
Machine Learning of Image Analysis with Convolutional
Networks and Topological Constraints

by

Viren Jain

B.A.S., Computer Science, University of Pennsylvania (2004)
B.A., Cognitive Science, University of Pennsylvania (2004)

Submitted to the Department of Brain & Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Brain & Cognitive Sciences

December 10, 2009

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H. Sebastian Seung

Professor of Computational Neuroscience
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Earl K. Milller

Chairman, Department Committee on Graduate Theses



Machine Learning of Image Analysis with Convolutional Networks and

Topological Constraints

by

Viren Jain

Submitted to the Department of Brain & Cognitive Sciences
on December 10, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computation

Abstract

We present an approach to solving computer vision problems in which the goal is to produce
a high-dimensional, pixel-based interpretation of some aspect of the underlying structure
of an image. Such tasks have traditionally been categorized as “low-level vision” problems,
and examples include image denoising, boundary detection, and motion estimation. Our
approach is characterized by two main elements, both of which represent a departure from
previous work. The first is a focus on convolutional networks, a machine learning strategy
that operates directly on an input image with no use of hand-designed features and employs
many thousands of free parameters that are learned from data. Previous work in low-level
vision has been largely focused on completely hand-designed algorithms or learning methods
with a hand-designed feature space. We demonstrate that a learning approach with high
model complexity, but zero prior knowledge about any specific image domain, can outperform
existing techniques even in the challenging area of natural image processing. We also present
results that establish how convolutional networks are closely related to Markov random fields
(MRFs), a popular probabilistic approach to image analysis, but can in practice can achieve
significantly greater model complexity.

The second aspect of our approach is the use of domain specific cost functions and learning
algorithms that reflect the structured nature of certain prediction problems in image analysis.
In particular, we show how concepts from digital topology can be used in the context of
boundary detection to both evaluate and optimize the high-order property of topological
accuracy. We demonstrate that these techniques can significantly improve the machine
learning approach and outperform state of the art boundary detection and segmentation
methods.

Throughout our work we maintain a special interest and focus on application of our meth-
ods to connectomics, an emerging scientific discipline that seeks high-throughput methods
for recovering neural connectivity data from brains. This application requires solving low-
level image analysis problems on a tera-voxel or peta-voxel scale, and therefore represents an
extremely challenging and exciting arena for the development of computer vision methods.

Thesis Supervisor: H. Sebastian Seung
Title: Professor of Computational Neuroscience
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Chapter 1

Introduction

The field of computer vision engages the problem of developing algorithmic solutions to the

interpretation of data acquired from an optical source. This definition is necessarily general

as the field encompasses a diverse array of specific problems and domains. For example, the

optical source could be:

• a digital camera

• a medical imaging device (e.g., MRI or CT)

• microscopy (e.g., an electron microscope)

while the resulting “interpretation” may include:

• classification of an object in the input image (e.g., optical character recognition)

• reconstruction of the physical structure of an object within an image

• a decision concerning navigation (e.g., “turn left to avoid the tree”).

There has traditionally been a distinction between “low-level” and “high-level” computer vi-

sion problems. Examples of high-level tasks include object recognition and visually guided

robotic navigation. A common theme in high-level visual tasks is the conversion of a high-

dimensional input image into a low-dimensional decision or classification. In contrast, low-

level visual tasks are those in which the output is also a high-dimensional object that repre-

15
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Figure 1-1: Example of two classic low-level vision computations: super-resolution and de-
noising.

sents some kind of interpretation of the input image. Examples of such tasks include image

denoising, super-resolution, boundary detection, and motion estimation.

The practical importance of low-level computer vision is not difficult to establish. Image

enhancement and segmentation techniques could potentially save lives by making the inter-

pretation of medical imaging more efficient and accurate. Super-resolution techniques are

of consistent interest to state security and law enforcement agencies due to the abundance

of low-resolution images resulting from satellites or cell-phones that could be enhanced to

provide crucial information. We will shortly discuss how boundary detection techniques are

poised to make fundamental contributions to the reverse engineering of brains.

The full extent of the practical scenarios just mentioned have not been realized due to

the lack of low-level vision techniques with the appropriate characteristics. In particular, it

has proven difficult to develop highly accurate low-level vision algorithms. Traditionally in

computer science, the accuracy of a computation is ensured by defining mathematical criteria

for correctness and then proving that a proposed algorithm produces results consistent with

the criteria. In low-level vision, this is not usually possible because the computational

problems are fundamentally ill-posed, in the sense that the solution is not unique and may

not depend continuously on the data [6]. Therefore, it is necessary to exploit regularization

techniques and prior knowledge to solve a low-level vision problem [81, 48].

In many previous approaches to low-level vision, prior knowledge is hypothesized based

on studying the structure of images and then manually encoded into the behavior of an

algorithm [19, 31]. A well-known example is the Canny edge detector, which was derived by

formulating several criteria for a good edge detector given simple assumptions about image
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noise and the structure of edges (defined as an abrupt change in some low-level image feature)

[19]. This approach, while influential and surprisingly effective given its simplicity, has found

limited utility in real-world vision applications due to the difficulty in forming a higher-level

interpretation of visual scene structure from the results of an unreliable edge detector. In

particular, the true goal may not be to detect an edge, but rather a boundary, which is defined

as a contour that separates one object from another [70]. The way boundaries appear in

real images resist a simple mathematical specification. Edges may be one cue useful in the

detection of a boundary, but are neither necessary nor sufficient.

1.1 A Machine Learning Approach to Low-Level Vision

A recent trend in low-level vision problems has been to use machine learning techniques

that adapt the parameters of an algorithm to a particular dataset and problem. The basic

philosophy of the machine learning approach is that instead of specifying exactly what to

compute and how to compute it, humans provide examples of the desired computation. These

examples are used to guide ‘learning,’ a process in which a parametrized function is optimized

using a set of training examples and a cost function which quantifies performance. The hope

is that by learning how to correctly interpret the training examples, the optimization will

produce a function which can successfully generalize to other examples of the task not found

in the training set. The creation of ground-truth databases has been a major factor in the

growth of data-driven approaches to low-level vision [68]. Without such databases, it is

difficult to quantify the performance of a method, much less optimize it using learning.

A major advantage of the machine learning approach to image analysis is adaptability.

Computer vision methods are today applied to a wide variety of situations in which an

image may have been formed using photons, electrons, magnetic resonance, or other means.

The image itself may depict nanoscale cellular structure, macroscopic organ structure, the

natural world, or other phenomena. This diversity presents a challenge for the computer

vision community, because algorithms developed with one imaging context in mind may not

be effective in another context. For example, several decades of research into the statistics

of natural images have produced sufficient understanding to design natural image denoising
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algorithms that work remarkably well [82]. However, the assumptions behind this algorithm,

gleaned from careful study of natural images, are unlikely to be true in more specialized

imaging situations where one might also be interested in denoising.

Natural images have been well studied due to their obvious importance and abundance,

as well as interest in the human visual system. For many other datasets (such as those arising

from microscopy), there is little interest in understanding the detailed low-level statistics of

the imagery. Therefore, it is desirable to have computer vision methods which can perform

well in the absence of a sophisticated understanding of the underlying structure of the images.

Machine learning presents an alternative approach which addresses the issue of domain

specificity. Instead of hand-embedding prior knowledge into an algorithm, learning can adapt

a general algorithm to the specifics of a dataset. This approach requires creation of a training

set with examples of the desired transformation. For example, in the electron microscopy

restoration problem studied in Chapter 5, the desired ‘clean images’ are created by human

interpretation, as we only have access to the noisy input images. Conversely, in the natural

image denoising studied in Chapter 4 it is the noisy images which are generated (by applying

a noise model to a database of clean images).

1.1.1 Convolutional Networks

The first major claim of this thesis is that machine learning can be used to solve low-level

vision problems with greater accuracy than techniques based on hand-encoded prior knowl-

edge if an appropriately flexible classifier architecture is used. In Chapter 2 of this thesis,

we develop convolutional networks as a flexible classifier architecture capable of achieving

good performance, and in Chapters 4 and 5 we show that less powerful classifiers do not

achieve as good performance. We demonstrate that convolutional networks, which are not

specialized for a specific image domain, can meet or exceed the performance of techniques

that were specifically tailored to some domain.
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Figure 1-2: Putative neurites automatically traced using techniques described in this thesis,
in a volume of rabbit retina imaged with Serial Block Face Scanning Electron Microscopy
(SBF-SEM) [24, 18].

1.1.2 Topological Learning

The second major claim of this thesis is that the machine learning of a specific low-level

problems can be greatly improved by the use of cost functions and learning algorithms that

reflect the structure of the desired interpretation space. We study the specific problem of

boundary detection, and develop a learning algorithm that optimizes the high-order property

of topological accuracy. We build on concepts from digital topology to introduce the warping

error (Chapter 7) and its associated optimization algorithm (Chapter 8) as a means of

accomplishing this.

1.2 Connectomics: Reverse Engineering the Brain

A major motivation for the development of the methods in this thesis has been provided by

the scientific ambition of reconstructing wiring diagrams of biological nervous systems. In

this section we describe this agenda and how computer vision research plays a fundamental

role in its pursuit.

A significant assumption behind many models and theories of neural computation is that

the function of a neural circuit is closely related to its structure at the level of synaptic
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connections. In order to test both this general assumption and the many specific structure-

function relationships that have been hypothesized, it would be ideal to be able to study

connectivity patterns within the brain. This entails the collection of connectomes, which are

complete maps of all the connections in a brain or a piece of brain [61, 99, 97]. In order to

recover a connectome from a piece of tissue, two fundamental tasks must be performed:

1. The tissue must be imaged at a sufficient resolution to be able to see axons, dendrites,

and synapses, and over a sufficient field of view to contain the circuitry of a functionally

significant assembly of cells.

2. The resulting images must be analyzed so that it is known which cell each axon and

dendrite belongs to, and synapses must be identified to establish a connection between

two cells.

Unfortunately, technical challenges involved in both these steps have thus far prevented the

collection of connectomes. An exception is the connectome of the small worm C. elegans.

The 7000 connections of the 300 neurons of the C. elegans brain were mapped using electron

microscopy imaging and human annotation over a period of ten years in the 1970’s, with some

additional recent effort to finalize and complete the map [111, 21, 107]. Scaling this approach

to organisms with hundreds of thousands or millions of neurons is clearly impractical (which

is to say nothing of a human connectome, which contains on the order of a hundred billion

neurons and trillions of connections).

The past several years have seen a major effort to overcome technical barriers associated

with the collection of the raw imaging data necessary for producing connectomes. Various

efforts to improve and automate serial section electron microscopy (EM) have yielded new

methods which are likely to make the collection of the raw images necessary for reconstructing

wiring diagrams a significantly more successful and attractive proposition [24, 18, 37, 49,

40]. Other major developments include techniques for nanometer-scale imaging using light

microscopy [93, 39], multicolor fluorescent labeling techniques that provide some amount

of information on neurite identity directly from an image [62], and fixation methods for

repeated antibody staining and simultaneous electron and light microscopy [72].

After an image volume has been collected, then the hard work of analysis begins. In
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particular, tracing each individual axon and dendrite to its parent cell body, throughout an

image volume that may consist of billions or trillions of voxels, is a painstaking task. Al-

though it is possible to trace the wires manually, this approach involves prohibitive amounts

of human labor (the majority of the ten years of effort for C. elegans were consumed by the

tracing task). Since existing techniques are insufficiently accurate to solve this problem, the

automated analysis of EM images of brain tissue represents an intriguing opportunity for

advances in computer vision.

The challenging computer vision problems posed by the connectomics agenda have been

a driving force for the development of novel image processing strategies, both in this thesis

and in other recent work [103, 2, 46, 73, 12, 65]. However, the techniques introduced in this

thesis are fundamentally general and applicable to a wide variety of imaging domains.

1.3 Summary of Contributions

In this thesis, we develop a novel machine-learning approach to low-level computer vision that

is applicable to problems such as image denoising, restoration, and segmentation. Several

specific contributions are made:

• Convolutional networks are developed as a computational architecture for low-level

image processing (Chapter 2).

• Mathematical connections between convolutional networks and Markov Random Fields

are exposed (Chapter 3).

• Convolutional networks with zero domain-specific prior knowledge, other than transla-

tion invariance, are used to achieve state of the art performance on the tasks of natural

image denoising and restoration of electron microscopy images (Chapters 4 and 5).

• Concepts from digital topology are used to introduce “warping error:” a novel metric

for evaluating segmentation performance (Chapters 6 and 7).

• Warping error is optimized with supervised learning to yield superior boundary detec-

tion and image segmentation performance, as compared to a a variety of state of the
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art methods (Chapter 8).

Finally we note that parts of this thesis are joint work with others and have appeared in

[44, 45, 12].
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Chapter 2

Convolutional Networks

Abstract. We provide a detailed description of convolutional networks, the machine learn-

ing architecture used extensively in this thesis. Convolutional network pursue the machine

learning approach by making nearly all details of the algorithm subject to optimization

during learning. In fact, convolutional networks exploit learning more than many other ap-

proaches. A traditional pattern recognition strategy is to hand-specify specific features to

compute from the input signal, and then use learning to optimize the manner in which fea-

tures are combined into a prediction. This approach has recently been applied to boundary

detection as well [25, 71, 70]. As explored in this thesis, however, convolutional networks are

applied to the image directly. Therefore, the learning procedure discovers both what feature

space to use and how to use it. In Chapters 4 and 5 we empirically compare the accuracy of

this approach to other methods that rely less on learning and more on hand-encoded prior

knowledge.

2.1 Comparison to previous work

The present work is related to the extensive literature on applications of neural networks to

image processing, which has been reviewed by Egmont-Petersen et al [27]. In this literature,

a multilayer perceptron is applied to patches of the input image. Our work is distinct from

this literature because our networks are convolutional.

We were inspired by previous research on convolutional networks applied to object recog-
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nition, as well as one previous study that used convolutional networks to label and segment

regions in microscopic imagery [56, 58, 75]. In addition to convolutions, all of these net-

works also included subsampling, which produced an output representation of much lower

resolution than the input image. Subsampling is an important strategy in object recognition,

where it helps achieve invariance to distortions of the visual image by discarding positional

information about image features and details. But many image processing applications re-

quire precise positional information. The segmentation of fine branches of neurons in EM

images is a good example. Therefore our convolutional networks do not include subsampling,

and we expect that this will be appropriate for many other image processing applications.

Indeed, for the application to EM images, we have introduced the use of supersampling in

our networks to increase the resolution of the output image. This is critical because the

spacing between objects sometimes narrows to less than one pixel of the input image.

2.2 Network Architecture and Dynamics

A convolutional network is an alternating sequence of linear filtering and nonlinear transfor-

mation operations. The input and output layers include one or more images, while interme-

diate layers (referred to as “hidden” layers) contain images called feature maps that are the

internal computations of the algorithm. The activity of feature map a in layer k is given by

Ika = f(uka) (2.1)

uka = (
∑
b

wka,b ⊗ Ik−1
b ) + bka (2.2)

where Ik−1
b are feature maps that provide input to Ika , and ⊗ denotes the convolution opera-

tion. The function f is some differentiable nonlinearity; typically we use the logistic function

f(x) = 1/ (1 + e−x). bka is a bias parameter. Figure 4-1 depicts a convolutional network with

four hidden layers, each with 24 feature maps. Each arrow in the network represent a single

convolution and is therefore associated with a single filter (in this case, a 5× 5 2d filter).

Feature maps in a convolutional network are typically organized into layers, such that

24



computation of the output image depends on computing the activities in the last hidden

layer, which depends on compute the activities in the penultimate hidden layer, and so on.

Inference (the process of computing the output of the model for a novel input) requires com-

puting the activity of the output layer given some input, which in neural network terminology

means computing the “forward pass” of the network.

In Chapter 5 we demonstrate how this simple architecture can be modified to perform

super-resolution image processing by having feature maps organized into a super-sampling

operation.

2.3 Learning

2.3.1 Supervised learning with gradient descent

In this thesis we employ supervised learning, which requires four components:

1. Learning machine: a function F~θ with a vector of free parameters ~θ.

2. Training set {x, y}i with inputs x and ground truth y.

3. Scalar-valued cost function E(x, y, F~θ).

4. Learning algorithm that minimizes E with respect to ~θ.

We have already introduced convolutional networks as our chosen function F , and will discuss

training sets in more detail in Chapters 4 and 5. In this section we focus on how to optimize

convolutional networks in terms of a cost function using a learning algorithm.

The convolutional network architecture is highly non-linear and non-convex, which rules

out convex optimization methods. However, it was designed to be fully differentiable with

respect to each of the free parameters of the network, which leaves open the possibility of

gradient optimization as long as we choose a cost function that is similarly differentiable.

We will typically use the sum-of-squared errors function (or some minor variant of it):

E(x, y, F~θ) =
N∑
i=1

(yi − F~θ(xi))
2

25



where i indexes over the N training examples. We are therefore interested in performing the

following optimization:

argmin~θE(x, y, F~θ)

for which a local minimum can be found using gradient descent, a first-order optimization

algorithm. Assuming that ∇~θE can be calculated, the following general update can be

iterated to minimize E:

~θ ← ~θ − η∇~θE(x, y, F~θ) (2.3)

for some sufficiently small value of η.

2.3.2 Backward Pass

Having established the basic outline of gradient optimization, we derive the specific form of

∇~θE~θ(x, y, F~θ) in terms of the convolutional network architecture specified in Section 2.2.

We will express ∇~θE~θ(x, y, F~θ) in terms of the individual components of ~θ in convolutional

networks: {wk,ab, bk,a} for all k, a, b. For convenience, we abbreviate E(x, y, F~θ) with E in

the following. Then from Eq. 2.1 it is clear that:

∂E

∂wka,b
=

N∑
i=1

∂E

∂(uka)i

∂(uka)i
∂wka,b

(2.4)

where i indexes over all spatial locations, and the sum is because all spatial locations within

the same feature map share the same weights. However, we know from Equation 2.1 that

∂uka
∂wka,b

= Ik−1
b .

Thus our primary task is to compute ∂E
∂(uka)i

, a quantity so important that we give it a special

designation: the “sensitivity.” It will also be convenient to define the “sensitivity map”, or

Ska , which is the collection of all sensitivities that corresponds to feature map a in layer k.

It is instructive to consider a few things about the sensitivity map:

1. Ska is an “image” with the same size and dimension as the activity feature map Ika .
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2. Ska = ∂E
∂uka

= ∂E
∂uka

∂uka
∂bka

= ∂E
∂bka

which is due to the fact that ∂uka
∂bka

= 1.

Thus the sensitivity map immediately gives us the gradient of the cost function with respect

to the biases of any unit in the feature map.

The sensitivity map can be computed in a matter analogous to the activities except in

the reverse order, which is why in neural network terminology this computation is usually

called the “backward” pass. If a network has L layers with L − 1 hidden layers, then the

sensitivity SL of the output layer IL = Fθ(xi) is given by

SLa =
∂E

∂uLa
=
∂ 1

2

∑
i(ya − ILa )2

i

∂uLa
= (ya − ILa )

∂ILa
∂uLa

= (ya − ILa )� f ′(uLa )

where � denotes pixel-wise multiplication, and we have assumed that the final output layer

may have multiple feature maps, each with its own target ya in the training set. In many

situations, however, there is only a single output feature map. We would now to like to

derive an expression for the sensitivities in the second to last layer:

SL−1
a =

∂E

∂uL−1
a

=
∑
k

(
∂E

∂uLk

∂uLk
∂uL−1

a

) =
∑
k

(SLk ~ wLk,a)� f ′(uL−1
a ) (2.5)

where ~ denotes cross-correlation and we have thus obtained a general recursive relationship

for SL−1
a in terms of SL.

Detailed one-dimensional case

The appearance of this last expression in Equation 2.5 may seem a bit puzzling at first. To

better understand it, we consider in detail the case of a 1-D convolutional network:

(ula)i = (wla,p ⊗ I l−1
p )i

where (uLa )i is the preactivation of the i’th spatial location in feature map a in layer l, and

we have defined its activity to depend on just a single feature map p in layer l − 1. By the
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definition of (one-dimensional) convolution:

(wla,p ⊗ I l−1
p )i =

∞∑
x=−∞

(I l−1
p )i−x(w

l
a,p)x

where for now we will ignore issues of zero-padding, etc. Suppose now we would like to

compute the sensitivity Sl−1
p . Recall that:

Sl−1
p =

∂E

∂ul−1
p

=
∑
k

(
∂E

∂ulk

∂uLk
∂uL−1

p

) =
∂E

∂ula

∂uLa
∂ul−1

p

where we eliminate the sum as we assume only a single feature map in both layers l and

l − 1. Then for a single spatial location j in Sl−1
p :

(Sl−1
p )j =

∞∑
y=−∞

∂E

∂(ula)j+y

∂(ula)j+y
∂(ul−1

p )j

where by definition ∂E
∂(ula)j+y

= (Sla)j+y and

∂(ula)j+y
∂(ul−1

p )j
=
∂(
∑∞

x=−∞(I l−1
p )j+y−x(w

l
a,p)x)

∂(ul−1
p )j

=
∂(I l−1

p )j(w
l
a,p)y

∂(ul−1
p )j

= f ′(ul−1
p )j(w

l
a,p)y

thus:

(Sl−1
p )j = f ′(ul−1

p )j

∞∑
y=−∞

(Sla)j+y(w
l
a,p)y = (Sla ~ wla,p)jf

′(ul−1
p )j

by the definition of cross-correlation. And thus the full sensitivity map is given by:

Sl−1
p = (Sla ~ wla,p)� f ′(ul−1

p ).

