  Atmospheric 

CO2 is prescribed following observations. 

! Pre-industrial CO2 Variable Physics: The model is integrated with the same 

forcing as Transient CO2 Variable Physics but atmospheric CO2 is fixed at pre-

industrial levels (280ppm). 

! Transient CO2 Repeat Annual Year:  The model is integrated with a repeating 

annual cycle of atmospheric state variables [Large and Yeager, 2004].  The 
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‘annual year’ is constructed based on the most “average” year on record (1995) 

and maintains realistic high frequency forcings (e.g. storms) consistent with the 

climatological record.  Atmospheric CO2 is prescribed following observations. 

! Pre-industrial CO2 Repeat Annual Year: The model is integrated with the 

same forcing as Transient CO2 Repeat Annual Year but with atmospheric CO2 

fixed at pre-industrial levels (280ppm). 

For this study we focus on the period of 1970-2004 as these years show the greatest 

interannual variability in Canthro inventory and have available historical field observations. 

  

3.2.2 Calculations 

 Anthropogenic carbon in the model is determined by subtracting the DIC 

concentration for paired model simulations with identical physics but with varying and 

constant atmospheric CO2: 

! 

C
anthro

= DIC
Transient

"DIC
Pre" industrial

      (1) 

where DICTransient is the DIC concentration for the model pair with increasing atmospheric 

CO2 concentrations and DICPre-industrial is the DIC concentration for the model pair with 

constant pre-industrial atmospheric CO2 concentrations.  The impact of variable ocean 

physics is investigated by differencing Canthro for the ‘Repeat Annual Year’ model 

simulation from the ‘Variable Physics’ model simulation: 

 

! 

"anthro

#physics
= "anthro

VariablePhysics $ "anthro

RepeatAnnualYear       (2) 
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where 

! 

"anthro

#physics  is the impact of variable physics on either Canthro concentrations (

! 

Canthro

"physics) 

or Canthro inventory (

! 

Ianthro
"physics), and 

! 

"anthro

VariablePhysics and 

! 

"anthro

RepeatAnnualYearare Canthro concentrations 

or inventories calculated using equation (1) for the Variable Physics and Repeat Annual 

Year model simulations, respectively.  Canthro is given in µmol/kg.  Unless otherwise 

specified, column inventories are calculated as the weighted sum of Canthro over the model 

thermocline (1280m to be precise based on the model vertical grid) and expressed in mol 

C/m2.  Isopycnal band column inventories are the weighted sum of Canthro over the 

thickness of the isopycnal band.  Latitude band inventories are expressed in Pg C and are 

calculated as the sum of the column inventories falling within a latitude band.  

The monthly coefficient of variation for 

! 

Ianthro
"physicsis calculated as: 

! 

Coefficient of variation =

1

N "1
(#anthro

VariablePhysics " #anthro

RepeatAnnualYear
)

2

1

N

$

#anthro

RepeatAnnualYear
  (3) 

where 

! 

"anthro

VariablePhysics and 

! 

"anthro

RepeatAnnualYear
 are monthly concentrations or inventories of 

anthropogenic carbon, N is the number of months of output used to calculate the 

coefficient of variation (here we use monthly output for 1970-2004 so N=420), and 

! 

"anthro

RepeatAnnualYear
 is the mean value of 

! 

"anthro

RepeatAnnualYear
 for the time period 1970-2004 where % 

is either Canthro or Ianthro.  Changes in carbon inventory with time are calculated as: 

! 

"Ianthro
"physics = Ianthro

"physics
Dect1( ) # Ianthro

"physics
Dect 0( )( ) 1year     (4) 

where 

! 

"Ianthro
"physics is the change in Ianthro over one year defined as December to December.  

This interval was chosen instead of the conventional January-January interval to allow for 

direct comparison with the NAO winter index, which is calculated for December-March. 
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To evaluate the impact of interannual variability on the subtropical mode water 

(EDW), we focus on the wintertime EDW formation region and the "26.5 isopycnal 

surface.  The EDW formation region is defined by the region where mean surface 

temperature (upper 50m) falls between 17.8° and 18.4°C during the winter months 

(January-March) [after Bates et al., 2002].  The wintertime CO2 flux into the EDW 

formation region is calculated as the total net CO2 flux into the model ocean during 

January-March and is expressed in Pg C/yr.  The "26.5 density band is defined as 

26.25!"$!26.75.  The average depth for this density band in the subtropics (15°-40°N, 

20°-70°W) is 218m with a maximum depth of 381m, a mean thickness of 172m, and an 

average temperature of 18.0°C.  The subtropical Ianthro for "26.5 is calculated as the sum of 

the column inventories across the "26.5 band for the area between 15°-40°N and 20°-70°W 

where "26.5 is deeper than 150m. 

Our analysis of the interannual variability in the subpolar gyre focuses on the 

subpolar mode water (SPMW).  For this study, we identify seven SPMW isopycnal 

bands, defined as; 27.3!"$<27.4, 27.4!"$<27.5, 27.5!"$<27.55, 27.55!"$<27.6, 

27.6!"$<27.65, 27.65!"$<27.675, and 27.675!"$<27.7.  Most of the analysis focuses on 

waters with "$ values between 27.6 and 27.7, which corresponds to the densest SPMW in 

the eastern basin [Brambilla and Talley, 2008].  In the Variable Physics model, the mean 

depth of the three densest SPMW bands in the subpolar gyre (45°-66°N, 57°W-18°W) are 

518m, 667m, and 778m with a maximum depth of 815m, 1113m, and 1113m and mean 

thicknesses of 196m, 212m, and 248m, respectively.  The subpolar Ianthro for the SPMW 

isopycnal surfaces are calculated as the sum of the column inventories across the 
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individual SPMW isopycnal bands for the area between 45°-66°N and 57°W-18°W.  The 

winter outcrop region for the densest SPMW is defined as the region where the "27.6-27.7 

isopycnal band outcrops during the winter months (January-March).  Since this work 

focuses on the North Atlantic, we limit our analysis to south of 70°N.  The wintertime 

uptake of anthropogenic CO2 by the "27.6-27.7 SPMW is calculated as the sum of the net 

anthropogenic CO2 flux into the "27.6-27.7 winter outcrop region expressed in Pg C/yr. 

 To deconvolve the dominant terms controlling changes in 

! 

"Ianthro
"physics, we partition 

the change in DIC into 5 components following Doney et al. [2007; 2009a]: 

 

! 

dI
DIC

" ( # F 
CO2

+ # A 
DIC

+ # E 
DIC

+ # B 
DIC

+ # V 
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t

t +$t

%     (5) 

where dIDIC is the monthly change in DIC inventory in mol C/m2/month, F’CO2 is the 

change in the air-sea CO2 flux, A’DIC is the change in the vertical integral of the 

convergence of the resolved advective DIC transport, E’DIC is the change in the vertical 

integral of the convergence of the eddy-parameterized DIC transport,  B’DIC is the change 

in the vertical integral of net biological release of inorganic carbon, and V’DIC is the 

change in the surface virtual flux of DIC due to freshwater fluxes.  F’CO2, A’CO2 , E’CO2 , 

C’CO2 , and V’CO2 are integrated over a month such that the units for these terms are mol 

C/m2/month.  ADIC is defined as: 
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where 
  

! 

! 
v 

res
 is the resolved model velocity.  The physical convergence terms and net 

biological release terms are integrated over the main thermocline (1280m based on the 
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model vertical grid), and all terms are defined such that positive values result in an 

increase in DIC inventory.   

 To determine the terms responsible for monthly changes in Ianthro, we define 

! 

dI
anthro

as: 

 

! 

dI
anthro

= dI
DIC

Transient
" dI

DIC

Pre" industrial       (7) 

where 

! 

dI
DIC

Transient  and 

! 

dI
DIC

Pre_industrial  are the monthly change in DIC inventory for the model 

pair with increasing atmospheric CO2 and constant atmospheric CO2, respectively.  

Equation (7) can be expanded using equation (5) to express 

! 

dI
anthro

 in terms of the 5 

convergence and flux terms, hereafter collectively referred to as the terms of equation (5).  

Finally, we calculate 

! 

dIanthro
"physics  using equations (2), (5) and (7) in order to investigate the 

impact of changing ocean physics on the carbon terms.  Following Doney et al. [2007; 

2009a], we determine the dominant terms responsible for changes in 

! 

dIanthro
"physics  by 

comparing the slopes of the 5 terms linearly regressed against 

! 

dIanthro
"physics .  The dominant 

term will result in a regression slope close to 1.  Slopes greater than one indicate that the 

term is producing a larger anomaly than that observed in 

! 

dIanthro
"physics.  This anomaly is 

therefore being compensated by one (or more) of the other terms.  Negative slopes 

indicate terms acting to dampen the impact of the dominant term(s).  

 

3.2.3 Model Bias 

 The impact of changing physics on Canthro in the North Atlantic is evaluated using 

two separate model simulations, ‘Repeat Annual Year’ (RAY) and ‘Variable Physics’ 
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(VP), described above (section 3.2.1).  This analysis assumes an identical mean state for 

the two models, such that the mean rate of Canthro uptake for the two models is equivalent.  

While this appears to be the case for some regions (e.g. Appendix B panel a), in others 

there is a clear offset between the two model simulations (e.g. Appendix B panel b) 

resulting from different forcing.  The RAY forcing in Large and Yaeger [2004] was 

constructed to have balanced global heat and freshwater fluxes while retaining cross-

correlations in surface forcing terms on the synoptic or storm time-scale.  It is not 

surprising that the mean ocean circulation state of RAY differs somewhat from the mean 

circulation in the VP integration given all of the potential non-linearities that can rectify 

variability in surface forcing into mixed layer depths, surface currents, etc.  It is difficult 

to accurately correct for this bias, especially in regions of significant non-linear increases 

in Canthro and with substantial interdecadal variability.  However, as this analysis focuses 

on interannual variability in the ocean system and not on long-term trends, differences in 

model mean state do not strongly impact our findings.  A positive bias (when the mean 

Canthro accumulation of the VP simulation is greater than that of the RAY simulation) will 

result in a positive shift in 

! 

Canthro

"physics values.  However, correlations based on changes in 

interannual variability between the model simulations will not be impacted.  Specifically, 

the impact of model bias on 

! 

dIanthro
"physics  and 

! 

"Ianthro
"physics will be minimal due to the short time-

scales of integration (one month- one year). 
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3.2.4 Sloshing and Heave 

The sloshing (horizontal shifts) of water masses, heave of isopycnal surfaces 

(vertical shifts), and shifts in gyre boundaries can all result in the apparent change in Ianthro 

at a specific location.  As discussed below, these changes are shown to contribute 

substantially to interannual variability in latitude band and point inventories and 

significantly impact trends in observations.  To minimize the effects of sloshing and 

heave, we conduct much of our analysis along isopycnal surfaces.  The "26.5 isopycnal 

band is used in the subtropics corresponding approximately to EDW, and bands between 

"27.3- "27.7 are used in the subpolar gyre corresponding approximately to SPMW.  

Evaluating the role of variable physics on interannual variability along an isopycnal band 

eliminates the problem of isopycnal heave. Horizontal shifts in water mass boundaries 

will result in similar shifts in isopycnal surfaces.  Therefore, integrating Ianthro along the 

isopycnal surface over the entire gyre (15°-40°N 20°-70°W for the subtropical gyre and 

45°-66°N 57°-18°W for the subpolar gyre) minimizes the impact of sloshing.  

 

3.2.5 Model Skill 

 The CCSM BEC physical model was shown to accurately recreate to a substantial 

degree spatial and temporal trends in sea surface height, temperature, and circulation 

[Doney et al., 2007].  The spatial pattern and seasonal cycles of model air-sea CO2 flux 

and surface pCO2 also agree with global observations with an RMS error of 1.53 mol CO2 

m-2 yr-1 and 18.6 µatm, respectively [Doney et al., 2009b].  To evaluate model skill at 
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reproducing Ianthro, the model output was extracted for the CLIVAR/CO2 north-south 

Atlantic hydrographic section (A16) for the year and months of the A16 occupations: 

February 1989 and December 2004 for the south Atlantic, and July-August 1993 and 

June-August 2003.  As the model was only run through December 2004, this month was 

used for the second occupation of A16 south instead of the actual occupation dates, 

January-February 2005.  Model Ianthro for the A16 section was calculated following 

equation (1) and integrating over the upper 1280m.  The decadal change in model Ianthro in 

mol/m2/decade is compared to the observed Canthro inventory [Wanninkhof et al., in prep] 

in Figure 3.1.  The variability estimate for the model Ianthro is calculated as: 

 

! 

model variability =
1

N "1
(#Ianthro

10yr " Ianthro

10yr
)
2$     (8) 

where 

! 

"Ianthro
10yr  is the decadal change in Ianthro for each month between January 1989 and 

December 2004 (i.e. January 1999- January 1989 to December 2004- December 1994), 

! 

"Ianthro
10yr  is the mean of the monthly decadal changes in Ianthro from 1989-2004, and N is the 

number of monthly 

! 

"Ianthro
10yr  measurements (N=72).  The model does a reasonable job 

reproducing the spatial pattern of Canthro uptake for the Atlantic section with an RMS error 

of 0.84 mol/m2/decade.  The model is in good agreement with the observations for the 

subtropics and subpolar region, the focus of this study. 

 

3.2.6 North Atlantic Oscillation 

 The North Atlantic Oscillation (NAO) is the major climate mode driving 

interannual variability in the North Atlantic [J W Hurrell, 1995].  The NAO has two 
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phases, positive and negative.  During positive NAO years, the combination of a strong 

atmospheric pressure low over Iceland and a strong atmospheric pressure high in the 

tropics results in increased storm frequency and current strength in the North Atlantic, 

Labrador and Nordic Seas [e.g. J Hurrell et al., 2003; J W Hurrell et al., 2001; Visbeck et 

al., 2003].  During a negative NAO, the Icelandic atmospheric low pressure system shifts 

southward resulting in more southerly storm tracks, fewer storms, and weaker currents in 

the North Atlantic [e.g. J W Hurrell et al., 2001].   The shift from a negative to positive 

NAO has been shown to correlate with a northward migration of the Gulf Stream [J 

Marshall et al., 2001] and changes in mixed layer depths [Carton et al., 2008; J Hurrell 

and Deser, 2009].  The strength of the NAO (the NAO index) is typically measured 

during the winter months, December- March.  The past four decades have seen 

significant interannual variability in the NAO index, with the most prominent feature 

being an extended period of positive NAO from 1988 to 1995.  For this study we use the 

station-based wintertime NAO record for 1970-2004 compiled by James Hurrell 

(National Center for Atmospheric Research, Boulder CO USA, 

http://jisao.washington.edu/data_sets/nao/).  The BEC CCSM model response to NAO 

forcing is consistent with observed changes in circulation, vertical mixing, salinity and 

surface temperature [Thomas et al., 2008]. 
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3.3 INTERANNUAL VARIABILITY IN NORTH ATLANTIC 

CANTHRO STORAGE 

Variable ocean physics results in seasonal, interannual, and decadal variability in 

North Atlantic Ianthro, which is greatest on small scales and is dampened at larger scales 

(Figure 3.2).  Individual model points for the VP simulation display monthly coefficients 

of variation (equation 3) ranging from 0.74% to 9.41% of the average RAY inventory for 

1970-2004, with an average coefficient of variation of 2.16%.  Latitude band inventories 

show decreased high frequency variability with mean monthly coefficients of variation 

for the VP simulation ranging from 0.56% to 1.61% of the average RAY 1970-2004 

inventory.  The North Atlantic basin 

! 

Ianthro
VariablePhysics (15°-70°N) has a monthly coefficient of 

variation of only 0.52% of the average RAY inventory.  The different scales of variability 

suggest the importance of sloshing and heave, which impart large variations on small 

scales but do not impact the 

! 

Ianthro
"physics at larger scales. Interannual changes in basin 

! 

Ianthro
"physics 

indicate that variable ocean physics only slightly impacts the uptake of anthropogenic 

CO2 by the North Atlantic basin as a whole (Figure 3.2a).  However, changes in ocean 

forcing (e.g. increased frequency of positive NAO years) impacts the magnitude of 

regional carbon sinks in the North Atlantic particularly the storage of Canthro in mode 

waters (sections 3.4 and 3.5). 

  Another measure of interannual variability is changes in anthropogenic carbon 

accumulation rates.  Anthropogenic carbon inventories increase with time in both the VP 

and RAY models.  However, the inclusion of variable ocean physics in the VP model 
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simulation results in both increases and decreases in Ianthro accumulation rates relative to 

the RAY simulation.  Latitude band 

! 

Ianthro
"physics  accumulation rates show significant 

interannual variability that varies both temporally and spatially.  From January 1970 to 

December 2004, variable ocean physics resulted in an increase in all latitude band Ianthro 

accumulation rates ranging from a 0.9% to a 4.4% increase, with the highest increase in 

the 50°-60°N band.  While this long-term increase in latitude Ianthro may be due to model 

bias (see section 3.2.3), we assume that this bias results from a difference in mean model 

state and so all interannual variability is directly attributable to changes in model physics.  

Ianthro accumulation rates show significant interannual variability with the change for a 5 

year interval varying from a 36% decrease to a 38% increase in accumulation rate for the 

VP simulation as compared to the RAY simulation. A substantial portion of changes in 

latitude band 

! 

Ianthro
"physics  is due to water mass sloshing and isopycnal heave not due to 

changes in air-sea uptake rates.  For example, the decrease in inventory between 20°-

30°N in the early 1990s and subsequent increase in inventory between 30°-40°N appears 

to be primarily due to a northward shift in the subtropical gyre boundary resulting from a 

transition to an extended positive NAO (discussed further below).  These substantial 

changes in column inventories due to shifts in water mass boundaries increase the 

difficulty of detection and attribution of anthropogenic CO2 uptake with hydrographic 

observations, a challenge that may be addressable with models. 

 To minimize the impact of water mass sloshing and isopycnal heave, we analyze 

the change in 

! 

Ianthro
"physics for isopycnal bands in the subtropics ("26.5) and subpolar ("27.3-"27.7) 

gyres.  In the subtropics, variable ocean physics has resulted in significant interannual 
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variability on the "26.5 surface (Figure 3.3a) with increased Canthro accumulation rates in 

the VP simulation of up to 106% for particular 5 year intervals.  Similarly, the densest 

SPMW isopycnal bands, "27.55-27.7, show substantial interannual variability in 

! 

Ianthro
"physics  with 

the largest increases on the "27.675-27.7 surface (Figure 3.3b). The Canthro accumulation rates 

for  "27.675-27.7 were on average two times higher, and up to 100 fold higher, in the VP 

simulation for particular 5 year intervals as compared to the RAY simulation.  The 

! 

Ianthro
"physics  for the subtropical isopycnal band and several subpolar bands appear to be 

impacted by model bias (differences in the mean state of the VP versus RAY model), 

with "26.5,  "27.55-27.6 and "27.65-27.675 showing a negative bias and "27.675-27.7 showing a 

positive bias.  As discussed above, the interannual variability in 

! 

Ianthro
"physics  is not impacted 

by this bias.  Therefore, 

! 

"Ianthro
"physics should reflect changes in uptake and accumulation of 

Canthro along the isopycnal surface.  However, due to the potential for different biases 

along different SPMW surfaces, it is necessary to evaluate the density bands individually 

rather than as a cumulative inventory.  For this study we focus on the "27.675-27.7 isopycnal 

surface.  In the following sections, we investigate the mechanisms responsible for the 

interannual variability in Canthro uptake and storage in the subtropical (section 3.4) and 

subpolar (section 3.5) gyres and discuss the implication of these changes on Canthro 

observations (section 3.6) and for the future of the North Atlantic carbon inventory 

(section 3.7). 
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3.4 MECHANISMS GOVERNING INTERANNUAL VARIABILITY 

IN THE SUBTROPICAL GYRE 

 The eighteen degree mode water (EDW) is the primary water mass in the North 

Atlantic subtropical thermocline.  Therefore, variability in EDW formation and Canthro 

storage should account for a significant fraction of the interannual variability in the 

subtropical thermocline (<1000m).  In the RAY model simulation, EDW forms in the 

wintertime (January- March) between 35°-38°N.  The formation region has a spatial 

average maximum mixed layer depth (MLD) of 292m ±1 (1") and a spatial average 

wintertime mean MLD of 166m ±6 (1").  When variable ocean physics is included in the 

model (VP simulation), the spatial average maximum MLD of the EDW formation region 

increases to 337m ±31 (1") and the average wintertime mean MLD increases to 171m 

±20 (1") (Figure 3.4a).  In addition, during the time-period under consideration (1970-

2004), the location of the outcrop region in the VP model oscillates between 33°N and 

40°N.  The northward extent of the EDW formation region determines the area of the 

outcrop, with polewards shift in the northern boundary resulting in periods of increased 

outcrop area.  As expected, a larger outcrop footprint results in an increased 

anthropogenic CO2 flux into the EDW (Figure 3.5a).  The uptake of anthropogenic CO2 

is also impacted by the MLD of the formation region, with increased MLDs in individual 

model cells resulting in an increased uptake of Canthro in those cells (Figure 3.5b).  

Therefore, a northward shift in the EDW formation region results in greater EDW 

formation rates (thicker EDW isopycnal band) and consequentially an increased uptake 

of Canthro due to both greater formation rates and to deeper MLDs. 
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 As the EDW formation region is located directly south of the Gulf Stream, 

poleward shifts in the Gulf Stream and subtropical/subpolar boundary will result in a 

subsequent northward shift in the EDW formation region. Positive NAO years have been 

shown to result in such a northward shift of the Gulf Stream by approximately 1 degree 

[Joyce et al., 2000].  In the VP model, a positive NAO year generally results in a similar 

northward shift in the EDW formation region by a little over 1 degree.  There is also a 

positive relationship between the NAO wintertime index and the mean EDW MLD, and 

the NAO index and the flux of anthropogenic CO2 into the EDW formation region (Table 

3.1). 

 In the ocean interior, model EDW corresponds to a potential density anomaly of 

"$ of approximately 26.5.  Bates et al. [2002] use a potential density anomaly of 26.4, 

however, in the model the EDW surface appears to be closer to 26.5.  The seasonal 

evolution of Canthro along this isopycnal surface for a representative year (1993) is shown 

in Figure 3.6.  During the winter months, anthropogenic carbon is injected onto the "26.5 

surface just south of 40°N, corresponding to the location of the EDW formation region.  

There appears to be a secondary ventilation site in the eastern subtropical gyre.  These 

high Canthro signals are then transported clockwise around the gyre.  By September, the 

high Canthro signals have been dispersed throughout the eastern and southern portion of the 

subtropical gyre.  Figure 3.6 aliases in changes in isopycnal thickness, which will act to 

decrease isopycnal Ianthro (thinning of the isopycnal band) or increase isopycnal Ianthro 

(thickening of the isopycnal band).  However, changes in isopycnal thickness will not 

impact the total "26.5 inventory when integrated over the subtropical gyre. 
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Using equations (5)-(7), we evaluate the primary terms responsible for changes in 

! 

Ianthro
"physics .  Interannual variability in anthropogenic carbon in the subtropical gyre is highly 

correlated with changes in advective convergence, in particular with the horizontal 

convergence of carbon (Figure 3.7).  This is consistent with previous work, which 

showed that interannual changes in DIC and temperature in the subtropics are dominated 

by advective transport [Doney et al., 2007; Doney et al., 2009a].  This analysis suggests 

that most of the changes in Ianthro observed in the gyre interior are due to Canthro anomalies 

and changes in isopycnal thickness advected from outcrop regions where large scale 

mixing events and CO2 air-sea fluxes occur.  

Changes in EDW wintertime CO2 air-sea flux (smoothed with a three year 

running mean) is positively correlated with changes in "26.5 gyre inventory (

! 

"Ianthro# 26.5
"physics ) 

with a lag of 1 year (slope 9.94± 4.65, r value 0.36, p value 0.043).  However, changes in 

the EDW formation region CO2 air-sea flux only accounts for approximately 10% of the 

change in 

! 

"Ianthro# 26.5
"physics  (not shown).  As discussed previously, the air-sea CO2 flux into the 

EDW outcrop region is highly correlated with the EDW wintertime footprint, which is 

also related to the mean MLD in the formation region.  Variability in the wintertime 

EDW footprint and MLD will also impact rates of water mass transformation, which 

forms EDW during wintertime mixing events through diapycnal mixing and surface 

water transformations via air-sea buoyancy fluxes.  Therefore, we believe that the 

relationship between wintertime CO2 flux and 

! 

"Ianthro# 26.5
"physics  is a proxy for changes in 

! 

"Ianthro# 26.5
"physics  driven by changes in rates of water mass transformation.  This is consistent 
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with the findings of Alfultis and Cornillon [2001], who suggest that overlying waters are 

entrained into the EDW during wintertime mixing events.  Once subducted into the gyre 

interior, these high Canthro waters are transported clockwise around the subtropical gyre.  

The relationship between changes in the EDW formation region and shifts in the NAO 

index, as reflected by changes in 

! 

"Ianthro# 26.5
"physics , is such that positive NAO years correspond 

to increases in 

! 

"Ianthro# 26.5
"physics (Table 3.1). This transfer of Canthro from surface waters to the 

EDW through water mass transformation acts can sequester the anthropogenic carbon for 

years to a few decades (the approximate residence time of interior water in the 

subtropical gyre [Jenkins, 1998; Robbins and Jenkins, 1998]).  This consequently 

increases the magnitude of the subtropical Canthro sink over these time-scales.  Changes in 

rates of mode water re-ventilation to the atmosphere may decrease or increase the time-

scale of sequestration [e.g. Bates et al., 2002]. 

 

3.5 MECHANISMS GOVERNING INTERANNUAL VARIABILITY 

IN THE SUBPOLAR GYRE  

 Variability in subsurface Ianthro in the subpolar gyre is primarily driven by changes 

along the densest SPMW, "27.55-27.7 (not shown).  Here we focus on the mechanisms 

driving interannual variability along the "27.675-27.7 isopycnal surface, which is most likely 

a precursor for LSW [McCartney and Talley, 1982; L D Talley and McCartney, 1982].  