In higher dimensions, the indexing becomes more complicated, but can still be reduced to

multi-dimensional cross-correlation.

2.3.3 Update pass

Having computing sensitivities via the backward pass, updates can be made to the weights

and biases:
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∂E

∂wka,b
= Ik−1

b ~ Ska (2.6)

∂E

∂bka
=

∑
i

(Ska)i (2.7)

where i indexes over all spatial locations in the sensitivity map. These gradients can be used

in Equation 2.3 to update the parameters of the network.

Detailed one-dimensional case

To understand the origin of the cross correlation in equation 2.6, we can again consider the

one-dimensional case. Recall that within a feature map, all spatial locations i share the same

w; thus when computing the gradient for any particular w all of the gradients at separate

spatial locations must be summed together. A single location j in filter wla,p will be denoted

as (wla,p)
j, and the gradient of this parameter is given by

∂E

∂(wla,p)
j

=
∞∑

x=−∞

∂E

∂(ula)x

∂(ula)x
∂(wla,p)

j
=

∞∑
x=−∞

(Sla)x(I
l−1
p )j+x = (I l−1

p ~ Sla)j

and therefore the entire filter is given by

∂E

∂wla,p
= I l−1

p ~ Sla

where an identical relation holds true in higher dimensions, except using multidimensional

cross-correlation.

2.3.4 Batch versus online learning

As defined in Equation 2.3, gradient-based supervised learning involves computing the gra-

dient over all training examples, combining the gradients by averaging, and then making a

single update. This process is then repeated many times until convergence. From the math-

ematical point of view this approach (sometimes refereed to as batch learning) is clearly

justified and guaranteed to converge to a local minimum.
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However, in practice it is often inefficient to compute the gradient for all the training

examples just to make a single update. An alternative is online learning, in which the

gradient for a single example is computed in order to make an update. Although any single

update may be very noisy (with respect to the true gradient), the convergence guarantees

stem from the fact that on average the update will point in the direction of the gradient

[57, 13]. In practice, this approach has often been found to be significantly more efficient for

training large neural networks which may require many hundreds of thousands of gradient

updates to near convergence [56, 58].

In this work, we generally exploit a method known as minibatch learning, in which a

small subset of examples from the training set are used to approximate the gradient (instead

of just a single example as in online learning). Despite the name, the method is therefore

more similar to online methods than true batch learning. As with online learning, minibatch

learning is guaranteed to converge (without bias though with possibly high variance) if the

particular set of examples are chosen i.i.d. from the training set.

Despite the theoretical requirement of i.i.d. samples, the most efficient (in the sense of

amount of computation required to reach a given training error) procedure we found was

one in which we chose a spatially localized patch of examples. Because our training sets

typically represent image-to-image transformations (such as a noisy image to a clean image),

a single image can generate many training examples due to the various spatial locations. We

combined several spatially localized examples within the training set to form an update (for

example, a 6×6×6 cube of examples for 3d transformations, or a 6×6 patch of examples for

2d transformations). This approach was an especially efficient way of assembling a minibatch

due to the fact that neighboring pixels share computations in a convolutional network.

2.3.5 Rebalancing training sets

In the binary classification task studied in Chapter 5, the dataset was unbalanced in the

sense that there were roughly 80% positive examples and 20% negative examples. To obtain

the best performance, it was necessary to rebalance the training set by sampling the negative

examples more highly than the positive examples. By “best” performance, we mean both

the lowest training error and lowest generalization error. In other words, optimizing on the
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rebalanced training set led to a lower minimum error on the unbalanced training set, which is

an interesting local minima phenomenon that has been previously reported in the literature

[57].

2.3.6 Learning rates

Efficient convergence to a low training error local minimum in neural network learning is

dependent on the appropriate choice of learning rates. Selecting learning rates is often a

process of trial and error; we explored more sophisticated methods such as using an online

approximation to the diagonal of the Hessian (discussed in [57]), but observed no benefit.

For binary image restoration, we found good results using the following procedure: η was

set to 0.1 for all layers and we normalized the gradient in 2.4 by N , the number of units that

share the same weights.

For natural image denoising, in which the targets are real-valued numbers, we neglected

the normalization by N and used an η of 0.1. However, for networks with more than one

hidden layer we used an η of 0.001 in just the last layer (the output layer). We speculate

that smaller learning rates are required due to the precise analog targets in image denoising.

2.4 Filters, Layers, Field of View, and Context

In a low-level task such as boundary detection, local ambiguity can require the use of non-

local context to form an unambiguous interpretation. In severe cases, truly global infor-

mation may be required to resolve a local ambiguity. Appropriate use of context is thus a

fundamental issue in designing an image processing strategy, and poses several challenges:

1. Determining the amount of context required to achieve high accuracy in the desired

task.

2. Devising a computationally efficient way to exploit the required amount of image con-

text.

3. In machine learning approaches, sample complexity: the amount of training data re-

quired to generalize accurately may depend on both the amount of context used and
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1 pixel output

5 pixel input

{W1}1 {W1}2 {W1}3 {W1}4 {W1}5

1 pixel output

{W2}1 {W2}2 {W2}3 {W2}4 {W2}5

9 pixel input

One Layer Network Two Layer Network

Figure 2-1: Field of view and context in 1d convolutional networks. Each color coded arrow
represents a single scalar value within a 1d filter. A single output in the one layer network
requires 5 pixels, whereas a single output in the two layer network requires 9 input pixels.

the way the learning architecture uses it. One would like to avoiding overfitting and

the need for prohibitively large training sets due to the amount of context used by the

algorithm.

Of course, careful consideration of these issues leads to very fundamental questions about

vision and image analysis, a full discussion of which exceeds the scope of this work. We focus

on how convolutional network use context, and how this compares to some other approaches

in the literature.

In object recognition, the amount of context used by an algorithm is the size of the

input image it accepts. In image-to-image computations, the total amount of context used

to process an image may far exceed the total amount of context used to generate the value

of a single position in the output image. Hence we define the field of view of an algorithm

based on the latter quantity: the total amount of image context used to generate a single

output value.

The first question we address is: what determines the field of view of a convolutional

network? Consider a convolutional network with no feature maps, just a transformation

from input to output specified by a single filter w1 (see Figure 2-1). Then it is clear that the
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field of view of this network depends completely on the pixel (or voxel) dimensions of this

filter. There is no opportunity for pixels separated by a distance that exceeds the width of

the filter to influence each other in the output. Hence the size of the filters used within the

convolutional network are a crucial determinant of field of view.

Now imagine this network has been augmented with an additional layer, sandwiched

between the input and output layer. The network is now specified by a filter w1 that

transforms the input into the feature map in this new layer, and another filter w2 that

transforms the feature map in the new layer into the output. The field of view of the

network now depends on the size of both filters. In particular, the field of view will increase

with every additional layer in the network due to repeated convolutions. To see this, it

is instructive to “work backwards” by considering the amount of pixel context required to

generate a single output value. Clearly, the intermediate layer feature map must be as large

as w2 in order to generate a single output voxel1. Thus the input image must be large enough

to produce an output value at any location in the intermediate feature map, which requires

|w2|i + |w1|i − 1 pixels in the ith dimension, where |w|i gives the size of filter w in the ith

dimension (see Figure 2-1 for an example in the 1d case).

From this simple example we can see that the field of view of a convolutional network can

be manipulated by either changing the size of the filters or changing the number of layers

in the network. We note that many popular approaches to pattern recognition are based

on architectures that are fundamentally “shallow” in the sense of the number of layers (e.g.,

SVMs). This observation forms the basis of a related issue in the literature of the benefits

of using “deep” architectures in machine learning (of which convolutional networks are one

example) [42, 4]. This is an issue that is independent of any discussion of context size, but

it is also clear that in shallow architectures changing the size of the single set of “filters” that

operate on the input is the only option for manipulating field of view.

The second question we would like to address is: how does increasing context through

multiple layers compare to using larger filters (in any relevant sense such as efficiency, per-

formance, or ability to be optimized through gradient optimization)? This issue remains
1We assume that we perform “valid” convolutions that generate output values only at those locations for

which there is sufficient context to apply the entire filter to an input.
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incompletely understood, but we offer several conceptual and empirical observations:

1. Free parameters. Increasing filter size to enlarge the field of view may increase the

number of free parameters within the network architecture more rapidly as compared

to increasing the number of layers to achieve the same change in field of view. Con-

sider the case of a shallow network with one filter that has nk elements (where k is the

dimensionality of the image space and n is the length of the filter in a single dimen-

sion). Doubling the field of view in all dimensions by increasing the size of the filter

will increase the number of free parameters by a factor of 2k. Alternatively, roughly

doubling the field of view in all dimensions by adding another layer to the network

with the same size filter increases the number of free parameters by a factor of only 2.

This suggests that multi-layer architectures as a strategy for achieving greater field of

view may be more resistant to overfitting than large-filter architectures (particularly

for higher dimensional image spaces).

2. Representational power. A well-known result in the study of multi-layer perceptrons

(MLPs) is that in the limit of infinite hidden units, MLPs are universal function ap-

proximators [43]. Hence it is not immediately clear why a multi-layer architecture

would ever be preferred (to address the issue of context, one could arbitrarily increase

the size of the filters used in the initial layer). The benefits of multi-layer architectures

may only become clear when the issue of representational power is weighed against the

issue of efficiency; a deep architecture may be able to represent a particular computa-

tion with significantly fewer overall computations and parameters, as compared to a

computationally equivalent shallow implementation [5].

3. Optimization. We have already pointed out that the convolutional network architec-

tures we optimize during learning are non-convex and, therefore, we resort to opti-

mization methods such as gradient descent that are only guaranteed to converge to a

local minimum. In this context, a fundamentally interesting question is whether cer-

tain network architectures are easier to optimize in the sense of generally resulting in

configurations of the free parameters with better performance after optimization. We

note that while different architectures may have different global minima, ultimately we
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are only concerned with performance of minima attainable by the optimization.

Ultimately, it may be difficult to separate the issue of optimization from that of repre-

sentation; if a particular computation can be implemented more compactly (in terms

of overall computations and parameters) by some particular network architecture, then

that architecture may also be the easiest to optimize due to the fewer number of pa-

rameters. Hence if low-level vision computations fall within that class of computations

most efficiently represented by deep architectures, then we might expect optimization

of multi-layer convolutional networks to result in better performance on such tasks,

as compared to shallow architectures. There is some evidence for this scenario; for

example, certain classic hand-designed low-level image processing algorithms, such as

anisotropic diffusion, can be viewed as repeatedly performing local computations. This

style of computation has a close correspondence to multi-layer convolutional networks

in which each layer performs the same computation. Various Markov random field

methods can also be interpreted in this way, a connection discussed in much greater

detail in the following chapter.

Empirically, we have found that achieving a particular size field of view by increasing

the number of layers results in better optimization (lower training error) as compared

to using larger filters in a shallow architecture. The reasons for this phenomenon are

not well-understood, however, and it may be that a similar minimum is attainable with

large filters but requires much longer training times.
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Chapter 3

Relationship between Convolutional

Networks and Markov Random Fields

Abstract. We discuss the conceptual and mathematical relationship between convolutional

networks and Markov random fields (MRFs), a popular approach to image analysis and

modeling. This relationship has been briefly mentioned in the literature (see [90]) but never

explored in detail.

MRFs are a particular means of probabilistic modeling of images and image processing

tasks. The use of a fundamentally probabilistic approach to image analysis has been deemed

highly important by some researchers [60, 32, 90], for example because of the desire to main-

tain an explicit representation of uncertainty and prior information. Elsewhere in this thesis

(see Chapters 4 and 5) we compare deterministic methods such as convolutional networks to

probabilistic methods such as MRFs in terms of their practical virtues in image processing

tasks. In this chapter, however, we emphasize the mathematical connections between two

approaches.

We show that certain types of convolutional network architectures can be viewed as

performing mean field inference on MRFs. Mean field inference is an approximate inference

technique for solving MRFs, and therefore certain convolutional networks can be viewed as

performing an approximate and deterministic inference on MRF models. We also discuss

how recent trends in increasing the complexity of MRFs have a close correspondence with

specific architectural features of a convolutional network.
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3.1 Introduction and review of Markov random fields

(MRFs)

A Markov random field (MRF) is simply an undirected graphical model. Historically, the

term also usually implied a particular conditional independence structure arranged on a

lattice to be specialized for image processing, but today the term MRF is used in other

contexts as well. Formally, an MRF is specified by a set of random variables X = {xi} that

have a Markov property encoded by an undirected graph G = (V,E), where V is a set of

vertices, E is a set of edges between vertices, and i ∈ V . We say X is an MRF if it satisfies

the following property for all i:

p(xi|X\xi) = p(xi|{xj}, j ∈ N(i)) (3.1)

where j ∈ N(i) ⇐⇒ {i, j} ∈ E. In other words, a random variable xi ∈ X, i ∈ V should

be conditionally independent of all other variables given its neighbors N(i) specified by the

graph G. We also assume every realization of X has non-zero probability.

Given a distribution of variables that satisfies the conditional property in Equation 3.1,

one would like an expression for the joint distribution that exploits the Markov structure. We

note that C ⊆ V is a clique iff. C ⊆ {i, N(i)}∀i ∈ C. Then according to the Hammersley-

Clifford theorem [9],

p(x) =
1

Z

∏
C∈cl(G)

φC(xC) (3.2)

where cl(G) is the set of all cliques of G, Z is a normalization constant, and the functions

φ are sometimes called the factor potentials or clique potentials. Thus when p(x) > 0

(sometimes called the positivity condition), the following are all equivalent:

1. Local Markov property: p(xi|X\{xi}) = p(xi|{xj}, j ∈ N(i))

2. Factorization property: p(x) = 1
Z

∏
C∈cl(G) φC(xC)

3. Global Markov property: p(xi|xj, xs) = p(xi|xs) whenever i and j are separated by s

(all paths from i to j go through s).
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The advantage of using the MRF framework in probabilistic modeling is the ability to easily

introduce dependency structures between random variables that reflect prior information

about the problem domain. In image processing, the set of vertices and edges in the graph

G is typically related to the structure of the discrete space in which the image is embedded

(some n-dimensional lattice). For example, in 2d image processing we may have random

variables xi,j indexed by locations (i, j) in the image, and edges defined between random

variables that are neighbors in the corresponding image space (e.g., N(i, j) = {(i−1, j), (i+

1, j), (i, j − 1), (i, j + 1)}). A similar graph can be defined for 3d images: N(i, j, k) =

{(i± 1, j, k), (i, j ± 1, k), (i, j, k ± 1)}.

Depending on the application, random variables in the distribution may take on binary

values (e.g., xi,j ∈ {−1, 1}) or integer values (e.g., xi,j ∈ [1, 255] for encoding of 8-bit

intensities).

3.2 Learning and inference in MRFs

Using an MRF for a computational task involves solving the problem of inference, which is

broadly defined as inferring the optimal value of some unknown random variables xU given

some observed variables xO. The specific notion of optimality that is invoked can vary, but

a typical choice is the maximum a-posteriori (MAP) estimate:

xMAP
U = argmaxxUp(xU |xO).

MAP inference in graphical models is generally an NP-hard problem except in special cases

(such as tree-structured directed models, or Ising-like MRFs with non-negatively constrained

interaction strengths). Therefore a major focus of probabilistic modeling research is the

development of approximate inference methods that produce results efficiently, at the expense

of accuracy. For a detailed discussion of approximate inference methods in image analysis

problems, see [101] or [60]. In this chapter we will focus on the mean field approximation,

which is useful for establishing a relationship between convolutional networks and MRFs.

The problem of learning involves choosing the optimal values of some free parameters θ
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which are used to control the specific form of the distribution p({xi}), which is sometimes

written as p({xi}; θ) instead. In the supervised learning scenario, both the values of xU

and xO are known while estimating θ. Thus what remains is to define some criteria for the

optimal θ; the most popular choice is the maximum-likelihood criteria:

θML = argmaxθp(D|θ) = argmaxθ

N∏
i=1

p(di|θ)

where D = {di} is a collection of N “true” samples, each of which can be expressed as a

particular configuration of {xU , xO}. This type of learning is sometimes referred to as “gener-

ative” due to its focus on maximizing the joint probability of both observed and unobserved

data.

Learning is computationally also very difficult, as it involves computing the normaliza-

tion factor Z in Equation 3.2. Estimating the normalization term involves inference on all

possible configurations of the {xi} under the model defined by a specific choice of θ. Effective

approximate learning methods are thus a major barrier to success in probabilistic modeling

methods; for a detailed discussion see [64, 76].

Note that with the introduction of θ, MAP inference effectively corresponds to p(xU |xO; θ);

a fully Bayesian treatment would marginalize out the parameters during inference (p(xU |xO) =´
p(xU , θ|xO)dθ) but this is usually very difficult to calculate in practice.

3.3 Image processing with MRFs

In order to formulate a typical image processing task within the framework of probabilistic

modeling, we consider a probability density over an “input” image space y, and an “output”

density x that is also a distribution over an image space1. The precise notion of image

space may change depending on the imaging context and the image processing task. For an

M -dimensional image with continuously valued intensities we consider x ∈ RM , y ∈ RM . It

is often convenient to explicitly denote the topographic organization of the space with some

slight abuse of notation: x ∈ Rh×w, y ∈ Rh×w where M = rw. For binary valued images we
1In the terminology introduced in Section 3.2, x can be represented by the unobserved variables xU and

the input y as the observed variables xO.
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may similarly consider e.g., x ∈ {0, 1}h×w.

Given the notion of input distribution y and output distribution x, it follows that a basic

strategy employed in processing an image with probabilistic modeling is to somehow find xξ:

xξ = argmaxxp(x|yξ)

where yξ is some particular input image drawn from y.

In practice there are at least two different methods for computing xξ. In one approach,

sometimes referred to as “generative”, a model of the joint distribution p(x, y) = p(x)p(y|x)

is represented by specifying a prior over the desired interpretation image space, p(x), and

an “observation model” p(y|x). Then Bayes rule is used to find the posterior distribution,

p(x|y) ∝ p(y|x)p(x), which is used during MAP inference.

Another approach, sometimes referred to as “discriminative,” is to model the conditional

distribution p(x|y) directly. Hence the resulting models are sometimes referred to as condi-

tional random fields (CRFs) [54]. Inference to find xξ is performed directly on the specified

distribution, without using Bayes rule. Many researchers argue that in practice the discrim-

inative approach is superior because it focuses the model on the distribution truly of interest

at inference-time, and thus avoids wasting any modeling power on ultimately irrelevant prop-

erties of the joint distribution [53, 59]. Moreover, accurate modeling of even just the prior

distribution p(x) may be a significantly more difficult task than modeling the conditional

distribution p(x|y). In Chapters 4 and 5 we discuss the relationship between discriminative

and generative methods in more detail.

3.4 Mean field theory for MRFs

Mean field theory was developed in the field of statistical mechanics as an approximate means

of analytically studying many-body systems for which exact solutions are very difficult to

compute due to combinatorial interactions among the random variables [20]. The main goal

is to compute the expectation of an arbitrary random variable in a model, an example being
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〈xi〉 for any i in the model in Equation 3.2:

〈xi〉 =
∑
x

xip(x)

where the sum is over all possible configurations of x. However, due to the partition function

that appears in computing p(x) and the generally complicated interaction among the various

xi, this sum is computationally intractable.

Therefore, the mean field theory suggests an approximation to this expectation by in-

troducing an assumption: the influence of variable xj on variable 〈xi〉, j 6= i, can be ap-

proximated by the influence of 〈xj〉. In statistical mechanics, the physical justification for

this assumption is that at equilibrium, fluctuations at different random variables in the field

cancel each other out and can therefore be well-approximated by their expectation. However,

in low-dimensions mean field theory can lead to qualitatively incorrect observations about a

system [20].

3.4.1 Single feature-map networks and related MRFs

In this section we discuss how convolutional networks with a single feature map in each layer

are related to MRFs. In order to do this, we introduce the binary Boltzmann machine, a

type of MRF which defines the following density over binary random variables x = {xi}:

p(x) =
1

Z
exp(−1

2

∑
i,j

Wijxixj +
∑
i

bixi) (3.3)

where Z is the partition function that normalizes over all configurations of x. An Ising model

is a Boltzmann machine that typically has translation invariant-structure inW (e.g., nearest

neighbor interactions). Translation invariance is often considered a desirable property of

low-level vision algorithms, and translation-invariant MRFs can be expressed in the following

way:

p(x) ∝ e
1
2

P
i xi(w⊗x)i+

P
i bxi
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In this model, the stochastic dynamics of a single variable are given by:

xi ∼ σ((w ⊗ x)i + bi) (3.4)

Thus an approximation µi = 〈xi〉 is given by:

µi = 〈σ((w ⊗ x)i + bi)〉 = σ((w ⊗ 〈x〉)i + bi) = σ((w ⊗ µ)i + bi) (3.5)

and thus the entire field µ is given by:

µ = σ((w ⊗ µ) + b).

These expectations are then thresholded to obtain binary values [60]. A simple way of

solving these equations is to iterate them as dynamics:

µt+1 = σ((w ⊗ µt) + b)

where t indexes iterations of the dynamics. At this point, it should be clear that this equation

bears a certain resemblance to the convolutional network dynamics defined in Equation 2.1,

in which each iteration can be considered a different layer of a network. However, there are

several differences:

1. The generic nonlinearity f(z) has been replaced by σ(z) = tanh(z)

2. Each layer has a single feature map.

3. Each layer uses the same weights (i.e., filter) w.

A more serious issue is that so far we’ve made no mention of an input, which we call y.

We have only discussed the prior p(x) over the desired image space x. To remedy this, we

have two options: introduce an observation model p(y|x), or somehow redefine Equation

3.3 to model p(x|y) directly (the CRF approach). We will take the latter approach, which

due to discriminative learning has a closer correspondence to convolutional networks, which
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are trained using supervised learning. However, posterior inference for p(x|y) on a model

specified by p(x, y) = p(y|x)p(x) would yield a similar relationship.

We consider the conditional random field:

p(x|y) ∝ e([
1
2

P
i xi(w⊗x)i+

P
i xi(yi+b)])

which is identical to our previous model except that the input has been introduced as an

additional bias on the interactions. Hence in the mean field approximation the expectation

value µi satisfies the equation

µi = σ ((w ⊗ µ)i + yi + bi)

and a dynamics to solve for the expectation is

µt+1 = σ((w ⊗ µt) + y + b) (3.6)

which, for a finite number of iterations, can be considered a convolutional network dynamics

with the addition of the image as an input to each layer. Thus certain convolutional network

architectures can be seen as performing mean field inference on a CRF.

In a convolutional network, the input image is only provided to the first hidden layer,

in which case it can be considered similar to an “initial conditions” to the dynamics above.

However, the mean field approximation suggests a different strategy, which is to provide

the image as input to each iteration (layer) of computation. This approach is sometimes

referred to encoding the image as a “field” to the network. In Figure 3-1 a depiction of the

network structure corresponding to this CRF is given; the approximation has been limited

to 7 iterations of the dynamics, each of which receives input from the input image.

The dynamics in Equation 3.6 can also be interpreted as a recurrent convolutional net-

work because the same weights are used to repeatedly update the interpretation µ of the

input y. The individual µt are an unraveling-in-time of the recurrent dynamics, a useful strat-

egy for inference because it makes it clear how to apply gradient descent learning algorithms

such as backpropogation-in-time.
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3.4.2 Multiple feature-map networks and related MRFs

In the previous section, we showed how a convolutional network that has a single feature

map in each layer and is provided the image as an input to each layer is mathematically

related to an MRF. In practice, however, we use convolutional network architectures with

many feature maps in each layer. In this section, we establish a relationship with such

architectures and MRFs.

We consider an MRF recently introduced for low-level image processing known as the

“Field of Experts” [91]. This model defines a prior over a continuously valued image space

x ∈ RM in the following way:

p(x) =
1

Z(θ)

M∏
k=1

N∏
i=1

φi(J
T
i x(k);αi) (3.7)

where k indexes over image locations, i indexes over a set of linear filters Ji, αi is a non-

negative scalar, and θ is just the vector of parameters {αi, Ji}. Then φi is termed an “expert”

and has the following form:

φi(J
T
i x;αi) = (1 +

1

2
(JTi x)2)−αi

which was first introduced in MRF modeling by Welling [110] and originally motivated by

work on anisotropic diffusion [80, 11]. This prior can be used for image denoising of some

noisy input y by adding a pixel-wise Gaussian observation model

p(y|x) ∝
M∏
j=1

e(−
1

2σ2 (yj−xj)2)

which specifies how noisy images (with known standard deviation of noise σ) are generated

from clean images x. Then MAP inference can be used to maximize the posterior probability

p(x|y) ∝ p(y|x)p(x), an approach used by Roth and Black to yield impressive denoising

results [91].

Unlike the MRF prior we considered in Equation 5.2, the Field of Experts prior in

Equation 3.7 is defined over continuously valued variables. Since the potential functions are
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also smooth, it is therefore possible to perform inference by gradient ascent of the posterior

probability to find a local maxima of p(x|y). The gradient optimization can be written in

the following form [91]:

xt+1 = xt + η
[ N∑
i=1

J−i ⊗ ψi(Ji ⊗ x(t)) +
λ

σ2
(y − x(t))

]

where J−i denotes the filter obtained by mirroring Ji around its center pixel and ψi is a

non-linearity given by ψi = ∂
∂y
logφi(y;αi).

From this equation we can immediately see an interpretation of inference on p(x|y) as a

convolutional network architecture. Computing xt+1 involves a convolution of xt with a set

of linear filters, followed by a nonlinearity, to yield an intermediate result: a set of feature

maps ψi(Ji ⊗ x(t)). These feature maps are then again linearly convolved with the same set

of filters and combined with a field from the noisy input image to yield xt+1. A depiction of

this network interpretation is given in Figure 3-1.

Latent within the Field of Experts MRF is thus the notion of multiple feature maps that

characterize the convolutional network architectures we use. Yet some significant differences

remain: feature maps at every layer share the same set of weights and only interact with

each other through a single intermediate image (the estimate xt of x at some iteration t).

The lack of direct interactions between feature maps is a potential limitation of the Field

of Experts MRF model and presents an obvious direction for exploration of more powerful

models. We introduce such an MRF, with direct interactions between feature maps and

that has been specially designed for image denoising. We show that it is even more closely

related to the convolutional network in Figure 4-1 than either the single feature map MRFs

studied in Section 3.4.1 or the Field of Experts model. In particular, we consider an MRF

that defines a distribution over analog “visible” variables v and binary “hidden” variables h:

P (~v,~h) =
1

Z
exp

(
− 1

2σ2

∑
i

v2
i +

1

σ2

∑
ija

haiw
a
i−jvj +

1

2

∑
ijab

haiw
ab
i−jh

b
j

)
(3.8)

where vi and hi correspond to the ith pixel location in the image, Z is the partition function,

and σ is the known standard deviation of the Gaussian noise. There are two different notions

46



of interaction terms in this model; wa which relates the ath hidden feature map to the visible

variables, and wab which relates the ath hidden feature map to the bth feature map2. Hence,

P (v, h) constitutes an undirected graphical model which can be conceptualized as having

separate layers for the visible and hidden variables. There are no intralayer interactions in

the visible layer and convolutional structure (instead of full connectivity) in the intralayer

interactions between hidden variables and interlayer interactions between the visible and

hidden layer.

From the definition of P (v, h) it follows that the conditional distribution,

P (~v|~h) ∝ exp

− 1

2σ2

∑
i

(
vi −

∑
ja

wai−jh
a
j

)2
 (3.9)

is Gaussian with mean

vi =
∑
ja

wai−jh
a
j =

∑
a

(wa ⊗ ha)i

which is also equal to the conditional expectation E [v|h]. We can use this model for denoising

by fixing the visible variables to the noisy image, computing the most likely hidden variables

h∗ by MAP inference, and regarding the conditional expectation of P (v|h∗) as the denoised

image. To do inference we would like to calculate maxh P (h|v), but this is difficult because

of the partition function. However, we can consider the mean field approximation,

hai = f

(
1

σ2

∑
j

wai−jvj +
∑
jb

wabi−jh
b
j

)
= f

(
1

σ2
(wa ⊗ v)i +

∑
b

(wab ⊗ hb)i

)
(3.10)

which can be solved by regarding the equation as a dynamics and iterating it. If we compare

this to Eq. 2.1, we find that this is equivalent to a convolutional network in which each

hidden layer has the same weights and each feature map directly receives input from the

image. A graphical interpretation of this network architecture is given in Figure 3-1.

These results suggest that the convolutional networks we use, with multiple feature maps

and interactions directly between feature maps, can be interpreted as performing approxi-
2Note that by symmetry we have wabi−j = wbaj−i, and we assume waa0 = 0 so there is no self interaction

in the model (if this were not the case, one could always transfer this to a term that is linear in hai , which
would lead to an additional bias term in the mean field approximation).
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mate inference on complex MRF models. Computationally, it may be very difficult to work

with such a complex MRF; learning and inference even for the simpler models in Equation

3.7 and Equation 5.2 is already difficult and requires extensive use of approximations.

In practice, the convolutional network architectures we train are not exactly related

to such MRF models because the weights of each hidden layer are not constrained to be

the same, nor is the image an input to any feature map except those in the first layer.

An interesting question for future research is how these additional architectural constraints

would affect performance of the convolutional network approach.

Finally, although the particular case of Gaussian denoising with a known standard de-

viation of noise allows for direct integration of the noise model into the MRF equations,

our empirical results on blind denoising suggest that the convolutional network approach is

adaptable to more general and complex noise models when specified implicitly through the

learning cost function. This issue is explored in more detail in the next chapter.
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Chapter 4

Natural Image Denoising

Abstract. We investigate a machine learning approach to low-level vision that combines

two main ideas: the use of convolutional networks as an image processing architecture and an

unsupervised learning procedure that synthesizes training samples from specific noise mod-

els. We demonstrate this approach on the challenging problem of natural image denoising.

Using a test set with a hundred natural images, we find that convolutional networks provide

comparable and in some cases superior performance to state of the art wavelet and Markov

random field (MRF) methods. Moreover, we find that a convolutional network offers similar

performance in the blind denoising setting as compared to other techniques in the non-blind

setting.

4.1 Introduction and related work

This task of image denoising is defined as the recovery of an underlying image from an

observation that has been subjected to some noise process. Typically, Gaussian noise is as-

sumed. One approach to image denoising is to transform an image from pixel intensities into

another representation where statistical regularities are more easily captured. For example,

the Gaussian scale mixture (GSM) model introduced by Portilla and colleagues is based

on a multiscale wavelet decomposition that provides an effective description of local image

statistics [82, 63].

Another approach is to try and capture statistical regularities of pixel intensities directly
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using Markov random fields (MRFs) to define a prior over the image space. Initial work used

hand-designed settings of the parameters, but recently there has been increasing success in

learning the parameters of such models from databases of natural images [34, 91, 102, 109,

33, 112]. Prior models can be used for tasks such as image denoising by augmenting the

prior with a noise model.

Alternatively, an MRF can be used to model the probability distribution of the clean

image conditioned on the noisy image. This conditional random field (CRF) approach is

said to be discriminative, in contrast to the generative MRF approach. Several researchers

have shown that the CRF approach can outperform generative learning on various image

restoration and labeling tasks [53, 38]. CRFs have recently been applied to the problem of

image denoising as well [102].

The present work is most closely related to the CRF approach. Indeed, certain special

cases of convolutional networks can be seen as performing maximum likelihood inference on

a CRF, as discussed in Chapter 3. The advantage of the convolutional network approach

is that it avoids a general difficulty with applying MRF-based methods to image analy-

sis: the computational expense associated with both parameter estimation and inference in

probabilistic models. For example, naive methods of learning MRF-based models involve

calculation of the partition function, a normalization factor that is generally intractable for

realistic models and image dimensions. As a result, a great deal of research has been de-

voted to approximate MRF learning and inference techniques that meliorate computational

difficulties, generally at the cost of either representational power or theoretical guarantees

[77, 100].

Convolutional networks largely avoid these difficulties by posing the computational task

within the statistical framework of regression rather than density estimation. Regression is

a more tractable computation and therefore permits models with greater representational

power than methods based on density estimation. This claim is supported by empirical

results on the denoising problem, as well as mathematical connections between MRF and

convolutional network approaches discussed in Chapter 3.
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4.2 Image denoising with convolutional networks

We restrict our experiments to monochrome images and hence the networks contain a single

image in the input layer. It is straightforward to extend this approach to color images by

assuming an input layer with multiple images (e.g., RGB color channels). For numerical

reasons, it is preferable to use input and target values in the range of 0 to 1, and hence

the 8-bit integer intensity values of the dataset (values from 0 to 255) were normalized to

lie between 0 and 1. We also explicitly encode the border of the image by padding an area

surrounding the image with values of −1.

4.2.1 Denoising as a supervised learning problem

The image denoising task must be formulated as a learning problem in order to train the

convolutional network. Since we assume access to a database of only clean, noiseless images,

we implicitly specify the desired image processing task by integrating a noise process into the

training procedure. In particular, we assume a noise process n(x) that operates on an image

xi drawn from a distribution of natural images X. If we consider the entire convolutional

network to be some function Fφ with free parameters φ, then the parameter estimation

problem is to minimize the reconstruction error of the images subject to the noise process:

minφ
∑

i(xi − Fφ(n(xi)))
2).

Secondly, it is inefficient to use batch learning in this context. The training sets used in

the experiments have millions of pixels, and it is not practical to perform both a forward

and backward pass on the entire training set when gradient learning requires many tens of

thousands of updates to converge to a reasonable solution. Stochastic online gradient learning

is a more efficient learning procedure that can be adapted to this problem. Typically, this

procedure selects a small number of independent examples from the training set and averages

together their gradients to perform a single update. We compute a gradient update from

6 × 6 patches randomly sampled from six different images in the training set. Using a

localized image patch violates the independence assumption in stochastic online learning,

but combining the gradient from six separate images yields a 6× 6× 6 cube that in practice

is a sufficient approximation of the gradient to be effective. Larger patches (we tried 8 × 8
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Architecture of CN1 and CN2

Figure 4-1: Architecture of convolutional network used for denoising. The network has 4
hidden layers and 24 feature maps in each hidden layer. In layers 2, 3, and 4, each feature
map is connected to 8 randomly chosen feature maps in the previous layer. Each arrow
represents a single convolution associated with a 5 × 5 filter, and hence this network has
15,697 free parameters and requires 624 convolutions to process its forward pass.

and 10 × 10) reduce correlations in the training sample but do not improve accuracy. This

scheme is especially efficient because most of the computation for a local patch is shared.

We found that training time is minimized and generalization accuracy is maximized by

incrementally learning each layer of weights. Greedy, layer-wise training strategies have

recently been explored in the context of unsupervised initialization of multi-layer networks,

which are usually fine tuned for some discriminative task with a different cost function

[41, 86, 4]. We maintain the same cost function throughout. This procedure starts by

training a network with a single hidden layer. After thirty epochs, the weights from the first

hidden layer are copied to a new network with two hidden layers; the weights connecting the

hidden layer to the output layer are discarded. The two hidden layer network is optimized

for another thirty epochs, and the procedure is repeated for N layers.

Finally, when learning networks with two or more hidden layers it was important to use

a very small learning rate for the final layer (0.001) and a larger learning rate (0.1) in all

other layers.
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Figure 4-2: Denoising results as measured by peak signal to noise ratio (PSNR) for 3 different
noise levels. In each case, results are the average denoised PSNR of the hundred images in
the test set. CN1 and CNBlind are learned using the same forty image training set as the
Field of Experts model (FoE). CN2 is learned using a training set with an additional sixty
images. BLS-GSM1 and BLS-GSM2 are two different parameter settings of the algorithm
in [82]. All methods except CNBlind assume a known noise distribution.

4.3 Results

We derive training and test sets for our experiments from natural images in the Berkeley

segmentation database, which has been previously used to study denoising [68, 91]. We

restrict our experiments to the case of monochrome images; color images in the Berkeley

dataset are converted to grayscale by averaging the color channels. The test set consists of

100 images, 77 with dimensions 321× 481 and 23 with dimensions 481× 321. Quantitative

comparisons are performed using the Peak Signal to Noise Ratio (PSNR): 20 log10(255/σe),

where σe is the standard deviation of the error. PSNR has been widely used to evaluate

denoising performance [82, 91, 63, 102, 109, 33].

Denoising with known noise conditions

In this task it is assumed that images have been subjected to Gaussian noise of known

variance. We use this noise model during the training process and learn a five-layer network

for each noise level. Both the Bayes Least Squares-Gaussian Scale Mixture (BLS-GSM) and

Field of Experts (FoE) method also optimize the denoising process based on a specified noise
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CLEAN NOISY PSNR=14.96 CN2 PSNR=24.25

BLS-GSM PSNR=23.78 FoE PSNR=23.02

CLEAN CN2

FoEBLS-GSM

Figure 4-3: Denoising results on an image from the test set. The noisy image was generated
by adding Gaussian noise with σ = 50 to the clean image. Non-blind denoising results for
the BLS-GSM, FoE, and convolutional network methods are shown. The lower left panel
shows results for the outlined region in the upper left panel. The zoomed in region shows
that in some areas CN2 output has less severe artifacts than the wavelet-based results and
is sharper than the FoE results. CN1 results (PSNR=24.12) are visually similar to those of
CN2.
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level.

We learn two sets of networks for this task that differ in their training set. In one set

of networks, which we refer to as CN1, the training set is the same subset of the Berkeley

database used to learn the FoE model [91]. In another set of networks, called CN2, this

training set is augmented by an additional sixty images from the Berkeley database. The

architecture of these networks is shown in Fig. 4-1. Quantitative results from both networks

under three different noise levels are shown in Fig. 4-2, along with results from the FoE

and BLS-GSM method (BLS-GSM 1 is the same settings used in [82] while BLS-GSM 2 is

the default settings in the code provided by the authors). For the FoE results, the number

of iterations and magnitude of the step size are optimized for each noise level using a grid

search on the training set. A visual comparison of these results is shown in Fig. 4-3.

We find that the convolutional network has the highest average PSNR using either train-

ing set, although by a margin that is within statistical insignificance when standard error is

computed from the distribution of PSNR values of the entire image. However, we believe

this is a conservative estimate of the standard error, which is much smaller when measured

on a pixel or patch-wise basis.

Blind denoising

In this task it is assumed that images have been subjected to Gaussian noise of unknown

variance. Denoising in this context is a more difficult problem than in the non-blind situation.

We train a single six-layer network network we refer to as CNBlind by randomly varying the

amount of noise added to each example in the training process, in the range of σ = [0, 100]

. During inference, the noise level is unknown and only the image is provided as input. We

use the same training set as the FoE model and CN1. The architecture is the same as that

shown in Fig. 4-1 except with 5 hidden layers instead of 4. Results for 3 noise levels are

shown in Fig. 4-2. We find that a convolutional network trained for blind denoising performs

well even compared to the other methods under non-blind conditions. In Fig. 4-4, we show

filters that were learned for this network.
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Layer 1 Layer 2

Figure 4-4: Filters learned for the first 2 hidden layers of network CNBlind. The second
hidden layer has 192 filters (24 feature maps × 8 filters per map). The first layer has
recognizable structure in the filters, including both derivative filters as well as high frequency
filters similar to those learned by the FoE model [91, 109].

4.4 Discussion

4.4.1 Prior versus learned structure

Before learning, the convolutional network has little structure specialized to natural images.

In contrast, the GSM model uses a multi-scale wavelet representation that is known for its

suitability in representing natural image statistics. Moreover, inference in the FoE model

uses a procedure similar to non-linear diffusion methods, which have been previously used

for natural image processing without learning. The architecture of the FoE MRF is so well

chosen that even random settings of the free parameters can provide impressive performance

[90].

Random parameter settings of the convolutional networks do not produce any clearly

useful computation. If the parameters of CN2 are randomized in just the last layer, denoising

performance for the image in Fig. 4-3 drops from PSNR=24.25 to 14.87. Random parameters

in all layers yields even worse results. This is consistent with the idea that nothing in

CN2’s representation is specialized to natural images before training, other than the localized

receptive field structure of convolutions. Our approach instead relies on a gradient learning

algorithm to tune thousands of parameters using examples of natural images. One might

assume this approach would require vastly more training data than other methods with more

prior structure. However, we obtain good generalization performance using the same training

set as that used to learn the Field of Experts model, which has many fewer degrees of freedom.
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The disadvantage of this approach is that it produces an architecture whose performance

is more difficult to understand due to its numerous free parameters. The advantage of this

approach is that it may lead to more accurate performance, and can be applied to novel

forms of imagery that have very different statistics than natural images or any previously

studied dataset (an example of this is the specialized image restoration problem studied in

Chapter 5).

4.4.2 Network architecture and using more image context

The amount of image context the convolutional network uses to produce an output value for

a specific image location is determined by the number of layers in the network and size of

filter in each layer. For example, the 5 and 6-layer networks explored here respectively use

a 20 × 20 and 24 × 24 image patch. This is a relatively small amount of context compared

to that used by the FoE and BLS-GSM models, both of which permit correlations to extend

over the entire image. It is surprising that despite this major difference, the convolutional

network approach still provides good performance. One explanation could be that the scale

of objects in the chosen image dataset may allow for most relevant information to be captured

in a relatively small field of view.

Nonetheless, it is of interest for denoising as well as other applications to increase the

amount of context used by the network. A simple strategy is to further increase the number

of layers; however, this becomes computationally intensive and may be an inefficient way

to exploit the multi-scale properties of natural images. Adding additional machinery in

the network architecture may work better. Integrating the operations of sub-sampling and

super-sampling would allow a network to process the image at multiple scales, while still

being entirely amenable to gradient learning.

4.4.3 Computational efficiency

With many free parameters, convolutional networks may seem like a computationally expen-

sive image processing architecture. On the contrary, the 5-layer CN1 and CN2 architecture

(Fig. 4-1) requires only 624 image convolutions to process an image. In comparison, the FoE
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model performs inference by means of a dynamic process that can require several thousand

iterations. One-thousand iterations of these dynamics requires 48,000 convolutions (for an

FoE model with 24 filters).

We also report wall-clock speed by denoising a 512× 512 pixel image on a 2.16Ghz Intel

Core 2 processor. Averaged over 10 trials, CN1/CN2 requires 38.86±0.1 sec., 1,000 iterations

of the FoE requires 1664.35 ± 30.23 sec. (using code from the authors of [91]), the BLS-

GSM model with parameter settings “1” requires 51.86±0.12 sec., and parameter setting “2”

requires 26.51± 0.15 sec. (using code from the authors of [82]). All implementations are in

MATLAB.

It is true, however, that training the convolutional network architecture requires substan-

tial computation. As gradient learning can require many thousands of updates to converge,

training the denoising networks required a parallel implementation that utilized a dozen pro-

cessors for a week. While this is a significant amount of computation, it can be performed

off-line.