In the subpolar gyre, variability in the simulated mean winter MLD is significantly 

correlated with the NAO index such that the model mean winter MLD in the subpolar 
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gyre is greater during positive NAO years than during negative NAO years (Figure 3.8a, 

Table 3.1).  Deep winter mixed layers during positive NAO years correspond both to 

increased anthropogenic CO2 flux into the subpolar gyre (Figure 3.9) and to increased 

ventilation of dense SPMW isopycnal surfaces (as defined by the intersection of the 

winter mixed layer with the isopycnal band).  This results in a greater CO2 flux onto the 

"27.5-27.7 isopycnal surfaces during positive NAO years as compared to negative NAO 

years (Figure 3.10).  These findings are consistent with previous modeling studies which 

show that positive NAO years correlate with increased deep and intermediate water 

formation [Lohmann et al., 2009] and increased air-sea CO2 fluxes [Thomas et al., 2008].   

In the winter months, the outcrop region for the dense SPMW in the VP model, 

"27.6-27.7, occurs between 54°-66°N and has a spatial average monthly mean MLD of 

327m±53m (Figure 3.4b) and a spatially averaged maximum wintertime MLD of 

1035m±153m.  The air-sea CO2 flux into this outcrop region is compared to the change in 

inventory for the "26.675-27.7 surface and the NAO index in Figure 3.8b.  While the flux into 

"27.6-27.7 is positively correlated with 

! 

"Ianthro
"physics for "27.675-27.7 (slope 5.6±1.8, r value 0.49, p 

value 0.004), the local anthropogenic CO2 air-sea flux only accounts for approximately 

10% of the change in 

! 

Ianthro
"physics  (Figure 3.8b).   Similarly, an analysis of the primary budget 

terms responsible for changes in 

! 

Ianthro
"physics  (equations (5)-(7)) shows that only ~10% of 

changes in 

! 

dIanthro
"physics  are due to gas exchange (Figure 3.11).  As in the subtropics, the 

majority of 

! 

dIanthro
"physics  variability is due to changes in advective DIC convergence.  

However, in the subpolar gyre, this relationship is driven by large changes in the 

horizontal advective carbon convergence that is compensated by similarly large, but 
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inversely related, changes in the vertical advective carbon convergence.  Part of this 

relationship may be explained by net mass convergence that is compensated by 

downwelling. 

Similar to the EDW, this analysis indicates that Canthro storage in SPMW is 

primarily driven by water mass transformations rather than by local air-sea CO2 gas 

exchange.  This is consistent with the conclusions of Omar and Olsen [2006] from 

hydrographic observations that the change in subpolar surface pCO2 concentrations are 

primarily driven by changes in surface water pCO2 advected into the subpolar gyre.  This 

is illustrated in Figure 3.12 using model output.  Deep winter mixing homogenizes the 

upper water column redistributing the anthropogenic carbon, decreasing surface Canthro 

and increasing Canthro at depth (Figure 3.12b).  The resulting increased Canthro in the gyre 

interior persists after the mixing event (Figure 3.12c).  During the summer and early fall, 

anthropogenic carbon concentrations build back up in surface waters (Figure 3.12a, d), 

most likely due to advective transport of high anthropogenic CO2 subtropical water, and 

the cycle repeats.  Evidence for northward transport of high Canthro surface waters is found 

both in hydrographic observations [e.g. Alvarez et al., 2004; Alvarez et al., 2003; Holfort 

et al., 1998; Macdonald et al., 2003; Omar and Olsen, 2006] and in numerical inversion 

studies [e.g. Holfort et al., 1998; Mikaloff Fletcher et al., 2006].  In particular, modeling 

work by Mikaloff Fletcher et al. [2006] find a northward Canthro transport into the 

subtropical gyre of 0.12 ± 0.01 Pg C/yr and a transport of 0.02 ± 0.01 Pg C/yr into the 

subpolar gyre.  Similarly, Holfort et al. [1998] and Alvarez et al. [2003] conclude that the 

majority of Canthro stored in the North Atlantic is advected into this region by northward 
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flowing surface waters.  Specifically, Alvarez et al. [2003] estimate that Canthro rich 

surface waters are advected into the subpolar gyre at a rate of 0.044 ±  0.047 Pg C/yr. 

Increased Ianthro in the dense SPMW has significant implications for the North 

Atlantic carbon sink.  As McCartney and Talley [1982, pg 1186] write, “Because the 

Labrador Sea Water is the last, densest variety of Subpolar Mode Water, its properties 

depend on the entire history of the Subpolar Mode Water as it is advected cyclonically 

around the subpolar North Atlantic, including the path history of air-sea and lateral heat 

exchange.”  Therefore, increased Ianthro in SPMW translates into increased Ianthro in LSW, 

which acts to sequester anthropogenic carbon on the timescale of up to several decades 

[Haine et al., 2003; L D Talley and McCartney, 1982; Waugh et al., 2004].  Alvarez et al. 

[2004] conclude that the net southward flow of the LSW is the largest contributor to the 

transport of Canthro from the subpolar region into the subtropics. However, the long term 

impact of increased SPMW Ianthro may be dampened by re-ventilation of SPMW Canthro.  

Modeling work by Haine et al. [2003] suggests that 60% of waters subducted in the 

subpolar North Atlantic are re-ventilated to the atmosphere after 6-8 years. 

 

3.6 IMPLICATIONS FOR OBSERVATIONS 

 Numerous observations have been made in an attempt to constrain the patterns, 

rates, and temporal evolution of the North Atlantic carbon sink by measuring both air-sea 

CO2 fluxes and changes in subsurface carbon inventory.  These measurements work 

synergistically with model analysis; observations provide an important check of model 
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output, and model results provide a context for interpreting observations and insight into 

the mechanisms driving interannual variability in observed Ianthro.   

 

3.6.1 Anthropogenic carbon versus total carbon 

 In the model, we are able to easily separate anthropogenic and natural carbon.  

Therefore, in the above analysis, we are able to focus on the response of anthropogenic 

carbon uptake and storage to variable ocean physics.    However, there is no simple way 

to differentiate between these two carbon pools in oceanographic observations.  In 

general, observational estimates of anthropogenic carbon accumulation rates rely on 

either the use of empirical methods (discussed in section 3.1) or on long term monitoring 

of total carbon.  The latter approach assumes a steady state ocean such that any long term 

trends in total carbon or air-sea CO2 flux can be attributed to anthropogenic carbon 

uptake.  The accuracy of this approach can be improved by correcting for changes in 

salinity, dissolved oxygen, and nutrient concentrations.  However, recent modeling 

studies show that long term trends in anthropogenic air-sea CO2 flux can be inversely 

related to changes in the natural air-sea CO2 flux [Lovenduski et al., 2008].  Our analysis 

demonstrates that, while changing model physics has resulted in a slight increase in 

anthropogenic carbon inventory in the North Atlantic basin between 1970-2004, variable 

model physics has caused total carbon (anthropogenic + natural) inventories to decrease 

over this time period (Figure 3.2a).  Similarly, the impact of changing model physics on 

mean anthropogenic carbon concentrations for the EDW and SPMW isopycnal bands is 

not correlated or slightly negatively correlated with the impact of physics on the mean 
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total carbon inventory for these water masses (Figure 3.13).  The inverse relationship 

between total DIC !physics and anthropogenic carbon!physics is most likely due to spatial 

differences in the vertical and horizontal concentration gradients of these two pools.   

This differential response of natural and anthropogenic carbon to variable ocean physics 

makes observations of changes in the ocean carbon sink substantially more difficult [e.g 

Lovenduski et al., 2008]. Below we compare our numerical modeling results to 

observations of changes in subtropical and subpolar Ianthro.  While we find good agreement 

between the observations and model predictions, it is important to keep in mind that the 

observations may alias changes in natural carbon that we have not addressed in the model 

analysis. 

 

3.6.2 Subtropical gyre 

 Bates et al. [2002] report increases in EDW DIC concentrations at the Bermuda 

Atlantic Time-series Study (BATS) site that are twice the expected rate based on the 

atmospheric increase for the period of 1988-2001.  This corresponds to an increased 

carbon uptake of 0.03-0.25 Pg C/yr.  Similarly, Bates [2007] finds an increased carbon 

sink for the subtropics between 1983-2004.  These authors attribute the increased 

subtropical carbon sink to weakening wind speeds and reduced mixing events at BATS, 

which act to decrease ventilation of EDW Canthro back to the atmosphere. Decreased 

mixing also increases the residence time of EDW thereby decreasing dissolve oxygen 

concentrations and increasing DIC due to remineralization.  Bates et al. [2002] conclude 

that the increases in remineralized DIC due to increased EDW residence times are small 
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relative to changes in air-sea CO2 flux.  Gruber et al. [2002] also correlate variability in 

winter MLD, sea surface temperature and DIC at BATS with shifts in the NAO phase.. 

The model simulations described above are consistent with the findings of Bates 

et al. [2002], Gruber et al. [2002] and Bates [2007].  Model mean yearly MLDs and 

mean wintertime MLDs near Bermuda are lower for the period from 1988-2004 as 

compared to 1970-1987, though this difference is not statistically significant in the model 

output.  In addition, Ianthro on the EDW isopycnal surface is elevated in the model between 

1990-1999.  Finally, as discussed above, the southern extent of the simulated EDW 

outcrop oscillates between 33°N and 36°N in relation to the NAO phase such that the 

southern extent of the outcrop is closest to the BATS site during negative NAO years.  

This is consistent with the findings of Bates et al. [2002] that EDW formation at BATS 

decreases during a positive NAO phase.  However, based on the spatial and temporal 

resolution of the model, we are able to propose an additional mechanism for the observed 

increase in the subtropical carbon sink during positive NAO years, e.g. 1988-1997.  In the 

model, increased mixing and a larger EDW wintertime outcrop footprint during positive 

NAO years results in increased mode water formation.  A thicker EDW isopycnal surface 

acts to sequester more anthropogenic carbon in the gyre interior.  This results in increases 

in EDW Canthro storage similar to that observed by Bates et al. [2002].  

The response of EDW formation to positive NAO forcing in the model is 

consistent with the findings of Joyce et al. [2000] and Alfultis and Cornillon [2001].  An 

analysis of hydrographic data indicates large spatial and temporal variations in EDW 

renewal events with the outcrop region varying between 30°-40°N [Alfultis and 
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Cornillon, 2001], a similar range to that observed in the model (Figure 3.4a).  However, 

these authors do not suggest a mechanism for the observed variability in EDW renewal 

events.  Joyce et al. [2000] find a high degree of correlation between positive NAO years, 

the northward extent of the Gulf Stream, and the thickness of the EDW (or potential 

vorticity of the EDW) near Bermuda.  They conclude that the northward migration of the 

Gulf Stream in response to positive NAO forcing controls the formation of EDW in the 

Sargasso Sea. 

 The model analysis presented in section 3.4 supports the conclusion that the 

subtropics respond to NAO atmospheric forcing with a lag of 1-2 years, consistent with 

observational studies showing the presence of an ocean memory [Curry and McCartney, 

2001].  Taylor and Stephens [1998] find that the northern extent of the Gulf Stream lags 

the NAO index by 2-3 years and Joyce et al. [2000] report a 0-1 year lag for the same 

response.  However, Joyce et al. [2000] use a slightly different NAO index which 

decreases the lag response time [Curry and McCartney, 2001].  Gonzalez-Davila et al. 

[2007] find a similar lagged response of 3 years for the eastern subtropics to NAO 

forcing. 

 

3.6.3 Subpolar gyre  

 A number of studies have evaluated changes in the North Atlantic subpolar 

carbon sink over the past four decades.  Pérez et al. [2008] use a suite of hydrographic 

cruises in the subpolar gyre to evaluate the change in Canthro storage in this region between 

1981 and 2006.  They report high rates of Canthro uptake and storage in the early 1990’s 
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and decreasing rates of storage from 1997-2006. Similarly, Friis et al. [2005] find high 

rates of subpolar anthropogenic carbon accumulation between 1981-1997.  A number of 

studies evaluate changes in surface pCO2 and air-sea gas exchange in the subpolar gyre 

[Corbiere et al., 2007; Lefevre et al., 2004; Olsen et al., 2006; Schuster and Watson, 

2007; Schuster et al., 2009].  The observational time period for most of these studies span 

from the early 1990’s (period of high positive NAO) into the early 2000’s (period of 

neutral or negative NAO).  For this observational window, researchers have concluded 

that the North Atlantic carbon sink is decreasing, but this trend may not be robust when 

considered in the context of interannual to decadal variability that can be aliased into 

trend estimates for short time-periods [Schuster et al., 2009; Thomas et al., 2008].  When 

the observational window is expanded, the measured changes in pCO2 and air-sea gas 

exchange are consistent with each other, with the estimates of Canthro storage [Perez et al., 

2008] and with our model analysis, which shows increased Canthro uptake and storage 

during positive NAO years and decreased uptake during negative NAO years.  This 

highlights the importance of an understanding of interannual variability in the 

interpretation of hydrographic observations.  

  

3.7 DISCUSSIONS AND CONCLUSIONS 

 Interannual variability impacts the anthropogenic carbon inventory of the North 

Atlantic.  In both the subtropical and subpolar gyres, increased Canthro uptake occurs as a 

result of increased mode water formation and air-sea CO2 exchange during the winter 
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months (sections 4 and 5).  Changes in the frequency, duration and intensity of mode 

water formation events are related to shifts in wind stress, circulation patterns and winter 

storms associated in part with shifts in the North Atlantic Oscillation.  In our model 

simulations, positive NAO years correspond to increased  in both the subpolar 

and subtropical gyres (Figure 3.14b, d, f).  Increases in 

! 

"Ianthro
"physics during positive NAO 

years correspond to increased MLDs in the subpolar gyre immediately following the 

NAO shift and persisting for a year after the event (Figure 3.14a-d).  Our analysis 

suggests that the increase in subpolar  during positive NAO years is due to 

increased water mass transformation during SPMW mode water formation. 

The subtropics show an initial decrease in MLD and increase in  in 

response to a positive NAO.  This change in MLD is consistent with the observations of 

Bates et al. [2002] (see above discussion) and could explain the initial increase in 

subtropical - increased  due to decreased re-ventilation of Canthro back to 

the atmosphere.  Changes in latitude band  also suggest that some water mass 

sloshing occurs in the subtropics in response to shifts in the NAO phase (Figure 3.2b).  

The band of negative correlation between the NAO index and  found south of the 

subtropical band of positive correlation supports the possibility of water mass sloshing. 

Changes in subtropical mode water formation region MLDs lag 1-2 years behind an NAO 

shift, at which point a positive relationship between the MLDs in the subtropics and the 

NAO index is observed.  in the subtropical gyre also shows a positive relationship 
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to NAO with a lag of two years.  We suggest that some of this correlation may be due to 

changes in EDW Ianthro resulting from changes in formation rates and EDW thickness.   

In both gyres, changes in local anthropogenic air-sea CO2 flux into mode waters 

account for only ~10% of changes in mode water 

! 

Ianthro
"physics .  We conclude that mode water 

! 

"Ianthro
"physics is primarily driven by water mass transformation in which light, high Canthro 

surface waters are entrained onto deeper isopycnal surfaces through diapycnal mixing 

and surface buoyancy heat flux.  This implies that much of the anthropogenic carbon 

found in the ocean interior is from surface waters advected into the water mass formation 

region rather than from local gas exchange.  As discussed above, previous work suggests 

a significant northward transport of surface currents carrying high anthropogenic carbon 

waters from the tropics into the subtropics and onward into the subpolar gyre.  Holfort et 

al. [1998] further suggest a significant cross-hemisphere transport of surface waters with 

a net flux of Canthro from the South Atlantic into the North Atlantic.  Therefore, the 

anthropogenic carbon sequestered in North Atlantic mode waters most likely derives 

from air-sea CO2 flux into tropical and subtropical waters, potentially in the South 

Atlantic basin.  

Our findings also suggest that climate modes, such as the NAO, can alter the 

residence time of anthropogenic carbon in the ocean by altering the rate of water mass 

transformation that acts to transport surface Canthro into the ocean interior where it is 

sequestered for several years to several decades. In addition, increased frequency of 

positive NAO years, such as is predicted by IPCC modeling studies [Meehl et al., 2007], 

could increase the strength of the North Atlantic sink by increasing mode water 
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formation. However, these changes may be reduced due to other climate feedbacks such 

as an increased freshwater flux in the Labrador and Nordic seas that may act to decrease 

deep water formation [e.g. Thorpe et al., 2001], or increased stratification in the 

subtropics resulting from secular increases in surface temperatures [e.g. Boyd and Doney, 

2002; IPCC, 2001].  

 The observational estimates of subpolar Canthro uptake and storage highlights the 

difficulties of detection and attribution.  Observations are easily biased by sampling 

strategy and the time-period of observations.  In addition, it is difficult to parcel out 

observed inventory changes that are due to lateral sloshing and vertical heave from those 

resulting in varied uptake rates.  Rodgers et al.  [in press] suggest that altimetry data in 

conjunction with numerical models may help correct for some of the interannual 

variability in observed DIC concentrations.  Similarly, we conclude that numerical 

models should be employed to provide both a context for hydrographic observations and 

an understanding of the driving mechanisms behind observed trends.  
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Relationship to NAO slope error R value p value

Subtropical EDW

dI/dt (!Physics), 2yr lag * 0.0039 0.002 0.34 0.057

Outcrop mean MLD (!Physics) 2.7 1.7 0.27 0.129

Outcrop CO2 flux (!Physics) 0.0002 0.0001 0.28 0.115

Subpolar Mode Water

dI/dt (!Physics), 0yr lag ** 0.0031 0.001 0.48 0.0054

mean subpolar MLD (!Physics) 7.57 1.65 0.63 5.0E-05

Outcrop CO2 flux (!Physics)*** 0.0004 0.00008 0.62 7.1E-05

* for "26.5 between 15-40N and 70-25W for the upper 150m

** for "27.675-27.7 between 45-66N and 57-18W

*** for "27.6-27.7

TABLE 3.1: The relationship between the wintertime NAO index and changes in the Eighteen 

Degree Water (EDW) and Subpolar Mode Water (SPMW) outcrops and isopycnal surfaces.
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Figure 3.1: Comparison between model and observational estimates of the rate 
of change of Canthro column inventory along the Atlantic north-south A16 tran-
sect.  Model error bars represent the natural variability in the model system and 
are calculated as the RMS error of the decadal change in the Canthro column inven-
tory calculated for each month between January 1989 and December 2004.
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Figure 3.2: Change in model Canthro inventory with time for a) the North Atlan-
tic basin, 15°-70°N, b) latitude band inventories, and c) column inventories for 
44°N 57°W and 63°N 37°W.  All inventories are calculated for the upper 

-
sure of ocean sensitivity to variable climate and ocean circulation as defined by 

the Canthro inventory (black line) and the total carbon inventory (gray line).  
Panel c) plots the output for both the VP and RAY model simulations.  
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Figure 3.4:  Wintertime (January- March) outcrop for a) Eighteen Degree Water 
26.25-26.75 27.6-27.7, for the Variable Phys-

ics model simulation.  The colorbars indicate the mean wintertime mixed layer depth 
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Figure 3.5:  Impact of variable physics on the Eighteen Degree Water (EDW) 
formation region and Canthro CO2 uptake.  Panel a) shows the strong positive 
relationship between CO2 air-sea flux and size of the EDW outcrop region as 
represented by the anomaly in number of model grid cells. Panel b) displays the 
relationship between anthropogenic CO2 air-sea flux and MLD for the EDW 

values for the VP simulation.
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a)      February 1993 b)   April 1993

c)   June 1993 d)        September   1993

Figure 3.6:  Impact of transport on the variability of Canthro isopycnal inventory 
(mol/m2

26.5 isopycnal surface.  Panels a)-d) show the Canthro  26.5 
isopycnal inventory for February 1993, April 1999, June 1993, and September 
1999, respectively.  The black circle denotes the EDW formation region from 
Figure 4a.
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Figure 3.7:  Driving factors for changes in the 
subtropical gyre Ianthro.  Monthly changes in Ianthro 
are plotted against the horizontal (gray) and total 

horizontal transport of Canthro is the dominant 
factor contributing to dIanthro.
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Figure 3.8:  Impact of the NAO on model subpolar mixed layer depths and 
anthropogenic carbon fluxes.  Panel a) shows the strong positive relation-
ship between mean wintertime mixed layer depth (MLD) for the subpolar 
gyre, 46°-66°N 57°-18°W, and the wintertime NAO index (scaled by a 
factor of 10).  Panel b) shows the positive relationship between NAO index 
(scaled by a factor of 0.015), the impact of variable ocean physics on the 
change in anthropogenic carbon inventory ( anthro     in PgC/yr 27.675-27.7, 
and the impact of variable ocean physics on the anthropogenic CO2 air-sea 

27.6-27.7 wintertime outcrop (scaled by a factor of 10).  The 
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Figure 3.10:  Wintertime air-sea CO2 flux onto subpolar mode water isopyc-
27.3-27.7).  The impact of variable ocean physics on the winter-

time CO2 flux onto seven isopycnal surfaces are shown for positive, panel a), 
and negative NAO years, panel b).  The flux onto the isopycnal surfaces is 
defined as the total flux into model cells for which the wintertime mixed layer 
intersects with the wintertime depth of isopycnal band.  Note the difference in 
scales for panels a) and b).
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Figure 3.14: Relationship between NAO wintertime index and model maximum MLD, 
panels a), c), and e), and model Ianthro    , panels b), d), and f).  Panels a) and b) show the 
immediate response to a change in NAO index, panels c) and d) show the relationship 
for a 1 year lagged response to a change in NAO index and panels e) and f) show the 
relationship for a 2 year lagged response.  Ianthro      is defined by equation (4). 
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Chapter 4:  

 

The Upper Ocean Sulfur Cycle: Introduction 

and Methods 
 

4.1 INTRODUCTION 

4.1.1 Overview of the upper ocean sulfur cycle 

The primary precursor of the climatically active trace gas dimethylsulfide (DMS), 

dimethylsulfoniopropionate (DMSP), is produced in surface waters by marine 

phytoplankton.  DMSP constitutes a significant pool of fixed carbon in the surface ocean, 

accounting for up to 10% of phytoplankton cell carbon [Archer et al., 2001; Kiene et al., 

2000] and up to 100% of phytoplankton particulate organic sulfur [Matrai and Keller, 

1994].  Many possible roles for DMSP biosynthesis have been suggested including its use 
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as an osmotic regulator, an anti-oxidant, a grazing deterrent, and a cryoprotectant.  

Intracellular DMSP concentrations are species specific and highly variable [Keller et al., 

1989; Matrai and Keller, 1994], making community composition and environmental 

stress important factors for determining DMSP production rates.  However, 

phytoplankton only convert a small fraction of their DMSP to DMS [Niki et al., 2000; 

Stefels and Dijkhuizen, 1996; Wolfe et al., 2002].  The majority of the intracellular DMSP 

pool (particulate DMSP, DMSPp) is released as DMSP into the water column through 

grazing, viral lysis, and cell senescence [Christaki et al., 1996; Hill et al., 1998; Simo et 

al., 2002; Wolfe et al., 1994].  This dissolved pool of DMSP (DMSPd) is then rapidly 

cycled by marine bacterioplankton that use DMSP as both a labile sulfur and carbon 

source.  Figure 4.1 depicts DMS and DMSP (DMS(P)) cycling in the upper water column 

as we understand it today.  

Two possible bacterially mediated fates of DMSPd have been identified in surface 

waters [Cantoni and Anderson, 1956; Kiene and Taylor, 1988].  The DMSP 

demethylation/demethiolation pathway provides bacteria with both carbon and reduced 

sulfur compounds, which are easily incorporated into amino acids and cellular biomass.  

The DMSP cleavage pathway yields an easily accessible 3-carbon compound and the 

volatile DMS molecule.  DMSP cleavage is the only pathway which results in the release 

of DMSaq into the water column.  DMS is then available to be consumed by a specialized 

group of bacteria, decomposed via photolysis, or ventilated to the atmosphere.  Due to 

DMSP demethylation/demethiolation and DMS consumption processes, only a small 

percentage (1-2%) of DMSP produced by marine phytoplankton is ventilated to the 
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atmosphere as DMS [Bates et al., 1994; Kwint and Kramer, 1996].  Therefore, the 

magnitude of the release of DMS to the atmosphere strongly depends on the activity of 

the bacterioplankton community.  

DMS concentrations have also been shown to correlate to ultraviolet radiation 

(UVR) dose and nutrient stress [Harada et al., 2004; Sunda et al., 2002; 2004; Toole et 

al., 2003].  Toole and Siegel [2004] hypothesize that there are two regimes controlling 

marine DMS production.  They suggest that low-nutrient, subtropical, oligotrophic 

regions are stress-forced regimes in which DMS production results from physiological 

stress, such as UV radiation, whereas polar regions are bloom-forced regimes in which 

DMS production is determined by phytoplankton productivity.  To date, no study has 

explored the differences in the driving chemical and physical mechanisms controlling 

bacterial DMSP transformations in either of these environments.   

Here we focus on open ocean, low-nutrient, oligotrophic regions using the 

Bermuda Atlantic Time-series Study as a test site to investigate bacterial degradation of 

DMSPd and DMS production in the open ocean. During a 10 month time-series at the 

BATS station (February-November), the abundance and expression of key genes 

involved in the two DMSP degradation pathways and the potential activity of the 

enzymes involved in bacterial and phytoplankton DMS production were quantified.  In 

order to determine the driving processes behind bacterial DMSPd degradation and 

bacterial and phytoplankton DMS production, seasonal shifts in these pathways are 

compared to changes in other components of the sulfur cycle as well as to changes in 

physical and chemical properties measured on the BATS cruises. 
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4.1.2 Bacterial degradation of DMSPd 

 Bacteria play a fundamental role in DMSP cycling [Kiene et al., 2000; 

Malmstrom et al., 2004a; Pinhassi et al., 2005; Visscher et al., 1992].  The chemical 

structures of the compounds involved in the two bacterial degradation pathways, DMSP 

cleavage and DMSP demethylation/demethiolation1, are shown in Figure 4.2. The 

demethylation pathway demethylates/demethiolates DMSP to methanethiol or 3-

mercaptopropionate whereas the cleavage pathway cleaves DMSP to DMS and acrylate 

or 3-hydroxy propionate.  Field and culture studies indicate that distinct bacterial 

populations may be responsible for the different DMSP and DMS degradation pathways 

[Taylor and Gilchrist, 1991; Visscher et al., 1992]. However, members of the 

Roseobacter group have been shown to possess the ability to both demethylate and cleave 

DMSP [Gonzalez et al., 1999]. 