4.4.4 Learning more complex image transformations and general-

ized image attractors models

In this work we have explored an image processing task which can be easily formulated

as a learning problem by synthesizing training examples from abundantly available noiseless

natural images. Can this approach be extended to tasks in which the noise model has a more

variable or complex form? Our results on blind denoising, in which the amount of noise may

vary from little to severe, provides some evidence that it can. Preliminary experiments on

image inpainting are also encouraging.

That said, a major virtue of the image prior approach is the ability to easily reuse a

single image model in novel situations by simply augmenting the prior with the appropriate

observation model. This is possible because the image prior and the observation model are

decoupled. Yet explicit probabilistic modeling is computationally difficult and makes learning

even simple models challenging. Convolutional networks forgo probabilistic modeling and,

as developed here, focus on specific image to image transformations as a regression problem.
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It will be interesting to combine the two approaches to learn models that are “unnormalized

priors” in the sense of energy-based image attractors; regression can then be used as a

tool for unsupervised learning by capturing dependencies between variables within the same

distribution [96].
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Chapter 5

Binary Image Restoration of Electron

Microscopy

Abstract. Convolutional networks are trained using gradient learning to solve the problem

of binary image restoration of noisy images. For our training data, we have used electron

microscopic images of neural circuitry with ground truth restorations provided by human

experts. On this dataset, Markov random field (MRF), conditional random field (CRF), and

anisotropic diffusion algorithms perform about the same as simple thresholding, but superior

performance is obtained with a convolutional network containing over 34,000 adjustable

parameters. When restored by this convolutional network, the images are clean enough to

be used for segmentation, whereas the other approaches fail in this respect. We do not

believe that convolutional networks are fundamentally superior to MRFs as a representation

for image processing algorithms. On the contrary, the two approaches are closely related.

But in practice, it is possible to train complex convolutional networks, while even simple

MRF models are hindered by problems with Bayesian learning and inference procedures.

Our results suggest that high model complexity is the single most important factor for good

performance, and this is possible with convolutional networks.
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5.1 Introduction and related work

The problem of binary image restoration is defined as the recovery of a “true” binary image

from an analog-valued observed image that has been corrupted by some noisy process. The

result of image restoration can be used to aid human interpretation, or as the input to other

computer vision tasks such as recognition or segmentation.

We test the performance of our approach using a database of electron microscopic (EM)

images of neural tissue [18]. It is natural to divide the image pixels into two classes, intra-

cellular (“in”) or extracellular (“out”), which is a binary image restoration problem. In order

to establish ground truth, as well as provide data for training our convolutional networks,

humans manually restored the images by drawing boundaries between “in” and “out” regions.

To provide a performance baseline, we first tried restoring the images using simple thresh-

olding, and anisotropic diffusion followed by thresholding. Both methods yielded roughly

the same performance.

A convolutional network was then trained on the dataset. Although the network architec-

ture was very complex, containing over 34,000 adjustable parameters, we were able to train

it using gradient learning. After training, the network provided significantly more accurate

reconstructions on the test set than did thresholding.

For comparison, we also trained a Markov random field (MRF) model on the same

dataset. When first introduced to image processing, MRF models were fairly simple, with

just a few parameters that were adjusted by hand [34]. Recently there has been significant

interest in training more sophisticated MRF models using machine learning methods [91].

Drawing on this research, we trained our MRF using the pseudolikelihood algorithm to gen-

erate the noisy training image and the restored training image. Its performance on the test

set was not significantly better than simple thresholding.

Some researchers have argued that better results can be obtained from MRF models by

training them discriminatively, i.e. by directly optimizing the transformation from noisy to

restored images [38, 53]. This is called the conditional random field (CRF) approach. We

also trained a CRF on our dataset, but its performance on the test set was no better than

the MRF.
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To understand the failure of the MRF/CRF approach, we also trained a convolutional

network with a very simple architecture. This network could be viewed as mean field inference

for a CRF. We added more constraints to the architecture of the network to make it match

the CRF as closely as possible. When crippled in this way, the performance of the simple

network matched that of the CRF and thresholding.

We suggest that convolutional networks and CRFs should give equivalent performance

in principle, as long as the models have equivalent complexity. But our empirical results

suggest that a more complex model does better than simpler one. One might worry that a

highly complex model should suffer from overfitting of its numerous parameters. However,

even with over 34,000 free parameters, our complex convolutional network does not seem

to overfit—the gap between training and test error is fairly small. Therefore, high model

complexity appears to be an important prerequisite for good image restoration.

While convolutional networks and MRF/CRF models are roughly equivalent in principle,

in practice we feel that the former approach is superior because highly complex models can

be trained. In the MRF/CRF approach, even training simple models is problematic, because

of technical difficulties surrounding Bayesian learning and inference procedures.

We further tested the quality of restorations by using them to generate image segmen-

tations. Since each object within our data is a region of intracellular space separated from

all other objects by some extracellular space, a highly clean binary restoration should in

principle be sufficient for accurate image segmentation. We demonstrate that the restora-

tions given by convolutional networks can be used to segment the EM images, while the

other methods produce restorations that are so error-prone as to be essentially useless for

segmentation, at least by naive algorithms.

5.2 Serial Block Face-Scanning Electron Microscopy (SBF-

SEM)

A recently developed imaging technique, Serial Block Face Scanning Electron Microscopy

(SBF-SEM), is capable of generating nanoscale images of biological tissue over a field of
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view spanning up to potentially 1 mm, which is enough to begin reconstructing structures of

biological interest [18, 24]. A block of tissue is alternately imaged and sliced, yielding a 3d

image with a voxel resolution of 20-30nm in all three directions. Compared to other serial-

section imaging techniques, SBF-SEM generates stacks of 2d images in which successive

image slices are extremely thin and very well aligned. However, successful interpretation of

this data will require accurate and highly automated methods of image processing: a cube of

tissue 300 microns on a side could generate a trillion or more voxels of data, making manual

analysis so time consuming as to be impractical.

Restoration of SBF-SEM images poses a difficult computer vision problem due to several

issues: (1) small size of certain structures (few pixels in diameter at certain points), (2) dense

packing of structures, (3) local noise and ambiguity caused by imperfections in the staining

and imaging, and (4) variety of physical morphologies.

For the problem of neural circuit reconstruction, a successful image processing approach

will have to overcome such issues with extremely high accuracy in order to maintain an

adequate level of automation. Our basic approach is to restore the images by classifying

each voxel as being inside or outside a cell. Since cells are usually separated from each other

by some amount of “outside” space, an accurate restoration can provide a segmentation of

the dataset as well.

5.3 Creation of the training and test sets

A volume of rabbit retina was imaged at 26.2x26.2x50 nm3 resolution using the SBF-SEM

technique. We used a 20.96x15.72x5µm3 subset of this volume, yielding a 800x600x100

voxel dataset. The tissue was stained in a manner designed to make image analysis easier

for both humans and computers, by attenuating details within the image while enhancing

intercellular space [18]. The boundaries of neurons were traced manually by two humans.

They provided both object boundaries and consistent object identities from one slice to

the next. The tracers were instructed to be careful in drawing boundaries, and generated

training data at a rate of roughly 30,000 voxels/hour. An example of an image and its

tracing are shown in Figure 5-3. Tracings were captured at a spatial resolution much higher
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Figure 5-1: Results on voxel-wise restoration accuracy. The training set has 0.5 million
voxels, and the test set has 1.3 million voxels.

than the image resolution (the humans traced interpolated images) and were “restored” to an

inside/outside binary classification using a point-in-polygon method. Two restorations were

generated: one at the same voxel resolution as the images, and one at twice the resolution

of the images in each dimension (8 times the number of voxels).

The labeled data was split into two regions: a 0.5 megavoxel “training set” volume that

was used to optimize each algorithm, and a 1.3 megavoxel testing region that was used to

quantitatively evaluate performance. 75.6% of the voxels within a labeled bounding box

were classified as ‘inside’. The two human labellings disagreed on the classification of 9.38%

voxels within a 1 megavoxel region that was traced by both humans. While this may sound

significant, the great majority of inter-annotator differences were found in variations in the

exact placement of boundaries, rather than in disagreements over the true shape and identity

of objects (i.e., segmentation).

5.4 Results

5.4.1 Thresholding sets baseline performance

Since the “in” regions are usually light and the “out” regions are usually dark, it is natural to

attempt binary restoration by simply thresholding the image. The noisy training image was

thresholded at various levels to produce a binary restoration, which was compared with the

true restoration provided by a human expert. The value of the threshold minimizing error
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on the training set was found. Then the noisy test image was thresholded at this value and

the result was compared with the human restoration. As shown in Figure 5-1, thresholding

yielded a training error of 14.03% and a test error of 18.95%.

An obvious way of improving the simple thresholding algorithm is to preprocess the

noisy image by smoothing it. This can be done by linear filtering, but there are also more

powerful “edge-preserving” nonlinear techniques that smooth differences in image intensities

except at regions of very strong discontinuity. We used a 3d version of the Perona-Malik

anisotropic diffusion algorithm [80]. Binary restorations were produced by thresholding the

diffused images. The threshold, along with several parameters of the diffusion algorithm,

were optimized by grid search on the training set (see supplementary material for additional

details).

Thresholding the diffused images did not yield significantly better results than thresh-

olding the raw images. This may be due to the fact that the inside regions of cells were not

of uniform intensity. Although “in” regions were generally lighter than “out” regions, some

“in” regions were still fairly dark. Anisotropic diffusion smoothed the “in” regions but did

not change their average intensity. Therefore some “in” regions still fell below threshold and

were erroneously classified as “out.”

5.4.2 A complex convolutional network outperforms simple thresh-

olding

A convolutional network alternates between linear filtering and nonlinear transformations to

produce a transformed version of some input. The architecture consists of an input layer that

encodes one or more input images, an output layer that encodes one or more output images,

and various intermediate layers with “hidden" images that contain the internal computations

and representations of the algorithm. Each layer receives input from only the previous layer.

The activity of feature map a in layer k is given by

Ika = f

(∑
b

wkab ⊗ Ik−1
b − θka

)
(5.1)
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where the Ik−1
b are feature maps in the previous layer that provide input to Ika , and ⊗

denotes the convolution operation. The function f is a smooth nonlinearity; we use the

sigmoid f(x) = 1/ (1 + e−x). There is also a threshold parameter θka associated with each

feature map.

We trained a convolutional network of the architecture shown in Figure 5-2 on our dataset

of EM images. All filters and biases in the network were optimized using an online version of

the backpropagation algorithm (see supplementary material for further details). We used the

cross-entropy cost function as our optimization criterion. The network was trained for 100

epochs, where one epoch is defined as exposure to the entire training set of 0.5 megavoxels.

This took 48.7 hrs, using a parallel implementation running on 12 cpu-cores operating at

3Ghz. While this may seem significant, it should be noted that our network is a highly

complex model by the standards of the image processing field, having over 34,000 adjustable

parameters.

Since the output of the convolutional network is analog, it was thresholded to produce

a binary image restoration. A threshold value of 0.51 was chosen by optimizing restoration

on the training set. The training and test errors are shown in Figure 5-1. The convolutional

network roughly halved the error rate of simple thresholding or thresholded anisotropic

diffusion, which was a statistically significant improvement. Visual inspection also shows

obvious improvement (Figure 5-3).

5.4.3 Empirical comparison to MRFs

5.4.3.1 MRF performance is similar to thresholding

A conventional approach to image restoration is Bayesian inference and learning using

Markov random field (MRF) models [60]. We also applied this approach to our dataset. Let

y = {yi} denote the observed image and x = {xi} denote the true image, where i ranges over

all voxel locations. The joint density p(x, y) is specified by a prior distribution p(x) over the

true image x, and a noise model p(y|x) that describes how noisy images are generated from
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CN1

Figure 5-2: Complex convolutional network architecture (CN1). Between the input image
and output image are 5 hidden layers, each containing 8 images. All arrows represent ad-
justable 5× 5× 5 filters, and each node has an adjustable bias parameter. Because there are
six convolutions between the input and output, each voxel in the output image is a function
of a 25× 25× 25 patch of the input image. The total number of free parameters is 34,041.

true images. We considered a prior of the MRF form,

p(x) ∝ e
1
2

P
i xi(w⊗x)i+

P
i bxi (5.2)

where the xi are binary variables taking on the values ±1. Since the MRF is assumed to be

translation invariant and local, the interactions between voxels are described by a filter w

of size much smaller than the image. We used a 5× 5× 5 filter, which permits interactions

up 2 pixels away in all directions. The filter is invariant under reflections, wi = w−i, and its

central voxel is assumed to be zero (no self-interaction). We used the Gaussian noise model

p(yi|x) = p(yi|xi) ∝
∑

l={−1,1}

δ(xi, l)e
− (yi−ξl)

2

2σ2 (5.3)

where ξ±1 are the means of “in” and “out” voxels, and σ is their standard deviation.

The model was trained on the images by maximizing

log p(x, y) = log p(y|x) + log p(x) (5.4)
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Figure 5-3: Example of restoration results from the test set (generalization performance).
Although only a 2d region is shown here, all methods except thresholding utilize 3d compu-
tations.

with respect to the adjustable parameters, where y was the noisy SBF-SEM image and

x was the restored image from the training set. Since the two terms in the sum do not

share parameters, they can be optimized independently. The parameters ξ±1and σ of the

noise model were found by calculating the mean and standard deviation for “in” and “out”

voxels of the training data. The parameters of the MRF prior p(x) were determined by

pseudo-likelihood learning, which has become popular in MRF research [77, 60, 10, 38].

Once these parameters were trained, we attempted to restore the noisy test image by

maximizing the posterior distribution p(x|y) with respect to x, a procedure known as MAP

inference. The posterior distribution p(x|y) takes the same form as Eq. (5.2), except that b

is replaced by a quantity that depends on the noisy image y.

For MAP inference, we first attempted simulated annealing via MCMC sampling on

the posterior distribution. However, because of its slow convergence, we could not be sure
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whether the global optimum was attained. Better results were obtained with the min-

cut algorithm of Boykov and Kolmogorov (BK) [16, 17], which has become a popular

alternative to sampling. Although the BK min-cut algorithm is fast, it is rather memory-

intensive, storing an adjacency graph which in our case was 125 times the size of the already

large image. Therefore, the bounding box of the test image was split into four overlapping

regions, each of which contained roughly 1.6 million voxels. Then min-cut was run on each

region, and the results were stitched together. A further complication is that min-cut is only

guaranteed to give the global optimum when the interaction strengths w are nonnegative,

but pseudolikelihood training yielded interaction strengths of mixed sign. Nevertheless, min-

cut provided superior results to simulated annealing in practice, so its results are shown in

Figure 5-1.

The MRF model did not perform significantly better than simple thresholding. We can

only speculate about the reasons for the failure of sophisticated Bayesian methods. First, the

pseudolikelihood training procedure might have been problematic. Perhaps true maximum

likelihood learning of the MRF prior p(x) would yield better performance. In principle this

could be done using the Boltzmann machine learning algorithm [1], but this would have

required MCMC sampling, an extremely time-consuming learning procedure on a 0.5 million

voxel training region. Second, the min-cut inference procedure might not have given the

global optimum, since the interaction strengths were of mixed sign. Third, it might have

been misguided to maximize the joint probability p(x, y), a strategy known as generative

training. The desired computational task is not generating pairs of noisy and restored

images, but rather to transform a noisy image into a restored image. Therefore, it might

be better to directly maximize the probability p(x|y), a strategy known as discriminative

training. In fact, there is a great deal of current research on MRF models motivated by the

belief that discriminative training is superior to generative training.

5.4.3.2 CRF performance is similar to thresholding

Discriminatively trained MRFs are sometimes called conditional random fields (CRFs) [54,

53, 38, 28]. Some have argued that CRFs are superior to MRFs for image analysis [38, 53, 84].

To test this claim, we trained a CRF model of the form
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CN2

Figure 5-4: Simple convolutional network with architecture matched to the MRF model used
in this paper. A single 5× 5× 5 filter and bias are repeated five times. Each layer receives
input from the raw image, from which an offset parameter is subtracted. The filter, the bias,
and the offset give 127 total adjustable parameters.

p(x|y) ∝ e(β[
1
2

P
i xi(w⊗x)i+

P
i xi(yi+b)]) (5.5)

We attempted both pseudolikelihood and zero temperature Boltzmann machine learning,

which is valid in the limit β → ∞. The latter gave superior results. In this approach,

min-cut was used to find the global optimum x∗ of the CRF at each iteration. Then the

contrastive update

∆wj ∝
∑
i

(xi+jxi − x∗i+jx∗i ) (5.6)

was made, where x denotes the human-restored image. A similar update rule was used for

the offset parameter b in Eq. (5.5). Since min-cut is only guaranteed to work for nonnegative

filters, whenever the contrastive update drove a filter coefficient negative, it was reset to a

value of zero. Once the training had converged, min-cut was used to restore the test image.

Again, the test error was not significantly better than that of simple thresholding, as shown

in Figure 5-1.

5.4.4 Failure analysis of MRFs

We were surprised that neither the MRF nor CRF models were significantly better than

thresholding. How could these empirical results be explained? To explore this issue, we

decided to train a convolutional network that was much simpler than the one of Figure 4-

1. Figure 5-4 depicts the architecture of CN2. We chose the architecture because it can

be viewed as mean field inference on the CRF of Eq. (5.5). Additionally, we restricted the

weights in w to be positive, to match the constraint in the min-cut based Boltzmann learning
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CN2 Filter

CRF Filter

Figure 5-5: Filters learned by CN2 and the CRF. Each box displays one layer of weights.
Green and red boxes signify positive and negative weights, respectively, while size indicates
strength. Our results show that the negative surround in CN2 is important for good image
restoration. Both the CRF and CN2+filter were constrained to be nonnegative, which yielded
poor performance.

procedure employed for the CRF.

The performance of this network, called CN2+, was nearly identical to the CRF in perfor-

mance (Figure 5-1). When inspected visually, the CN2+and CRF restorations were similar

(Figure 5-3). This is consistent with the idea that convolutional networks and CRFs are

closely related to each other. When the models are exactly matched, they should yield

roughly the same performance.

But we hypothesized that a more complex model should yield better performance than

a simpler model. To test this idea, we relaxed the non-negativity constraint of CN2+. This

network, called CN2, was significantly better than thresholding, the MRF, and the CRF, but

not as good as the complex CN1 network of Figure 4-1. The weights of the CN2 and the CRF

are compared in Figure 5-5. CN2 has a positive center and a negative surround, suggesting

that CN2 outperforms CN2+ and the CRF because of its negative filter coefficients. This

example shows that a seemingly trivial increase in the representational capability of a model

can lend it superior performance.

5.5 Learning super-resolution restoration by upsampling

The nature of SBF-SEM images enables a simple approach to image segmentation based on

binary image restoration. We tested this by restoring the images and then using a connected
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first hidden layerinput image

Figure 5-6: The first layer of CN3, a super-resolution convolutional network, produces a 2×
oversampled restoration relative to the input image by convolving 8 filters on 1 location,
which are interleaved to form a single, oversampled image. This is illustrated here for the
2d situation, in which there are 4 filters for 1 location.

components algorithm to produce distinct image domains. Although more sophisticated

segmentation algorithms might be considered, this simple procedure establishes a lower-

bound on relative segmentation performance between the restorations.

A complication in this strategy arises when two objects are so close together that a binary

restoration contains no boundary between them. In this case, even a completely accurate

restoration may merge the two objects under a connected components criteria. Thus, we

generate restorations at a super-sampled resolution twice that of the original images. If a

human expert has decided that two objects are distinct despite the lack of a local boundary,

the super-sampled representation allows enough room in the image space for there to be

out-voxels between the objects. This was confirmed by segmenting the supersampled human

restorations using the connected components criteria.

A convolutional network, CN3, was designed to produce supersampled restorations from

the input images. The first layer of the network performs an upsampling by having 8 filters

that each look at the same location in the input image, but output a different voxel within

the 2× 2× 2 cube that each input position now generates (Figure 5-6). Upsampling is then

followed by an additional 4 layers of processing.

For the MRF and diffusion results, we manually upsampled the images using a linear

interpolation scheme (other interpolation methods were also tested). However, the simplicity

of convolutional networks allows us to easily learn the transformation from a “1×” image to

a “2×” upsampled restoration.

The results clearly demonstrate the benefit of the convolutional network approach (Figure

72



5-7). The restoration from MRF and diffusion based methods contained many low-level

errors, particularly in difficult image locations at which two objects were likely to merge

together or one object was likely to break apart. Consequently they produced segmentations

that were basically useless, even on the training set. The thresholded diffusion segmentation

lacks many objects and the shapes of those that are present are severely distorted. As for

the CRF, almost all objects were merged together into one large blob, due to inadequately

preserved object boundaries in the CRF restoration. In contrast, the convolutional network

restoration has far fewer errors and thus the segmentation is far more reliable, although not

perfect.

5.6 Discussion

5.6.1 Convexity comes at the cost of representational power

In general, the problem of MAP inference for the MRF model (5.2) is an NP-hard combi-

natorial optimization. But for the special case of nonnegative interaction strengths, MAP

inference is equivalent to a network flow problem, which is a convex optimization [35]. This

realization has led to a great deal of exciting progress in the form of min-cut/max-flow al-

gorithms for MAP inference [16, 17]. However, researchers may have overlooked the fact

that the nonnegativity constraint might compromise the representational capability of their

MRF models. In our empirical tests, the CRF model performed no better than the naive

algorithm of thresholding, and worse than CN2, which can be viewed as an approximate in-

ference algorithm for the CRF. The reason for the inferior performance of the CRF appears

to be the nonnegativity constraint, which was imposed as a requirement for the min-cut

algorithm. Our evidence for this comes from the fact that the performance of CN2+,which

was just like CN2 but with a nonnegative filter, dropped to the same level as the CRF and

thresholding. Although negative interaction strengths are important for good performance

(Figure 5-5), they are not allowed if convex optimization methods are used. More gener-

ally, while researchers may be attracted by the prospect of efficient algorithms for convex

optimization, they should also be wary that convexity could come at a cost.
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Convolutional networks avoid many of the technical problems of MRFs As a

representation for image processing algorithms, convolutional networks have many of the

same virtues as MRFs. Mathematically, the two approaches are closely related: certain con-

volutional networks can be viewed as mean field inference for discriminatively trained MRFs.

However, convolutional networks avoid the technical problems of Bayesian learning and in-

ference that were described above. The gradient of the objective function for learning can be

calculated exactly, while Bayesian methods of calculating the gradient of MRF likelihoods

rely on approximations.

Convolutional network learning is founded not on Bayesian principles but rather on the

principle of empirical error minimization [106]. This principle is simple and direct: find

a member of the parametrized function class defined by convolutional networks of a given

architecture by minimizing error on the training set.

The primary drawback of empirical error minimization is the requirement of databases

with labeled examples. Creation of such databases may require substantial labor, particularly

in image processing applications. However, as the goal of many low-level vision algorithms

lack a robust mathematical specification, the creation of labeled datasets may be the only

way to rigorously evaluate and optimize algorithms [68]. Moreover, recent advances in

unsupervised learning in neural networks may dramatically reduce the amount of labeled

data that is required to achieve good generalization performance [41, 74].

5.6.2 Pseudo-likelihood can be a poor approximation

True maximum likelihood learning for MRF models depends on MCMC sampling methods.

Because these methods can be time-consuming, researchers have looked for approximate

methods that are faster, such as the popular pseudolikelihood (PL). But when we used PL

to train a CRF, the results were so poor that they were not worth reporting. This is likely

because the PL procedure trains the CRF to predict the value of a single output voxel

from the values of other output voxels. Evidently this task is not so relevant for predicting

output voxels based on the input image. There are other approximate learning procedures,

such as contrastive divergence [77, 41], but they are not guaranteed to give good results

either. For the simple MRF model (5.2) one can imagine that MCMC sampling methods
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would eventually work, given enough computational time. But ML training of an MRF with

complexity comparable to CN1 (Figure 4-1) would be even more difficult. One would be

forced to use approximations of questionable accuracy, much like pseudolikelihood. In short,

Bayesian inference and learning procedures are beset with technical difficulties. One can

argue about whether it is worth putting in the effort to surmount these difficulties, but it is

difficult to deny that they exist.

5.6.3 Discriminative training is not always better than generative

training

In our particular application, a discriminatively trained CRF did not give better results

than a generatively trained MRF; both were about the same as thresholding. A possible

explanation is that our CRF/MRF model is such an impoverished representation that it

does not matter whether discriminative or generative training is used (though it should be

noted that the use of a learned 5 × 5 × 5 filter makes our CRF/MRF model richer than

many studied in the literature). Perhaps if a more complex CRF/MRF model were trained,

there would be more of a difference between discriminative and generative training, but this

speculation remains untested.

A convolutional network makes use of context to do image processing As men-

tioned in the introduction, our work is closely related to neural networks that operate on

image patches, which have been studied extensively [27]. A convolutional network can be

regarded either as a generalization or as a special case of an image patch network. Both

viewpoints will be described briefly here, starting with the former.

The filters of CN1 were all 53 (Figure 4-1). If the filters were reduced in size to 13 after

the first 53 layer, then CN1 would be equivalent to a neural network that is applied to each

53 image patch. This means that CN1 can be seen as a generalization of an image patch

network.

But in fact, each 53 convolution in CN1 increases the size of the input patch that is “seen”

by a voxel. In the final output layer, a voxel depends on a 253 patch of the input image,

because of the six intervening convolutions. Consequently, CN1 uses a much larger context
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Figure 5-7: Example of segmentation results on the test set. Diffusion and CRF segmenta-
tions are poor due to many errors in the restoration. CN3’s superior output (“CN3 inout”
shows pre-thresholded restoration) provides a more reliable segmentation.

than 53 to compute the value of each output voxel.

A convolutional network makes efficient use and reuse of computation Alter-

natively, CN1 can be seen as a special case of a neural network that takes 253 patches as

input, in which the synaptic weights are constrained to have a convolutional structure. This

constraint makes CN1 highly efficient in its use of computational resources. Consider two

253 image patches that are displaced by a single voxel. If a general neural network were

applied to both patches, the computations would be completely separate. But for CN1,

most computations are shared by neighboring image patches, suggesting that convolutional

networks are highly efficient algorithms for image processing.

5.7 Specific Methods

5.7.1 Evaluation Methodology

Training set voxel-wise restoration accuracy was found by measuring the percentage of voxels

that agreed with a binary human classification. For the convolutional networks, we used the

restoration provided by the training epoch at which convergence was observed (i.e., little to
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no fluctuation in training error for several successive epochs). For methods whose outputs

are real-valued, such as the convolutional networks or diffusion, a threshold was applied to

produce a binary classification. The threshold value was chosen to maximize accuracy on

the training set.

Testing set performance was measured by preserving all parameters, threshold values,

etc., from training set optimization and then measuring voxel agreement on a separate part

of the image that had been manually classified by the same human as for the training set.

Individual samples in voxel-wise accuracy measurement cannot be considered to truly

satisfy independent and identically distributed (IID) assumptions due to correlations result-

ing from a contiguous image space. Therefore, the training and test areas were divided into

ten non-overlapping regions, and accuracy was then measured within each region. The stan-

dard error of measurement was then calculated from the variance in accuracy among these

regions. Although these image regions are not truly statistically independent, we expect the

correlations in the accuracy measurements of these regions to be relatively weak, so that the

standard error of measurement is a reasonable estimate of the error bar.

5.7.2 Procedures

5.7.2.1 Convolutional networks

The filters w and thresholds θ are free parameters of the algorithm that are chosen by

gradient learning, using a version of the backpropagation algorithm adapted to multi-layer

convolutional networks [55]. We used the cross-entropy cost function as our optimization

criterion.

A stochastic, online gradient learning procedure was found to be more efficient than batch

training (see [13] for an interesting study of the virtues of online learning methods). Each

training epoch consisted of a random sequence of 6 × 6 × 6 cubes chosen from the training

set. The network parameters were then updated after being evaluated on each cube in the

sequence. This learning procedure was highly reliable; larger cube sizes decreased training

speed but did not improve training quality. The learning rate of each free parameter was

controlled by a stochastic approximation to the diagonal of the hessian matrix [57].
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Before learning, a weight in filter wkab was initialized to a random value chosen from a

normal distribution with zero mean and a variance inversely proportional to the square root

of the number of voxels in the filter (e.g., 1√
125

for a 5 × 5 × 5 filter). Although such details

were not critical to the success of the learning procedure, in practice they were found to

speed convergence rates.

5.7.2.2 MRF/CRF Models

Inference

Inference with our MRF and CRF models was done by maximizing the posterior distribution

p(x|y) with respect to x, which is known as the maximum a posteriori (MAP) estimate.

For finding the MAP with min-cut [16, 17] we constructed a graph with the nonnegative

adjacency weights given by w and source/sink connections given by max{0,+b̃i},max{0,−b̃i}

respectively, where

b̃i = b+
ξ1 − ξ−1

2σ2

(
yi −

ξ1 + ξ−1

2

)
(5.7)

for the MRF; and

b̃i = yi + b (5.8)

for the CRF. To compute the cut we employed the code provided with [16].

We also tried simulated annealing with a fast annealing schedule for finding an approx-

imation to the MAP solution [60, 47]. At each time step, the new value for a randomly

chosen variable xi was sampled from the conditional distribution

P (xi|x−i, yi) ∝ exi({w⊗x}i+b̃i)/T (5.9)

where x−i denotes all variables except for xi, and T is the temperature. The initial value for

the temperature was T = 10. This value was decreased by 1/20 each timestep for 80 steps.

The MAP estimated by simulated annealing was usually very similar to the MAP computed

with min-cut.
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MRF Learning

The updates for maximum likelihood estimation of the parameters w and b for the prior are

given by Boltzmann machine learning updates [1],

∆wj ∝

〈∑
i

xi+jxi

〉
0

−

〈∑
i

xi+jxi

〉
∞

(5.10)

and

∆b ∝

〈∑
i

xi

〉
0

−

〈∑
i

xi

〉
∞

(5.11)

where 〈·〉0 is the average with respect to the empirical distribution given by the data and

〈·〉∞ is the average with respect to the model distribution given by the parameters w and

b. Because computing the average with respect to the model distribution requires sampling

the entire configuration space it is intractable for the dimensions of our data. We therefore

applied pseudolikelihood learning [10] which estimates the model distribution average by

the mean field generated by the data,

〈∑
i

xi+jxi

〉
∞

≈

〈
1

2

∑
i

(xi+jσi + σi+jxi)

〉
0

(5.12)

and

〈∑
i

xi

〉
∞

≈

〈∑
i

σi

〉
0

(5.13)

where σi = tanh ((w ⊗ x)i + b) is the conditional P (xi|x−i, yi).

We ran the update 400 times with a learning rate of 0.1.

CRF Learning

The Boltzmann updates for CRF learning are the same as for the MRF. However, in CRF

learning we replaced the model distribution average by the zero temperature limit computed

by the min-cut algorithm. We used 400 updates and a learning rate of 0.01.
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5.7.2.3 Anisotropic diffusion

We applied a 3 dimensional version of Perona-Malik anisotropic diffusion to the image, that

iterates the following discretized update to image x at each position i [80] :

X t+1
i = X t

i +
λ

|ηi|
∑
j∈ηi

g(∇X t
i,j)∇X t

i,j (5.14)

where ηi denotes a neighborhood for pixel at position i, t indexes discrete time steps, λ is a

diffusion rate, ∇X t
i,j = X t

i −X t
j and g is the edge-stopping function:

g(x) =
1

1 + x2

K2

. (5.15)

Parameters λ,K, the number of iterations, and the threshold value were optimized by grid

search to maximize classification accuracy on the training set. We also tried coherence-

enhancing diffusion [108], which on this dataset yielded very similar results to Perona-Malik.

5.7.2.4 Segmentation

Segmentations were produced from binary restorations using a simple 3d connected-components

algorithm: the restoration was converted into an undirected graph, in which each voxel of

the image is a node in the graph and edges are inserted between two nodes when their cor-

responding voxels are (1) direct neighbors along any of the principle axes in the 3d image

space (i.e., a 6-connected neighborhood) and (2) share the same binary restoration value.

Segmented domains are then produced by searching for connected components of this graph.
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Chapter 6

Digital Topology and Image

Segmentation

Abstract. A major claim in this thesis is that by adopting concepts from digital topology,

we can rigorously address two difficult problems in the field of image segmentation:

1. Relating topological differences between two segmentations to an underlying pixel or

voxel representation (Chapter 7).

2. Machine learning of boundary detection in a manner that focuses the classifier on

topological rather than geometric accuracy (Chapter 8).

There is a history of interaction between digital topology and computer vision; indeed,

substantial theoretical progress has been motivated by the practical importance of digital

image processing. This interaction has largely occurred within the medical image processing

realm, in which topology is used as a global constraint in non-learning based segmentation

techniques [95].

In this chapter, we first present basic concepts in the field of digital topology as a brief

review of prior work. We then use these concepts to introduce a novel classification scheme

that is able to characterize the precise nature of a topological change caused by flipping a

single pixel of a digital image. In Chapter 8 we show how this classification scheme can

provide even more flexibility to the general topological learning scheme we later introduce.
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6.1 Fundamental concepts

Topology is a major and unifying branch of mathematics that studies properties of objects

that are invariant under certain kinds of transformations. Informally, the goal of a topological

characterization is to abstract away from the geometry of objects to characterize higher order

properties that are preserved under transformation. Various levels of topological equivalence

can be defined depending on the chosen set of continuous transformations. Two major

concepts are homeomorphism and homotopy.

Definition 6.1. Homeomorphism

A function f : X → Y from a topological space X into a topological space Y is called a

homeomorphism if it is a continuous, one-to-one transformation with a continuous inverse

f−1.

Note that homeomorphism is a relation between two topological spaces. This is contrast

to homotopy, which is defined as a relation over two functions :

Definition 6.2. Homotopy

A homotopy between two continuous functions f, g : X → Y is defined to be a continuous

function H: X × [0, 1] → Y such that, for all points x ∈ X, H(x, 0) = f(x) and H(x, 1) =

g(x). If two maps f and g have some homotopy connecting them, then f and g are homotopic

(or f ' g).

Given two topological spaces X and Y , we say they are homotopy equivalent or of the

same homotopy type if there exist continuous maps f : X → Y and g : X → Y such that

g ◦ f is homotopic to the identity map on X and f ◦ g is homotopic to the identity map

on Y . Homotopy is a more general notion than homeomorphism. For example, a solid ball

is homotopy equivalent to a single point, even though they are not homeomorphic1. Hence

the precise meaning and implications of “topological equivalence” depends on whether two

spaces X and Y are required to share the same homotopy type, or be homeomorphic, iso-

topic, etc. We will be explicit about which topological properties are preserved when we
1Spaces that are homotopy equivalent to a single point are called contractible.
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refer to a procedure as “topologically preserving.” In general, however, we will be consid-

ering homotopically preserving transformations which will allow, for example, objects to be

contracted and thus lacking the crucial one-to-one bijective property of homeomorphisms.

6.1.1 Digital images

In this thesis we are interested in digital topology, which develops the concepts of continuous-

space topology to the case of digital images. This is not trivial, as care has to be taken to

establish definitions in the digital space such that meaningful and consistent notions of

topological space and topologically-preserving deformation can be defined.

A digital image exists in the digital plane, which is the set of lattice points in Euclidean

n-dimensional space. Z is the set of integers and thus Z2 is the 2d digital plane and Z3 is the

3d digital plane. An element of Z2 is a point p = (x, y) ∈ Z2 where x and y are both integers

that are the coordinates of p. Similarly an element of Z3 is a point p = (x, y, z) ∈ Z3.

A digital image contains a finite set W ⊂ Zn and its infinite complement W = Zn\W .

Elements of W are points p ∈ Zn, which are collectively referred to as the foreground of the

image. The infinite set W is the background of the image.

We thus define an n-dimensional binary image as a quadruple (Zn, κ, κ,W ) where κ and

κ are respectively adjacency relations used for W and W . We discuss adjacency relations

in the following section. However, we note that another interpretation of the digital plane

that will be useful is to interpret the coordinates of Zn as the vertices of an n-dimensional

graph, where the edges between vertices are given by the neighborhood relationship between

points.

6.1.2 Adjacency, connectivity, and components

We are now interested in establishing a notion of an object in the plane that will be a

collection of foreground or background points. In order to group points together, we require

some notion of connectivity between points that will specify the conditions under which two

points will be considered connected. In digital images, it is natural to consider translation-

invariant definitions based on proximity within the digital plane, also known as adjacency
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N4(3,3) N8(3,3)

Figure 6-1: Adjacency in 2d. Open circles are background, and filled circles are foreground.
The black filled circles are in the neighborhood of the red filled circle at (3, 3), depending on
whether 4-adjacency or 8-adjacency is used.

criteria. We define the neighborhood Nk(p) of a point p as the set of all points that are

k-adjacent to p.

In the 2d plane, two points are 4-adjacent if their coordinates differ by at most 1 summed

over all directions (N4(i, j) = {(i± 1, j), (i, j ± 1)}) and 8-adjacent if their coordinate differ

by at most 1 in each direction: (N8(i, j) = N4(i, j) ∪ {(i± 1, j ± 1)}). These are illustrated

in Figure 6-1.

In 3d images, we are generally interested in 6-adjacency (N6(i, j, k) = {(i±1, j, k), (i, j±

1, k), (i, j, k ± 1)}), 18-adjacency (N18(i, j, k) = N6(i, j, k) ∪ {(i, j ± 1, k ± 1), (i ± 1, j, k ±

1), (i± 1, j ± 1, k)}) and 26-adjacency (N26(i, j, k) = N18(i, j, k) ∪ {(i± 1, j ± 1, k ± 1)}).

In practice, two adjacency relationships are used in a digital image: one for the foreground

(κ), and another for the background (κ). The reasons for this are discussed in the next

section; a typical choice, however, is (κ, κ)=(4,8) in 2d or (κ, κ)=(6,26) in 3d.

A κ-path γ is a sequence of points x0, x1, ..., xk where xi is κ-adjacent to xi+1 for i =

0, 1, ..., k − 1. The path is closed if x0 = xk.

Having established the digital image space, points within the space, and a notion of

connectivity specified by adjacency relationships, we define a set S ⊂ Zn as κ-connected if S

cannot be partitioned into two subset are not κ-adjacent to each other. A κ-component of a

set S is a non-empty subset of S that is not κ-adjacent to any other point in S. Equivalently,

an object S is κ-connected if for any two points x, y ∈ S, there is a κ-path γ, γ ⊂ S, from x

to y.

A digital curve C is a finite, non-empty, κ-connected subset of Zn in which each element

has exactly two neighbors in C [88, 15]. Then we say that two digital curves C and D
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differ by a local deformation if every element of C coincides with or is a neighbor of an

element in D, and vice-versa. These definitions can be used to develop a rigorous definition

of digital homotopy as a sequence of local deformations with certain constraints, as developed

in [14, 15, 88].

An object is simply connected if every possible path γ, γ ⊂ S, can be reduced by a

sequence of local deformations to a single point. There is a hole in S if there is a closed

path contained in S that cannot be locally deformed in S to a single point (such paths can

exist in either component of W (κ-paths) or any components of W , excluding the infinite

background component).

The objects in W are the set of κ-connected components of W . The background is the

unique infinite κ-connected component of W . Any other κ-connected component of W is

called a cavity inW . In both 2d and 3d cavities are always regions in the sense of a bounded

set of points. Moreover, in 2d a hole is a cavity and thus some well-defined set of points.

However in 3d the situation for holes ( sometimes called tunnels or handles) is more subtle.

For example: a solid torus has one hole (any closed κ-path that loops around the interior of

the torus) and zero cavities. Thus the hole itself is the missing “patch” within the torus, even

though it is detect by a path in the interior of the torus. A hollow torus has one cavity and

two holes (one given by closed κ-path along the surface of torus that loops around the entire

object, and another formed by closed paths that form a loop around the interior cavity), and

a hollow ball has zero holes and a single cavity.

6.1.3 Complementary adjacency and Jordan curves

In Euclidean topology, the Jordan curve theorem states that every non self-intersecting loop

(also called a Jordan curve) in the plane divides the plane into an “inside” and “outside”

region, and any path drawn from a point in one region to a point in the other region must

intersect the curve at some point. This statement seems fairly obvious in the case of contin-

uous space, but is non-trivial to prove, especially for curves that are nowhere differentiable

such as the Koch snowflake.

We would like a concept of a Jordan curve in digital space for which a “digital” Jordan

curve theorem can be stated. To understand the importance of this guarantee, imagine
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Figure 6-2: Illustration of two kinds of connectivity paradox in 2d when κ = κ = 8 for the
image on the left, and κ = κ = 4 for the image on the right.

if it did not exist: some closed curves would have a connected path from the background

component into the interior of an object. Hence the notion of a boundary would be ill-

defined. The ability to formulate a digital Jordan curve theorem depends crucially on the

choice of adjacency used to define connectivity, and will thus impose restrictions on the

choice of adjacency we are able to use in practice.

To illustrate these issues, consider the 2d digital images in Figure 6-2. Open circles

correspond to background points and filled circles correspond to foreground points. For the

left figure, if 8-adjacency is used for both foreground and background points (κ = κ = 8),

then there is a single foreground component and a single background component because

the middle background point is 8-adjacent to the rest of the background. Hence the 8-

adjacent non self-intersecting curve in foreground space fails to divide the plane into an

inside and outside region. For the figure on the right, assume that 4-adjacency is used

for both foreground and background points (κ = κ = 4); there will be one foreground

component and three background components, because the two interior background points

are not adjacent to each other. Thus the Jordan curve criteria are again violated, as a single

non-intersecting curve has divided the plane into two disconnected inside regions.

Fortunately there is a simple resolution to this problem, and that is to use distinct

adjacency criteria for foreground and background components. In 2d, we require that (κ, κ) =

(4, 8) or (κ, κ) = (8, 4); we refer to these compatible pairs as complementary adjacencies.

For such adjacencies, it is possible to state the 2d Jordan curve theorem:

Theorem 6.3. 2d Digital Jordan Curve Theorem. Given a κ-curve C ⊂ Z2 with at least

four points if κ = 8 and at least eight points if κ = 4, then Z2\C consists of two κ-connected

sets. Exactly one of these sets is finite and is called the interior with respect to C and the
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other is infinite and is called the exterior with respect to C.

Proofs of this theorem and similar theorems for compatible adjacencies in 3d such as

(κ, κ) = (6, 26) can be found in [50, 52, 51].

6.1.4 Topology preservation and simple points

A major practical goal of digital topology is to identify methods of altering the geometry of

objects within a digital image without altering any topological properties of the image. Of

course, this requires us to specify what we precisely mean by the topology of a digital image.