During demethylation, a methyl group is cleaved off of the DMSP molecule 

resulting in 3-methiolpropionate (MMPA)2.  MMPA is then demethiolated to form 

methanethiol (MeSH), which is easily incorporated into cell protein primarily in the form 

of methionine or cysteine.  Alternatively MMPA can be demethylated again to form 3-

mercaptopropionate (MPA).  The DMSP demethylation pathway was first identified in 

anoxic marine sediments [Kiene and Taylor, 1988] and later identified in aerobic marine 

bacteria [Taylor and Gilchrist, 1991; Visscher and Taylor, 1994].  Kiene and co-authors 

                                                
1
 The demethylation/demethiolation will be referred to as the demethylation pathway. 

2
 3-methiolpropionate is also called 3-methylmercaptopropionate. 
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[1996; 2000b; 2000] suggest that DMSP demethylation is the dominant degradation 

pathway for DMSPd in marine environments (>75% of DMSPd consumption) and that 

DMSP is a significant source of both carbon and sulfur for bacterial communities.  Other 

studies show that DMSP degradation supports 50-100% of bacterial sulfur demands and 

0.4-30% of bacterial carbon demands [Kiene and Linn, 2000a; Simo et al., 2002; Zubkov 

et al., 2001]. 

&-proteobacteria are particularly active in the cycling of DMSP in both coastal 

and open ocean environments [Gonzalez et al., 1999; Malmstrom et al., 2004a; 

Malmstrom et al., 2004b; Vila et al., 2004; Zubkov et al., 2001; 2002].  Roseobacter, a 

group of  &-proteobacteria, is an abundant bacterial taxa in surface waters comprising ~5-

10% of the bacterial community [Buchan et al., 2005].  Roseobacter strains have been 

shown to demethylate DMSP and/or cleave DMSP to DMS [Gonzalez et al., 1999; Kiene 

et al., 1999; Moran et al., 2003].  In 2006, Howard et al.  identified the gene (dmdA) 

responsible for the demethylation of DMSP to MMPA in the Roseobacter strain 

Silicibacter pomeroyi.  Howard et al. concluded that at least 80% of Roseobacter cells 

captured in the Sargasso Sea metagenomic database and one third of all bacterioplankton 

cells possess homologs to dmdA. In addition, 40% of SAR11 cells are believed to have 

the capacity to demethylate DMSP [Howard et al. 2006].  An analysis of the Global 

Ocean Sampling database3 indicates that the abundance of dmdA is even higher elsewhere 

in the ocean surface waters, with an abundance of all dmdA clades sufficient for 58% of 

sampled cells to harbor this gene [Howard et al. 2008].  These genomic analyses support 

                                                
3
 The Global Ocean Sampling database contains samples from coastal, estuarine, open 

ocean and freshwater sites from around the globe. 
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the findings of Malmstrom et al. [2004a; 2004b] who conclude that &-proteobacterium, 

specifically SAR11 and roseobacters, play a major role in DMSP cycling in the Sargasso 

Sea. 

The DMSP cleavage or lyase pathway was first identified in 1956 by Cantoni and 

Anderson who showed that some marine algae enzymatically cleave DMSP, yielding 

DMS and acrylic acid.  Kiene [1990] identified this process in bacterial samples from 

coastal seawater.  Since then, the ability of bacteria to cleave DMSP has been shown to 

be widespread in marine environments  [Yoch, 2002 and references therein].  Recent 

studies have identified 3 new bacterial DMS producing genes. Todd et al. [2007] reported 

the discovery of the gene (dddD) that encodes for a type III acyl coenzyme A transferase 

which cleaves DMSP to DMS and 3-hydroxypropionate.  dddD was isolated from the '-

proteobacterium Marinomonas sp. MWYL1 and is only found in low abundance in 

coastal regions (2-3 copies per 100,000 reads) in the Gulf of Maine and Bedford Basin 

off Nova Scotia [E. C. Howard et al., 2008].  A second DMSP cleavage gene, dddL, was 

isolated from the &-proteobacterium Sulfitobacter EE-36 and is believed to encode for a 

lyase which cleaves DMSP to DMS and acrylate [Curson et al., 2008].  In the Global 

Ocean Sampling (GOS) database, dddL is found in only one sample (Punta Cormorant 

Hypersaline Lagoon Floreana Island) at low abundance (6 copies per 100,000 reads).  

Most recently, dddP, isolated from the &-proteobacterium Roseovarius nubinhibens ISM, 

was determined to result in DMSP-dependent DMS production [Todd et al., 2009].  dddP 

is predicted to be a member of the PepP Xaa-Pro aminopeptidase metalloenzyme family, 

suggesting a third pathway for bacterial DMS production.  Unlike dddD and dddL, which 
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are only found with an abundance of 0.2% and 0.6% per sampled cell in the GOS 

database respectively, dddP is found in the Sargasso database with an abundance of 2.9% 

per sampled cell [MA Moran, personal communication].  These abundances are 

extremely low compared to that of the DMSP demethylation gene (dmdA), which has an 

average of 32 copies per 100,000 reads (maximum 57 copies per 100,000 reads) or an 

abundance of 58% of sampled cells [Howard et al. 2008].  There are several possible 

explanations for the low abundances of bacterial DMS producing genes, the simplest 

being that we have yet to identify the dominant bacterial DMSP cleavage gene.  

Alternatively, the sampling scheme for the GOS samples, e.g. surface waters collected in 

February in the Sargasso Sea [Venter et al. 2004], may bias the database such that it does 

not adequately sample the bacterial population responsible for DMS production.  Finally, 

low abundance genes, which are highly expressed, could still be responsible for 

significant biogeochemical transformations.  

The DMSP lyase enzyme was first purified by de Souza and Yoch [1995] from an 

anaerobic marine bacterium.  Subsequently, this enzyme has been isolated, purified and 

characterized from a number of marine bacteria and phytoplankton [Nishiguchi and Goff, 

1995; Stefels and Dijkhuizen, 1996; vanderMaarel et al., 1996].  To avoid tedious 

enzyme extractions, Steinke et al. [2000] developed a method to rapidly measure 

phytoplankton potential DMSP lyase activity by quantifying the accumulation of DMS 

after the addition of saturating DMSP concentrations to cell extracts.  Potential DMSP 

lyase activity measurements are used in the field as a proxy for the activity of the 

phytoplankton DMSP lyase pathway [e.g. Harada et al., 2004].  To date, the bacterial 
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DMSP lyase/cleavage pathway has not been successfully quantified in environmental 

samples. 

Variations in the relative importance of the two DMSP degradation pathways 

(cleavage versus demethylation) was termed the ‘bacterial switch’ by Simó [2001].  Kiene 

et al. [2000] hypothesize that regulation between the two competing bacterial 

transformations of DMSP (the ‘bacterial switch’) is the dominant factor controlling 

surface water DMS concentrations.  These studies predict that, when the bacterial sulfur 

demand is high and DMSP concentrations are low, the DMSP demethylation pathway 

will be the dominant degradation pathway.  Alternatively, these studies hypothesize that 

the DMSP cleavage pathway will be the dominant degradation pathway under carbon 

limitation, low sulfur demand, or high DMSP concentrations,  

 

 

4.2 BERMUDA ATLANTIC TIME-SERIES STUDY (BATS) 

The Bermuda Atlantic Time-series Study (BATS) site is located at 31°40’N 

64°10’W.  This site is ideal for studying oligotrophic regions as it is easily accessible and 

a complete suite of chemical and physical parameters has been regularly measured since 

1988. In addition, a strong seasonal cycle exists at BATS with summertime characterized 

by warm surface temperatures, a shallow mixed layer, and increased stratification while 

wintertime tends to have cooler temperatures and a deep mixed layer [Michaels et al., 

1994]. As the hydrographic and biological properties at BATS in the summer mimic 

conditions expected to occur under a high CO2 atmosphere, seasonal changes in the 
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DMSP degradation pathways and DMS production observed at BATS may provide 

insights into the functioning of the marine sulfur cycle under a high CO2 environment 

(see Chapter 6: Conclusions).  

To determine the role of bacteria in the marine sulfur cycle, this study samples the 

upper ocean sulfur cycle on 10 monthly cruises to BATS between February and 

November 2008.  Each cruise lasted between 4 and 9 days; exact dates of each cruise are 

presented in Table 4.1.  Ancillary measurements made by BATS scientists and utilized in 

this study include: temperature (°C), salinity (psu), total organic carbon (µmol/kg), 

particular organic carbon (µmol/kg), and bacterial cell number (cells/L). This study 

leveraged a co-occurring, multi-year DMS time-series (PIs: Toole, Dacey and Bates) 

which collected DMS(P) data on BATS cruises from July 2005 through November 2008.  

Monthly measurements include total DMSP, DMSPd, and DMS concentrations, DMSPd 

and DMS consumption rates, and the percentage yield of DMS from DMSPd 

consumption.  To these core measurements, this study added DMSP lyase potential 

enzyme measurements for the bacterial and phytoplankton size fractions and bacterial 

DMSP degradation gene abundance and expression.  Depth profiles of bacterial carbon 

demand were also quantified. 
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4.2.1 Sampling Scheme 

4.2.1.1 DMSP lyase potential enzyme activity sample collection 

Samples for phytoplankton DMSP lyase potential enzyme activity (DLA) were 

collected monthly (February-November 2008) at 0 m, 10 m, 20 m, 40 m, 60 m, and 100 

m.  All samples were collected between 5 AM and 7 AM local time to avoid the influence 

of diurnal variability (with the exception of September where samples were collected at 3 

AM instead due to scheduling difficulties).  Immediately after the CTD rosette was 

retrieved, samples were collected in acid-washed 4 L low-density polyethylene Nalgene 

carboys using acid washed, medical grade, Dow Corning silicon tubing (containing no 

phthalates or plasticizers). All acid-washing was done with 10% Fisherbrand 

hydrochloric acid.  The carboys were gently rinsed 3 times with seawater prior to being 

filled.  Whole water samples were collected for the phytoplankton DLA assay.  Filtered 

water (<1.2 µm) was collected for the bacterial DLA assay using an in-line 47 mm 

polycarbonate filter holder (Pall Life Sciences) containing a 1.2 µm glass fiber filter 

(Whatman, GF/C).  The filter holder was connected directly to the CTD niskin using 

acid-washed Dow Corning silicon tubing and a gentle flow was maintained to minimize 

lysis of phytoplankton cells during filtration, which can dramatically increase dissolved 

DMSP (DMSPd) concentrations.  Tests in February and September of 2008 showed a 2 

to 7 fold increase in DMSPd concentrations as a result of phytoplankton cell lysis during 

filtering.  The results are displayed in Figure 4.3a.  Such increases in DMSPd could 

result in the induction of bacterial activity between sample collection and analysis.  The 

impact of this increase on bacterial DLA was investigated and is described below in 
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section 4.3.2.2.6.  While pre-filtering resulted in significant increases in DMSPd 

concentrations, the resulting concentrations are still only 22-34% of the particulate 

DMSP (DMSPp) pool (Figure 4.3a) and several orders of magnitude less than the 

DMSPd addition during the analysis.  All DLA samples were stored inside an artificially 

lit, temperature-controlled lab until they were processed.  

 

4.2.1.2 DNA and RNA collection 

 Triplicate samples were collected monthly (February - November 2008) at BATS 

from 0 m, 20 m, 40 m and 60 m for gene abundance and expression analysis.  All 

samples were collected between 5 AM and 7 AM local time to minimize the impact of 

diurnal variability.  Immediately upon retrieval of the CTD, twelve 4 L acid-washed low-

density polyethylene Nalgene carboys were rinsed 3 times and then gently filled to 4 L 

from the appropriate niskins.  Samples were collected on 47 mm 0.2 µm polycarbonate 

filters using 47 mm in-line polycarbonate filter holders (Pall Life Sciences).  Acid 

washed, medical grade Dow Corning silicon tubing (containing no phthalates or 

plasticizers) was used to minimize contamination. Samples were filtered at low pressure 

(<0.02 Pa) using an aspirator vacuum pump.  To minimize sample degradation, the filters 

were changed every 30 minutes for DNA samples and every 15 minutes for RNA 

samples.  Crimps on the tubing immediately preceding the in-line filter holders 

minimized water loss during filter changes.   After each collection, the filters were 

immediately flash frozen in liquid nitrogen.  Four filters were collected from each carboy.  

The water remaining in the carboy was then measured using a graduated cylinder and the 
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total volume of water filtered for each carboy was calculated.  On average, 3.6 L of 

seawater was filtered per DNA sample and 2.5 L of seawater was filtered per RNA 

sample (Table 4.2). 

 

4.2.1.3 Bacterial demand sample collection 

 Samples for bacterial carbon demand analysis were collected monthly (February-

November 2008) at 0 m, 10 m, 20 m, 40 m, 60 m, and 100 m between 5 AM and 7 AM 

local time.  Samples were pre-filtered to remove phytoplankton using an in-line 47 mm 

polycarbonate filter holder (Pall Life Sciences) containing a 1.2 µm glass fiber filter 

(Whatman, GF/C).  Samples were collected in 100 ml acid-washed polycarbonate 

Nalgene bottles and immediately processed in a temperature controlled van. 

 

 

4.3 METHODS AND METHOD DEVELOPMENT 

4.3.1 Concentration and Rate Measurements 

 DMS concentrations were determined using a modified purge and trap method 

following Kiene and Service [1991].  Briefly, 4 ml of sample was added to a 14 ml glass 

serum vial.  Sulfur gases were sparged from the water with air or nitrogen gas and 

trapped in using a Carbopack-X trap in Sulfinert-treated 1/8" OD stainless steel tubing.  

The trapped gases were analyzed on a gas chromatograph (GC) with a pulsed flame 

photometric detector (PFPD) and an Alltech AT-Sulfur capillary .32 mm ID column.  
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The carrier gases were ultra high purity air or nitrogen and calibration was carried out 

with a permeation system.  All samples were analyzed in duplicate.  Total DMSP 

(DMSPt) and DMSPd were quantified monthly at BATS following the protocols 

described in Slezak et al. [Slezak et al., 2007 and references therein] by A. Neeley and N. 

Levine.  Particulate DMSP (DMPSp) is calculated as the difference between DMSPt and 

DMSPd.  Bacterial DMSPd and DMS consumption rates were determined using the 35S 

tracer methods of Kiene and Linn [2000b] by A. Neeley and N. Levine.  These methods 

quantify the turnover rates of the DMSPd and DMS pools by measuring the loss of 35S-

DMSPd and 35S-DMS from the dissolved and volatile pools, respectively. 

Monthly depth profiles of bacterial carbon demand were determined using 3H-

leucine incorporation following the protocol of Smith and Azam [1992].  Briefly, 1.5 ml 

of 1.2 µm pre-filtered seawater was added to 2 ml siliconized, low-retention, 

polypropylene, Fisherbrand microcentrifuge tubes.  3H-leucine was then added to a final 

concentration of 20 nM in three seawater samples and one Trichloroacetic acid (TCA) 

killed control for each depth.  Samples were incubated for 4.5 h in the dark at in situ 

surface temperatures.  Following the incubation period, the three live samples were killed 

using cold TCA.  Particulate matter in the samples was collected through centrifugation 

and the incorporation of 3H was quantified using the EcoLume scintillation cocktail 

(Cardinal Health) and a Packard Tri-Carb 2000CA Liquid Scintillation Analyzer. Leucine 

incorporation was converted to bacterial carbon demand using conversion factors from 

Carlson et al. [1996]. 
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4.3.2 Potential Enzyme Activity 

 The assays used to measure the DMSP cleavage/lyase potential enzyme activity 

(DLA) for the phytoplankton and bacterial size fractions are described below. While we 

now believe that at least some bacterial DMS production does not use a typical lyase 

enzyme, to be consistent with the literature we will refer to the bacterial DMSP cleavage 

potential enzyme activity as the bacterial DLA. The methods are adapted from Harada et 

al. [2004] and Steinke et al. [2000] and applied to the bacterial fraction for the first time. 

Potential enzyme assays measure the enzyme activity of a sample that is not substrate 

limited, in this case for the substrate DMSP.  This provides an estimate of the maximum 

potential DMS production.  In actuality, enzyme activity will be limited by substrate 

availability.  Thus, in order to translate potential enzyme results into meaningful 

biogeochemical rates, the potential activity must be multiplied by the water column 

concentrations of the available substrate.   

 The phytoplankton and bacterial pools are differentiated based on size with the 

phytoplankton pool defined as the size fraction >1.2 µm, and the bacterial pool defined as 

the size fraction between 0.8 µm- 1.2 µm.  The assays for the phytoplankton and bacterial 

size fractions are similar and so are described together (section 4.3.2.1).  The method 

development and field tests for these two protocols are described in section 4.3.2.2.  

Significant method development for the second DMSP degradation pathway, DMSP 

demethylation, was conducted during this study.  The method for this pathway was not 

finalized and so not quantified during this study.  A description of the work done on this 

method is described in Appendix C. 
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4.3.2.1 Phytoplankton and Bacterial DMSP Lyase Potential Enzyme Activity (DLA) 

Phytoplankton and Bacterial DMSP DLA samples were processed in duplicate 

immediately following collection.  The full protocols are provided as Appendices D and 

E.  For the phytoplankton size fraction, 500 ml of whole seawater was filtered through an 

autoclaved 25 mm 1.2 µm glass fiber filter (Whatman, GF/C) using a polycarbonate 

funnel filter holder and gentle filtration (<0.02 Pa).  For the bacterial size fraction, 

approximately 400 ml of the 1.2 µm pre-filtered water was filtered through an autoclaved 

25 mm polycarbonate filter using the same filtration system as for the phytoplankton.  

Bacterial sample volumes were adjusted to keep filter times to approximately 30 min.  

The protocol following filtration was identical for both size fractions and described 

below. 

The filter was placed in a 14ml amber glass serum vial and submerged in 1 ml of 

200 mM Tris buffer (pH 8) with 500mM NaCl.  The vial was vortexed briefly, and 

incubated for 20 minutes in under-way seawater. For the phytoplankton assay, this serves 

to break-up the filter and lyse the cells.  For the bacteria, this step transfers many of the 

cells to the Tris buffer.  Under-way seawater was collected through an inlet system in the 

ships bow at ~5 m and so was representative of the in-situ surface water temperature. A 

constant temperature (within 1°C) was maintained throughout the assay using an under-

way seawater bath.  The starting and ending temperatures were recorded for each sample. 

Amber serum vials were used to minimize the effect of light on the samples. 
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Following the incubation, a saturating concentration of DMSP was added (final 

concentration 5 mM) and the vial was immediately crimped.  The evolution of DMS in 

each vial was monitored using a gas chromatograph (GC) with a pulsed flame 

photometric detector (PFPD), a Carbopack-X trap in Sulfinert-treated 1/8" OD stainless 

steel tubing, and an Alltech AT-Sulfur capillary .32 mm ID column. Air or nitrogen was 

used as the carrier gas.  Every 2 minutes 15 seconds the vial was vortexed for 5 seconds 

to equilibrate the headspace with the 1 ml sample. 100 ul of headspace was then extracted 

using a gas tight syringe and injected into the GC.  Five time-points were measured per 

sample.  Two different running modes for the GC-PFPD were tested: 1) samples injected 

directly onto the column, and 2) samples injected into the carrier gas stream, trapped, and 

then heated to greater than 220°C for desorption prior to being loaded onto the column.  

The direct inject method allows samples to be processed quickly, at 30 second intervals, 

but results in broader peaks with lower reproducibility than the trapping method.  The 

trapping method requires a 2 minute 15 second interval between sample injections but is 

highly reproducible, average standard deviation (1") of 5.2%.  Therefore, the trapping 

method was used for this study.  Immediately preceding and following the DLA 

quantification, three sets of five aqueous DMS standards, ranging from 0.5 µM to 10 µM, 

were run according to the trapping method described above.  The standard curve R2 

values are better than 0.99 and often better than 0.999.  The average RMS error on the 

standard curve slope is 0.15 µM for standards run with the trapping method on the GC-

PFPD. 

The DLA rate is calculated as: 
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 is the correction for the abiotic degradation of DMSP in the assay (see 

discussion of the blank correction below), and Vol is the volume of seawater filtered. The 
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 trend line is typically 0.99 or better (see Table 4.3 for monthly R2 

values).  The potential DLA for each depth is calculated as the average of the duplicate 

samples. An additional correction is applied to the bacterial DLA samples to account for 

the effect of the polycarbonate filter on the observed DMS concentrations (see discussion 

below).  The error on the DLA estimate is calculated using error propagation and is based 

on the standard curve errors, the error in the abiotic DMSP degradation estimate, and the 

difference between the duplicate samples. Monthly average error in DLA rate and assay 

temperatures are presented in Table 4.3b. 

 

4.3.2.2 DMSP Cleavage Potential Enzyme Method Development 

Extensive method development and testing were conducted for the bacterial and 

phytoplankton DLA assays.  Specifically, tests were conducted to determine 1) whether 

the bacterial cells should be lysed or whole, 2) the optimal filters type for the DLA 

assays, 3) the optimal protocol for DMS quantification, and 4) the accurate correction for 
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abiotic DMSP degradation.  In addition, field tests were conducted to quantify procedural 

errors, specifically looking at the effect of temperature and on-deck waiting time on the 

measured DLA.  

 

4.3.2.2.1 Method Development: Whole versus lysed cells for bacterial DLA 

Using a whole cell extract allows for the quantification of the in situ DMSP lyase 

potential enzyme activity without possible induction of enzyme activity during the assay.  

The original DLA method developed by Steinke et al. [2000] lyses phytoplankton cells 

using a Tris-NaCl buffer and vortexing.  This lysis is not stringent enough to lyse 

bacterial cells (this was verified by microscopy).  Therefore, several other lysis methods 

were tested with the objective of developing a method that resulted in lysed bacterial cells 

without impacting the enzyme activity.  Lysis methods were tested using a culture of 

Silicibacter pomeroyi, a Roseobacter isolated from coastal seawater [Gonzalez et al., 

2003] that both demethylates and cleaves DMSP.  As described above (section 4.1.2), 

roseobacters are thought to be dominant players in the upper ocean sulfur cycle and so a 

good candidate for method development.  The four methods tested were: 

1) 10 minutes of bead-beating with Tris-NaCl buffer 

2) 20 minutes incubation at 30°C with lysozyme followed by 10 minutes of 

bead-beating with Tris-NaCl buffer 

3) 3 freeze-thaw cycles in liquid nitrogen 

4) 3 minutes of sonicating at 70% power (sonicate 30 seconds, 1 minute on ice, 

repeat). 
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The French press is commonly used to lyse cells for enzyme analysis. However, this 

method was not appropriate for the DLA assay as the cells are collected on a filter.  Of 

the methods tested, the bead-beating and sonicating techniques successfully lysed the 

majority of the bacterial cells (verified by microscopy).  Bead-beating plus lysozyme had 

a slightly higher enzyme activity than bead-beating alone.  However, none of the methods 

allowed for accurate quantification of the potential enzyme activity.  Bead-beating plus 

lysozyme still showed a 93% decrease in enzyme activity as compared to whole bacterial 

cells.  Sonication resulted in a complete loss of enzyme activity most likely due to 

denaturating of the enzymes from the heat generated during this process.  

To further investigate the effect of the lysis methods on the DMSP lyase enzyme 

activity, the different lysis methods were applied to phytoplankton cells.  While 

phytoplankton enzymes differ from those contained in bacterial cells, these tests allowed 

us to determine the potential impact of the lysis methods on DMS producing enzymes.  

The result was a 20-70% decrease in phytoplankton enzyme activity as compared to the 

activity of cells lysed using only the Tris-NaCl buffer and vortexing.  Treatment with 

lysozyme and incubation at 37°C alone does not appear to affect the enzyme activity in 

phytoplankton indicating that low heat and the lysozyme enzyme do not impact the 

DMSP lyase enzyme.  We believe that bead-beating methods result in decreased enzyme 

activity through physical damage to the enzymes during lysis. At BATS, the bead-beating 

plus lysozyme lysis method resulted in a 27% decrease in bacterial enzyme activity 

relative to the whole cell activity (BATS July 2008, 20m). 
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Our findings indicate that more stringent lysis methods needed to lyse bacterial 

cells have a significant negative effect on the DMSP lyase enzyme system (in culture 

samples and at BATS).  Therefore, it was decided to use whole (un-lysed) bacterial cells 

to quantify the bacterial DLA.  This decision is supported by research in Andrew 

Johnston’s laboratory (University of East Anglia), which indicates that there are several 

different bacterial enzyme systems producing DMS from DMSP.  The biochemistry of 

these transformations has not yet been fully elucidated.  Therefore, optimal conditions 

(e.g. anoxia) and potential co-factors (e.g. CoEnzyme A) are unknown.  By keeping the 

cells intact, the impact of these unknowns is minimized.  We also hypothesize that the 

Tris-NaCl buffer may make the bacterial cell walls more permeable allowing for more 

efficient transfer of DMSP into the cells (personal communication with R. Kiene). 

Proceeding with a ‘whole cell’ method for the bacterial DLA raises the concern 

that the high concentrations of DMSP present in the assay may lead to the induction of 

DMSP related enzymes during the assay.  This was tested in culture and in the field at 

BATS.  In culture, the production rate of DMS showed a slight non-linear increase during 

the first 40 minutes of the assay followed by a significant increase in the rate of DMS 

production.  The exponential increase after 40 minutes indicates significant induction of 

the DMSP lyase enzyme during the assay in culture samples. However, in the field, the 

production of DMS during the 20 minute DLA assay was essentially linear (average 

R2=0.977) indicating negligible enzyme induction.  This is consistent with our current 

belief that the response times for oligotrophic microbial systems is > 20 minutes (M. Sato 

personal communication).  From these tests, we conclude that there is no significant 
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induction of bacterial DMSP lyase/cleavage enzymes in field samples during the 20 

minute assay used in this study. 

 

4.3.2.2.2 Method Development: Filter type for DLA assay 

Several different filter types were tested for the bacterial and phytoplankton DLA 

assays.  In whole water tests (no pre-filter), the filter type significantly affected the 

enzyme activity when phytoplankton cells were present with the highest activity obtained 

from glass fiber filters, and the lowest activity from polycarbonate and polyethersulfone 

filters.  The decreased activity in these tests most likely is due to lysis of the 

phytoplankton cells upon impact with the filter. Cell lysis due to impact with the filter is 

less of a concern for bacteria only samples.  Tests indicate that for bacterial samples 

polycarbonate filters result in slightly higher enzyme activities than nylon filters.  

Therefore, the decision was made to use glass fiber (GF/C) filters for the phytoplankton 

DLA assay and polycarbonate filters for the bacterial DLA assay. 