In 2d, a highly useful definition of topological equivalence is given by considering whether

two images have isomorphic adjacency trees [89]. For some image I, an adjacency tree is

constructed with the infinite background component B at its root and then considering the

nested and alternating relationship of finite foreground objects and holes (with the leaves of

the tree corresponding to components that have no holes). Note that this is a different notion

of equivalence than simply considering those images which have an equivalent number of

objects and holes to be topologically equivalent. In particular, one can consider examples of

2d images which have an equivalent number of holes and objects but cannot be continuously

deformed from one to the other while preserving topology during the deformation (consider

an image X with two concentric circles and an image Y with two independent circles; X and

Y have the same number of holes (two) and objects (two), but difference adjacency trees).

The topology of 3d binary images is considerably more complicated than that of 2d

spaces. Hence topological equivalence in 3d space has taken on various definitions in the

literature, with most authors simply committing to the number of components, holes, and

tunnels as the required equivalence between topologically equivalent 3d images [67].

We would now like to identify points in a digital image that can be modified (i.e., “flipped”

from foreground to background or vice versa) without altering the numbers of components,

cavities, and in the case of 3d images, tunnels. More precisely, given a set W ′ obtained from

W by flipping p, a point p is κ-simple (or more commonly referred to as a simple point) if

and only if:

• W ′ has the same number of κ-connected components (objects in W ′).
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• W ′ has the same number of κ-connected components (cavities in W ′).

• W ′ has the same number of handles (only applicable to 3d images).

Thus by definition flipping a “simple” point is a topology-preserving operation and flipping

a “non-simple” point is not topology preserving. For 2d topology, it has been proven that

not only are altering simple points topology-preserving, but that the converse is true: two

images that are topologically equivalent in the sense of sharing isomorphic adjacency trees

can always be transformed into each other by a sequence of changes in the values of simple

pixels [89].

Although flipping a single simple point is guaranteed to preserve topology, it is not true

that simultaneously flipping and arbitrary set ofmultiple simple points will preserve topology.

Hence, many algorithms that deform digital images by altering simple points instead perform

a sequence of flips, where any particular flip is made at a point that is simple relative to

the current image in the sequence. Since all flips preserve topology, such a sequence of flips

is a topology-preserving deformation of the original image (sometimes called a homotopic

deformation [95]). There has also been some work on explicitly identifying sets of points

which can be flipped simultaneously without altering topology [78, 79].

In practice, an issue of considerable importance is the efficient characterization of a

particular point within a digital image as being simple or non-simple. Fortunately, this can

be done locally for both 2d and 3d images: a point p is simple if and only if flipping this

point does not change the number of foreground components in Nκ(p) and the number of

background components in Nκ(p). Several other even more efficient methods of identifying

2d and 3d simple points have been discovered [52, 8].

Bertrand has introduced a method for identifying simple points that relies on the very

useful concept of topological numbers [7, 8]. The topological number Tκ(p,W ) is the number

of foreground connected components in the neighborhood of p (i.e., the 3× 3 patch centered

at p in 2d, and the 3×3×3 patch centered at p in 3d) under κ-adjacency, and the topological

number Tκ(p,W ) is the number of background connected components in the neighborhood

of a point p under κ-adjacency. A point p is κ-simple if and only if Tκ(p,W ) = Tκ(p,W ) = 1,

which is proved in [8].
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6.2 Classification of non-simple points

Non-simple points are those elements of a binary image which, when flipped either from

foreground to background or background to foreground, somehow alter the topology of the

image. As established in Section 6.2, by “change topology” we mean alter the number of

components, holes, or cavities. Although straightforward procedures exist to check whether

a particular location is simple or not, it will also be useful to be able to characterize the

type of topological change associated with a particular non-simple point. In other words, we

would like to know which topological quantity is affected by flipping a particular non-simple

point.

6.2.1 Identifying addition and deletion of objects using topological

numbers

Certain cases can be identified based on topological number alone (see Section 6.1.4 for a

discussion of topological numbers). Let (κ, κ) be some complementary adjacency relation in

either a 2d or 3d space.

Theorem 6.4. Topological number characterization of object deletion. Suppose q is an

element of the foreground W . Then flipping q will result in a κ-component deletion if and

only if Tκ(q,W ) = 0.

Proof. The proof (given in [8]) is simple: suppose that q is flipped, then a connected

component of W is removed if and only if q is an isolated point, in which case Tκ(q,W )=0.

Conversely suppose Tκ(q,W ) = 0, then q must be an isolated point with respect to the

foreground. Therefore flipping q results in an object deletion.

Note that object deletion is only one way to decrease the number of connected compo-

nents. The merging of two existing components is the other way; we will discuss this case

shortly.

A similar statement can be offered for object addition:

Theorem 6.5. Topological number characterization of object addition. Suppose q is an
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element of the background W . Then flipping q will result in a κ-component addition if and

only if Tκ(q,W ) = 0.

Proof. Suppose that q is flipped, then a connected component W is added if and only if q

is an isolated point, in which case Tκ(q,W ) = 0. Conversely suppose Tκ(q,W ) = 0, then q

must be an isolated point with respect to the foreground. Therefore flipping q results in an

object addition.

Again, we note that object addition is only one way to add to the number of components.

Splitting an existing object into two is the other.

Topological numbers can also be used to identify the creation and deletion of cavities,

using a similar criteria based on the “background” topological number. Recall that the

background is the unique infinite κ-connected component of W , and by definition any other

κ-connected component of W is called a cavity in W .

Theorem 6.6. Topological number characterization of cavity deletion. Suppose q is an

element of the background W . Then flipping q will result in a κ-component (cavity) deletion

if and only if Tκ(q,W ) = 0.

Proof. Suppose that q is flipped, then a connected component ofW is removed if and only if q

is an isolated background point, in which case Tκ(q,W )=0. Conversely suppose Tκ(q,W ) = 0,

then q must be an isolated background point. Therefore flipping q results in deletion of a

cavity.

Theorem 6.7. Topological number characterization of cavity addition. Suppose q is an

element of the foreground W . Then flipping q will result in a κ-component (cavity) addition

if and only if Tκ(q,W ) = 0.

Proof. Suppose that q is flipped, then a connected component inW is added if and only if q is

an isolated background point, in which case Tκ(q,W ) = 0. Conversely suppose Tκ(q,W ) = 0,

then q must be an isolated point with respect to the background. Therefore flipping q results

in the creation of cavity.

As in the case of foreground components, deletion/addition of cavities by flipping isolated

background points is not the only way in which the number of background components can be
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changed. A cavity can be merged (with other cavities or the infinite background component)

and split into two cavities by a single flip of some pixel q. However in such cases it will not

be true that Tκ(q,W ) = 0.

We note that if Tκ(q,W ) = 0 then it follows Tκ(q,W ) = 1 and vice versa. This

is because an isolated foreground (background) point is clearly surrounded by a back-

ground (foreground), which under normal adjacency relations for either κ or κ will be con-

nected as a single component within such a neighborhood itself. Finally we recall that if

Tκ(q,W ) = Tκ(q,W ) = 1 the point is simple and thus causes no topological change when

altered. Therefore, we have a characterization for all points for which Tκ(q,W ) ∈ {0, 1} and

Tκ(q,W ) ∈ {0, 1}.

6.2.2 Identifying splits, mergers, and hole addition/deletion using

extended topological numbers

Topological numbers as originally defined are insufficient to characterize the precise na-

ture of topological changes caused by flipping non-simple points for which Tκ(q,W ) > 1

or Tκ(q,W ) > 1 . For example, flipping a pixel q from background to foreground when

Tκ(q,W ) > 1 clearly implies a topological change since q is non-simple; however, the nature

of this change depends on non-local properties that are not captured by the local neighbor-

hood from which Tκ(q,W ) is computed. We need access to global connectivity information

that would enable us to distinguish between, for example, merging two objects versus cre-

ating a hole. Global connectivity is well defined over the image, as discussed in Section 6.1

and Section 6.2, however the binary image itself does not represent such information directly.

Hence, we will need to consider additional measures beyond topological numbers that take

into account this global information.

A useful concept for this purpose introduced by Segonne [94] is the extended topological

numbers of some point q: T+
κ (q,W ) and T+

κ (q,W ). We define Cκ(q,W ) to be the set of

κ-connected components of W\{q} that are κ-adjacent to q. Then T+
κ (q,W ) = |Cκ(q,W )|

and T+
κ (q,W ) = |Cκ(q,W )|. In other words, these quantities count the number of unique

foreground and background connected components in the local neighborhood of q, but with
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q s

Figure 6-3: Under (κ, κ) = (4, 8) adjacency, flipping the foreground pixel q in the left image,
for which Tκ(q,W ) = 2 and T+

k (q,W ) = 1, results in the deletion of a cavity. Flipping the
the foreground pixel s in the right image, for which Tκ(q,W ) = 2 and T+

k (q,W ) = 2, results
in a split.

global connectivity taken into account. This is a very useful quantity because it allows us

to measure the global topological effect of a local change in the image. In Figure 6-3 we

illustrate the difference between Tκ and T+
κ in a simple 2d example.

6.2.2.1 Mergers and splits

We will refer to any flip that results in a reduction in the number of connected components in

W resulting from the addition of a foreground point as amerger. We will refer to any increase

in the number of connected components of W resulting from the deletion of a foreground

point as a split.

Theorem 6.8. Extended topological number characterization of mergers. Suppose q is an

element of the background W . Then flipping q will result in a reduction in the number of

total foreground components if and only if T+
κ (q,W ) > 1.

Proof. Suppose that q is flipped to the foreground. Then the number of connected is reduced

only if a path is created by q between two or more unique components in W , in which case

T+
κ (q,W ) > 1. Conversely suppose T+

κ (q,W ) > 1, then q must be adjacent to more than

one unique connected component. Therefore flipping q to foreground results in the creation

of a path between the unique components κ-adjacent to q. Therefore the total number of

components is reduced (by exactly T+
κ (q,W )− 1).

Theorem 6.9. Extended topological number characterization of splits. Suppose q is an

element of the foreground W . Then flipping q will result in an increase in the number

of total foreground components if and only if T+
κ (q,W ) > 1.

92



Proof. Recall that T+
κ (q,W ) gives us the number of unique connected components adjacent

to q in W\{q}. Suppose that q is flipped to the background, then the number of connected

components will increase only if a path between two or more unique components in W

was provided by q, in which case T+
κ (q,W ) > 1 (if there was any other κ-connected path

between two components adjacent to q, then they would not be distinct components in

Cκ(q,W )). Conversely suppose T+
κ (q,W ) > 1, then q must be adjacent to more than one

unique connected component. Therefore flipping q to background results in the destruction

of a path between any unique components κ-adjacent to q. Therefore the total number of

components is increased (by exactly T+
κ (q,W )− 1).

Similar statements can be made about cavities (background components). In particular,

if q is an element of the foreground W , then flipping q will result in a reduction in the

number of total background components if and only if T+
κ (q,W ) > 1. If q is an element of

the backgroundW , then flipping q will result in an increase in the number of total background

components if and only if T+
κ (q,W ) > 1. We neglect the proofs as they are similar as to

those of the foreground component case.

6.2.2.2 Holes

Thus far the discussion of non-simple point characterization has been general to either the

2d or 3d case. Now, however, we turn our attention to holes (also known as tunnels or

handles). In 3d, deleting or adding a hole does not necessarily result in a change in the

number of foreground or background components. Note that a single flip can be associated

with a merger or split and a change in the number of holes due to the interaction of multiple

components through a single point.

First, we note a basic relationship between standard and extended topological numbers:

T+
κ (q,W ) ≤ Tκ(q,W ) and T+

κ (q,W ) ≤ Tκ(q,W ). This relationship is true because the global

image can only add and not destroy paths between κ or κ adjacent elements. Therefore the

number of unique components based on global connectivity will always be less or the same

as the number based on just local connectivity [94].

Second, we note that the existence of a tunnel is characterized by a closed path within
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q

Figure 6-4: Under (κ, κ) = (4, 8) adjacency, flipping q from background to foreground results
in a merger and the addition of two holes (2d cavities). Tκ(q,W ) = 4, T+

κ (q,W ) = 2,
Tκ(q,W ) = 4, and Tκ(q,W ) = 3.

an object that cannot be deformed to a single point. Hence, the addition of a handle can be

detected by the addition of a foreground point which adds a path from an object to itself

in a non-simple location (otherwise it would simply be a border point). Removal of such a

point constitutes the deletion of a handle. In other words, for some single component C, the

condition Tκ(q, C) > 1 implies that the addition of point q generates at least one or more

handles [94].

Theorem 6.10. Extended topological number characterization of κ-hole addition. Suppose q

is an element of the background W . Then flipping q will result in an increase in the number

of κ-holes if and only if 1 ≤ T+
κ (q,W ) < Tκ(q,W ).

Proof. Suppose we flip q to the foreground. Then the number of κ holes can be increased

only if a new closed path is added within some κ-component that is κ-adjacent to q. A

closed path between κ-adjacent points of q could only be added by q if those points already

belong to the same component but are not locally connected in the absence of q, implying

that 1 ≤ T+
κ (q,W ) < Tκ(q,W ). Conversely if 1 ≤ T+

κ (q,W ) < Tκ(q,W ) then there exists

at least two κ-adjacent elements of q which are not κ-adjacent to each other, but part of

the same global component (are connected by some κ-path). Hence flipping q creates a new

closed path between in this component and thus a κ-hole is added.

Theorem 6.11. Extended topological number characterization of κ-hole deletion. Suppose q

is an element of the foreground W . Then flipping q will result in a decrease in the number

of κ-holes if and only if 1 ≤ T+
κ (q,W ) < Tκ(q,W ).

Proof. Suppose we flip q to the background. Then the number of κ holes can be decreased
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Tκ(q, W ) Tκ(q, W ) T+
κ (q, W ) T+

κ (q,W ) q ∈W q ∈W

0 1 0 1 Object deletion Object addition
1 0 1 0 Cavity addition Cavity deletion
1 1 1 1 No change No change

> 1 > 1 Object split Object merger
> 1 > 1 > 1 Cavity merger Cavity split

> T+
κ (q, W ) ≥ 1 Hole deletion Hole creation

Table 6.1: Topological change caused by flipping q.

only if an existing closed path is removed within some κ-component that is κ-adjacent to q.

A closed path between κ-adjacent points of q could only be removed if those points already

belong to the same component but are not locally connected in the absence of q, implying

that 1 ≤ T+
κ (q,W ) < Tκ(q,W ). Conversely if 1 ≤ T+

κ (q,W ) < Tκ(q,W ) then there exists

at least two κ-adjacent elements of q which are not κ-adjacent to each other, but part of

the same global component (are connected by some κ-path). Hence flipping q removes an

existing closed path within this component and thus a κ-hole is deleted.

6.2.2.3 Summary of classification scheme

In table 6.1 we summarize the classification scheme of non-simple points. In the first three

rows, both normal and extended topological numbers will always take on the same value.

Note that certain topological changes in the same column can occur simultaneously if mul-

tiple row-conditions are satisfied (for example, flipping a single point q from background to

foreground can merge two foreground objects and split a cavity).

6.2.3 Implementation issues

Calculating standard topological numbers, which depend on purely local information, is

straightforward and can be done in constant time using boolean criteria [8].

De terming the extended topological number of an image location is more involved. This

is because the extended topological numbers depend on non-local properties (potentially any

path in the image). A reasonable method for dealing with this is proposed in [94]: a label

map L is created that assigns each foreground and background component (according to

the chosen (κ, κ) adjacency) a unique label. This computation can be done efficiently using
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standard connected components algorithms.

If q ∈ W , then T+
κ (q,W ) is directly determined by counting the number of unique fore-

ground components in the neighborhood of q in L. However to compute T+
κ (q,W ), it is

necessary to remove q from W (i.e., flip q from background to foreground) and then recom-

pute the connected components of any background components adjacent to q. T+
κ (q,W ) is

then given by the number of unique background components in the neighborhood of q in

this re-computed label map.

If q ∈ W , then T+
κ (q,W ) is directly determined by counting the number of unique

background components in the neighborhood of q in L. However to compute T+
κ (q,W ),

it is necessary to remove q from W (i.e., flip q from foreground to background) and then

recompute the connected components of any foreground components adjacent to q. T+
κ (q,W )

is then given by the number of unique foreground components in the neighborhood of q in

this re-computed label map.

Hence, component mergers can be classified directly from the label map L. Intuitively,

this is because a merger involves adding a path between distinct components (a relationship

directly reflected in L). A split is computationally more difficult to detect because there

may be paths that non-locally connect some locally adjacent image locations. If, however, it

is known that the component associated with some non-simple foreground location q has no

handles, then flipping q from foreground to background must result in a split if Tκ(q,W ) > 1.

6.3 Segmentation by connected components

A segmentation is a partition of a pixel or voxel locations into a set of non-overlapping

regions that cover the image space. We can regard a segmentation as an assignment over N

pixels X = {x1, ..., xN} into a discrete set, where a particular assignment for pixel location

i is given by lSi ∈ [1, k] for a segmentation S with k separate objects. In this abstract

formulation, a segmentation can be considered a clustering of pixel locations, a fact which

has motivated prior work in using the Rand index as an image segmentation metric [105].

Metrics will be discussed in much greater detail in the next chapter.

Generally speaking, a segmentation is considered correct when the regions are consistent
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Figure 6-5: Schematic of segmentation based on connected components. An analog-valued
image (left) is converted by some function into a binary-valued image (middle) that is as-
sociated with a particular (κ, κ) adjacency. The adjacency and binary image is then used
to generate a segmentation (right) under the definition of a connected component given in
Section 6.1.2.

with the physical identity of the objects that are being imaged. From the computational

point of view, this task is conceptually very different from other vision problems such as

categorization or classification; instead of assigning an image some global identity, we are

producing another image which represents a grouping of image pixels.

Digital topology provides a framework for image segmentation that is potentially very

powerful because it defines a well-defined link between the image space, a segmentation,

and topology. The overall approach is illustrated in Figure 6-5. An analog-valued image is

converted by some function into a binary-valued image that is associated with a particular

(κ, κ) adjacency. The adjacency and binary image is then used to generate a segmentation

under the definition of a connected component given in Section 6.1.2. The coloring of the

object components is arbitrary and is simply a means by which to represent the non-local

concept of connectedness.

The binary image generated as an intermediate result in this process is a digital image

sometimes referred to as an “in/out” labeling, due to the partitioning of the image space into

either foreground “inside object” pixels or background “outside object” pixels. An in/out

labeling is nearly equivalent to another concept called a “boundary labeling,” in which a pixel

is assigned to foreground if it belongs to a boundary between objects, and is background

otherwise [70]. A minor difference is that in a boundary labeling the background is treated as

an object and in an in/out labeling the background is not. Except for this difference, flipping

the binary values of one representation will yield the other. The relationship between these

representations for a natural image that was segmented by a human is illustrated in Figure
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Image Boundary Labeling

SegmentationIn/Out Labeling

Figure 6-6: In/out and boundary labeling for a hand-traced natural image; white pixels
denote a binary value of 1 and black pixels are 0. The segmentation is given by connected
components of the in/out image with 4-adjacency.

6-6.

6.3.1 Affinity graphs

By the definition of a connected component, distinct objects cannot have foreground pixels

κ-adjacent to each other in their corresponding representation as a digital image (they would

be considered the same component since there is a κ-path between them). In other words,

under a typical inside/outside representation of components in a binary image there must

always be some background component separating any two distinct foreground components.

In certain situations, this may prove to be a limitation. For example, if the resolution of the

image is lower than the physical size of a boundary, then the most natural representation of

a segmentation may be one in which there is no outside space separating objects and simply

a transition from one object to the next.

A solution to this problem is to consider digital images defined under edge topology

rather than pixel or voxel topology. In this idea, each pixel or voxel is a node in a graph,

and edges between neighboring nodes are mapped to a binary value. An adjacency relation
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among neighboring edges (sometimes called affinities) can be defined such that components

are formed by paths of connected edges. This type of representation is sometimes called

an “affinity graph.” This strategy overcomes the out-space requirement of binary image

representations and has been successfully employed in prior segmentation work, including the

electron microscopy segmentation problem discussed in this thesis [30, 104]. The topology

of images defined over edge-space is more subtle than that of the topology of pixel-space,

but can indeed be defined along with concepts such as a simple edge [29, 12].
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Chapter 7

Warping Error: A Novel Segmentation

Metric

Abstract. We show how concepts from digital topology can be used to define a novel met-

ric for the quantitative evaluation of the performance of a segmentation algorithm. We first

discuss general challenges related to the evaluation of segmentation accuracy and notions

of ground-truth in segmentation, using examples from both natural image and electron mi-

croscopy datasets. We then discuss properties of our warping-based error metric, compare

it to existing approaches, and show how it can be used to characterize segmentation errors.

Quantitative metrics are obviously crucial for comparing one algorithm against another;

within the machine learning context, metrics can also be used to guide the optimization

of an algorithm. For those researchers interested in pursuing a machine learning approach

to image segmentation, an ideal metric would therefore both accurately assess performance

and be amenable to some kind of efficient optimization during supervised learning. In the

following chapter, we describe a method to optimize the metric we introduce.

7.1 Introduction

Many segmentation methods in the literature have been evaluated on a largely subjective

and qualitative basis, with visual inspection the primary means of comparing techniques to

one another. Since the introduction of hand labeled ground-truth datasets for segmentation,
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however, there has been increased interest in methods for quantifying accuracy [68, 71, 70,

105].

In high-level image analysis tasks such as object recognition, an appropriate metric is

usually straightforward to define because the output space is typically low-dimensional with

minimal ambiguity regarding correct answer for any output variable. Image segmentation

presents a more challenging scenario for evaluation. Fundamentally, this is because seg-

mentation is a structured prediction problem in which interpretation of a single input (an

image) typically involves the prediction of a high-dimensional set of variables (for example,

boundary locations) for which there is no uniquely correct configuration. Instead, it is more

appropriate to think of the ground truth as providing constraints on mutually dependent

and correlated output variables. In this setting, the goal of the classifier is to produce a

configuration of output variables which, for example, minimizes the amount of violation of

the constraints.

One line of evidence supporting this view of the segmentation problem comes from ex-

amining inter-annotator discrepancy in human segmentations of natural images or electron

microscopy images. In either case, humans tend to disagree on the exact shape of objects

and placement of boundaries. Hence, a simple comparison of the segmentations by measur-

ing the consistency of boundary placement in terms of “pixel error” (defined shortly) yields

surprisingly low agreement between humans; for example, a roughly 10% disagreement rate

in the case of electron microscopy images. The source of this variability may include subjec-

tive differences in interpretation, errors associated with the acquisition of human annotation

(e.g., hand jitter), and fundamental ambiguity.

However, even if boundary localization was not fundamentally ambiguous and it was pos-

sible to eliminate human variability or obtain true ground truth through other means, minor

errors in boundary localization within an automated segmentation may still be considered

insignificant compared to topological errors such as the merging and splitting of objects. We

would like a metric that appropriately reflects the disparity in the significance of different

types of errors.
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Berkeley: 1-(F measure) 0.018 0.066 3.67

1-(Rand Index) 0.08 0.06 .75
Warping Error 5/1225 0/1225 0

Figure 7-1: Comparison of different metrics on a 35×35 pixel image from the training set used
in Section 5. Within each segmentation, pixels with the same color correspond to a single
object. Interpretation A has both topological and geometric differences with the ground
truth, whereas Interpretation B has geometric discrepancies but no topological errors. The
Rand Index and warping error show a large relative difference between interpretations B
and A, while the pixel error does not. The Berkeley F-measure favors the topologically
incorrect interpretation. Warping error of interpretation A shows four topological errors:
red pixel denotes object deletion, green pixel denotes an object merger, yellow pixel denotes
an object split, and a blue pixels denote creation of a hole. The Berkeley F-Measure and
Rand index were converted to error measures by subtracting from 1, the value of perfect
agreement for those measures. For evaluation of the Berkeley F-measure, a boundary labeling
was computed by completely thinning a binary flip of the in/out map (in accordance with
procedures defined in the benchmark code provided with [70]).
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7.2 Existing metrics

In the literature of both low-level algorithms and evaluation metrics, a fundamental distinc-

tion is that between a boundary map and a segmentation. As discussed in Chapter 6, a

boundary detector produces a [0, 1]-valued analog boundary map which can be interpreted

as giving the probability at each image location of there being a boundary.

A boundary map is not a segmentation, because it does not itself provide a grouping

of pixels into regions. However, it is traditional to train a classifier to produce a boundary

map from which a segmentation is computed (using, for example, connected components

on a thresholded boundary map or some other graph partitioning algorithm). Hence, one

approach has been to quantify the accuracy of a boundary detector given ground-truth

boundary maps produced from a ground truth segmentation. This is the goal of the pixel

error and Berkeley segmentation benchmark, which we review in this section. We then

discuss the Rand index, which is a metric that operates on true segmentations. In Figure

7-1 we compare the metrics, including the warping error introduced in Section 7.3, to one

another for a sample image.

7.2.1 Pixel error

The simplest method of quantifying boundary map accuracy is what we refer to as “pixel

error.” Let FI(~w) be the probability map produced by applying the classifier f(~w) to the

entire image I. We can binarize the classifier output at some value θ and then compute

the fraction of boundary locations that were incorrectly classified: 1
|L|
∑

i [li 6= (fi(~w) > θ)]

where |L| denotes the number of image locations. Precision and recall curves can then be

computed by varying θ. Since the probability map FI(~w) and a binary labeling L of the

image I are both images of the same size, we can also compute their Euclidean distance

d(FI(~w), L) =
∑

i [li − fi(~w)]2, where the labeling and probability map at location i are

written as li and fi(~w), respectively. This gives us a real valued error measure, which is

often more suitable for optimization purposes.

The pixel error is a tempting metric because it is simple to compute, has an an intuitive

interpretation, and its optimization is a well-studied problem in the machine learning liter-
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ature. Unfortunately, it suffers from serious defects. Firstly, it is overly sensitive to minor

displacements in the location of a boundary that are ubiquitous even when comparing one

human boundary map to another. Qualitatively, these disagreements are ultimately minor

differences in the interpretation of the image, but lead to large quantitative differences in

pixel error. Secondly, pixel error is insufficiently sensitive to certain errors in a boundary

map which are likely to lead to errors in a segmentation produced from the boundary map.

Of course, the precise method used to generate a segmentation from a boundary map will

determine which errors are the most relevant. However, it is reasonable to assume that, for

example, a missing boundary between two directly adjacent objects will be more likely to

cause a segmentation error than a geometric perturbation of boundary location.

A boundary map can have very high error but still be likely to produce a reasonable overall

interpretation of an image in the scene of a segmentation. Conversely, a boundary map can

have very low error but still be likely to produce an unreasonable overall interpretation of

an image. Therefore, pixel error in its naive form is unsuitable as an error metric, especially

if segmentation is the ultimate goal.

7.2.2 Berkeley segmentation benchmark

A boundary detection metric that improved on pixel error was introduced by Martin et al.

[70]. In their approach, a correspondence between a machine boundary labeling and a human

boundary labeling is computed by solving a minimum cost bipartite assignment problem,

in which boundaries in one labeling are matched to boundaries in another labeling. In this

optimization, the cost between two boundaries is proportional to their distance in the image

plane. Their error measure considers a machine boundary pixel to be correct if it was within

some distance cutoff of the corresponding human boundary pixel and thus tolerates small

differences in boundary localization. This sophisticated error measure is currently used in

the benchmark code provided with the Berkeley Segmentation Dataset.

To compute the error, the matching is converted from a dense assignment problem (with

complexity between O(n2) and O(n3)) to a sparse assignment problem that appears to have

an empirical runtime of O(n) [70, 22]. This process involves the creation of some random

edges between nodes to ensure all nodes are matched. As a result, the metric does not
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produce deterministic results (the randomness in the conversion to a sparse matching problem

can have small effects on the output). Although the dense assignment problem is not NP-

hard, the authors chose to employ a faster (near linear) approximate method as a practical

measure. Hence, the result of this benchmark is not based on the true best matching, but

on an approximate solution that in most cases is presumably close to the best solution.

In summary, the Berkeley segmentation benchmark operates directly on a boundary map

and solves one of the major problems with pixel error. However, there are still serious

limitations with this metric. First, the error measure is insufficiently sensitive to those

errors in the boundary map that are likely to lead to segmentation errors. For example,

these metrics are sometimes insensitive to gaps in boundaries, which can lead to mergers

between two regions in a segmentation [3]. Second, it is not clear how to efficiently optimize

this metric in the context of supervised machine learning.

7.2.3 Rand index

The Rand index is a well-known statistical measure of the similarity between two data

clusterings [85]. Recently, the Rand index has also been proposed as a measurement of

segmentation quality that can operate directly on a segmentation by interpreting a segmen-

tation as a grouping of pixels into separate clusters [105]. More formally, consider an image

space X with n elements {x1, ..., xn} and two segmentations S and T which assign each pixel

{xi} to an integer label {si} and {ti} respectively. Then the Rand index is a [0, 1]-valued

measure of the number of pairs of points having the same label relationship in S and T :

R(S, T ) =
1(
n
2

) ∑
i,j 6=i

δ(Si = Sj,Ti = Tj) + δ(Si 6= Sj, Ti 6= Tj)

The Rand index is 1 when the two segmentations perfectly match, and 0 when they com-

pletely disagree. Unnikrishnan et al. have also introduced the Normalized Probabilistic

Rand (NPR) index to handle the situation of comparing to multiple ground truths [105].

The Rand index effectively focuses on whether the overall grouping of points into separate

segments is correct; subtle geometric differences between two segmentations will decrease the

Rand index but will be much less numerically significant than, for example, the erroneous
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A B B warped onto A

Pixel Error      Warping ErrorImage

Figure 7-2: Pixel error compared to warping error for images taken from an electron mi-
croscopy dataset described in Chapter 8. Labeling B is warped onto A. In the classification
scenario, A can be considered a candidate output and B the ground truth labeling. Pixel
error is the difference mask of A and B; numerous geometric errors are present, in addition
to topological errors. Warping error is the difference mask of A and “B warped onto A.”
Only topological errors are present: red circles in the warping error denote locations with
merge errors, the green circle denotes object addition, the yellow circle denotes split errors,
and all other differences correspond to hole (cavity) creation.

merging of two regions. Moreover, it has recently been discovered that it is possible to opti-

mize the Rand index via gradient optimization [103], making the Rand index an attractive

framework for both learning and evaluating image segmentation.

Conceptually the Rand index focuses on whether a segmentation has achieved the correct

connectivity between pixels (i.e., whether two pixels are connected or disconnected correctly).

This is in contrast to the warping-based topological error metric we introduce in the next

section, which focuses on topology.

7.3 Warping-based error metric

Here we propose an error measure that tolerates boundary localization errors, much as in the

Berkeley segmentation benchmark [70]. However, our measure has two additional virtues.

First, it retains sensitivity to topological errors while tolerating boundary localization errors.
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Second, it can be used for both training and testing image labeling algorithms.

Suppose we are given two binary images, L∗ = (Zn, κ, κ̄,WL∗) and T = (Zn, κ, κ̄,WT ). If

L∗ can be transformed into L by a sequence of pixel flips that each

1. preserve a set of desired topological properties

2. occur only at locations within a mask M ,

then we will say L is a warping of L∗, or L C L∗. The first condition constrains L and

L∗ to be topologically equivalent. The second condition can be used to constrain L to be

geometrically similar to L∗. We will write simple(L) to denote the set of simple points of L.

Definition 7.1. The warping error between some candidate labeling T and a reference

labeling L is the size of the difference set E(L, T ) = L∆T = WL\WT ∪WT\WL for the “best

warping” of L∗ onto T:

D(T ||L∗) = min
LCL∗

|E(L, T )| (7.1)

In Figure 7-2 we illustrate the warping error and compare it to standard pixel error.

7.3.1 Homotopic digital warping algorithm

Finding the global minimum of the cost function in Eq. 7.1 is an NP-hard problem and

therefore not a practical goal for realistic datasets. Instead, we introduce an algorithm for

computing local minima of the warping error.

We start by initializing L at L∗. Then we flip a random point difference p ∈ E(L, T )

in L, to reduce |E(L, T )|. The location of the flipped label is randomly chosen, but must

be a simple point of L to ensure that the warping L remains topologically equivalent to L∗.

This label relaxation is repeated until there are no further simple locations in E(L, T ). This

process will always converge, but it may find a local minimum of D(T ||L∗). The procedure

is described in pseudocode in Algorithm 7.1.

The existence of local minima within the computation of a metric is a legitimate concern.

However, we note that this is also an issue with the Berkeley segmentation benchmark, which

does not produce deterministic results due to the use of random nodes and edges in the sparse

graph constructed to perform the boundary matching (see Section 7.2.2 for further details).
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Algorithm 7.1 Descent algorithm for warping a binary image L∗ to an analog image T ,
under geometric constraints set by the binary image M . We write simple(L) to denote the
set of simple points of L.
warp(L∗ ∈ B,T ∈ A,M ∈ B)
L := L∗

do
S := simple(L) ∩M
i := argmaxj∈S |tj − lj| , breaking ties randomly
if |ti − li| > 0.5

li := 1− li
else

return L
end

The development or more sophisticated warping algorithms that result in more consistent

or lower-error results is an interesting avenue for research; previous work in homotopic thin-

ning algorithms may suggest certain strategies (for example, using the distance transform to

determine flipping order [83]). Empirically, however, even an algorithm based on random

flipping yields highly reproducible results.

7.3.2 Geometric constraints

In practice, we may want to limit the amount of geometric distortion that L is allowed to

achieve. To implement a geometrical constraint, a mask M is created from the intersection

of the dilation of L∗ and the dilation of the complement of L∗. Dilation is a standard

operation in mathematical morphology that expands the borders of “1” regions. Therefore

the mask contains only pixels that are near borders between “1” and “0” regions. During

the relaxation, only simple points within the mask are altered. As a result, when using a

geometric constraint the difference set may include simple points of L that lie outside the

mask. At each iteration of label relaxation, we consider locations that are simple points, are

contained in the mask M , and at which L and T disagree.

7.3.3 Warping error: boundary detection or segmentation metric?

At first glance, it may seem that the warping error measures only boundary detection per-

formance. But we would like to argue that it is also a good measure of segmentation per-
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formance. This is because digital topology tells us how any single pixel affects the global

topology of an image. Let L be an optimal warping (in terms of minimizing Eq. 7.1) of L∗

onto T . Any pixel in the symmetric difference set L∆T = L\T ∪T\L represents a topological

error in T because flipping its value in L (which is topologically equivalent to the ground

truth L∗) would cause a topological change. Thus the warping error is an upper bound on

the number of topologically-relevant boundary labeling errors in T (if a geometric mask is

used, then the warping error also includes labeling errors of a geometric nature). Therefore,

if segmentations are generated from T and L∗ by finding their connected components, then

the warping error should be a reasonable measure of the topological disagreements between

the segmentations. Moreover, using the classification scheme for non-simple points in Table

6.1, we can classify the particular type of topological change that any single labelling error

is associated with (split, merger, object addition, etc).

The Rand index is becoming more popular as a metric of segmentation performance. It

can be used to compare segmentations in which regions are non contiguous clusters of pixels.

Such segmentations are not equivalent to boundary labellings, so the warping error cannot

be applied. In many applications, such as the one studied below, this is not a significant

limitation.

The warping error can be distinguished from the Rand index in other respects. The

warping error can penalize all kinds of topological errors, including the presence of holes

and handles, but the Rand index penalizes only connectivity errors. In certain medical

imaging situations, control of such aspects of topology is especially important [36]. The

Rand index mildly penalizes shifts in boundary location, while the warping error ignores

them. The warping error weights a topological error by the number of pixels involved in the

error itself, while the Rand index weights a split or merger by the number of pixels in the

objects associated with the errors.

The warping error provides a way to relate a segmentation to its underlying representa-

tion as a boundary or in/out map. However, maintaining this relationship imposes certain

restrictions. For example, only pixels that are κ-connected in the digital image can be con-

nected in the resulting segmentation (the Rand index, in contrast, makes no assumptions

about the origin of connectivity and accepts an arbitrary clustering of points). In practice,
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however, it is not clear that this is a significant limitation. Typically we are interested in

interpreting images in which a region is defined by some physically contiguous region that

corresponds to a collection of adjacent pixels in the image.

110



Chapter 8

Optimizing Warping Error with BLOTC

Abstract. In this chapter we show how the warping error metric introduced in Chapter 7

can be used as a cost function in the supervised learning of boundary detection. We discuss

conceptual reasons why such an approach should lead to superior results, and empirically

demonstrate the advantages of the technique on the challenging problem of segmenting elec-

tron microscopy images of brain tissue. This work is one of the first applications of digital

topology to the area of machine learning.

8.1 Introduction

The accurate detection of object boundaries in images has been a long-standing challenge for

computer vision. Recently, a supervised learning approach has become popular, promoted

by the creation of the Berkeley Segmentation Dataset, a collection of natural images along

with ground truth boundaries traced by humans [69]. Accuracy of boundary detection

has been improved relative to classic algorithms by training simple classifiers that combine

hand-designed features [69, 70, 71]. Combinations of large numbers of simple features have

been learned using boosting [25], and convolutional networks have been trained to perform

boundary detection directly on raw images taken from biological microscopy, with no use

of hand-designed features (an approach described in Chapter 5 of this thesis). Multi-scale

image cues have also been incorporated to provide greater context in boundary estimates

[87].
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Supervised learning of boundary detection requires a quantitative measure of performance

with which to compare machine boundary labellings with human boundary labellings. This

measure is then used as a cost function that is subject to optimization during learning.

Traditionally, supervised approaches to boundary detection have relied on pixel error as

the cost function. However, some approaches have employed simple fixes to address the

arbitrary nature of ground truth boundary locations. For example, Martin et al. [71] blur

the human boundaries, which has the disadvantage of permitting multiple detections of the

same boundary. In [25] the authors averaged multiple human labellings to yield an estimate

of the probability that a boundary exists at each location.

We find these fixes unsatisfactory, and argue that supervised learning of boundary de-

tection demands a more sophisticated error measure that truly measures the topological

accuracy of the boundary detector. We believe that choosing and optimizing the correct

cost function is not a minor technicality, but a major barrier to attaining good performance

of boundary detection in the supervised learning approach.

The warping error we introduced in Chapter 7 is a good candidate for the correct cost

function. Firstly, it tolerates errors in boundary location, but retains sensitivity to topolog-

ical errors. Second, it can be used directly as a cost function for learning, which leads to a

method we call Boundary Learning by Optimization with Topological Constraints (BLOTC).

When warping error is optimized, small errors in boundary localization are eliminated from

the cost function for learning. This leaves only true segmentation errors: places where objects

have been split, merged, or other topological changes have occur ed (such as object addition

or deletion). Consequently BLOTC training focuses the learning process on locations in the

image that are critical for accurate segmentation.

As a demonstration, we apply BLOTC to learning the detection of boundaries in electron

microscopic images of neural tissue. Boundary detectors are trained using both BLOTC and

standard methods. When evaluated on a test set using the warping-based error measure,

the BLOTC detector significantly outperforms the standard detector.

Finally, we also apply BLOTC to the task of interactive segmentation, finding regions

based on a sparse subset of seed points provided by a human operator.
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8.2 Boundary learning by optimization with topological

constraints (BLOTC)

Our goal is to find a function that maps an image patch to an estimate of the probability

that the central pixel is labeled “1.” We will call such a function an image patch classifier.

If the classifier is applied to patches centered at all locations in an image, it produces an

output image that is called a boundary map or an in-out map, depending on convention

(see Fig. 6-6). The analog values in this probability map can be thresholded to produce a

binary image labeling. We will assume that both the classifier output and ground truth are

represented as in-out maps.

Consider a binary machine labeling T and a human labeling L∗ of the same image. When

optimizing pixel error, we would ideally like to minimize the number of binary disagreements

between T and L∗:
∑

i δ(ti, l
∗
i ) where the machine and human labeling at location i are

denoted by ti and l∗i , respectively.

However, it is often easier to optimize a smooth cost function that depends on the real-

valued output of the classifier. Let FI(~w) be the analog probability map produced by applying

the classifier to the entire image I. At each location, the probability map is an analog value

between 0 and 1, representing the classifier’s estimate of the probability that the label of the

image pixel is “1.” Since the probability map FI(~w) and a binary labeling L of the image I

are both images of the same size, we can compute their Euclidean distance:

d(FI(~w), L) =
∑
i

[li − fi(~w)]2

where the probability map at location i is written as fi(~w). Here the dependence of fi(~w)

on the image I is left implicit for notational convenience. Optimizing the Euclidean distance

thus serves as an approximation to optimizing the binary classification error when FI(~w) is

thresholded to yield a binary map.

In BLOTC our goal is to minimize the warping error, defined in Equation 7.1. We

generalize the warping error to compare the analog classifier output FI(~w) with the human

labeling L∗,
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Algorithm 8.1 Stochastic online gradient learning. The learning rate parameter η is small
and positive.
gradient(I ∈ A,L ∈ B,~w,k)
for iter = 1 to k

i =random location in random image
~w := ~w − η∇~w |li − fi(~w)|2

end
return ~w

D(FI(~w) > θ||L∗) = min
LCL∗

|E(L, FI(~w) > θ)| (8.1)

in which the analog network output is thresholded at some fixed value of θ to yield a com-

parison between binary-valued image labelings.

For supervised learning, we would like to minimize Eq. 8.1 with respect to the classifier

parameters ~w. In order to make this easier to optimize, we again use a smooth approximation

of the binary error:

min
~w
D(FI(~w)||L∗) = min

~w
min
LCL∗

d(FI(~w), L)

in which we have defined the warping error between an analog valued quantity and a binary

image labeling using the Euclidean distance. We call this method Boundary Learning by

Optimization with Topological Constraints, or BLOTC. Note that standard training is the

case where no warping of L∗ is allowed, i.e., the geometric constraint becomes completely

tight.

The warping of L∗ onto FI(~w) is carried out in much the same way as described in Chapter

7. The only difference is that the label locations satisfying the topological and geometrical

constraints can be rank ordered using |l∗i − fi(~w)|, so that the locations of flipped pixels can

be chosen greedily rather than randomly (Algorithm 7.1). The minimization with respect

to ~w is carried out using the usual method (e.g., gradient descent). The dual optimization

alternates between updates of L and updates of ~w (Algorithm 8.2).

114



Algorithm 8.2 Boundary Learning by Optimization with Topological Constraints (BLOTC)
blotc(I ∈ A,L∗ ∈ B,M ∈ B,k1,k2)
L := L∗

~w :=random initialization
~w :=gradient(L,~w,k1)
repeat

L :=warp(L,FI(~w),M)
~w :=gradient(I,L,~w,k2)

until convergence
return ~w

8.3 Results

We performed two separate experiments to test the BLOTC approach to learning boundary

detection. In the first experiment the goal was to perform a 2d segmentation of conven-

tionally stained electron microscopy images of mouse hippocampus obtained using ATLUM

[37]. Although the dataset is 3d, the extremely anisotropic resolution of the data makes a

fully 3d approach less natural. We tested a fully 3d approach on images of rabbit retina

obtained using SBF-SEM, which yields lower resolution images in the x-y plane but much

more isotropic datasets overall [24].