 

4.3.2.2.3 Method Development: Accurate quantification of DMS during DLA assay 

Several modifications were made to optimize the quantification of DMS during 

the DLA assays.  Tests were conducted to determine whether 1 ml or 2 ml of Tris-NaCl 

buffer should be used in the assay.  Standard solutions showed no difference between 1ml 

and 2ml standards once corrections were made for differences in liquid and headspace 

volumes.  However, samples with 2 ml of buffer had 13% lower enzyme rates than 
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samples with 1 ml (this difference is just above the measurement error).   This lower 

enzyme rate could be due to the dilution of enzyme and DMSP in the assay.  Therefore, 

in order to accurately measure the potential enzyme activity, 1ml buffered solutions were 

used for this study.  Before the headspace is sampled, the vials are vortexed for 5 

seconds.  Tests show that there is no difference in observed DMS concentration between 

standards vortexed for 5, 10 and 30 seconds.  Therefore, we feel confident that vortexing 

for 5 seconds is sufficient to re-equilibrate the headspace with the DMS produced in the 

Tris-NaCl buffer. 

Bacterial DLA samples were collected on 0.8 µm polycarbonate filters as 

described in section 4.3.2.1. The use of the polycarbonate filter in the assay was shown to 

impact the measured DMS concentration.  Aqueous DMS standards run with 

polycarbonate filters were 58% lower than standards run without a filter, see Table 4.4.  

This decrease was found to be constant with time (standard deviation of 7%) and was 

reproducible on different GCs.  In order to use the same standards for the bacterial DLA 

assays and the phytoplankton DLA assays, standards were run without a filter and a 

correction of 0.580 was applied to the standard curves before calculating the bacterial 

DLA rates.  No correction was needed for the phytoplankton DLA rates as the glass fiber 

filters do not affect the observed DMS concentrations. 

 

4.3.2.2.4 Method Development: Correction for abiotic DMSP degradation 

Previous researchers [Harada et al., 2004; Steinke et al., 2000] have reported a 

non-zero blank associated with the phytoplankton DLA assay.  This is due to abiotic 
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degradation of DMSP to DMS.  While these blanks are low compared to typical 

phytoplankton DLA rates, they can be significant in relation to bacterial DLA rates, 

particularly during the winter months at BATS.  Several tests were conducted to confirm 

that the non-zero blank was indeed abiotic and that it was not possible to reduce the 

abiotic signal.  For these tests, several different batches of DMSP obtained from Research 

Plus Inc. in addition to DMSP synthesized by J. Dacey (WHOI) were compared4.  All 

showed similar abiotic rates of DMSP degradation indicating that the degradation was not 

due to a contamination in a single batch of DMSP.  To confirm that the non-zero blank 

was abiotic, both the Tris-NaCl buffer and DMSP stock were filtered using a Fisherbrand 

0.22 µm mixed cellulose ester syringe filter and Millipore 100,000 Dalton molecular cut-

off spin filter, respectively, to remove any potential contaminating bacteria.  The filtering 

did not decrease the rate of DMSP degradation indicating that the non-zero blank was 

indeed abiotic.  The rate of degradation was shown to be significantly lower in water (pH 

7) than in Tris-NaCl buffer (pH 8).  This is consistent with the findings of Van Diggelen 

et al. [1986], who mention that DMSP is unstable above a pH of 7 and can spontaneously 

degrade to DMS. The abiotic DMSP degradation is shown to be temperature dependant 

with a 10°C decrease in temperature resulting in a 50% decrease in abiotic DMSP 

degradation (Figure 4.4a).  The abiotic DMSP degradation rates used to correct the 

observed phytoplankton and bacterial DLA rates were measured monthly during the 

BATS time-series at in-situ surface temperatures. 

 

                                                
4
 We believe that Research Plus Inc and J. Dacey use the same or similar DMSP 

synthesis methods. 
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4.3.2.2.5 Field Test: Impact of temperature on DLA 

Temperature has a significant effect on enzyme activity. Phytoplankton DLA 

assays have been typically measured at 30°C.  While this assists in inter-comparisons 

between studies, it makes biogeochemical interpretation very difficult particularly where 

environmental temperatures vary significantly.  In order to approximate the samples’ in 

situ temperature, we ran all samples in under-way seawater collected at ~5 m through an 

inlet in the bow of the R/V Atlantic Explorer.   This resulted in a 7°C temperature change 

between February and September (20°-27°C).  To test the effect of this temperature 

change on bacterial DLA, we conducted a series of field and culture tests. 

The impact of temperature on Roseobacter DLA was tested using a culture of 

Ruegeria pomeroyi.  DMSP (final concentration 150 µM) was added to a culture grown 

with glucose as the sole carbon source.  The culture plus DMSP was allowed to incubate 

for 1.5 to 1.75 hours to allow the bacteria to respond to the DMSP addition. The culture 

was then filtered and the DLA was quantified following the protocol described in section 

4.3.2.1.  During the assay, samples were incubated at four different temperatures (19°C, 

25°C, 30°C, and 35°C). The experiment incubated with DMSP for 1.75 hours showed 

higher DLAs, indicating that there was an increased bacteria response to the addition of 

DMSP after 1.75 hours as compared to 1.5 hours. This test show a somewhat linear 88-

97% increase in bacterial enzyme activity when the temperature was increased from 19°C 

to 30°C (Figure 4.4b).  Increasing the assay temperature for culture samples from 30° to 

35°C resulted in a small increase in enzyme activity, 0-15%.  This culture study indicates 
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that bacterial DLA is strongly temperature dependant with an optimal temperature around 

30°C for this strain of Roseobacter. 

To directly test the effect of temperature on field samples, temperature sensitivity 

tests were run in February and August (Figure 4.5). Each month, the DLA of identical 40 

m samples was measured in duplicate at two temperatures, ~20°C and ~30°C.  

Specifically, February samples were run at 20°C and 30°C and August samples were run 

at 21°C and 27°C.  In February, the 30°C DLA was 85% lower than the 20°C rate and 

within error of zero.  However, the 20°C rate had large error bars making it not 

significantly greater than zero, therefore the February temperature test was deemed 

inclusive.  In August, the bacterial DLA increased by 50% when the temperature was 

increased from 21°C to 27°C.   These tests indicate that the observed seasonal differences 

in the bacterial DLA (high in the summer, low to zero in the winter) are not simply due to 

changes in water temperature but rather reflect changes in enzyme abundance.  If 

temperature was solely responsible for the observed changes, the 30°C test in February 

would have shown a high DLA similar to the rates observed in August when the in-situ 

temperature was 27°C.  Similarly, the 21°C test in August should have shown very little 

to no enzyme activity similar to the rates observed in February when the in situ 

temperature was 21°C. Unfortunately, similar tests were not done for the impact of 

temperature on the phytoplankton DLA.  These results have significant implications for 

the interpretation of DLA results. The large temperature dependence of the DLA assay 

suggests that all DLA assays should be run at in situ temperatures to best approximate the 

environmental enzyme rate. 
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4.3.2.2.6 Field Test: The impact of on-deck waiting time on DLA 

Each set of bacterial samples takes 1 hour 15 minutes to 1 hour 25 minutes to run, 

depending on filter time.  The phytoplankton duplicates take 50 minutes to run.  

Therefore, processing the entire 6 depth profile for bacterial and phytoplankton DLA 

took approximately 6 hours (samples were overlapped such that the next set was being 

filtered and incubated while the previous set was being analyzed on the GC), requiring 

that DLA samples sat in the lab for several hours prior to analysis.  Several precautions 

were taken to minimize the impact of this waiting time on the monthly DLA profiles.  In 

addition, to understand the impact of the ‘on-deck waiting time’, a series of tests were 

conducted in the field. 

To avoid a systematic impact on the depth profiles, the samples were run in a 

random order: 40 m, 0 m, 20 m, 60 m, 10 m, and 100 m.  The same order was used every 

month. To analyze the impact of the time delay between the first sample and the last 

sample, the first sample depth (40 m) was re-run at the end of the analysis.  This was 

tested for both the bacterial DLA and the phytoplankton DLA five times during the time-

series (February, May, July, September, and November).  The results are displayed in 

Figure 4.6.  The was no significant difference in February and May between the 40 m 

bacterial DLA measured immediately after sample collection and the rate measured 7 

hours later.  July and November showed a 30% and 40% decrease in bacterial DLA, 

respectively, between the first measurement and the subsequent measurement 7 hours 

later.  In July this change is almost within the measurement error.  Interestingly, 
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September showed a 30% increase in bacterial DLA between the first measurement and 

the second measurement.  The phytoplankton DLA did not significantly change in 7 

hours in February.  May and July showed a 40% and 14% increase in phytoplankton 

DLA, respectively, over the course of 7 hours.  September and November showed a 12% 

and 25% decrease in phytoplankton DLA, respectively, over the 7 hours between 

measurements.  These tests show that the time delay between the first and last sample has 

a substantial effect that is unfortunately not systematic and therefore difficult to correct 

for.  This delay was unfortunately unavoidable and the results from these tests were taken 

into consideration during the analysis of the DLA depth profiles (Chapter 5) such that 

only changes in DLA greater than 30% are considered robust.  However, the structure of 

the depth profiles is not related to the order in which the samples were run indicating that 

the time delay in sample processing did not significantly alter the shape of the observed 

depth profiles. 

The change in DMSPd in the 4 L sample carboys over 9 h was also monitored in 

September (Figure 4.3b).  Over a nine hour period the DMSPd concentration in the 40 m 

1.2 µm pre-filtered carboy (for bacterial DLA) decreased 60% from 6.5 nM to 2.3 nM.  

There was no significant change in the DMSPd concentration in the 40 m whole water 

(phytoplankton DLA). 

 

4.3.2.2.7 Field Test: DMS consumption in bacterial DLA assay 

 The consumption of DMS by members of the bacterial community is well 

established [e.g. del Valle et al., 2007].  Therefore, there is concern that DMS 
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consumption may be occurring in the bacterial DLA assays.  To test this, saturating 

concentrations of DMS (3 µM) were added to the assay in place of DMSP (see Appendix 

E, step 6), and the change in DMS concentration was measured over a 20 min period.  

DMS consumption was observed during these tests, and this consumption was shown to 

decrease with the addition of dimethyl disulfide (DMDS), commonly used to inhibit 

DMS consumption during field experiments.  However, the rate of DMS consumption 

was small compared to the rate of DMS production in the assay, 0-15% in November 

(average 5%) and 0 -25% in October (average 12%).  The rate of DMS consumption is 

approximately equal to the average error for the DLA measurements (9%).  The profile of 

DMS consumption measured in November 2008 using the bacterial potential enzyme 

approach was consistent with radioisotope DMS consumption measurements: peak 

consumption observed at 10 m.  However, the DMS consumption profile measured in 

October was not consistent with the radioisotope profile: there was no significant 

structure seen in the profile measured using the potential enzyme approach in October.  

Because DMS consumption profiles quantified with the DLA assay and radioisotopes 

were not consistently correlated, the radioisotope measurement could not be used to 

correct for DMS consumption during the DLA assay.  Therefore, no correction for DMS 

consumption in the DLA assays was made.  However, this has a negligible impact on the 

results as DMS consumption in the assay is small relative to DMS production. 

DMDS was not added to the enzyme assays to inhibit the consumption of DMS as 

tests showed that it also inhibited the production of DMS from DMSP.  These tests raise 

significant concern over the validity of the 35S-DMS yield assay used by many 
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researchers as DMDS is routinely added to these experiments.  However, further work is 

needed to confirm the inhibition of DMS production by DMDS. 

4.3.3 Gene Expression and Abundance 

 The expression (RNA) and abundance (DNA) of DMSP degrading genes were 

quantified for the 10 month BATS time-series.  The extraction and quantification 

protocols and method tests are described below. 

 

4.3.3.1 DNA extraction: method development 

 DNA samples were transported back to WHOI in liquid nitrogen and were stored 

at -80°C until they were extracted in February, 2009, using a phenol- chloroform 

extraction protocol modified from R. Parsons, BIOS [personal comm.].  The full protocol 

is provided as Appendix F.  Briefly, the four filters collected for each sample were 

submerged in 5.5 ml of sucrose lysis buffer and sodium dodecyl sulfate (SDS).  

Proteinase K was also added to assist in cell lysis.  The solution was incubated at 37°C 

for 30 min and then 55°C for 30 min.  The supernatant was transferred to a new 15 ml 

tube where the DNA was extracted using two phenol-chloroform-isoamyl alcohol 

extraction steps followed by a chloroform-isoamyl alcohol extraction step.  The DNA 

was precipitated over night at -20°C with isopropanol and ammonium acetate.  The 

precipitated DNA was re-suspended in 1xTE buffer and transferred to a 2 ml tube where 

it was re-precipitated using isopropanol and ammonium acetate. Finally, the DNA was 

washed with 80% ethanol and the dried pellets were stored at -80°C.  Four samples 
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(February 20mB, March 20mA, April 40mC, and May 60mC) were lost during the 

extraction due to cracked tubes resulting from the high centrifugation during the 

precipitation step.  Prior to analysis, the DNA samples were re-suspended in 500 µl of 

nuclease free water and quantified using the PicoGreen assay following the 

manufacturer’s protocol.  Sample concentrations ranged from 0.71 ng/µl to 14.7 ng/µl. 

The average percent deviation between the biological triplicates, 1" divided by 

concentration normalized to volume of seawater filtered, was 21% with a range of 1% to 

59%.  The significant variation observed between the biological triplicates is attributed in 

part to sample heterogeneity and in part to differences in extraction efficiency between 

the samples.   

The phenol- chloroform extraction protocol was chosen as it provides high yields, 

good purity, and good reproducibility as compared to two other DNA extraction 

protocols. 

1)   MoBio Ultra Clean Soil DNA kit: The Ultra Clean Soil DNA kit was 

extensively tested, however, despite many modifications to the protocol, the yields were 

very low as compared to a phenol-chloroform extraction.  The following modifications 

were tested to improve cell lysis: filters were cut prior to bead-beating with a sterile 

razor; the filters were flash frozen in liquid N2 and then ground using a glass stirring rod; 

an alternative lysis buffer (sodium dodecyl sulfate (SDS) and sodium chloride (NaCl)) 

was added to the bead-beating tubes; and the samples were heated (65°C, 5 minutes) 

during the lysis step.  To reduce salt contamination, a phosphate buffer wash step was 

tried prior to bead-beating.  Finally, the protein precipitation incubation step was 
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extended and conducted at -20°C. None of these modifications significantly improved the 

extraction yield.  We believe the source of the low yields for this kit result from 

inefficient binding of the DNA by the kit’s spin filter.  A test was conducted where DNA 

extracted using phenol-chloroform was loaded onto the Ultra Clean spin filter and eluted 

following the kits protocol.  The result was only a 5-10% recovery (90% loss). 

2)  Quiagen DNeasy Blood and Tissue Kit:  In a comparison to the phenol-

chloroform extraction method, the Quiagen kit was found to have low yields and poor 

reproducibility [R. Parsons, per. comm.].  The kit did result in better purity, however 

further modifications were made to the phenol-chloroform after this test was conducted 

which aimed to increase the purity of the extracted DNA (R. Parsons, per. comm.). 

The phenol- chloroform extraction method was extensively tested both at WHOI 

(N. Levine) and at BIOS (R. Parsons).  Two different lysis methods were tested: 1) bead-

beating with SDS and NaCl (protocol from M. Coolen, WHOI) and 2) sucrose lysis 

buffer with proteinase K (protocol from R. Parsons, BIOS).  No significant difference in 

purity, yield or amplification (PCR) was seen between these two methods.  As the 

sucrose lysis buffer is routinely used at BATS, this method was chosen. 

The centrifugation speed for the precipitation step was tested to determine if it 

was necessary to spin at high speeds to efficiently recover the DNA.  Two speeds were 

tested, 10,000xg and 4,500xg.  High centrifugation (10,000xg) resulted in a higher yield 

and increased purity and so was used in the protocol.  Due to the volume of lysis buffer 

needed to fully submerge all four filters (one sample = four filters), we decided to 

perform the extractions in 15ml polypropylene tubes instead of 2 ml tubes.  While this 
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decreases the centrifugation speed used in the precipitation step which could decrease 

yield, it also decreases the number of required precipitation steps from 3 to 2 which 

increases yield as sample is lost with each precipitation step.  A speed of 10,000 x g for 

the precipitation step is used in several other protocols, therefore, 15 ml extractions spun 

at 10,000 x g were used in order to maximize recovery rates. 

A second phenol-chloroform-isoamyl alcohol extraction step was added to 

increase the purity of the DNA.  In addition, precipitation with isopropanol (instead of 

ethanol) and ammonium acetate (instead of sodium acetate) was used to reduce the co-

precipitation of salts and reduce the amount of protein co-precipitation (R. Parsons, per. 

comm.).  Finally, a comparison between homemade phenol-chloroform-isoamyl alcohol 

and store-bought (Sigma Aldrich) showed no noticeable difference in the quantity and 

purity of the DNA (R. Parsons, per. comm.). 

 

4.3.3.2 RNA extraction: method development 

The RNA samples were extracted either on-board the R/V Atlantic Explorer or at the 

Bermuda Institute of Ocean Sciences typically within 5 days of collection, with a 

maximum of 30 days between collection and extraction.  Samples were stored in liquid 

N2 prior to extraction.  Extractions were carried out in a portable Plexiglas RNA 

extraction hood (Figure 4.7) that provided quasi-laminar flow of HEPA filtered air and 

was thoroughly cleaned using ethanol and RNase-Zap (Ambion).  The RNA extraction 

protocol uses the Quiagen RNeasy Mini Kit and was adapted for environmental samples 

[M.A Moran, personal comm]; the full protocol is provided as Appendix G.  Briefly, 2 ml 
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bead-beating tubes were prepared using 0.2 ml of 0.1mm zirconia beads, three 3.5 mm 

soda lime glass beads, 500 µl RLT buffer (RNeasy Mini Kit) and 5 µl (-mercaptoethanol.  

The filters were removed from liquid nitrogen and were immediately added to the bead-

beating tubes (one filter per tube).  The samples were then shaken for 10 minutes using a 

Vortex Genie and a 2 ml tube adaptor (MoBio).  The supernatant was then combined with 

70% ethanol and passed several times through a 20 gauge needle to shear the DNA.  The 

material from the four filters collected per sample was then combined onto a single 

RNeasy spin column.  The RNA was washed and eluted using the RNeasy “Plants and 

Fungi” protocol steps 6-12.  An on-column DNA digestion step using Quiagen’s RNase-

free DNase kit was added after the first wash step to decrease DNA contamination. 

Following extraction, the samples were flash frozen in liquid nitrogen and transported 

back to WHOI where they were stored at -80°C.  Three samples could not be used in the 

analysis, March 20C, March 60C and November 60A, because one of the four filters was 

compromised or lost therefore making the volume quantification inaccurate.  These three 

samples and July 60C were used to test the reverse-transcriptase quantitative polymerase 

chain reaction protocol (RT-qPCR) as described below. 

Prior to quantification, a second DNA digestion was performed using Ambion’s 

TURBO-DNA free kit and the samples were quantified using Invitrogen’s RiboGreen 

assay (for both procedures the manufacturer’s protocol was followed).  Finally, the 

volume of all samples was brought up to 55 µl using nuclease free water. RNA 

concentrations in samples ranged from 0.52 ng/µl to 21.3 ng/µl. The average percent 

deviation between the biological triplicates, 1" divided by concentration normalized to 
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volume of seawater filtered, was 26% with a range of 1% to 77%.  As mentioned above, 

this large variation in sample concentration per liter filtered is attributed to sample 

heterogeneity and to variability in the extraction efficiencies. 

Several tests were conducted on the RNA extraction protocol to maximize yield and 

allow for the samples to be extracted at sea.   

• Samples extracted with and without the DNA digestion step were run on an 

argose gel to confirm the absence of DNA in the DNase-treated samples.  This 

was confirmed with polymerase chain reaction (PCR) test on the DNase-treated 

samples.  Reverse-transcribed samples showed amplification of DMSP related 

genes (dmdA) where as non-reverse-transcribed samples showed negligible 

amplification indicating the absence of contaminating DNA.  

• The addition of a second elution step results in a 30% increase in sample recovery 

without affecting the sample purity, as measured by the ratio of sample 

absorbance at 260 nm and 280 nm.  (A low 260:280 ratio indicates the presence of 

contaminating protein in the sample.) 

• Shearing resulted in a significant increase in the ratio of sample absorbance at 260 

nm and 230 nm and a slightly higher RNA yield. (Similar to 260:280 ratio, a low 

260:230 ratio indicates the presence of contaminating organics in the sample.) 

• The use of polycarbonate filters resulted in a slightly higher yield than 

polyethersulfone filters.  There was no significant difference with the use of 25 

mm versus 47 mm polycarbonate filters.  Therefore, 47 mm polycarbonate filters 

were used for this study. 
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• Bead-beating in a 15 ml versus a 2 ml tube did not significantly affect the yield or 

purity of the RNA as measured by the 260:280 and 260:230 ratios.  Therefore, 2 

ml tubes were chosen for this study to allow for a greater number of samples to be 

processed at one time (the bead-beating adaptor can fit 6 15ml tubes or 12 2ml 

tubes). 

• The yield and purity of the RNA, as measured by the 260:280 and 260:230 ratios, 

were not affected by centrifuging at room temperature as opposed to 4°C during 

the extraction protocol.  This allowed for extractions to be conducted at sea using 

a small, non-refrigerated, Eppendorf centrifuge. 

 

4.3.3.3 Quantitative PCR: Inhibition 

 Quantitative polymerase chain reaction (qPCR) analysis uses oligonucleotide 

primers to amplify specific DNA segments present in the sample. The amount of DNA 

present in the sample is monitored using the florescent SYBR green dye, which 

fluoresces only when bound to double-stranded DNA.  With each cycle, the amount of 

DNA present in the sample doubles and the florescence in each well increases 

proportionally with the amount of DNA.  This can then be related back to the number of 

starting copies of the segment using standards with known copy numbers.  This assay 

hinges on the assumption that the standards and samples amplify with the same 

efficiency: during each cycle the same fraction of DNA segments are amplified thereby 

increasing the number of segments present in the reaction at the same rate for standards 

and samples.  The amplification efficiency for qPCR is defined as:  
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%Efficiency = (10
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where the slope is the slope of the standard curve, and an efficiency of 100% indicates 

that the starting template was effectively doubled during each PCR cycle.  An efficiency 

less than 100% could be due to several factors, the primary ones being; inhibition of the 

polymerase chain reaction by contamination in the sample, or inefficient binding of the 

primers to the target DNA due to poor primer design or sub-optimal reaction conditions.  

The most troubling is contamination in the sample, as this can be highly sample 

dependant and cannot be corrected with standards. 

Both the RNA and DNA samples from BATS showed significant inhibition in 

qPCR in initial experiments.  In the DNA samples, this inhibition most likely was caused 

by remnant phenol, added during the extraction, and organics present in the original 

samples.  No phenol was used in the RNA extractions, so inhibition in these samples is 

most likely due to remnant organics from the original samples.  We were able to 

completely relieve the inhibition in both the RNA and DNA samples with the addition of 

either molecular grade bovine serum albumin (BSA, New England Biolabs) or T4 

bacteriophage gene 32 protein (T4gp32, Roche Diagnostics GmbH).  These two 

compounds are thought to bind to organics in the sample allowing for the PCR to proceed 

uninhibited [Kreader, 1996].  A BSA gradient (final concentration 300 ng/µl to 1000 

ng/µl in 25 µl reaction volume) run with the D/3 primer set was used to determine the 

concentration needed to relieve the inhibition in the DNA samples.  A final concentration 

of 500 ng/ul was selected.  The relief of inhibition in DNA samples was confirmed by 
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spiking a standard curve (1/10 serial dilutions) with 3 µl of a BATS DNA composite 

(June 2007, 0m and 10m).  The efficiency (equation 2) for the spiked standard curve was 

the same as the curve without environmental DNA indicating that 500 ng/µl of BSA 

provided complete relief from the contaminating organics in the samples.  Similarly, BSA 

appeared to relieve much of the inhibition in the RNA samples.  Due to limited sample 

material, a gradient could not be run for the RNA samples.  However, a spiked standard 

curve showed complete relief from inhibition using a final BSA concentration of 500 

ng/µl.  The effect of the T4gp32 was also tested on the RNA samples as previous work 

suggested that the T4gp32 also assists in reverse-transcription resulting in higher cDNA 

yields [Chandler et al., 1998].  T4gp32 and BSA showed the same relief of inhibition in 

qPCR, as determined by spiking standard curves with environmental RNA, however tests 

indicated that T4gp32 might improve the reverse transcription (RT) of our samples and 

so we chose to use T4gp32 in our RT-qPCR assay.  A final T4gp32 concentration of 10 

ng/µl was used based on work by M. Bowles, UGA [unpublished.].  This concentration is 

consistent with the one used by Chandler et al. [1998]. 

 

4.3.3.4 Quantitative PCR: Primer Design and Selection 

 Primers for the DMSP demethylation gene (dmdA) were designed and extensively 

tested by V. Varaljay in the Moran lab at the University of Georgia, Athens [Varaljay et 

al., submitted].  Five dmdA clades were identified in the Global Ocean Sampling (GOS) 

database; A, B, C, D, and E. For this study, we focus on the non-degenerate primer sets 
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designed to target seven subclades (A/1, A/2, B/3, C/2, D/1, D/3, and E/2).  An iterative 

approach was used to maximize specificity of the primer sets [Varaljay et al., submitted].  

The products from environmental samples using these primers were confirmed with 454 

sequencing [Varaljay et al., submitted].  We are confident that these primers are specific 

for the dmdA subclades for which they were designed.   

 Primers for dddD, dddL, and dddP were designed by E. Howard in the Moran lab 

at UGA based on sequences in the GOS database.  A preliminary PCR test with BATS 

DNA showed that dddP and dddD were both present in the BATS samples [I. Tigner, 

UGA unpublished].  However, a double band appeared for the dddD primer suggesting 

non-specific amplification.  The dddP primer produced a clear, well defined, bright band 

indicating that the gene was present in significant abundance in the BATS samples and 

that the primer set was specific for the dddP gene.  The dddP product was confirmed 

through sequencing. The results for dddL were inconclusive- the PCR product band was 

faint and poorly defined indicating either a lack of product or non-specific priming.  

Based on these tests, we concluded that dddP was the most probable DMS producing 

gene, of those identified to-date, in the Sargasso Sea.  Therefore, dddP was chosen for 

expression and abundance quantification.  

The qPCR conditions were optimized for each primer set by V. Varaljay. A/1 and 

D/1 standard clones were made by E. Howard from DNA collected at the Sapelo Island 

Microbial Observatory using the TOPO TA Cloning® kit (Invitrogen) and the PCR 2.1 

vector.  The D/3 standard clone was made by V. Varaljay from environmental DNA 

collected at Monterey Bay also using the TOPO TA Cloning ® kit (Invitrogen) and the 
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PCR 2.1 vector.  A/2, C/2, and dddP standard clones were made by V.Varaljay from 

BATS DNA using the TOPO TA Cloning® kit (Invitrogen) and the PCR 4.0 vector.  

Standard clones were quantified based on length of amplicon insert and concentration of 

the clone extract. 

 Variations in gene abundance at BATS were determined for five of the eight 

dmdA subclades.  The primer sets were selected based on the results of a mini time-series 

which analyzed the subclade abundance at 0 m and 40 m for 5 months: February, April, 

June, August, and October were analyzed for subclades A/1, D/1, D/3, and C/2, and 

March, May, July, September, and November were analyzed for subclades A/2, B/3, and 

E/2.  To minimize sample loss, a single biological triplicate was run as a single replicate.  

While this does not provide a rigorous estimate of the abundance of these subclades, it 

does allow us to determine the order of magnitude of the clade abundances at BATS and 

therefore select the most dominant clades.  Standards and no-template controls were run 

for each primer set.  Subclades C/2, D/1, and D/3 were the most abundant clades and so 

were chosen for further analysis.  Subclades A/2 and B/3 were the next most abundant 

and showed approximately the same abundance in Sargasso Sea DNA.  However, the 

cursory picture painted by the mini time-series indicated that subclades A/1 and A/2 

showed significant differences in seasonal variability.  Therefore, it was decided to 

choose subclades A/1 and A/2 for further analysis in order to compare the two clade A 

subclades.  In addition, clade A is believed to be comprised primarily of roseobacters, 

which biogeochemical studies have shown to be dominant players in upper ocean sulfur 

cycling [Malmstrom et al., 2004a; Malmstrom et al., 2004b].   
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 Due to limited template, only four subclades could be analyzed for gene 

expression: dddP and three dmdA subclades. Again, due to the known importance of 

roseobacters in sulfur cycling, it was decided to analyze the expression of clade A.  

Subclade A/1 was chosen over A/2 due to its higher abundance.  In addition, the two 

most abundant subclades, D/1 and D/3, were selected.  Subclade C/2 was not selected 

because it showed lower seasonal variability than the other subclades and lower 

expression in a preliminary test. 

 

4.3.3.4  Quantitative PCR: Sample Processing 

 In order to reduce sample degradation, every effort was made to minimize the 

number of freeze-thaw cycles experienced by the nucleic acid.  DNA and RNA samples 

went through two freeze-thaw cycles.  After extraction, DNA samples were frozen and 

then: 

Thaw 1) Samples were re-suspended, quantified, and aliquoted, 

Thaw 2) Samples were analyzed. 

Similarly, after extraction, RNA samples were frozen and then: 

Thaw 1) Samples were DNase treated, quantified, and aliquoted, 

Thaw 2) Samples were analyzed. 

The RNA samples were kept on ice at all times again to minimize degradation.  Samples 

were aliquoted into 96 well plates using an Eppendorf epMotion robot.  This allowed 

many identical plates to be made quickly and accurately thereby minimizing pipetting 
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error and the amount of time that samples remained un-frozen and susceptible to 

degradation. 

 All qPCR analyses were done on a BioRad iCycler.  The protocols were 

optimized by V. Varaljay and are given in Appendix H.  Gene abundance was quantified 

using the BioRad’s iQ SYBR Green Supermix following the manufacturer’s protocol 

with 3 µl of substrate and 2.5 µl BSA (final concentration 500 ng/µl).  Technical 

duplicates (same sample) of biological triplicates (samples collected from the same time 

and depth but processed independently) were analyzed yielding 6 reactions per sample or 

240 reactions per time-series.  Gene expression was quantified with BioRad’s iScript 

One-Step RT-PCR with SYBR Green kit following the manufacturer’s  protocol with 5 

µl of substrate and 2.5 µl T4gp32 (final concentration 10 ng/µl).  Due to limited template, 

technical duplicates of biological duplicates were analyzed so that some primer sets were 

run with biological triplicates A and B, some with A and C, and some with B and C.  To 

confirm the absence of contaminating DNA in the RNA samples, a reverse-transcriptase 

enzyme (-RT) control was run for each sample with each primer set.5  Again due to 

limited template, single replicates of biological duplicates were run for the -RT samples. 

 A six dilution standard curve ranging from ~102-107 copies per µl for abundance 

samples and either ~101-106 or ~100-10-5 copies per µl for expression samples was run in 

duplicate for each plate.  The standard clones were made from environmental samples, as 

                                                
5
 During PCR, only DNA is amplified.  Therefore, it is necessary to reverse-transcribe the 

RNA to cDNA before running the PCR.  By omitting the reverse-transcriptase enzyme 

the RNA is not converted to cDNA and so the only template for PCR in the sample is 

contaminating DNA.  The lack of amplification  in a  –RT sample demonstrates the 

absence of contaminating DNA in the sample. 
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described above, and the dilution series was conducted with the Eppendorf epMotion 

robot to minimize pipetting error.  No-template controls were also run on every plate.6  

For each plate, a master-mix was made up containing the SYBR Supermix, forward and 

reverse primers, inhibition reagent, water and reverse-transcriptase enzyme (for RT-

qPCR).  The Eppendorf epMotion robot was then used to pipette the master-mix into the 

pre-aliquoted 96 well plate containing the samples, standards, and no-template controls.  

Finally, the plate was mixed briefly using the Eppendorf MixMate, centrifuged, and 

loaded into the iCycler.  

 

4.5 DISCUSSION 

4.5.1 Limitations of the potential enzyme assay 

 The potential for DMS production by both phytoplankton and bacteria is 

quantified in this study using the potential enzyme assay. The limitations of these 

methods are important to recognize.  As discussed above, the potential enzyme assay 

measures the non-substrate limited activity of the enzymes.  In actuality, the production 

of DMS is dependent not only on the amount of enzyme present in the sample but also on 

the available concentration of DMSP and the physical properties of the water column, 

such as the in situ water temperature.  Therefore, relating a measured DLA rate back to 

an in situ rate of production is non-trivial.  For this study, all potential enzyme assays 

                                                
6
 No-template controls are the blank measurement for qPCR where water is added to the 

reaction instead of sample 
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were run in under-way seawater and therefore at in situ surface temperatures.  While this 

is an improvement over the standard method of running these assays at 30°C, surface 

temperatures are significantly warmer than the temperature at 100 m (the depth of our 

deepest sample).  Temperature was shown to have a significant impact on the potential 

enzyme activity with lower temperatures producing lower DLA rates (section 4.3.2.2.5).  

Therefore, the DLA rates for the deeper samples may be greater than the in situ rates 

simply due to the temperature at which the assay was run. 

As bacteria do not synthesize DMSP, in situ bacterial enzyme activity is limited 

by the available DMSP in the dissolved pool.  In order to convert the measured bacterial 

DLA to a more meaningful biogeochemical value, we multiply the DLA rate by the water 

column DMSPd concentration.  However, this does not take into consideration the 

transport of DMSP across the cellular membrane that may limit intracellular 

concentrations of DMSP or may concentrate DMSP inside the cell.  In addition, several 

different bacterial enzyme systems that cleave DMSP to DMS have been identified 

[Curson et al., 2008; Todd et al., 2009; Todd et al., 2007].  The biochemical pathways for 

each of these enzyme systems have not been fully elucidated and so the necessary co-

factors for these enzymes remain undetermined.  Therefore, while the bacterial DMSP 

cleavage enzymes are not limited by DMSP in the potential enzyme assay, they may be 

limited by an unknown co-factor.  Finally, we were unable to determine if the bacterial 

DLA assay quantifies the activity of all types of bacterial DMSP cleaving enzymes.  

Therefore, this assay may preferentially quantify one enzyme type.   
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Phytoplankton DMS production is believed to be carried out by phytoplankton 

groups that have high levels of intracellular DMSP.  As not all DMSP producers contain 

DMSP lyase enzymes [Niki et al., 1997], the intracellular concentration of DMSPp in 

DMS producing cells may not be linearly related to total water column DMSPp 

concentration.  Therefore, we do not multiply the phytoplankton DLA activity by the 

observed DMSPp concentration.   However, it is possible that intracellular phytoplankton 

DMSP concentrations are limiting for phytoplankton DMSP lyase enzymes yielding in 

situ phytoplankton DMS production rates that are lower than the estimated rate from the 

DLA assay.  In addition, phytoplankton cells in the potential enzyme assay are lysed (see 

discussion above).  The impact of disrupting the phytoplankton cellular machinery on the 

measured enzyme activity is unknown.  While this should not impact the seasonal 

variations observed in phytoplankton DLA rates, it does make these values more difficult 

to relate back to in situ DMS production. 

 

4.5.2 DMS yield measurements from 
35

S incubations 

 As discussed in section 4.3.2.2.7, DMDS appears to inhibit DMS production in 

the potential enzyme assay.  If confirmed, this would have significant consequences for 

the 35S-DMS yield assay, which is currently used as the primary mechanism for 

determining bacterial DMS production.  Specifically, the addition of DMDS to the 35S-

DMS yield assay could be resulting in significant underestimates of bacterial DMS 

production.  Further work is needed to determine the impact of DMDS on DMS 

production.  The first step would be to compare the rates of the standard 35S-DMS yield 
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assay to the rate without the addition of DMDS.   This rate would need to be corrected for 

the consumption of DMS, which could be done using the 35S bacterial DMS consumption 

assay [Kiene and Linn, 2000b].  Additional tests could be conducted using the potential 

enzyme assay similar to those described in section 4.3.2.2.7.  Once the issue of DMDS is 

resolved, the 35S-DMS yield assay can be used to calibrate the bacterial DLA 

measurements.  Specifically, if these two measurements show the same spatial and 

temporal distributions, the bacterial DLA measurements could be used for studies where 

the radioisotope techniques are not possible. 

 

4.6 CONCLUSION 

Based on numerous sensitivity experiments, we present the final methods for 

phytoplankton and bacterial DMSP lyase potential enzyme activity assays, DNA and 

RNA extraction from filters, and quantitative PCR analysis of BATS samples for the 

expression and abundance of DMSP degradation genes in environmental samples. The 

protocols for these methods, provided as Appendices D-G, are used during the 10 month 

time-series at BATS. These protocols include a new method that was developed to 

quantify bacterial DMSP lyase activity.  The analysis of the BATS samples and 

discussion of the findings of this study are presented in Chapter 5. 
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Table 4.1: Dates for BATS 2008 cruises.

Start Date End Date

February 11th 15th

March 12th 16th

April 14th 17th

May 28th June 1st

June 21st 24th

July 15th 21st

August 11th 17th

September 9th 14th

October 6th 11th

November 8th 16th
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RNA DNA

February 2.62±0.48 3.86±0.19

March 2.83±0.27 3.98±0.05

April 2.79±0.19 3.83±0.17

May 2.44±0.37 3.07±0.31

June 2.49±0.24 3.56±0.35

July 2.44±0.26 3.58±0.36

August 2.35±0.24 3.56±0.27

September 2.66±0.22 3.66±0.24

October 2.45±0.24 3.23±0.39

November 2.31±0.31 3.91±0.17

AVERAGE 2.54 3.62

Table 4.2:  Monthly averages of volume of seawater filtered for RNA and DNA samples.

Average Volume Filtered (L)
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average error (% 

of rate) 
•

average R
2  

for 

rate slope

assay temp 

(°C)

Feb* 53.9% 0.9271 21

March** 137.0% 0.9458 21

April 13.2% 0.9728 22

May 6.16% † 0.9762 22

June 9.5% 0.9865 24.5

July 10% †† 0.9921 25

Aug 8.3% 0.9901 26

Sept 6.4% 0.9944 26.5

Oct 11.0% 0.9947 25

Nov 6.0% 0.9938 23

AVERAGE*** 9.1% 0.9876 23.6
• Average error excluding 100m samples ( DLA very close to zero at 100m)

* These samples were run on a GC with Sulfur Chemiluminescence Detection due to problems with the GC-PFPD

** These samples were run using the direct inject method on the GC-PFPD instead of the trapping method

† Error without 0m and 10m samples (DLA very close to zero).  Error with these depths is 848%

†† Error without 0m sample (DLA very close to zero).  Error with 0m is 35.3%

average error (% 

of rate) 
•

average R
2  

for 

rate slope

assay temp 

(°C)

Feb* 7.6% 0.9845 21

March** 10.7% 0.9869 21

April 6.3% 0.9852 22

May 11.1% 0.9844 22

June 14.9% 0.9857 24.5

July 4.5% 0.9881 25

Aug 13.2% 0.9854 26

Sept 4.7% 0.9817 26.5

Oct 9.2% 0.9889 25

Nov 8.0% 0.9808 23

AVERAGE*** 9.0% 0.9850 23.6
• Average error excluding 100m samples ( DLA very close to zero at 100m)

* These samples were run on a GC with Sulfur Chemiluminescence Detection due to problems with the GC-PFPD

** These samples were run using the direct inject method on the GC-PFPD instead of the trapping method
*** Average values April through November. Samples run on the GC-PFPD  using the trapping method

Bacterial DLA assay

Phytoplankton DLA assay

*** Average values April through November. Samples run on the GC-PFPD  using the trapping method

Table 4.3:  Monthly statistics for the bacterial (upper table) and phytoplankton (lower table) 

DMSP lyase potential enzyme activity (DLA) assay.  The average error as a percent of the DLA 

rate, the average R2 value for the linear fit used to calculate the DLA rate, and the average assay 

temperature are given in columns, 1-3 respectively. 
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 without filter  with filter

October control 0.08 0.04 0.55

November standards 62.89 41.87 0.67

November standards 65.70 42.52 0.65

November standards 68.52 36.72 0.54

November standards 146.29 73.29 0.50

Average Correction 0.58

Standard Deviation 0.07

Table 4.4:  Impact of polycarbonate filters on observed DMS concentrations.  The abiotic rate of 

DMSP degradation measured in October with and without a polycarbonate filter is given in row 1.  The 

standard curves were measured on for four different days during the November cruise with and without 

a polycarbonate filter.  The slopes of these standard curves are presented in  rows 2-5.  The filter 

correction is the ratio of the observed slope with a polycarbonate filter to the slope without a filter.

Slope* Filter 

Correction

* Units for October control are nmol/min, units for November standards are peak area/µM
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Figure 4.3:  Change in DMSPd in DLA assays.  Panel a) shows the ambient DMSPd 
and DMSPp concentrations for whole water and the increase in DMSPd concentration 

filtered water) and phytoplankton (whole water) DLA assays.  No significant change 
was seen in the phytoplankton samples over time.  Significant consumption of DMSPd 
was observed in the bacterial samples over 9 h, however the final concentrations was 
greater than zero.
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Figure 4.4: Temperature dependence of bacterial DLA and abiotic DMSP degradation. 
Panel a) shows the abiotic degradation of DMSP for four different temperatures (19°, 15°, 
30°, and 35°C).  The DMSP degradation rates are presented in nmol/min (nmol of DMS 
produced or DMSP degraded per minute).  Panel b) shows bacterial DLA for the four 
different temperatures measured for Ruegeria pomeroyi.  Two sets of samples were run, 
one incubated with DMSP for 1.5 hours and one incubated with DMSP for 1.75.  The DLA 
rates are presented in nmol/L/min (nmol of DMS produced per minute per L of sample).  
DLA rates are normalized by volume of sample filtered, in this case 7ml.  For this test, the 
abiotic DMSP degradation was on average 20% of the DLA rate.
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Figure 4.5:  Temperature dependence of bacterial 
DLA in the field.  The bacterial DLA of identical 
samples from 40 m were measured at two different 
temperatures in February and August.  February 
samples were measured at 20°C and 30°C and August 
samples were measured at 21°C and 27°C. 
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Figure 4.6:  The impact of ‘on-deck waiting time’ on DLA rates.  The change in 40m 
bacterial DLA (panel a) and 40 m phytoplankton DLA (panel b) over 7 h was quantified 
in February, May, July, September, and November.  The DLA rates are presented in 
nmol/L/min.
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RNA extraction hood

.
Figure 4.7: Plexiglas RNA extraction hood with quasi-laminar flow HEPA filtered air 
built by N. Levine and D. Levine.
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Chapter 5:  

 

The Upper Ocean Sulfur Cycle: 

Understanding the key bacterial and 

phytoplankton functional groups involved in 

DMSP degradation 
 

 

5.1 INTRODUCTION: The Summer Paradox and the Seasonal 

Sulfur Cycle at the Bermuda Atlantic Time-series Study site  

The seasonal variations in DMS and DMSP concentrations and biogeochemical 

transformation rates are primarily mediated by the upper ocean food web (see Chapter 4 

section 4.1 for our current understanding of the upper ocean sulfur cycle).  However, the 
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relative importance of and variability in the dominant microbe groups responsible for 

DMSP cycling in the upper ocean sulfur cycle also has yet to be elucidated. In particular, 

the importance and relative magnitude of bacterial DMS production and seasonal 

variability in the fate of dissolved DMSP (DMSPd) consumed by bacteria (demethylation 

versus cleavage) has yet to be determined. Here we investigate the role of the microbial 

and phytoplankton communities in DMS(P) transformations.   

Genomic studies suggest that both &- and '- proteobacteria have DMSP 

degradation genes.  In addition, field work has shown that two &-proteobacteria groups, 

SAR11 and roseobacters, are the dominant DMSPd consumers in open ocean systems 

[Malmstrom et al., 2004a; Malmstrom et al., 2004b].  Bacteria degrade DMSP via two 

pathways, the DMSP demethylation pathway, which excludes DMS as a product, and the 

DMSP cleavage pathway, which produces DMS.  We quantify these two pathways using 

the expression and abundance of dmdA, which is involved in the demethylation of 

DMSP, and dddP, a DMSP cleavage gene.  In addition, we estimate bacterial and 

phytoplankton DMS production using potential enzyme assays (described in Chapter 4 

section 4.3.2).  These biological measurements combined with the suite of chemical and 

physical measurements described in Chapter 4 provide insight into the driving chemical 

and physical mechanisms behind seasonal variability in oligotrophic upper ocean DMS 

and DMSP (DMS(P)) concentrations and the dominant microbe groups mediating these 

transformations. 

In oligotrophic regions, a temporal and spatial disconnect has been identified 

between concentrations of dimethylsulfide (DMS) and its precursor 
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dimethylsulfoniopropionate (DMSP) [Simo and Pedros-Alio, 1999].  It is hypothesized 

that this ‘summer paradox’ in upper ocean sulfur distributions is caused by ultraviolet 

(UV) radiation stress that increases phytoplankton DMS production and decreases 

bacterial DMS consumption [Slezak et al., 2007; Toole et al., 2008; Toole et al., 2003; 

Vallina and Simo, 2007; Vila-Costa et al., 2007].  The driving mechanisms behind the 

‘summer paradox’ have been explored using manipulation experiments in the laboratory 

and field and with numerical models but have yet to be demonstrated in in-situ 

environmental samples.  

The ‘summer paradox’ is observed in the three year Bermuda Atlantic Time-

series Study site (BATS) organic sulfur time-series leveraged by this study [Toole et al., 

in prep, Figure 5.1]. The seasonal variability in sulfur distributions observed for 2008 

(Figure 5.1) were not always representative of the trends observed during the longer 

time-series and discussed in Toole et al. [in prep].  This is due to a series of events that 

are superimposed on top of the seasonal cycle  (discussed below).  Particulate DMSP 

(DMSPp) concentrations peak in the spring (March –April) concurrent with the shoaling 

of the mixed layer and remain high throughout the summer (Figure 5.1b).  DMSPp 

concentrations then decrease in the fall when mixed layers begin to deepen and remain 

low until the spring bloom.  DMS concentrations peak in the summer (May-June), several 

months after DMSPp concentrations increase, and remain elevated until the fall mixing 

events (Figure 5.1a).  In addition to the temporal disconnect between DMS and DMSPp 

concentrations, a depth disconnect is also observed.  DMSPp concentrations are highest 

between 40m and 60m whereas peak DMS concentrations are always observed just below 
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the summer mixed layer at approximately 20m. The low concentrations of DMS observed 

within the mixed layer may be explained by loss of DMS through ventilation to the 

atmosphere, photolysis, or bacterial consumption. DMSPd, the pool cycled by the 

microbial community, does not show a clear seasonal cycle at BATS (Figure 5.1c).  

However, DMSPd and DMSPp concentrations are positively related (Figure 5.2), 

indicating that the release of DMSPp into the water column through phytoplankton cell 

senescence and other processes is important in determining DMSPd concentrations. 

Previous authors have suggested that the spatial offset between peak DMSPp 

concentrations and DMS concentrations is due to a phytoplankton anti-oxidant response 

[e.g. Sunda et al., 2002; Toole et al., 2003].  DMSP and its degradation products, DMS 

and acrylate, have been shown to scavenge free hydroxy radicals and other reactive 

oxygen species suggesting that cells use these compounds to protect against oxidative 

stress.  UV radiation is highest in the upper water column and attenuates with depth to a 

1% light level at ~40 m for 324 nm and ~90 m for 412 nm, during the summertime in the 

Sargasso Sea [Toole et al., 2003].  UV dose is related both to UV irradiance and to the 

mixed layer depth (MLD). MLD is defined as the minimum depth where the potential 

density ("$) is greater than the potential density calculated using surface water salinity 

and surface temperature minus 0.2°C [Sprintall and Tomczak, 1992]. The mean monthly 

MLD is calculated as the average value of the cast MLDs made during the monthly cruise 

(N=15-27).  1" error is calculated as the standard deviation of the cast MLDs.  Deep 

mixed layers, such as those found in the winter, act to decrease the UV dose experienced 
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by the surface planktonic community by reducing the time that these organisms are 

exposed to high-UV radiation.   

The growth of surface ocean microbial communities in oligotrophic regions is 

limited by the availability of bioavailable dissolved organic carbon (DOC) [Carlson et 

al., 2002].  DOC is defined as: 

! 

DOC = TOC " POC          (1) 

where TOC is total organic carbon and POC is particulate organic carbon.  Monthly TOC 

and POC are quantified by the BATS team [http://bats.bios.edu/, Knap et al., 1997; 

Steinberg et al., 2001].  Unfortunately, due to large gaps in the POC dataset, we are 

unable to calculate DOC values for a significant portion of this time-series.  However, 

spatial and temporal variability of the TOC pool is driven by changes in DOC that 

accounts for 96-99% of TOC at BATS [Carlson et al., 1998; Hansell and Carlson, 1998].  

Therefore, we use TOC as a proxy for DOC.  We assume that the bioavailable fraction of 

TOC can be equated with semi-labile Total Organic Carbon (semi-labile TOC) [Carlson 

et al., 1994], plotted in Figure 5.1d, where semi-labile TOC is calculated as: 

! 

TOC
semi" labile = TOC "TOC>3000m

       (2) 

where TOC>3000m is the mean TOC concentration measured at depths greater than 3000m 

during February-November 2008. 

Several events impacted the BATS site during the spring and summer of 2008.  

These events resulted in changes to the upper ocean sulfur cycle that are superimposed on 

top of the typical seasonal cycle.  First, the site was under the influence of a cyclonic 

eddy in May [D. McGillicuddy per. comm.].  Cyclonic eddies upwell nutrient rich 
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thermocline water typically increasing biologic activity [McGillicuddy et al., 2003; 

McGillicuddy et al., 1998].  In May of 2008, shoaling of the isotherms at BATS was 

observed in addition to slightly elevated chlorophyll a concentrations in the upper 100m, 

relative to spring and summertime values for 2008 (data not shown), and elevated 

bacterial cell counts particularly at 60m.  High DMSPp and DMSPd concentrations were 

measured in May along with the highest DMSPd consumption rates observed in 2008.  

We hypothesize that this increase in DMSPp concentrations, and corresponding increase 

in rates of DMS(P) cycling, may be due to a ‘bloom’ of DMSP producers resulting from 

the increased nutrient supply in the cyclonic eddy and the subsequent bloom of DMSP 

consumers. Supporting evidence for this hypothesis is found in the genomic profile for 

May that shows increased abundance of several groups of DMSP degraders (discussed 

below).  However, it is difficult to definitively separate this signal from the seasonal 

shoaling of the mixed layer, which occurs between March and April at BATS, and results 

in increased DMSPp and DMS concentrations.  The steep rate of change in DMSPp 

concentrations during this time period and significant interannual variability makes it 

difficult to determine if May of 2008 was significantly different from the preceding two 

years. 

Secondly, the BATS site was heavily influenced by Hurricane Bertha during July 

of 2008.  Bertha passed directly over BATS with tropical storm force winds (>63 km/hr) 

impacting BATS for 4 days immediately preceding the July cruise [National Hurricane 

Center, NOAA http://www.nhc.noaa.gov/archive/2008/graphics/al02/loop_R.shtml].  

Due to rapid restratification of the surface waters, the mixed layer depth calculated from 
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potential density for July is 14.8m ± 6 m, a typical summertime value.  However, the 

remnant of the deep mixed layer imparted by Hurricane Bertha, as evident by 

disturbances in the isotherms at depth, was still present during the July occupation.  The 

depth of the remnant mixed layer is 41.4m ± 14m (dashed gray line in Figure 5.1).  As 

shown in Figure 5.1, DMS, DMSPp and DMSPd concentrations in July are significantly 

decreased as compared to June and August, with July values of these properties similar to 

those observed in April (MLD of 33.9m ± 16m).  We hypothesize that increased vertical 

mixing created by the hurricane winds decreased the UV radiation stress experienced by 

surface phytoplankton resulting in lower DMSPp and therefore lower DMSPd 

concentrations. Similarly, the decrease in UV radiation stress may have relieved some 

inhibition of DMS consumption in surface waters thereby increasing rates in July 

particularly at 20m (Figure 5.1f) [Slezak et al., 2001; Toole et al., 2006]. The 

combination of increased DMS consumption combined with increased ventilation to the 

atmosphere explains the low DMS concentrations in the surface waters in July.  DMSPd 

consumption also decreased in July to values similar to those observed in April. Labile 

TOC concentrations increased at 40 and 50m in July possibly due to mixing with high 

TOC surface waters during the hurricane.  