Beyond resolution, another major difference between the two datasets is the staining

that was used to prepare them prior to imaging. The mouse hippocampus images were

conventionally stained, meaning that both intracellular organelle (such as mitochondria and

synaptic vesicles) and cell membranes are visible in the resulting images. This poses a

potential challenge for computational techniques, which must not let the presence internal

organelle interfere with identifying true neurite boundaries. This concern motivated the

specialized extracellular staining technique used in the SBF-SEM images [18], which renders

only cell membranes visible.

8.3.1 2d segmentation of ATLUM images

Serial sections of mouse hippocampus were obtained using the Automated Tape Collecting

Lathe Ultra-Microtome (ATLUM) [37]. Sections were 29.8 nm thick, and images of each

section were taken at roughly 5nm/pixel using a JEOL scanning electron microscope. The
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Image Manual Segmentation In-Out Map

Figure 8-1: A 1024×1024 pixel image of mouse hippocampus, obtained using ATLUM, along
with a human segmentation and the corresponding in-out map. Clutter from intracellular
structures within cells makes human interpretation challenging, but the (high) resolution of
the image makes most boundaries ultimately unambiguous even from viewing a single plane.

images were downsampled to roughly 20nm/pixel for analysis (see Figures 8-1 and 8-2 for

examples of the EM images). Our goal in this section was to segment the images into regions

corresponding to the cross sections of distinct neurons. This is a first step toward full 3d

reconstruction of neuron shapes.

The segmentation task is especially challenging because the neurons contain many intra-

cellular organelles such as mitochondria, and this internal clutter can be distracting. Two

kinds of boundaries are visible in the images: external boundaries between neurites, and

internal boundaries of the intracellular organelles. There is an obvious question concerning

how the boundary detector should be trained. We definitely want the external boundaries

of neurons to be detected. But do we want the internal boundaries to be detected?

It turns out that this decision can be left up to the computer, if BLOTC training is

used. We implemented a version of BLOTC in which some topological changes were allowed

in the warping described in Section 2.1. In addition to flipping simple pixels, the warping

was allowed to flip certain types of non-simple pixels (non-simple pixels can be rigorously

classified; see supplementary). In particular, the warping was allowed to create holes within

objects, not penalizing the computer for detecting internal boundaries, even if they were not

traced by the human.

A 256×256 bounding box from a set of 100 aligned images was cropped from the dataset

to form a 256 × 256 × 100 image stack. Each image in the stack was manually traced by

a human using the ITK-SNAP software package. All external boundaries of neurons were
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ATLUM Image

CN: BLOTC Segm.

Human Segmentation

Human Labeling

CN: BLOTC

CN: Standard

gPb

CN: Standard Segm.

Boosted Edge Learning

gPb-OWT-UCM Segm.BEL Segm.

Multiscale NCut Segm.

Figure 8-2: Visual comparison of output from a convolutional network (CN) trained in
the standard way and a CN trained with BLOTC, on an image from the test set. Both
Standard and BLOTC CN segmentations were generated by connected components on the
respective boundary detector outputs at threshold 0.75. For gPb and BEL, segmentations
were generated at the optimal threshold according to the Rand index. Multiscale NCut
directly generates a segmentation and thus no threshold was used (in the results shown
above, the true number of objects in this specific test image was provided as input to to
the multiscale normalized cut routine). The BLOTC CN segmentation has a substantially
smaller number of split and merger errors compared to the CN trained in the standard way.
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Figure 8-3: Comparison of standard and BLOTC learning using the warping error metric on
a 5.2 megavoxel training set and a 1.2 megavoxel testing set. The left plot shows warping
error when classifier output is thresholded at 0.5, demonstrating a large relative reduction in
error from standard to BLOTC training. The right plot shows the precision-recall on outside
voxel classification accuracy, which compensates for the class-imbalance, as outside pixels
are the more rare class.

traced in each image, but the internal boundaries were mostly neglected. Figure 8-2 shows

an example of human tracing. From this dataset, 80 images were used as a 5.2 megavoxel

training set and 20 images were set aside as a 1.3 megavoxel testing set.

For our image patch classifier, we used a convolutional network. It has already been shown

that convolutional networks provide state-of-the-art performance at boundary detection in

EM images [44], when trained by standard methods. Here we show that BLOTC training

improves performance even more. However, it is important to note that BLOTC is not

limited to convolutional networks, but can be used to train any kind of classifier.

We trained two convolutional networks with identical architectures containing 6 hidden

layers, 24 feature maps in each hidden layer, and full connectivity between feature maps

in adjacent layers. Each individual filter was 5 × 5 pixels, but the multiple-layers yield

an effective field of view of the classifier of 28 × 28 pixels. The standard network was

trained for 1,000,000 updates using the traditional optimization with the labels fixed. The

BLOTC network was initialized with the weights from a standard network after 500,000

gradient updates and then further trained for 500,000 additional updates using BLOTC

optimization. Each network was trained in roughly 18 hours, using a layer-wise procedure

that iteratively adds hidden layers to the network architecture. The training used a fast
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Figure 8-4: Comparison of standard and BLOTC learning using the Rand index and
precision-recall of correctly classified connected pairs of pixels on a 1.2 megavoxel testing
set. The relative reduction in Rand error between standard and BLOTC results is large
(40%). The precision-recall curve compensates for the class imbalance in pixel connectivity
(most pixels are disconnected from one another). gPb UCM corresponds to segmentations
generated by regions created by an oriented water transform on gPb contour detector output,
followed by conversion into a hierarchical region tree [3]. Multiscale Ncut corresponds to
multiscale normalized cut [23]. This method requires as input the number of objects in an
image; we provided the average number of objects in a training set image. Boosted Edge
Learning (BEL) was learned using the same 5.2 megavoxel training set as the convolutional
networks, with a 30 × 30 field of view and identical classifier parameters to those used in
[25] with code provided by the authors. Several methods for generating segmentations from
BEL output were tested; a watershed approach worked best. Baseline corresponds to a
segmentation in which all pixels are disconnected from one another.

shared-memory GPU implementation that provides between a 50-100× increase in training

speed as compared to CPU implementations.

The results of training are shown in Figure 8-2. Both BLOTC and standard networks do

a good job of detecting boundaries between neurons, and ignore most intracellular structures

such as vesicles. The BLOTC network strongly detects some mitochondrial boundaries that

were not in the human tracing, presumably because it was not penalized for doing so. The

standard network cannot manage to ignore mitochondrial boundaries, even though it was

trained to ignore them. This is presumably because mitochondrial boundaries often resemble

external boundaries, at least locally. The BLOTC network produces more binary output, as

if it were more confident.

Figure 8-3 shows that the warping error of the BLOTC network is much lower than that
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Figure 8-5: Warping error on a 1.2 megavoxel test set. BEL and convolutional network
methods were trained on a corresponding 5.2 megavoxel training set. For this comparison, a
threshold of gPb-OW-UCM and BEL was chosen according to the threshold that achieved
highest Rand index also on the test set (shown in Figure 8-4). These results are consistent
with the relative ordering of algorithms that the Rand index produced, but the relative
reduction in error between the methods is larger (for example, the gPb-OW-UCM method
has almost ten times as much warping error as the highest performer, BLOTC CN).

of the standard network. The value of the error is low (1% or less), which is primarily

a consequence of the fact that boundary pixels are relatively rare. In general, the total

error has a limited dynamic range in a classification problem with a highly skewed class

distribution. Instead it is helpful to view performance using precision-recall curves, which

also demonstrate the superior performance of BLOTC, as shown in 8-3.

Figure 8-4 demonstrates the superiority of the BLOTC network using the Rand index to

quantify segmentation performance. The BLOTC network again outperforms the standard

network. The value of the Rand index is high (greater than 90%). As before, this is because

the class distribution is skewed. In the ground truth, most pairs of pixels belong to different

objects. Therefore the trivial segmentation in which every pixel belongs to a different object

has a Rand index of over 90%. This sets the baseline for performance in Figure 8-4. We also

benchmarked several leading competitors: multiscale normalized cuts [23], gPb-OW-UCM

[3], and Boosted Edge Learning (see supplementary for additional information regarding

use of these methods). Their performance was much worse than that of our convolutional

networks, and only barely above the baseline of the trivial segmentation.

Figure 8-4 also exhibits precision-recall curves for connected pixel pairs, which again

demonstrate that the BLOTC network is superior to the standard network. Perhaps it is
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not surprising that gPb-OW-UCM and multiscale normalized cuts are so inferior, as they

were designed for natural images, while our networks have been optimized for EM images.

But Boosted Edge Learning was also trained on the EM images, but its performance is still

closer to that of gPb-OW-UCM than our networks.

In summary, these results provide strong evidence that BLOTC can significantly im-

prove the performance of boundary detection, even on approaches that already obtain high

performance (such as the standard convolutional network we train).

8.3.1.1 Details of Experimental Procedures

In this section we provide additional details of the experimental comparisons that were

performed on 2d ATLUM images.

Multiscale Normalized Cut

Multiscale normalized cut was performed using publicly available code provided by the au-
thors of [23]: http://www.seas.upenn.edu/~timothee/software/ncut_multiscale/ncut_multiscale.
html

This technique requires that the number of objects in the image be specified by the user.

We are interested in completely automated segmentation in which such information would

not usually be available. Therefore we provided to the code the average number of objects

in a training set image. However, we also tried providing the code with the true number of

objects in each test set image. Then the results of “Multiscale Ncut” shown in Figure 4 of

the main text improve slightly, but remain worse than all other techniques.

gPb-OWT-UCM

The gPb-OWT-UCM algorithm (global probability of boundary followed by the oriented
watershed transform and a hierarchical region construction by ultrametric contour maps)
was performed using publicly available code provided by the authors of [3, 66]: http:

//www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/gpb/grouping.zip

The following is a summary of the algorithm implemented by the code, as described in

[3]. First, the gPb contour detector was applied directly to the raw EM images, producing

an 8-channel oriented localized probability of boundary map, as well as a single-channel
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thinned contour image which is the result shown in Figure 2 of the main text. The 8-channel

boundary map was then converted to an oversegmentation using the oriented watershed

transform, and then an ultrametric contour map according to the dissimilarity between

regions as determined by mean probability of boundary value. Finally, the ultrametric

contour map was partitioned using connected components at various thresholds (where the

x-axis in Figure 4 for this technique corresponds to a segmentation of the UCM thresholded

at a value of 255 ∗ (1 − x) , to compensate for the range of the UCM, and then the binary

boundary map is converted to an in/out map prior to connected components by flipping the

binary values).

Boosted Edge Learning

The Boosted Edge Learning algorithm was applied to our training set of EM images us-
ing publicly available code provided by the authors of [25]: http://www.loni.ucla.edu/~ztu/
Download.htm

A probabilistic boosting tree of depth 10 was used with 120 weak classifiers in each

AdaBoost node. A patch size of 30 was used, which is a slightly larger than the field of view

of the convolutional networks that were used. These were the default parameters provided

in the code.

After training was complete, we proceeded to quantify segmentation performance on the

test set of images. Here we had to choose our own method for generating segmentations from

BEL output. The simple procedure of finding connected components of the thresholded

BEL output (which was used for the CNs and gPb-OWT-UCM) produced a poor Rand

index, as did the watershed transform on the negative of the BEL output. Therefore we

applied the watershed transform only after using MATLAB’s imimposemin command to damp

local maxima of the BEL output, constraining them to occur where the BEL output was

greater than a threshold. The watershed transform was performed with 8 connectivity (4

connectivity gave worse results).
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Convolutional Networks

As our loss function during optimization of the convolutional network, we used the square-

square loss

l(x, x̂) = xmax(0, 1− x̂−m)2 + (1− x) max(0, x̂−m)2

with m = 0.2, rather than the squared loss (x− x̂)2. This loss function is a better ap-

proximation of the true binary classification error we seek to optimize. This is particularly

important in the scenario in which the classifier has predicted the correct class of most ex-

amples (based on thresholding the analog output), and there are relatively few remaining

incorrectly classified examples. In this case, the small amount of remaining error in the

squared loss related to pushing values to 0 or 1 may dominate the error associated with

incorrectly classified examples. The square-square loss allows the training to “give up” when

the classifier output is correct by a sufficient margin. This gives the classifier more flexibility

to achieve higher binary classification accuracy.

Batch learning is inefficient in this context, as the training set has millions of pixels and

it is not practical to compute the gradient with respect to the entire training set for each

update, particularly when many hundreds of thousands of updates may be required in order

to reach convergence. Therefore we adapted stochastic online learning to this problem.

We employed a minibatch implementation in which a randomly chosen 14 × 14 patch of

the network output was used to compute each gradient update. A localized patch shares

computation in a convolutional network and is therefore especially efficient to compute.

Segmentations were generated by thresholding the analog output of the convolutional net-

work and then performing connected components with the same κ = 4 and κ̄ = 8 adjacency

using in warping.

8.3.2 3d segmentation of SBFSEM images

We also tested BLOTC on a dataset of electron microscopy images of rabbit retina, collected

using Serial Block Face Scanning Electron Microscopy [24]. This dataset is similar, although

not identical, to the one studied in Chapter 6. The images were collected at a resolution of

22nm/pixel x-y resolution with a sectioning thickness of roughly 30nm. This nearly isotropic
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resolution enabled us to pursue truly 3d boundary detection. Therefore both the standard

and BLOTC methods boundary detectors were trained using 3d patch inputs, and 3d digital

topology was used during warping computations.

Two separate 100 × 100 × 100 voxel datasets were cropped from the image volume.

Humans used a custom software tool to trace objects manually, which provided both object

boundaries and consistent object identities throughout a 3d volume. These tracings were

used to label the voxels as either intracellular or extracellular, generating a binary in-out

labeling. One volume was used as a training set, and the other was used as a testing set.

Each volume contained roughly 90 distinct objects. When two human in-out labellings of the

same image volume are compared with each other, they disagree on about 10% of the voxels.

The vast majority of disagreements are about the precise locations of object boundaries, not

about the identities of objects.

We used a convolutional network as our image patch classifier. We trained two convolu-

tional networks with identical architectures containing 2 hidden layers and 5 feature maps in

each hidden layer. Each of the 35 filters was 5× 5× 5, for a total of over 4, 000 parameters

adjusted by learning. The ‘standard’ network was trained for 500, 000 updates tushing the

traditional optimization with the labels fixed. The BLOTC network was initialized with the

weights from a standard network after 350, 000 gradient updates and then further trained for

100, 000 updates using BLOTC optimization (see Supplementary Material for full details).

The results are shown in Figure 8-6. Even to casual inspection by eye, the output of the

BLOTC network looks superior to that of the standard network. The boundaries between

objects are clearer, especially at the locations of several potential mergers between objects.

At certain locations, even the BLOTC labeling looks superior.

For a more objective comparison of the two methods, we thresholded the in-out maps and

found their connected components. We counted the split and merge errors in the resulting

segmentations, using the metric described in section 5. The most important graph in Figure

8-6 is the number of mergers vs. the number of splits for all possible choices of threshold.

This graph shows that the BLOTC network is markedly superior to the standard network.

For any segmentation based on the standard network at some threshold, there exists a

segmentation based on the BLOTC network at some threshold for which both the number
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Figure 8-6: Results on 3d segmentation of SBFSEM images.

of splits and the number of mergers is reduced.

The improvement in segmentation performance occurs despite a decrease in performance

as measured by voxel error according to the initial human labeling. On the training set, the

standard network attained a final voxel error of 7.5%, while the BLOTC network had a final

voxel error of 9.2%. The higher voxel error of the BLOTC network is due to the fact that

about 12% of the original human labels were flipped to arrive at the target labels. On the

testing set, the standard network had a final voxel error of 10.34%, and the BLOTC network

had a final voxel error of 10.7%.

When voxel error is computed using the warping metric defined in section 2, we observe a

performance increase consistent with that observed in the split-merger curve. After warping,

the remaining voxel differences correspond to topological errors in the network output. On

the training set, the BLOTC network attains a warped voxel error of 0.12%, while the

standard network warped voxel error is 0.17%. For the testing set, the BLOTC warped

voxel error is 0.19% as compared to 0.26% for standard training. The fractional decrease of

warped voxel error is large, and is presumably due to the reduction of splits and mergers.

Combined with the split-merger results, these measurements provide strong evidence that

BLOTC can significantly improve the topological accuracy of a learned boundary detector.
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Figure 8-7: Interactive segmentation from seed points.

8.3.3 Interactive segmentation and semi-supervised learning

In this section we show that BLOTC can be used for interactive segmentation, in which

the user labels a small subset of seed points in an image and the task of the computer is to

determine the full regions [92]. Our seed points were an extremely sparse labeling of a single

2d SBFSEM slice, shown in Figure 4. Using only this sparse labeling (full human tracing

shown only for reference), a two-layer convolutional network was trained in the standard

way, and then applied to the full image. Unsurprisingly, the results are are poor due to the

small amount of labeled data. Another network with identical architecture was also trained

from the sparse labeling, but using BLOTC (see Supplementary Material for details).

The results shown in Figure 4 are interesting in two ways. First, the label relaxation

in BLOTC causes the sparse labels to dramatically grow in size and produce a plausible

interpretation of the full image. This illustrates how BLOTC can be used for interactive

segmentation, which is also known as transductive segmentation [26]. Second, the output

of the BLOTC optimized network is considerably better than the standard network output,

even though both networks use the same exact sparse labeling. Because BLOTC iteratively

expands the training set using the simple point criteria, the final result yields a superior

classifier. This sort of training can thus be considered a form of semi-supervised learning, in

which labels are propagated to unlabeled examples.
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Chapter 9

Conclusions and Outlook

In this thesis we have advanced a new computational approach to low-level vision. The first

aspect of this approach is the use of convolutional networks that operate directly on an image

and are completely adapted towards a specific image processing task. This is a significant

departure from either completely hand-designed methods or learning methods that rely on a

hand-designed feature space. We have demonstrated that this approach can yield success in

two very different domains: electron microscopy images of brain tissue and natural images.

We expect that the power of this approach will increase with the ability to explore larger

models due to advances in computational power. For example, an obvious extension of our

approach is to introduce additional structure within the convolutional network architecture

to analyze the image at multiple scales (this requires both subsampling to downsample the

image and supersampling to project the coarse-scale analysis back to the desired resolution).

This would enable the classifier to take advantage of much greater image context in the pre-

diction of any single output value. Advances in learning strategies such as unsupervised and

semi-supervised initialization of multi-layer networks [42, 86, 4] may also enhance the quality

of the learned parameters. Finally, the success of the basic convolutional network strategy in

low-level vision analysis of natural images and electron microscopy images suggests possible

application to a variety of other domains and problems (e.g., medical imaging).

We have also shown that as an architecture for computation, convolutional networks are

mathematically related to another popular approach (Markov Random Fields), but avoid

certain difficulties in learning and inference that occur in methods which rely on probabilistic
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Figure 9-1: Putative neurites automatically traced using techniques described in this thesis,
in a volume of rabbit retina imaged with Serial Block Face Scanning Electron Microscopy
(SBF-SEM) [24, 18].

modeling. The specific relationship established in this respect suggests that Markov random

fields are closely related to recurrent convolutional networks, in which each layer has the

same weights (except the first and last). An interesting question is whether the networks

we learn without constraining each layer to have the same weights are approximating a

recurrent network, or are truly learning some sort of hierarchical composition of feature

representations. In general, it is desireable to achieve a greater theoretical understanding of

multi-layer networks; recent work has taken initial steps along these lines [98].

The second aspect of our approach has been the use of domain specific cost functions

and learning algorithms that reflect the structured nature of certain prediction problems.

In particular, segmentation and boundary detection of a single input (i.e., a single image)

involves the prediction of many correlated variables: the presence or absence of a boundary

at each location in the image. Although it is possible to adapt traditional strategies to

such problems by treating all such predictions as essentially independent, we have shown

that this results in suboptimal performance. For the case of boundary detection, we have

rigorously grounded the problem within the the framework of digital topology and shown

how major concepts from digital topology can be used to solve critical problems in this

domain, such as defining an appropriate error metric and optimization strategy. This has
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resulted in BLOTC, the first learning algorithm that optimizes the topological accuracy of

a set of correlated output variables. As part of this goal, we have also provided a novel and

complete characterization of non-simple points based on the concepts of topological number

and extended topological number.

We believe these are important steps forward for the machine learning approach to bound-

ary detection and segmentation, but there remains significant room for progress. In particu-

lar, BLOTC is but a first step towards optimizing the high-order property of topology. The

basic concept of a constrained warping of ground truth is simple and reasonably effective,

but it would be interesting to realize ways of more directly integrating topological constraints

into the gradient learning procedure.

Finally, the methods introduced in this thesis represent a substantial advance in the image

analysis methods required for connectomics. The availability of methods that can operate

with little prior knowledge is an advantage in this context as there are a variety of different

imaging modalities that are being pursued, each with unique low-level characteristics. A

machine learning strategy that can learn directly on the image space without having to

specify features or prior knowledge in advance is therefore a significant advantage. More

important than convenience, however, is that this approach can lead to superior accuracy.

At this point, none of the described methods (nor any other in the literature) can achieve the

levels of accuracy required to “solve” the image analysis problems in connectomics. However,

we are optimistic that with continued efforts in improving classifier architectures as well as

learning strategies, automated approaches may soon enable semi-automated reconstructions

of substantial and interesting neural circuits.
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