Finally, during January 2008, immediately before the beginning of our time-

series, DMSPp and DMSPd concentrations were elevated at BATS.  Elevated DMSP 

concentrations during the winter months are atypical for the Sargasso Sea.  The cause of 

these elevated values is unclear.  As discussed above, the changes in ocean physics and 

chemistry caused by these three events impacted the upper ocean sulfur cycling as is 
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evident in both the concentrations, genomic, and rate data.  These perturbations provide 

the opportunity to test hypotheses about the mechanisms driving upper ocean sulfur 

cycling.  

 

5.2 METHODS 

5.2.1 Gene Abundance and Expression 

 DNA and RNA were collected, extracted, and quantified monthly at BATS 

following the protocols described in Chapter 4.  Standard curves, from serial dilutions of 

known gene copy number, are used to convert the quantitative polymerase chain reaction 

(qPCR) output to copies per reaction.  This calculation relies on the assumption that 

standard clones and environmental samples have the same reaction efficiencies (defined 

and discussed in Chapter 4, section 4.3.3), such that with each PCR cycle the quantity of 

the target sequences in both standards and samples are increasing at the same rate.  

Differences in efficiency between the samples and standards could occur due to inhibition 

in the samples or to inefficient primer binding (discussed in Chapter 4 section 4.3.3) and 

could result in significant over- or underestimates of gene copy number.  The efficiency 

for each reaction was calculated using the LinRegPCR program [Ramakers et al., 2003; 

Ruijter et al., 2009].  The individual efficiency is based on the increase in fluorescence in 

each well and is calculated as: 

! 

%Eind = (10
slope

"1) #100%        (3) 
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where %Eind is the percent efficiency for an individual reaction, and slope is the slope of 

linear fit to log(fluorescence) versus cycle number.  An individual efficiency of 100% 

indicates that the number of gene amplicons in the sample is doubled during each cycle.  

For each plate, the average %Eind for the environmental samples was within error of the 

%Eind for the standards (Table 5.1).  Therefore, we conclude that the standards can be 

used to rigorously estimate the copy number for each sample.  The average efficiency 

(%E), as defined by equation (2) in Chapter 4, and standard curve R2 values for each 

primer set are presented in Table 5.2.  These efficiencies differ slightly from those 

presented in Table 5.1 due to differences between equation (3) and Chapter 4 equation 

(2).  While it is necessary to use a technique such as the LinRegPCR program to calculate 

the efficiencies of individual samples, we have greater confidence in the average 

efficiency estimate (%E) calculated using equation (2) Chapter 4 and presented in Table 

5.2.  All efficiencies, except for the abundance of D/3, are less than 100% most likely due 

to inefficient binding of the primers to the template.  We are confident that the low 

efficiencies are not due to inhibition from compounds co-extracted with the 

environmental DNA and RNA, as the samples and standards show the same %Eind (Table 

5.1, see Chapter 4 section 4.3.3 for a discussion of inhibition in the BATS samples). The 

similarity between samples and standards and the linearity of the standard curves (R2 

greater than 0.992 and typically better than 0.997) allows for a robust estimate of gene 

copy number for the samples despite less than 100% amplification efficiency. The same 

primer sets show different efficiencies in the expression (reverse-transcriptase-qPCR) and 

abundance (qPCR) analyses (Table 5.1 and 5.2).  This may be due to the different buffers 
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required for the reverse-transcriptase step in RT-qPCR, which may impact the binding 

efficiencies of the primers to the template.  However, this again is corrected for using the 

standards. 

 During qPCR analysis, the fluorescence in each reaction increases exponentially.  

As described in Chapter 4, this signal is proportional to the quantity of double stranded 

DNA present in the sample and thus can be used to calculate the starting concentration of 

a target amplicon.  For each plate, a threshold value is selected and the cycle at which a 

sample reaches this threshold is determined.  Samples with low concentrations of starting 

material will take longer to reach the fluorescence threshold and so will have a larger 

cycle number than samples with higher concentrations.  A threshold value in the 

exponential phase of the amplification curves is chosen manually.  The number of gene 

copies per liter of seawater for each sample is then calculated as: 

! 

copies
L

=
copies

µl template
"µl extracted "

1

L filtered
     (4) 

where 

! 

copies

µl template
 is determined using the sample cycle number and the standard curve.  

The error for each sample is calculated as the 1" standard deviation of the combination of 

biological and technical replicates (N=6 for DNA samples, N=4 for RNA samples).  The 

average fractional error for each primer set is presented in Table 5.2.  No DNA samples 

were discarded.  RNA samples with DNA contamination greater than 3% of the RNA 

signal, as determined from the no-reverse-transcriptase control (-RT) described in 

Chapter 4, were discarded.  Of points with significant expression (defined below), only 

one sample analyzed for D/1 expression was discarded due to DNA contamination. 
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 To confirm the presence of only one amplification product, melt curves for each 

qPCR plate were analyzed.  All DNA samples showed specific amplification with only 

one product displayed in the melt curve analysis.  Similarly, the melt curves for RNA 

samples run with primers D/1 and D/3 showed specific amplification.  Samples analyzed 

for the expression of subclade A/1 and dddP showed non-specific amplification in some 

samples, most likely due to low initial gene copy number.  Each melt curve for A/1 and 

dddP RNA samples was carefully inspected and samples with non-specific amplification 

were flagged.  If a peak was observed at the correct melting temperature (as determined 

by the standards), the environmental sample was marked as non-quantifiable “plus 

expression”.  Of the 40 samples analyzed for subclade A/1,  quantitative data were 

obtained from 11 samples, 21 were marked as non-quantifiable “plus expression”, and 8 

showed no detectable expression.  dddP expression was very low, such that the copy 

number could not be determined for any sample.  However, 8 samples were marked as 

“plus expression” based on the melt curve analysis.  In addition, four samples showed the 

slight presence of a dddP peak and so were marked as “possible-expression”. 

 

5.2.2  DMSP Lyase Activity 

 DMS production by phytoplankton and bacterial DMSP cleavage was quantified 

with potential DMSP lyase enzyme activity (DLA) assays as described in Chapter 4 

section 4.3.2.1.  These assays measure the potential for DMS production when DMSP is 

not limiting. The limitations of this approach are discussed in Chapter 4 section 4.5.  As 

bacteria are dependant on the dissolved DMSP pool, we multiply the observed bacterial 
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DLA by the DMSPd concentration.  Phytoplankton DMS production is believed to be 

carried out by phytoplankton groups that have high levels of intracellular DMSP.  

However, as not all DMSP producers contain DMSP lyase enzymes [Niki et al., 1997], 

the intracellular concentration of DMSPp in DMS producing cells may not be linearly 

related to total water column DMSPp concentration.  Therefore, we do not multiply the 

phytoplankton DLA activity by the observed DMSPp concentration.  Bacteria and 

phytoplankton are believed to contain different DMSP cleavage enzymes that may act 

differently in the potential enzyme assay.  In addition, phytoplankton DLA rates are 

measured on whole cell extracts whereas bacterial DLA rates are measured on whole 

cells (see Chapter 4 section 4.3.2.2.1).  Therefore, the bacterial and phytoplankton rates 

are not directly comparable.   However, the seasonal and vertical variability in DLA for 

each group provides insight into variability in DMS production and the potential 

chemical and physical forcings influencing the production of DMS by phytoplankton and 

bacteria. 

 As discussed in Chapter 4, the on-deck waiting time prior to analysis significantly 

impacts the measured bacterial and phytoplankton DLA rates.  Therefore, changes less 

than 30% are not considered robust.  However, due to the substantial variability over the 

10 month time-series in both the phytoplankton and bacterial DLA, a factor of 7 and 30 

respectively, most of the trends are considered significant.  
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5.3 RESULTS 

5.3.1 DMSP degrading gene abundance 

 The upper ocean sulfur cycle is an important biogeochemical process which 

involves numerous microbial and phytoplankton groups. Based on the Global Ocean 

Sampling (GOS) metagenomic database, Howard et al. [2008; 2006] hypothesize that 37-

58% of all bacterioplankton contain DMSP degrading genes. Similarly, our samples 

indicate that up to 33% of bacterioplankton cells contain a copy of the DMSP 

demethylation gene (dmdA) (Figure 5.3b) and  up to 11% of cells contain a copy of the 

DMS producing dddP gene (Figure 5.3c). This is a maximum estimate since we assume, 

as per Howard et al. [2008],  that each cell carries only one gene copy.  The total bacterial 

cell counts (cells/L) from BATS [http://bats.bios.edu/, Knap et al., 1997; Steinberg et al., 

2001] as identified by 4',6-diamidino-2-phenylindole (DAPI) staining are plotted in 

Figure 5.3a.  Gaps in Figure 5.3a at July 60m and August 10m are due to gaps in the 

BATS dataset.  The symbol color corresponds to the concentration of cells.  The size of 

the symbol (for panels b and c) is related to the inverse of the coefficient of variation, 

where the coefficient of variation is defined as 1" of abundance/abundance such that a 

larger symbol represents a measurement with a small fractional error.  In general, cells 

with DMSP degradation genes make up a significant portion of the bacterial community 

in the late summer and early fall of 2008 when DMSPd concentrations are elevated.  

Similarly, the DMSP degraders are abundant in May when DMSPd concentrations are 

elevated most likely due to the influence of the cyclonic eddy.  As discussed previously, 
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the elevated DMSPp in the eddy, most likely due to a DMSP producer bloom, appears to 

have caused a subsequent increase in DMSPd, which in turn may have resulted in the 

increased abundance of bacteria with DMSP degrading genes. 

The seasonal variability in the percentage of cells with DMSP degrading genes 

observed during 2008 is driven by changes in several different gene groups, which appear 

to have varied responses to the physical and chemical properties of the upper water 

column.  The abundance of five dmdA subclades, D/1, D/3, A/1, A/2, and C/2, and dddP 

were quantified using qPCR as described in Chapter 4 section 4.3.3.4. Three distinct 

groups emerged from the abundance data; Group I containing subclades D/3, A/1 and 

dddP, Group II containing subclade A/2 and D/1, and Group III containing C/2 (Figure 

5.4).  Group I subclades are linearly related with R2 values greater than 0.651 (p value 

less than 3x10-10).  Similarly, Group II subclades are significant positively related with an 

R2 value of 0.627 and p value of 2x10-9.  There is some similarity between Groups I and 

II as subclades A/1 and A/2 are related with an R2 value of 0.512.  However, dmdA clade 

D subclades (D/1 and D/3) are not strongly correlated, R2=0.229, again suggesting 

distinct populations responding to different environmental forcing.  Group III, subclade 

C/2, is not significantly correlated to either Group I or Group II subclades with R2 values 

of 0.028, 0.017, 0.166, 0.194, and 0.308 and p values of 0.3, 0.4, 0.009, 0.004, and 2x10-4 

for A/1, dddP, D/3, D/1 and A2 respectively.  This suggests that the chemical and 

physical forcings driving the distribution of Group I and Group III populations are 

substantially different. 
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Group I’s A/1 and dddP are highly correlated, R2 = 0.888, indicating that cells 

containing a subclade A/1 dmdA gene (as defined by our primer set) are behaving 

similarly to cells containing a copy of dddP or even that these two genes are contained in 

the same cells.  Previous work has shown that subclade A/1 and dddP both occur in 

Roseobacter strains [Todd et al., 2009; Varaljay et al., submitted], and that some 

roseobacters have the ability to both demethylate and cleave DMSP [Gonzalez et al., 

1999; Howard et al., 2006; Moran et al., 2004] However, in our samples, dddP is on 

average 30 times more abundant than A/1.  We suggest three different hypothesis to 

explain the high degree of similarity between subclade A/1 and dddP and the difference 

in abundance between these two genes.  The first hypothesis is that a dddP containing 

roseobacter community contains a subset that has the potentially to both demethylate and 

cleave DMSP, i.e. contains both A/1 and dddP genes.  Alternatively, an entire group of 

organisms, most likely roseobacters, contain both genes.  However, our A/1 primer set 

may only be capturing a fraction of the A/1 subclade genes making dddP appear to be 30 

times more abundant.  This would be due to sampling limitations in the metagenomic 

database used to design the A/1 primer; for example the Sargasso Sea samples in the 

metagenomic database were collected near BATS in February and so may not fully 

capture the diversity of the A/1 subclade throughout the year at BATS.  Finally, the A/1 

and dddP genes could be contained in two completely separate populations that are 

responding to the same chemical and physical forcings.  The similarity between dddP and 

A/1 is discussed further below, section 5.3.2.   
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The abundance of the six DMSP degrading genes quantified in this study are 

plotted in Figure 5.5.  The symbol color corresponds to the abundance in copies/L and 

the symbol size is inversely related to the coefficient of variation (1"/abundance) such 

that large symbols indicate small fractional error.  Clade D is the most abundant dmdA 

clade in the Sargasso Sea with, on average, 10% of upper ocean cells containing a copy 

of the D/1 gene.  Subclade D/1 (Figure 5.5a) reaches peak concentrations of 14.1x107 

copies/L in May at 60m and is present in significant concentrations throughout the upper 

water column (<60m) in the late summer and fall (July through October).  Both subclades 

D/1 and D/3 are predominantly found below 20m.  D/3 appears to respond to mixing and 

upwelling events with peak concentrations observed during February (deep winter 

mixing), May (cyclonic eddy), and July (Hurricane Bertha).  The one inconsistency is 

August 60m where D/3 also showed elevated concentrations but no mixing or upwelling 

was observed.  Subclade A/2 shows a similar response to mixing and upwelling events 

with elevated concentrations during May (cyclonic eddy) and July (Hurricane Bertha) 

and slightly elevated concentrations in February at 20m and 60m (deep winter mixing).  

However, similar to subclade D/1, A/2 also shows increased concentrations in the late 

summer and early fall (August through October).   

Though members of the same clade, the A/1 and A/2 subclades demonstrate 

distinct spatial patterns with A/2 peaking at shallower depths (~20m) than A/1 (~60m) 

(Figure 5.5c and d). This clear spatial separation between subclades A/1 and A/2 

suggests niche differentiation such as the low-light and high-light niches observed in 

Prochlorococcus [Moore and Chisholm, 1999]. Clade A is thought to be comprised 
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primarily of members of the Roseobacter group. While subclades have been identified in 

the SAR11 and Prochlorococcus populations at BATS [Carlson et al., 2009; Moore and 

Chisholm, 1999], to date no niche defined Roseobacter subclades have been observed.  

The depth differentiation between the A/1 and A/2 subclades suggests that light, such as 

UV tolerence, may play a role in the differentiation between the two groups.  

Unfortunately, the temporal and spatial resolution of this study does not allow us to 

determine the factors driving this differentiation.  High-resolution observations, such as 

those provided by oceanographic floats or moorings, are needed to adequately capture the 

driving mechanisms behind these variations. 

Subclade C/2, believed to be harbored by SAR11 bacteria, is spatially and 

temporally distinct from clades D and A.  Peak concentrations occur during the summer 

months (July and August) approximately 5-6 months after the winter mixing event.  

Similarly, Carlson et al. [2009] observed a seasonal succession in the SAR11 population 

at BATS where subclade Ia dominated the upper 40m 5-6 months after the wintertime 

deep mixing event.  The similarity in the seasonal variations between SAR11 subclade Ia 

and dmdA subclade C/2 suggests that the SAR11 subclade Ia bacterium may contain a 

subclade C/2 dmdA gene.   

The driving mechanisms behind seasonal shifts in major bacterial clades in 

oligotrophic regions are unknown.  Total bacterial abundance in the Sargasso has a weak 

seasonal cycle with low abundances in the winter (December – March) and slightly 
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increased abundances in the spring and summer [Carlson et al., 1996]7, similar to that 

observed for subclade C/2.  The clade specific response to seasonal chemical and 

physical changes has only been explored for the SAR11 group [Carlson et al., 2009].   

Carlson et al. conclude that SAR11 populations at BATS respond to changes in physical 

forcings such as seasonal mixing and stratification, which impact DOC availability 

[Carlson et al., 2009].  This is consistent with other work by this group which found that 

the bacterial community at BATS is limited by labile DOC concentrations [Carlson et al., 

2002]. 

 

5.3.2 DMSP degrading gene expression 

 This study is the first time that the expression of DMSP demethylation and 

cleavage genes has been quantified in environmental samples.  The DMSP degradation 

gene expression for dmdA subclades D/1, D/3 and A/1 and dddP in copies/L are 

presented in Figure 5.6.  The symbol color corresponds to the measured expression and 

the symbol size is related to the inverse of the coefficient of variation (1"/expression) 

such that larger symbols represent smaller fractional error.  Samples with no detectable 

expression are shown as open circles, and samples with “plus expression” are denoted 

with a ‘+’.  Locations with significant D/1, D/3, A/1 and dddP expression are selected 

                                                
7
 Figure 3a is consistent with the seasonal cycle of total bacterial abundance presented in 

Carlson et al. [1996].  Carlson et al. reports low abundances between late November and 

early March and a period of ‘high abundance’ from late March through early November 

with significant variability. 
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using a cutoff of 10,000, 2000, and 40 gene copies per L and “plus expression”, 

respectively.  The following analysis focuses on these regions of significant expression. 

Significant seasonal variability in DMSP degradation gene expression is observed 

at BATS.  For all subclades quantified in this study, the fraction of cells expressing 

DMSP related genes (expression/abundance) was lowest in the summer and highest in the 

fall and winter (Figure 5.7).  DMSP degradation genes showed extremely low levels of 

expression, with measured gene expression less than 1 transcript per 1000 gene copies.  

While the cyclonic eddy in May resulted in significant expression in the D/1 and D/3 

subclades at 60m, the fractional expression for this month was no different than that 

observed during the summer months.  The extremely low levels of expression for both 

the dmdA and dddP genes suggests that the DMSP degrading enzymes may be long lived 

in the cell such that continual transcription and translation of DMSP degrading genes is 

not necessary. 

Biogeochemically the relevant quantity is the number of gene copies expressed 

per liter at any given time.  Significant levels of dmdA expression were observed in 

February (deep winter mixing), May 60m (cyclonic eddy), August 60m, September 40m 

and October 40m and 60m (Figure 5.6).  The following analysis will focus on the 

chemical and physical changes that may have resulted in significant dmdA expression in 

these months and at these depths. 

DMSP is a source of both labile carbon and reduced sulfur for bacteria in the 

surface ocean.  Bacteria can access this carbon source through both the demethylation 

and cleavage pathways.  It has been hypothesized that when bacterial sulfur demand is 
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high and DMSP is low, the demethylation pathway, which allows bacteria to access both 

the carbon and sulfur in DMSP, will be the dominant DMSP degradation pathway.  

Alternatively when DMSP concentrations are high or sulfur demand is low, it has been 

hypothesized that the DMSP cleavage pathway, which only provides labile carbon, will 

be favorable.  However, the ‘bacterial switch’ was not observed during this study.  

Rather, the expression of both pathways (as defined by the dmdA and dddP genes) tended 

to be elevated at the same location and concurrent with elevated DMSPd concentrations 

(Figure 5.8b).  Exceptions occur during February and May, which are discussed below. 

While the expression of dddP and dmdA clades D/1, D/3, and A/1 in the late 

summer and early fall corresponds to elevated DMSPd concentrations, there are other 

periods with similarly high DMSPd concentrations that do not have significant 

expression of DMSP degrading genes.  We suggest that this may be in part due to UV 

inhibition of the DMSP demethylation pathway and in part due to community 

composition and bacterial dynamics.  dmdA expression for the subclades quantified in 

this study appears to be light sensitive with significant expression occurring below the 

mixed layer, with the exception of February during which time deep mixing resulted in 

low UV radiation dose.  This is consistent with previous findings which conclude that 

UV radiation inhibits DMSPd consumption [Slezak et al., 2001; Slezak et al., 2007]. In 

addition, preliminary studies suggest that the DMSP demethylation pathway may produce 

reactive oxygen species (ROS) thereby making it unfavorable under conditions which 

also increase intracellular concentrations of reactive oxygen species, e.g. UV stress [S. 

Gifford, unpublished].   
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Chemical parameters such as carbon availability appear to have a secondary 

impact on dmdA expression.  The upward displacement of thermocline waters in May as 

a result of the cyclonic eddy, resulted in low labile TOC concentrations at 60m (Figure 

5.1d).  This decrease in labile TOC compounded with a high bacterial carbon demand 

(quantified following the protocol presented in Chapter 4 section 4.3.1) may explain why 

significant expression is observed at May 60m and not May 40m, June 40m, June 60m 

and July 60m, which all show similar DMSPd concentrations but elevated TOC 

concentrations. The absence of significant expression during June at 40 and 60m could 

also simply be explained by low bacterial activity as quantified by bacterial demand 

(Figure 5.8a). 

Subclades D/1 and D/3 are significantly expressed at the same locations except 

for September and October 40m where D/1 is significantly expressed and D/3 is not.  

This is likely due to the extremely low abundance of D/3 at 40m during these months 

such that even elevated levels of expression would be below the detection limit of our 

analysis.  Similarly, other than February (discussion to follow) A/1 is only significantly 

expressed in October at 40m and 60m. This corresponds to the highest observed DMSPd 

concentrations.  The abundance of subclade A/1 is an order of magnitude lower than that 

of subclade D/1.  Therefore, similar to subclade D/3, even significant levels of expression 

may not be detectable in August and September.  However, it is interesting that dddP 

expression is observed at all the locations where subclade D/1 is significantly expressed 

including those where A/1 is not significantly expressed.  As discussed above, the 

abundance of A/1 and dddP are highly correlated suggesting that the genes are contained 
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in the same population. Therefore, it may only be advantageous for the subset of the 

population with the A/1 gene to upregulate both pathways when DMSPd concentrations 

are extremely high.  This would explain why the A/1 gene only shows significant 

expression under high DMSPd concentrations (such as Oct 40m and 60m).   

In February, DMSPd concentrations, bacterial demand, and labile TOC are low.  

While DMSP gene abundance is also low during this month, all dmdA clades were 

significantly expressed and dddP was “possibly expressed”.  The driving mechanism 

behind this expression is unclear.  As discussed above, January 2008 showed atypically 

high DMSPp and DMSPd concentrations.  While upper ocean sulfur cycling is too rapid 

for increases in January to account for the observed expression in February, it is possible 

that a combination of factors including the anomoluous January conditions contributed to 

high levels of expression in February.  Specifically, the bacterial community in the 

wintertime at BATS is carbon starved due to low semi-labile TOC concentrations.  

Therefore, the drastic increase of DMSPd in January and the residual elevated DMSPd 

concentrations in February may have been a sufficient enough increase, relative to the 

alternative carbon sources, for DMSP degraders to upregulate and maintain the DMSP 

degradation pathway.  In addition, UV radiation dose is low in February due to low 

surface irradiance and deep mixed layers such that any possible inhibition or unfavorable 

conditions due to UV stress would be eliminated.  The combination of these factors may 

provide a partial explanation for the high level of expression of the DMSP degrading 

genes in February. 
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5.3.3 DMS production: potential enzyme activity 

 Bacterial DMS production, as measured by the DLA assay, is highest in the late 

summer and early fall between 20m and 60m (Figure 5.9a).  High bacterial DMS 

production corresponds to high water column DMSPd concentrations and elevated 

expression of DMSP degradation genes suggesting that bacterial DMS production is 

controlled by water column DMSPd concentrations and community composition, as 

defined by gene abundance and expression.  There is however a slight disconnect 

between dddP expression and bacterial DMS production.  Bacterial DMS production is 

high in September between 20m and 60m whereas dddP is only expressed at 40m (Figure 

5.9a).  Conversely, dddP is expressed in March 40m, May 60m, October 20m, and 

November 40m where bacterial DMS production is low.  The lack of dddP expression at 

locations where significant bacterial DLA rates were measured and presence of dddP 

expression at locations where DLA was not measured may indicate that the bacterial 

DLA method does not accurately quantify DMS production from dddP enzymes or that 

dddP may not be the primary bacterial DMSP cleavage gene at BATS.  However, it is 

more likely that these differences are due to the longevity of DMSP cleavage enzymes 

such that at any given point in time only a small fraction of cells are actively transcribing 

the dddP gene making this expression difficult to detect.  Alternatively, post 

transcriptional regulation may degrade the transcript before the protein is made resulting 

in the observed disconnect between dddP gene expression and DLA activity.  

 Phytoplankton DLA is highest in surface waters in the summer and early fall 

concurrent with the shoaling of the mixed layer and high UV radiation dose in the upper 
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water column (Figure 5.9b).  This is consistent with previous studies which suggest that 

phytoplankton cleave DMSP to DMS as an anti-oxidant response to UV radiation [Sunda 

et al., 2002].  The low phytoplankton DLA observed in July is also consistent with an 

anti-oxidant response as the deep mixed layers caused by Hurricane Bertha reduce the 

UV radiation experienced by the surface phytoplankton.  Bacterial DLA also decreases in 

July, albeit a small one, suggesting a potential role for UV stress in bacterial DMS 

production. 

 

5.4 DISCUSSION: A mechanistic explanation of the upper ocean 

sulfur cycle 

 The combination of chemical, physical, and biological measurements made 

during this study provides insight into the driving mechanisms behind variability in the 

upper ocean sulfur cycle.  Here we present a modified conceptual model for organic 

sulfur cycling in oligotrophic regions.  Particulate DMSP is produced in phytoplankton 

cells in response to environmental stress (see literature review in Chapter 4 section 

4.1.1).  This particulate pool is either cleaved by phytoplankton to DMS (discussed 

below) or released into the water column through cell senescence and grazing where it is 

rapidly cycled by the bacterial community. When dissolved DMSP concentrations are 

elevated, the bacterial community responds by up-regulating DMSP degradation 

pathways.  The DMSP demethylation pathway primarily occurs below the mixed layer 
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(40-60m8) possibly due to UV inhibition in surface waters whereas the DMSP cleavage 

pathway is found both above and below the mixed layer.  The expression of dmdA and 

dddP corresponds to areas of elevated DMSPd consumption, as measured by radioisotope 

analysis (Chapter 4 section 4.3.1) (Figure 5.8c).  However, no significant upper water 

column gene expression was observed.  Specifically, the high rates of DMSPd 

consumption measured in May and August above 40m do not correlate to significant 

dmdA expression, dddP expression or bacterial DLA.  This suggests that there may be 

DMSP demethylation or lyase activity that is not captured by the assays used in this 

study.  It is possible that this additional DMSPd consumption is due to subclade C/2 or 

A/2 activity, both of which show elevated concentrations in the upper water column (the 

choice of subclades for expression analysis is discussed in Chapter 4, section 4.3.3.4).  

The spatial distribution of these subclades (Figure 5.5) suggest that they may be high-

light adapted and so may not have the same postulated UV inhibition seen in subclades 

D/1, D/3 and A/1.  Alternatively, a different DMSP cleavage gene (either dddD, dddL, or 

another unidentified gene) may be responsible for the DMSPd consumption in these 

areas.  Similarly, it is also possible that the bacterial DLA assay only measures DMS 

production from a sub-set of the bacterial community.  Several different DMSP cleaving 

mechanisms have been identified in bacteria [Curson et al., 2008; Todd et al., 2009; Todd 

et al., 2007].  We were unable to determine if the bacterial DLA assay quantifies the 

activity of all types of bacterial DMSP cleaving enzymes, therefore this assay may be 

preferentially select one enzyme type.  If this were the case, some of the DMSPd 

                                                
8
 Due to limited vertical sampling, we do not have DMSP demethylation data below 60m. 



 236 

consumption observed in the surface waters in May and August may be due to bacterial 

DMS production by a population containing a different enzyme system. 

 Phytoplankton show the highest DMSP lyase activity in the early summer (May 

and June) whereas bacterial DLA is highest in the late summer and early fall (September 

and October).  Surface DMS concentrations peak in June at 25m, decrease due to 

Hurricane Bertha in July, and peak again in September between 15m and 25m.  Figure 

5.10 plots DMS concentrations and DMS phytoplankton and bacterial production at 20m.  

The two peaks in water column DMS, May and September, are shown to correlate with 

elevated DMS production.  While it is not possible to determine the exact contributions 

of the phytoplankton and bacterial populations to water column DMS from the DLA 

assays, it appears that the initial increase in DMS is due to phytoplankton DMS 

production whereas, later in the summer, water column DMS is derived from both 

phytoplankton and bacteria.  The absence of DMS below 30m despite the presence of 

DMSP lyase enzyme activity can be explained by bacterial DMS consumption.  

Radioisotope experiments show that the rate of DMS consumption is high in subsurface 

waters (Figure 5.1f), while the standing stock of DMS at these depths is essentially zero.  

This is indicative of rapid cycling where high production is coupled with high 

consumption, such that any DMS produced is rapidly stripped out of the water column 

resulting in low standing stocks.  Bacterial DMS consumption is thought to be inhibited 

by UV radiation, thereby de-coupling DMS production and consumption in the surface 

waters and contributing to the observed summertime increase in DMS.  In addition, 

photolysis rates are highest in the surface waters and decrease with depth providing a 
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possible explanation for the absence of DMS above 20 m despite measured DMSP lyase 

enzyme activity. 

 While the importance of bacteria in DMS(P) cycling in the surface ocean has been 

established [e.g. Kiene et al., 2000], the bacterial contribution to water column DMS 

concentrations and seasonal DMS(P) dynamics has been poorly understood.  This study 

suggests that bacterial DMS production in oligotrophic regions varies substantially over 

the course of a 10 month period and may significantly contribute to water column DMS 

concentrations in the late summer and early fall.  We believe that previous studies may 

have underestimated the importance of bacterial DMS production due to methodological 

problems such as dimethyl disulfide additions to 35S tracer methods (see Chapter 4, 

section 4.3.2.2.7).  In addition, the relative expression of the two bacterial DMSP 

degradation pathways appears to be less dependent on available carbon supply and more 

dependent on community composition (gene abundance) and UV radiation stress.  

Finally, the hypothesized correlation between UV radiation stress and phytoplankton 

DMSP lyase activity was supported by the phytoplankton DLA measurements that 

showed higher summertime values concurrent with the shoaling of the mixed layer.  

Phytoplankton lyase activity was not constant throughout the summer season.  Rather, 

phytoplankton DMS production was shown to be greatest in the spring and early summer 

and lower in the late summer and early fall, concurrent with increased bacterial DMS 

production. 
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5.5 CONCLUSION 

 

 This work suggests a modified conceptual model for the upper ocean sulfur cycle 

with a seasonal succession of the dominant functional groups involved, from 

phytoplankton in the early summer to bacteria in the late summer and early fall.   This 

maybe due to the increased release of DMSP from phytoplankton into the water column 

during this time period that in turn triggers a bloom of DMSP consumers.  This work also 

identifies a diverse bacterial community that is active in cycling organic sulfur in the 

surface ocean.  There appears to be niche differentiation in the dmdA A subclades with 

the suggestion of subsurface and surface subclades, which are potentially low UV and 

high UV adaptive, respectively.  Further work is needed to conclusively demonstrate the 

hypotheses presented in this chapter.  Field and laboratory perturbation experiments 

testing the response of dmdA and dddP gene expression and bacterial and phytoplankton 

DLA rates to UV stress and DMSPd amendments would provide further insight the 

relationships observed during the ten month BATS time-series.  In addition, field studies 

observing changes in phytoplankton and bacterial DMS production during different 

seasons is needed to elucidate the possibility of a seasonal succession in DMS(P) cycling. 

 Current upper ocean sulfur cycle models either do not include bacterial DMSP 

degradation and DMS production or parameterize bacterial DMS production as a static 

percentage yield of DMSPd consumption, where DMSPd consumption is scaled to 

bacterial production and total bacterial abundance [e.g. Toole et al., 2008].  The results of 

this study suggest that there are fundamental inaccuracies in the current assumptions used 
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in numerical sulfur models.  Specifically, we suggest that a dynamic bacterial component 

is needed to accurately represent the seasonal dynamics of DMSP consumption and DMS 

production.  As shown in Figure 5.3, 5.8, and 5.9, bacterial DMSPd consumption and 

DMS production cannot be predicted from total bacterial abundance and bacterial carbon 

demand (which scales with bacterial production) alone.  We suggest that several factors 

need to be considered to accurately represent bacterial DMS(P) cycling; specifically 

DMSPd concentrations, UV radiation stress, community composition (gene abundance), 

and bacterial carbon demand.  Of these parameters, shifts in community composition is 

the most difficult to incorporate into a numerical model.   

The genetic analysis conducted in this study suggests that a diverse group of 

bacterial populations are responsible for DMSP degradation in the Sargasso Sea.  

However, the expression of DMSP degrading genes showed similar trends across all 

clades and subclades (Figure 5.8b).  Therefore, it would be sufficient for numerical 

models to capture the integrated effect of the bacterial community rather than specifically 

modeling the dynamics of each subclade.  The dominant pattern observed during 2008 

was a shift to a higher fraction of the bacterial community containing DMSP degradation 

genes and greater DMSP degradation gene expression during the summer and early fall 

concurrent with increased DMSPd concentrations.  Therefore, we suggest that 

parameterizing bacterial DMSP degradation based on seasonal variations in DMSPd 

concentrations (related to DMSPp concentrations, Figure 5.2), bacterial carbon demand 

and UV radiation stress would allow for a dynamic bacterial component in upper ocean 

sulfur models and improve predictions of DMS(P) cycling. 
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% Efficiency 

Samples

% Efficiency 

Standards

Abundance (N= 78- 80)  (N=12)

A/1: plate 1 77 ±7 % 85 ± 15 %

      plate 2 67 ± 5 % 75 ± 8 %

      plate 3 71 ± 9 % 80 ± 5 %

A/2: plate 1 82 ± 6 % 88 ± 4 %

      plate 2 77 ± 8 % 90 ± 5 %

      plate 3 76 ± 7 % 83 ± 5 %

C/2: plate 1 57 ± 6 % 62 ± 4 %

      plate 2 87 ± 9 % 82 ± 7 %

      plate 3 65 ± 7 % 68 ± 9 %

D/1: plate 1 86 ± 7 % 92 ± 7 %

      plate 2 79 ± 8 % 87 ± 8 %

      plate 3 83 ± 8 % 87 ± 6 %

D/3: plate 1 84 ± 6 % 87 ± 5 %

      plate 2 86 ± 6 % 88 ± 4 %

      plate 3 85 ± 7 % 88 ± 5 %

dddP: plate 1 79 ± 5 % 80 ± 5 %

      plate 2 74 ± 7 % 80 ± 6 %

      plate 3 74 ± 9 % 83 ± 8 %

Expression (N= 71- 80) (N= 11-12)

A/1: plate 1 80 ± 3 % 84 ± 2 %

      plate 2 81 ± 4 % 86 ± 2 %

D/1: plate 1 80 ± 7 % 87 ± 5 %

      plate 2 85 ± 4 % 88 ± 4 %

D/3: plate 1 85 ± 5 % 87 ± 3 %

      plate 2 83 ± 3 % 86 ± 3 %

dddP -- --

Table 5.1: The average individual efficiencies (equation 1) and 1! error for the

samples and standards from each primer set by plate. Individual efficiencies could

not be calculated for the dddP expression plates due to the low gene copy number.
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% 

Efficiency

Standard 

curve R
2

 fractional 

error

Abundance

A/1 80% 0.998 0.22

A/2 89% 0.998 0.24

C/2 84% 0.997 0.21

D/1 81% 0.999 0.21

D/3 100% 0.996 0.27

dddP 82% 0.999 0.23

Expression

A/1 92% 0.998 0.51

D/1 98% 0.996 0.46

D/3 92% 0.998 0.26

dddP 80% 0.997 --

Table 5.2: The efficiency, standard curve R
2

values, and fractional error for qPCR samples.

The % efficiency and standard curve R
2

values are the average values for all plates run with

the same primer set (N=3 for abundance analysis, N=4 for expression analysis). The

fractional error is the average fractional error for all the samples run with the same primer

set (N=40).
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Figure 5.4:  The relationship between DMSP degrading genes at BATS.  The relationship 
between dmdA subclades are plotted in panels a), b), e) and f).  The relationship between 
dddP and dmdA subclades A/1 and C/2 are plotted in panels c) and d).  These regressions 
show the strong relationship between Group I subclades, A/1, D/3, and dddP, and the lack 
of correlation between Group I and Group III (subclade C/2).  The 1:1 relationship is plot-
ted as a dashed line in panel c).  The R2 value for the linear regression is given in each 
panel title.
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Figure 5.7: Fraction of expressed genes.  The fraction of 
expressed genes (expression/abundance) * 1000 is 
presented for the dmdA subclades A/1, D/1, and D/3. The 
symbol color corresponds to the fraction of genes 
expressed.  Open circles represent samples with no detect-
able expression.
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Chapter 6: 

 

Conclusions 

6.1 SUMMARY OF FINDINGS 

 Anthropogenic activity is rapidly and drastically changing the global climate 

through the emission of carbon dioxide.  These changes will have far reaching impacts on 

global ecosystems, including ocean ecosystems.  However, the response of 

biogeochemical cycling in the ocean to large scale climate forcing remains poorly 

determined.  In order to constrain the response of the ocean systems to anthropogenic 

induced changes, it is necessary to understand the dominant mechanisms driving 

biogeochemical cycling in the oceans.  This thesis provides insights into these 

mechanisms for two critical biogeochemical cycles, the carbon and the sulfur cycles.  We 

specifically focus on anthropogenic carbon storage and dimethylsulfide (DMS) 

production. 
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 Chapters 2 and 3 use numerical models to investigate natural variability in the 

ocean carbon system and determine the impact of this variability on the detection and 

attribution of anthropogenic carbon (Chapter 2 and 3) and the storage of anthropogenic 

carbon in the North Atlantic (Chapter 3).  Chapters 4 and 5 use field and laboratory 

techniques to deconvolve the primary mechanisms responsible for seasonal variability in 

dimethylsulfoniopropionate (DMSP) degradation and DMS production in the 

oligotrophic North Atlantic (Sargasso Sea).  Both the carbon and sulfur studies in this 

thesis demonstrate the significance of physical changes, specifically vertical mixing, on 

the biogeochemical cycling of these elements.  The storage of anthropogenic carbon in 

North Atlantic mode waters is heavily influenced by water mass transformation during 

wintertime mixing events (Chapter 3).  Similarly, vertical mixing and UV radiative stress 

appear to be the dominant mechanisms behind seasonal variability in DMS production in 

the Sargasso Sea (Chapter 4). 

 This thesis demonstrates the importance of model-observation synergy; 

observations are needed to validate and improve numerical models (e.g. Chapter 3 and 

Chapter 5), and models are able to provide context and a mechanistic explanation for 

observations (Chapter 2 and Chapter 3).  For the carbon cycle, a global coupled carbon 

model is able to identify regions where empirical methods applied to hydrographic 

measurements may not fully account for natural variability in the carbon system (Chapter 

2).  Namely, these methods appear to bias estimates of anthropogenic carbon in water 

mass formation regions by incorrectly attributing changes in dissolved oxygen 

concentrations to biologic activity instead of air-sea disequilibrium.  Similarly, an 
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analysis of interannual variability in anthropogenic carbon inventories in the North 

Atlantic is able to provide context for hydrographic observations, which are often biased 

by sampling schemes that can alias natural variability into estimates of long term trends 

due to short-duration or sparse observational data sets (Chapter 3).  For the sulfur cycle, 

field observations demonstrate both the importance and dynamics of bacterial 

communities responsible for DMSP degradation in oligotrophic surface waters (Chapter 

5) suggesting that modifications may need to be made to current upper ocean sulfur cycle 

numerical models.  Specifically, the current static parameterizations of bacterial DMSP 

cycling should be replaced with a dynamic bacterial component which includes DMSP 

degradation and DMS production. 

 

6.2 SIGNIFICANCE 

 Future climate change is predicted to impact ocean ecosystems through increased 

sea surface temperatures, increased vertical stratification, variable wind forcing, and 

decreased nutrient concentrations [e.g. Boyd and Doney, 2002; Sarmiento et al., 2004].  

The driving mechanisms in carbon and sulfur cycling dynamics identified in this thesis 

allow for speculation as to the potential impact of climate induced changes on these two 

biogeochemical cycles. 

6.2.1 The Carbon Cycle 

Chapter 2 identifies several regions where empirical methods for estimating 

anthropogenic carbon (Canthro) concentrations from hydrographic observations may 
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introduce errors.  Secular changes in ocean properties will exacerbate the difficulties of 

detection.  Specifically, most empirical approaches for estimating Canthro rely on the 

assumption that baseline correlations between hydrographic properties- e.g. temperature, 

salinity, O2, and nutrients- remain constant with time. This assumption will most likely 

break down in an evolving climate where climate feedbacks, such as secular warming and 

changes in transport, ventilation, and remineralization, will have non-linear effects on 

hydrographic properties. This is particularly true for the Multiple Linear Regression 

(MLR) analysis that assumes a stationary ocean where shifts in water properties at a 

specific location, resulting from changes in circulation and remineralization, follow a 

statistically derived linear relationship. The MLR method is not designed to account for 

long-term trends, such as the secular warming of the oceans, which will non-linearly shift 

the correlation between DIC and temperature, salinity and nutrients. For example, an 

increase in ocean temperature with constant DIC will be interpreted by the MLR 

technique as an increased uptake of anthropogenic CO2, assuming that DIC and 

temperature are negatively related in the MLR at time 0. This results in a discrepancy 

between the empirically based estimates of !Canthro- the change in DIC relative to a 

baseline correlation- and the change in DIC inventory due to the net uptake of CO2 from 

the atmosphere. In the thermal warming case described above, there is an increase in DIC 

relative to the expected quantity as determined from hydrographic correlations. However, 

no additional CO2 is drawn out of the atmosphere. The difference in these two 

interpretations has significant implications when determining the magnitude of the net 

oceanic sink for atmospheric CO2 and when projecting the trajectory of atmospheric CO2 
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concentrations. While the MLR technique is particularly susceptible to changes in 

baseline correlations, all empirical based methods for estimating Canthro will be affected to 

varying degrees by secular trends.  

Chapter 3 investigates the response of anthropogenic carbon storage to 

interannual variability driven by the North Atlantic Oscillation, the dominant climate 

mode in the North Atlantic.  As is discussed in section 3.7, a future increase in the 

frequency of positive NAO years, as is suggested by IPCC models [Meehl et al., 2007], 

may impact the magnitude of the North Atlantic carbon sink.  Specifically, positive NAO 

years are concurrent with increased wintertime mixing resulting in increased mode water 

formation in both the subtropical and subpolar gyres.  Water mass transformation during 

mode water formation results in the transfer of surface anthropogenic CO2 onto the 

deeper mode water surfaces.  Therefore, increased mode water formation yields higher 

subsurface Canthro inventories. However, other climate feedbacks may negatively impact 

Canthro storage.  Specifically, water mass formation may decrease due to increased 

stratification caused by surface water warming and/or subpolar freshening. 

Throughout the global oceans, mode and intermediate water formation is the 

primary mechanism for sequestering Canthro at intermediate depths in the ocean [Sabine et 

al., 2004].  Therefore, changes in the anthropogenic carbon burden of these waters could 

significantly impact the global ocean carbon sink.  The mechanisms driving interannual 

variability in North Atlantic mode water Canthro inventories (Chapter 3) can provide 

insight into carbon storage variability for other mode waters.  Similar to the Eighteen 

Degree mode water (EDW) in the North Atlantic, a subtropical mode water (STMW) is 
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formed in the North Pacific south of the Kuroshio Extension during the wintertime due to 

air-sea heat flux [Hanawa, 1987]. Pacific STMW properties appear to be driven by an 

intensification of the westerlies caused by a strong Aleutian low [Yasuda et al., 2002].  

This thesis and Joyce et al.  [2000] conclude that the thickness of EDW is related to the 

position of the Gulf Stream.  Similarly, Qiu and Chen [2006] find that the thickness of 

North Pacific STMW is related to changes in the state of the Kuroshio Extension.  The 

similarity between North Atlantic and North Pacific mode water formation mechanisms 

suggests that the STMW anthropogenic carbon inventory dynamics discussed in Chapter 

3 may be relevant for North Pacific mode waters.  Specifically, changes in the Kuroshio 

Extension system driven by climate variability (e.g. intensification of the westerlies) may 

impact the uptake and storage of anthropogenic carbon in the North Pacific subtropical 

gyre. 

The southern ocean accounts for a large fraction of global Canthro uptake and 

storage through the formation of mode, intermediate and deep waters.  These waters form 

equatorward of the Antarctic Circumpolar Current (ACC) between ~40-55°S due to 

wintertime convection and air-sea heat flux [McCartney, 1977].  Based on hydrographic 

observations from the Drake Passage, Garbato et al. [2009] conclude that significant 

interannual variability in subantarctic mode water properties is driven by changes in 

winter air-sea turbulent heat fluxes.  They further conclude that these physical 

fluctuations correlate to shifts in the ENSO index and to a lesser extent the Southern 

Annular Mode (SAM), the two primary climate modes in the southern ocean.  

Preliminary modeling work similar to the study presented in Chapter 3 indicates that 
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anthropogenic carbon inventories north of the ACC increase in response to a shift in the 

SAM [N. Levine, unpublished].  If confirmed, these findings would support the 

conclusion of Chapter 3 that increased wind stress (in this case driven by SAM) increases 

mode water formation yielding high anthropogenic carbon accumulation.  However, the 

implication of increased mode water Canthro on the magnitude of the Southern Ocean 

carbon sink is unclear.  Levine et al. [unpublished] find that a shift in the SAM decreases 

the accumulation of anthropogenic carbon poleward of the ACC such that SAM has a 

very small net effect on the southern ocean. These findings are consistent with 

Lovenduski et al. [2008] who conclude that  changes in wind stress do not impact the net 

uptake of anthropogenic carbon by the southern ocean ( The similarity between these 

results is to be expected as Lovenduski and Levine  use the same ocean model).  Changes 

in anthropogenic CO2 uptake rates are further obscured by large changes in the natural 

carbon that have resulted in a decrease in the Southern Ocean carbon sink [Lovenduski et 

al., 2008].  Further work is needed to investigate the mechanisms driving interannual 

variability in anthropogenic carbon accumulation in the Southern ocean and how this 

impacts the global ocean carbon sink. 

 

6.2.2 The Sulfur Cycle 

Anthropogenically induced changes to the upper ocean ecosystem have the 

potential to significantly impact DMS and DMSP cycling.  Specifically, increased 

stratification caused by warming surface waters will increase the radiative dose 
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experienced by surface planktonic communities.  Changes in the oligotrophic, upper 

ocean sulfur cycle are highly correlated with changes in mixed layer depth and UV 

radiation stress [Chapter 5, Slezak et al., 2007; Toole et al., 2008; Toole et al., 2003; 

Vallina and Simo, 2007; Vila-Costa et al., 2007].  Namely, phytoplankton DMSP 

concentrations and DMSP lyase activity peaks in the spring and early summer concurrent 

with the shoaling of the mixed layer.  Phytoplankton DMSP lyase enzyme activity 

remains elevated in surface waters throughout the summer when surface waters are 

highly stratified and the UV radiation dose is high.  Bacterial DMSPd degradation via the 

demethylation pathway may be light sensitive (Chapter 5), and bacterial DMS 

consumption has been shown to be inhibited by UV radiation [Slezak et al., 2001; Toole 

et al., 2006].  Therefore, in response to climate induced increases in UV stress, 

phytoplankton DMS production may increase and bacterial DMS consumption may 

decrease.  In addition, preliminary findings suggest that the bacterial DMSP cleavage 

pathway may be favored over the DMSP demethylation pathway under high UV 

radiation.  If confirmed, this would indicate that future increases in ocean stratification 

might result in increased bacterial DMS production and decreased bacterial DMSP 

demethylation. 

This thesis suggest that, in addition to physical and chemical conditions, 

bacterial community composition is an important factor in upper ocean sulfur cycling.  

An analysis of DMSP degrading genes shows significant seasonal variability in the 

presence of DMSP degraders in the Sargasso Sea.  The increase in both dmdA (DMSP 

demethylation gene) and dddP (DMSP cleavage gene) in the late summer and early fall 
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corresponds to an increase in bacterial DMSP degradation.  Climate driven changes in 

upper ocean physics may alter the seasonal succession in bacterial community thereby 

impacting DMSP and DMS cycling in surface waters.  Specifically, increased 

stratification and UV stress may result in a longer “summer” season that could in turn 

impact the bacterial community and bacterial sulfur cycling.   

Our findings suggest that the response of the upper ocean sulfur cycle to 

anthropogenic climate change may result in a negative feedback loop.  Namely, increased 

surface water stratification will result in increased UV radiative stress, which will 

increase DMS production.  Greater DMS production has the potential to increase DMS 

ventilation to the atmosphere, which in turn yields increased sulfur aerosols abundance 

and increased cloud coverage.  Greater scattering and reflection of incoming solar 

radiation will decrease the global heat balance and help offset the anthropogenically 

driven temperature increase.  However, other climate induced changes, such as shifts in 

phytoplankton community composition, increased photolysis, or increased ventilation, 

may act to offset some of these changes.  The magnitude of the DMS negative feedback 

loop remains to be determined.  However, the mechanisms elucidated in this thesis are a 

step towards improving numerical models of the upper ocean sulfur cycle so as to 

improve future predictions of DMS production. 
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6.3 THE WAY FORWARD 

6.3.1 The detection of anthropogenic carbon in the oceans 

Chapters 2 and 3 focus on issues of detection and attribution of anthropogenic 

carbon.  Specifically, we discuss the impact of interannual and interdecadal variability on 

the accurate detection of the ocean sink from hydrographic observations.  Chapter 2 

suggests the need for high frequency observations in regions of water mass formation 

where empirical methods may bias estimates of anthropogenic carbon.  Chapter 3 shows 

that the time-scales of sampling campaigns can impact the estimated uptake of 

anthropogenic carbon by aliasing interannual variability in carbon storage into estimates 

of Canthro uptake.  The results of these modeling studies call into question our ability to 

accurately detect the underlying long term trends in the upper ocean carbon sink over the 

significant shorter-term variability.  Namely, the compounded errors of empirical 

methods and short sampling timescales make these longer term trends very difficult to 

accurately detect from the observations.  However, we believe this hurdle can be 

overcome using model-observation synergy.  Specifically, these trends can be studied 

using observations to validate model output and model output to provide a picture of the 

ocean carbon sink for longer time-scales, and with higher resolution and greater spatial 

coverage. 

Significant resources have been devoted to quantifying surface pCO2 and air-sea 

CO2 flux.  However, the modeling analysis presented in Chapter 3 suggests that local air-

sea CO2 fluxes are not responsible for the majority of Canthro inventory changes in the 
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ocean interior.  Therefore, local measurements of air-sea CO2 flux may provide limited 

information of anthropogenic carbon storage for that region.  We suggest that future 

studies may be better served to focus on quantifying rates of water mass transformation, 

which act to transfer high Canthro surface waters onto deeper isopycnal surfaces.  In 

addition, an increased focus on the measurement of depth profiles, as opposed to surface 

measurements, will be necessary to accurately quantify the ocean carbon sink.  Finally, 

monitoring changes in surface Canthro transport into water mass formation regions will be 

important for improving our understanding of how the ocean carbon sink may change in 

response to future climate changes.                                        

 

6.3.2 Testing our hypothesis of the upper ocean sulfur cycle 

The work presented in this thesis is only a first step in unraveling the complex 

processes responsible for DMSP degradation and DMS production.  Significant 

laboratory, field and modeling work are needed to test and refine the hypotheses 

presented in Chapter 5.  Here we suggest five potential avenues for further study. 

In this thesis, we took a three pronged approach to understanding bacterial 

DMS(P) cycling; first analyzing the presence of DMSP degrading genes, next analyzing 

the expression of DMSP degrading genes, and finally determining the enzyme activity of 

DMSP degrading enzymes.  Proteomics has the potential to bridge the gap between gene 

expression (step 2) and enzyme activity (step 3) by quantifying the amount of protein 

present in a sample.  In addition, proteomics may help provide an improved 
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understanding of the potential enzyme assays.  As discussed in Chapter 5, we were 

unable to determine if the bacterial DMSP lyase potential enzyme assay (DLA) quantifies 

the activity of all types of bacterial DMSP cleaving enzymes.  Proteomics could help 

answer this question.   

While a nice relationship was observed between potential enzyme activity and 

DMS concentrations at 20m, the limitations of the potential enzyme assay are substantial 

(section 4.5).  Significant work is needed to understand how DLA rate measurements 

relate to in situ cycling.  Specifically, additional comparisons are needed between the 

potential enzyme assay and the 35S radioisotope measurements.  In particular, once the 

issues of potential DMDS inhibition on the 35S-DMS yield assay are resolved, this assay 

can be directly compared to the bacterial DLA rate measurements to help to understand 

the relationship between DLA rate and biogeochemical rate. 

The possibility of a seasonal succession in DMS production is one of the primary 

hypotheses proposed by this thesis.  Field studies quantifying both bacterial and 

phytoplankton DMS production during different seasons would help to further refine this 

hypothesis and address whether the pattern observed at BATS in 2008 was truly a 

seasonal succession or whether it was a product of changes in the physical and chemical 

properties of the water column.  These studies could take the form of either additional 

time-series work or as discrete cruises (e.g. a cruise in June and a cruise in September to 

the same oceanographic region).  

Bacterial DMS consumption is important in upper ocean sulfur cycling.  

Currently, this pathways is measured using the 35S method of Kiene and Linn [2000]. To 
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our knowledge, a DMS consumption gene has not yet been published.  However, there 

are currently several labs working to identify this gene [M.A. Moran personal comm.].  

Once this gene becomes available, quantifying the abundance and expression of this gene 

in combination with the demethylation (dmdA) and the DMS producing (dddP) genes will 

provide a more complete picture of the bacterial community responsible for DMS(P) 

cycling.  In addition, the expression of the DMS degradation gene could be directly 

compared to the biogeochemical rate; something we were not able to do with the dmdA 

and dddP genes. 

Finally, the incorporation of some of the main findings from this thesis into a 

numerical model is an important next step.  Chapters 2 and 3 stress the importance of 

model-observation synergy in carbon cycle observations.  Similarly, numerical models 

provide an ideal platform for testing some of the sulfur cycling hypotheses proposed in 

Chapter 5 and some of the potential feedbacks discussed in section 6.2.2.  Section 5.5 

explores how the findings of the gene expression and potential enzyme analyses may be 

incorporated into a global numerical model.  Namely parameterizing bacterial DMSP 

degradation based on seasonal variations in DMSPd concentrations (related to DMSPp 

concentrations), bacterial carbon demand, and UV radiation stress.  And defining 

phytoplankton DMS production in terms of UV radiation dose. 

We still lack an understanding of the relative importance of the DMSP 

demethylation versus the DMSP cleavage pathways.  Specifically, what fraction of the 

dissolved DMSP pool is converted to DMS and how this varies seasonally.  However, the 

variations in gene expression and potential enzyme activity measured during the ten-
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month time-series have provided insight into the chemical and physical properties 

controlling bacterial DMSP degradation.  These hypotheses, such as UV inhibition of the 

demethylation pathway or the anti-oxidant function of the cleavage pathway, can be 

further tested by incorporating these mechanisms into a numerical model.  This provides 

insight into the sensitivity of the sulfur cycle to these processes and can help guide 

further field and laboratory study. 
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Appendix A 
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Appendix B 

 
Appendix B:  Impact of model bias on anthropogenic carbon inventories (Ianthro).  Panel 

a) shows the inventory for the subtropical "26.5 isopycnal band for which the mean state of 

the Variable Physics and Repeat Annual Year simulations appears to be equivalent. Panel 

b) shows the inventory for the subpolar "27.65-27.675 isopycnal band for which there appears 

to be a negative model bias.  Specifically that the mean Canthro uptake rate for the 

Variabile Physics simulation is less than the mean Canthro uptake rate for the Repeat 

Annual Year simulation. The subpolar "27.675-27.7 isopycnal  band (not shown) similarly 

shows a positive model bias that is smaller than the "27.65-27.675 band. 
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Appendix C 

 

Bacterial DMSP Demethylation Potential 

Enzyme Activity  

 
 The biochemistry of the DMSP demethylation pathway was elucidated by 

Howard et al [2006].  They show that the demethylation enzyme requires a co-factor, 

tetrahydrofolate (THF), and anoxic conditions.  Reisch et al. [2008] developed an enzyme 

assay for quantifying the potential enzyme activity in samples of purified enzyme 

extracted from lab cultures.  Modifying this protocol for environmental samples requires: 

1) an alternative lysis method, as the French press method employed by Reisch et al. can 

not be applied to filter samples, 2) higher sensitivity, as we expect the activity in 

environmental samples to be significantly lower than that of purified enzymes, and 3) 

direct quantification of the reaction product (methiolpropionate or 

methylmercaptopropionate, MMPA) rather than of the altered co-factor (methylated-

THF). 

 Several lysis methods were tested during the bacterial DLA method development 

(see description in Chapter 4 section 4.3.2.2.1).  These tests conclude that lysing cells 

using bead-beating plue lysozyme provides maximum lysis while having the smallest 

effect on enzyme activity, though this effect was still significant for the DMSP cleavage 

enzyme.  Therefore, we chose this lysis method for the DMSP demethylation protocol. 

 MMPA standards must be synthesized from methyl-methylthiopropionate (Sigma 

Aldrich).  The current method for MMPA synthesis was developed by R. Kiene (personal 
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communication).  However, tests showed incomplete conversion from methyl-MMPA to 

MMPA following this protocol.  An alternative method was developed (see Appendix I) 

which produces near complete conversion of methyl-MMPA to MMPA.  Briefly, high 

concentrations of NaOH are added to a sample of methyl-MMPA.  After a 15 minute 

incubation at room temperature, the pH is brought back to ~7 using hydrochloric acid.  

This method is significantly quicker and more reliable than the previous method for 

MMPA synthesis. 

 The cofactor required by the DMSP demethylation enzyme, tetrahydrofolate 

(THF), is extremely oxygen, light, and pH sensitive.  As a result, THF degrades rapidly 

during the assay.  This produces two difficulties: 1) if too much of the THF degrades it 

may limit the conversion of DMSP to MMPA, and 2) the degradation products of THF 

are numerous and obscure the MMPA peak during high performance liquid 

chromatograph analysis.  The THF available from Sigma Aldrich is only 70% pure.  

Therefore, even without degradation during the assay, the THF contains contaminating 

peaks which obscure MMPA.  An alternative source of THF (Schircks Lab) was found 

which is 95% pure thereby reducing the contamination found in the Sigma product.  In 

addition, Schircks Lab produces two forms of THF an S,R form and an S form.  

According to the lab, S-THF is the natural form of the compound.  Therefore, 95% pure 

S-THF was used for the DMSP demethylation assay.  The S-THF purchased from 

Schircks Lab was checked on a Thermo Scientific linear ion-trap mass spectrometer 

(LTQ-MS) to confirm the mass and structure of the compound.  All work involving THF 

was conducted in an anaerobic glove bag filled with N2 and H2. 
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 Reisch et al. [2008] uses dithiothretol (DDT) as a reducing agent to keep the assay 

anoxic thereby preventing the degradation of THF.  A literature search showed that 

titanium citrate is a more effective reducing agent than DDT [Breznak and Costilow, 

1994].  In addition, titanium citrate does not contain sulfur and so does not produce 

interfering peaks when the SBD-F protocol is followed (see description below) and it 

does not effect bacterial cultures [Breznak and Costilow, 1994] and so should have a 

minimal effect on the DMSP demethylation enzyme.  Therefore, we decided to use 

titanium citrate as the reducing agent for this protocol.  The effectiveness of titanium 

citrate was confirmed using Resazurin, a redox sensitive die.  Titanium citrate was 

synthesized following the protocol of Smith and Woods [1994] (see Appendix J). 

  The production of MMPA during the assay was monitored on an Agilent high 

performance liquid chromatograph (HPLC) using an Agilent Eclipse XDB-C18 column.  

We use fluorescent derivatization to enhance the MMPA signal.  Two different 

derivatization methods were tested: derivatization to the methanethiol group, and 

derivatization to the carboxylic group. 

 Ammonium-7-florobenzo-2-oxa-1,3-diazole-4-sulfonate (SBD-F) was derivatized 

to the sulfur group in MMPA and mercaptopropionate (MPA) following the attached 

protocol (Appendix K) modified from Tang et al. [2000] and Zhang et al. [2004].  Both 

pervious studies add reducing agents before the derivatization step.  We found this step to 

be unnecessary as the assay was already reduced due to the titanium citrate.  In fact, the 

addition of TCEP, the compound used by Zhang et al., reduced the MMPA signal rather 

than enhanced it. The reaction is also highly pH sensitive, and so the optimal amount of 
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NaOH needed to achieve maximal derivatization was determined using a concentration 

gradient.  The MMPA was detected using a fluorescence detector (excitation =385nm, 

emission = 515nm) and 0.1% TFA and acetonitrile as the mobile phases.  Following this 

protocol, MMPA standard curves were linear (R2=.993) down to 1µM,  However, the 

MPA signal following this protocol was 4 times greater than the MMPA signal indicating 

incomplete derivatization of MMPA.  We believe this is due to the methyl group on the 

sulfur which most likely is inhibiting the derivatization with SBD-F; MPA does not have 

the extra methyl group leaving the sulfur free and the derivatization uninhibited.  As a 

result of this inhibition, the MMPA signal is not large enough to see over the background 

of tetrahydrofolate. 

 2-nitrophenyl hydrazine (NPH) was derivatized to the carboxylic group in MMPA 

following the protocol of Albert and Martens [1997].  The protocol is provided as 

Appendix L.  Two different derivatization temperatures were tested, 50°C for 15 minute 

[Peters et al.], and 28°C for 1.5 hours [Albert and Martens, 1997].  No difference in 

derivatization efficiency was found between the two temperatures.  Following this 

protocol, MMPA standard curves were linear to 1µM (R2=0.999).  Standards of formic 

acid (R2=0.999) and propionic acid (R2=0.999) were also tested.  DMSP was not 

efficiently derivatized by NPH.  Though the NPH derivatized MMPA signal was 

significantly greater than the SBD-F derivatized signal, the THF degradation products 

still obscured the MMPA peak.  We believe that this is due to an unidentified THF 

degradation product which contains a carboxylic group and is similar in size and structure 

to MMPA.  To minimize THF degradation during the assay, the assay was run 
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completely anaerobically; all work was done in an anaerobic glove bag.  In addition, the 

HPLC mobile phases were heated to 40°C, bubbled vigorously for 20 minutes with N2, 

and modified to contain DDT. DDT was used as titanium citrate caused a precipitate to 

form in the mobile phases.  Despite these precautions, significant THF degradation was 

observed and the MMPA peak was still obscured.  We believe that the observed THF 

degradation may in part be due to the pH required for NPH derivatization. 

 As the direct detection of MMPA was unsuccessful, we attempted to detected the 

modified co-factor (methyl-THF) following Reisch et al.’s [2008] protocol (see Appendix 

M).  While standard curves of methyl-THF were linear to 25µM, the HPLC peaks were 

not cleanly separated.  In addition, tests indicated that there was degradation of methyl-

THF during the HPLC runs (a single peak was seen to degrade into two other peaks).  

Methyl-THF is also sensitive to oxygen, light and pH.  The degradation of the compound 

on which the enzyme rate is based is problematic.  Therefore, we hesitate to use methyl-

THF to quantify the transfer of DMSP to MMPA. 

 A final method of MMPA detection was tested, cleavage of MMPA to 

methanethiol.  DMSP is quantified by degradation to DMS using alkaline hydrolysis.  If 

the same protocol worked for MMPA, the result would be the production of 

methanethiol, which is easily quantified on a gas chromatograph.  However, alkaline 

hydrolysis was shown to have no effect on MMPA. 

 A final protocol for bacterial DMSP demethylation potential enzyme activity was 

unfortunately not achieved.  We were unable to minimize the degradation of THF enough 

to see the MMPA peak.  This method could be successful if one is able to remove the 
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THF from the assay following the reaction period- perhaps with spin filtration.  

Alternatively, it may be possible to separate the peaks using a different HPLC column or 

mobile phases.  However, this will be difficult as there are numerous (>20) THF 

degradation peaks.  A truly anoxic HPLC system could decrease the degradation of THF 

during the HPLC runs.   Finally, a dual derivatization (e.g. SBD-F and NPH) might allow 

for the detection of MMPA by monitoring both wavelengths.  A test with a culture of 

Silicibacter pomeroyi showed the appearance of MPA, the secondary product of the 

demethylation pathway, during the assay.  This result indicates that this method might be 

successful if one is able to separate the MMPA and THF peaks. 
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Appendix D 

Phytoplankton Lyase Enzyme Activity 
after Harada et al, 2004 

• Tris Buffer:  200mM prepared in 500mM NaCl, pH 8.0 (autoclaved and filter 

sterilized) 

• DMSP-HCl:  250mM 

• Underway water bath 

• Temperature probe 

 

1) Collect water from Niskin 

a. Collect ~4L per depth, place carboys inside lab to keep cool 

 

2) Filter 500ml onto 25mm autoclaved 1.2µm GF/C filter (measure with graduated 

cylinder) using a polycarbonate funnel filter holder and gentle filtration 

(<0.02Pa). 

 

3) Place filter in 14mL amber glass serum bottle with 1mL Tris buffer and cap with 

rubber stopper (do not crimp). 

a. Place filter face down in Tris and make sure it stays flat along the bottom 

and doesn’t get stuck to the sides. 

 

4) Vortex each vial 10sec to break up filter 

 

5) Incubate for 20 min in underway seawater bath 

 

6) Add 20µL DMSP-HCl (final concentration 5mM) and crimp immediately 

 

7) Vortex vigorously for 10sec 

 

8) Press start on timer and immediately remove 100µL headspace and inject onto the 

GC (flush the needle 2-3 times before removing the headspace) 

 

9) Every 2 min 15sec vortex the sample for 2-5 seconds, extract 100µl of headspace, 

and inject onto the GC.  Record the exact time that the headspace was removed.  

Collect 4-5 good peaks. 

a. If a peak saturates the detector: decrease the injection volume.  Record 

new injection volume so that the standard curve can be corrected 

accordingly. 

 

10) At the end of the run record the min and max temperature of the water bath 
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Appendix E 
Bacterial Cleavage Enzyme Activity 

N. Levine, WHOI 2008 

Modified from Harada et al, 2004 

 

• Tris Buffer:  200mM prepared in 500mM NaCl, pH 8.0 (autoclaved and filter 

sterilized) 

• DMSP-HCl:  250mM 

• Underway water bath 

• Temperature probe 

 

11) Pre-filter off niskin using an in-line 47mm polycarbonate filter holder (Pall Life 

Sciences) containing a 1.2µm glass fiber filter.  Collect 4L in Nalgene carboy and 

place inside lab to keep cool. 

 

12) Filter 400ml onto 0.2µm PC filter (~30min, filter larger volume if filters faster, 

measure volume with graduated cylinder and record) using a polycarbonate funnel 

filter holder and gentle filtration (<0.02Pa). 

 

13) Place filter in  14mL amber glass serum bottle with 1mL Tris buffer cap with 

rubber stopper (do not crimp) 

a. Place filter face down in tris and make sure that it stays flat along the 

bottom and doesn’t get stuck to the sides. 

 

14) Vortex each vial 10sec (if filter gets stuck on wall, put back on bottom) 

 

15) Incubate for 20 min at in underway seawater bath 

 

16) Add 20µL DMSP-HCl (final concentration 5mM) and crimp immediately 

 

17) Vortex vigorously for 10sec 

 

18) Press start on timer and immediately remove 100µL headspace and inject onto the 

GC (I flush the needle 2-3 times before removing the headspace) 

 

19) Every 2 min vortex the sample for 2-5 seconds, extract 100µl of headspace, and 

then inject onto the GC.  Record the exact time that the headspace was removed.  

Collect 4-5 good peaks. 

 

20) At the end of the run record the min and max temperature of the water bath 
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Appendix F 
DNA extraction protocol 

Modified from R. Parsons, BIOS 

 

1. Put 4 filters into 15ml falcoln tube and add 5ml Sucrose Lysis Buffer (recipe 

below) solution, 500µ l 10% sodium dodecyl sulfate, 2µ l Proteinase K 

(100ug/ml) 

2. Incubate 30min at 37°C 

3. Incubate 30min at 55°C 

4. Transfer liquid (1ml at a time) into new 15ml falcoln tube for (1st set) 

5. Bring liquid up to 6 mls with TE buffer 

6. Add 6 mls of phenol-chloroform-isoamyl alcohol (25:24:1 pH 8) solution to tubes 

7. Centrifuge 6,500 rpm for 10min at 4°C,      (4-6 for 2nd set) 

8. Transfer 5.5-6 mls of top aqueous layer and place in new 15ml falcoln tube (1st 

set) 

9. Add 5.5 mls of phenol-chloroform-isoamyl alcohol (25:24:1 pH 8) solution 

10. Centrifuge 6,500 rpm for 10min at 4°C     (8-10 for 2nd set) 

11. Transfer 5-5.5 mls of top aqueous layer and place in new 15ml falcoln tube (1st 

set) 

12. Add 5 ml of chloroform-isoamyl alcohol (24:1) 

13. Centrifuge 5,000rpm for 5min 4°C (11-12 for 2nd set) 

14. Transfer 4.5-5 mls of top aqueous layer to new 15ml tube 

15. Add 2.5ml 7.5M ammonium acetate (sample: ammonium acetate 2:1) 

16. Add 5mls isopropanol -20°C (sample:iso  1:1) 

17. Incubate overnight at -20°C 

18. Centrifuge max (10,000xg) for 30min 4°C 

19. Decant supernatant carefully.  Invert tube on Kim-wipe to remove excess ethanol- 

DRY 

20. Resuspend in 500ul TE buffer and put in 2ml tube 

21. Add 250ul 7.5M ammonium acetate 

22. Add 500ul isopropanol -20°C 

23. -20°C for 2 hours. 
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24. Centrifuge max (14,000 rpm) for 30min 

25. Decant supernatant carefully 

26. Add 1ml cold 80% ethanol, vortex 30 secs 

27. Spin max (14,000 rpm) for 10 mins at 4°C.  

28. Dry pellet (RT or in speed vac or 37°C in hyb oven) 

29. Store dried pellet at -20. 

 

 

 

Sucrose Lysis Buffer 

from Rachel Parsons 

 

 

20mM EDTA (7.16g) 

400mM NaCl (23.38g) 

0.75M Sucrose (256.7g) 

50mM Tris.HCl pH 9.0 (6.06g base) 

 

1. Resuspend Tris base and EDTA in 300mls QW.  

2. Adjust pH to 9.0 with HCl.  

3. Add NaCl and Sucrose and bring to 800ml with Qw.  

4. Heat gently with stirring.  

5. When in solution, bring to 1L.  

6. Filter sterilize and aliquot into 50ml tubes. Freeze at -20°C 
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Appendix G 
RNA Extraction From Filters 

Adapted from Dauphin Island Protocol, Moran lab UGA 

 

 

1. Prepare bead-beating tubes: Each 2 mL tube contains .2mL of 0.1 mm Zirconia 

beads, 3 large beads 

 

2. For each sample, filter 4 x 15min seawater onto 47 mm, 0.2 µm autoclaved 

polycarbonate filters.  Flash freeze in liquid N2 

 

3. Take filters out of liquid N2, place in bead-beating tubes with 500µL of buffer 

RLT (containing 10 µL ß-ME per mL, added fresh daily).  Keep on ice until all 

filters have been transferred. 

 

4. Place tubes on a vortex adaptor and beat for 10 minutes at top speed. 

 

5. Remove from vortex and centrifuge 8,500  x g, 1 min.  Transfer supernatant to a 

clean 2ml tube. 

 

6. Add 100µ l RLT buffer to bead-beating tube, vortex, centrifuge briefly, add 

supernatant to tube from step 5. 

 

7. Centrifuge 8,5000  x g, 1 min.  Transfer supernatant to new tube 

 

8. Add 600µ l of 70% ethanol to the lysate.  Draw the lysate up through an 20 gauge 

needle and pass it back out several (4) times to shear DNA 

 

9. Apply 700 µL of the sample to an RNeasy mini spin column. Centrifuge 30 sec 

at 10000 x g. Discard flow-through. Repeat until the entire sample has been 

applied to the column.  Combine supernatant from all 4 filters from the same 

sample onto one spin column. 

 

10. Add 350 µL Buffer RW1 to the column. Centrifuge 30 sec at 10000 x g to wash.  

Discard the flow-through. 

 

11. Combine 10µl DNase-I with 70µl RDD buffer.  Add 80µ l solution directly onto 

spin column and incubate at R.T. for 15min. 

 

12. Add 350 µL Buffer RW1 to the column.  Centrifuge 30 sec at 10000 x g.  

Discard the flow-through. 
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13. Transfer the spin column to a new collection tube.  Add 500 µL Buffer RPE to 

the spin column.  Centrifuge 15 seconds at 10000 x g.  Discard flow-through. 

 

14. Add another 500 µL Buffer RPE to the spin column. Centrifuge 2 min at 10000 x 

g.  Discard flow-through.   

 

15. Place spin column in new collection tube (not supplied) and spin an additional 1 

min at full speed to get rid of ethanol. 

 

16. Add 35 µ l RNase-free water directly onto spin column. Let stand for 1 min and 

then centrifuge for 1 min at 10000 x g. 

 

17. Add 15 µ l RNase-free water directly onto spin column. Let stand for 1 min and 

then centrifuge for 1 min at 10000 x g. 
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Appendix H 
qPCR Protocol 

 

1. 95°C – 3min 30s 

2. Then 40-45 cycles of  

a. 95°C – 20s 

b. Primer specific annealing temperature – 30s 

c. 72°C – 30s 

3. 95°C – 1.0min 

4. Primer specific annealing temperature – 1.0min 

 

The melt curve was run with a 0.5°C increase every 10s for 81 cycles 

 

For RT-qPCR a 10min 50°C step was inserted before step 1. 

 

Primer specific annealing temperatures: 

• dmdA A/1 = 53°C 

• dmdA A/2 = 59°C 

• dmdA B/3 = 62°C 

• dmdA C/2 = 50°C 

• dmdA D/1 = 49°C 

• dmdA D/3 = 54°C 

• dmdA E/2 = 57°C 

• dddP        = 41°C 
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Appendix I 
MMPA Synthesis 

 

Methylthiopropionate (MMPA) 

Methyl-3-(methylthio)propionate (methyl-MMPA) 

 

7.03mM MMPA synthesis at room temperature: 

400µl  20mM methyl-MMPA 

+ 285.6µl 7M NaOH 

+ 114.4µl H2O 

 

sit for 10min 

 

+ 338.4µl 50% HCl 
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Appendix J 
0.35M Titanium (III) citrate (Smith and Woods, 1994 AEM) 

In lab: 

• 14.7g Na-citrate + 8.0g Tris base+ 40ml H2O  (autoclave) 

In anaerobic glove box: 

• 22.5ml Ti(III)Cl3 

• Adjust volume to 100ml 

• Adjust pH to 8 with NaOH 

• Freeze 15ml aliquots for later use. 
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Appendix K 
SBD-F: MMPA HPLC Protocol 

Modified from Tang et al. [2000] and Zhang et al. [2004] 

Derivatization: 

SBD-F ---  fluorogenic reagent ammonium-7-florobenzo-2-oxa-1,3-diazole-4-sulfonate  

1 mg/ 4ml prepared in 2M K-borate buffer (pH 9.5) 

 

Derivatization step:   

100µl sample 

 +10µl 10% phosphoric acid  (to quench enzyme activity) 

+40µl 40mM SBD-F 

+50µl 1M NaOH 

+200µl borate buffer, 0.1M containing 2mM EDTA at pH 9.5 

 

Incubate 60°C for 60min 

Stop with 100µl 1M methanesulfonic acid 

10 min on ice 

 

HPLC Analysis: 

Mobile phase A: 0.1% TFA in water 

Mobile phase B: acetonitrile   (A%=100%-B%) 

Column: Agilent Eclipse XDB-C18 

Elution profile: gradients were linear in all steps except for last step where B was 

instantly dropped from 100 to 0% 

 

Time %B 

0-5 min 0% 

5-10 min 0-10% 

10-12 min 10% 

12-14 min 10-11.5% 

14-26 min 11.5-14% 

26-30 min 14-100% 

30-35 min 100% 

35-40 min 0% 

  

Column Temperature: 30°C 

Flow rate: 1 ml/min 

Sample size: 50µl 

Fluorescence detector: excitation mode- 385nm 

    Emission mode- 518nm 

Gain: 16 
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Appendix L 
NPH MMPA HPLC Protocol 

After Albert and Martens 1997 MC, Peters et al 2004 JC 

 

Derivatization: 

2-nitrophenyl hydrazine (NPH)  recrystallize from hot water 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) 

Pyridine 

 

Solutions 

 NPH:  .1M NPH in .25M HCl 

  76.6mg NPH + 5ml .25M HCl 

 EDC: .3M EDC in Q-water 

  287.6mg EDC + 5ml Q-water 

Pyridine:  1 pyridine: 1 concentrated HCl 

 

Derivatization step:     

200µl sample 

+ 40µl pyridine 

+ 40µl NPH 

+ 40µl EDC 

 

Mix 

Incubate 1 "- 2 hrs at room temperature 

Mix 

 

 

 

 

 

HPLC Analysis: 

Mobile phase A:   2.5% butanol 

       50mM Sodium Acetate 

       2mM tetrabutylammonium hydroxide 

       2mM tetradecyltrimethylammonium bromide 

Mobile phase B:   same as A except 

       50mM tetradecyltrimethylammonium bromide 

 

Column: Agilent Eclipse XDB-C18 

Elution profile: gradients were linear in all steps except for last step where B was 

instantly dropped from 100 to 0% 
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Time %A %B Flow rate 

0-5 min 100  1.5 ml/min 

5-15min  100 1.5 ml/min 

15-30min  100 1.3 ml/min 

30-40min 100  1.5 ml/min 

  

Column Temperature: 30°C 

Sample size: 100µl 

Diode Array:  400 nm, band width 20nm 
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Appendix M 
5-Methyl-THF Detection 
Following C. Reisch’s protocol 2007 

 

 

Standard curves of 5-methyl-tetrahydrofolate (methyl-THF) made up in anaerobic glove 

bag detected using: 

 

HPLC Analysis: 

Mobile phase A:   0.204% H3PO4 (1L H2O + 2.401ml 85% H3PO4) 

Mobile phase B:   Acetonitrile 

 

Column: Agilent Eclipse XDB-C18 

Elution profile: 

   

Time %A %B Flow rate 

0-15 min 98 2 0.75 ml/min 

  

Column Temperature: 30°C 

Sample size: 100µl 

Detection:  280nm, bandwidth 10 
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