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Abstract 
 

Myofibroblasts are an alpha-smooth muscle actin (α-SMA)-expressing cell type 
found within human mammary carcinomas, but not in the normal mammary gland. 
Myofibroblasts can enhance tumor formation by promoting angiogenesis and invasion, 
and we therefore sought to better understand how myofibroblasts are incorporated into 
breast carcinomas. By identifying secreted factors that recruit myofibroblasts as well as 
the physical niche where they originated, we aimed to identify possible therapeutic 
targets to inhibit their incorporation.  Using a newly developed mammary carcinoma 
model, termed BPLER, we identified CXCL1, VEGF, CCL5, and IL-6 as factors that 
may be important for the recruitment of myofibroblasts.  We tested the ability of CXCL1, 
VEGF164, or CCL5 to affect tumor formation and induce the incorporation of α-SMA-
positive cells.  We show that the expression in MCF-7-Ras modified human breast cancer 
cells of VEGF164, but not CXCL1 or CCL5, results in the promotion of primary tumor 
growth and the increased incorporation of α-SMA-positive cells.  Furthermore, we 
demonstrate that these α-SMA-positive cells do not correlate with cells expressing CD34, 
a marker of endothelial cells, suggesting that these cells are not α-SMA-positive smooth 
muscle cells.  Thus, we propose that VEGF is a critical factor that recruits myofibroblasts 
to the site of breast cancer formation.       

 In another line of experiments, we examined the source of the α-SMA-positive 
cell population recruited to another mammary tumor model, termed BPHER-3.  In order 
to investigate whether these cells are derived from the bone marrow, we utilized chimeric 
mice that express green fluorescent protein (GFP) in their bone marrow and blood cells in 
order to look for incorporation of GFP-labeled cells within the stroma of a 
subcutaneously grown tumor.  We demonstrated that green bone marrow-derived cells 
are robustly recruited to the site of BPHER-3 tumor formation; however strikingly, 
almost 100% of the α-SMA positive cells analyzed were GFP negative.  Our results 
demonstrate that the α-SMA-positive cell population recruited to BPHER-3 tumors is not 
bone marrow-derived, but is instead recruited from the adjacent tissue microenvironment. 
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Breast Cancer 

Breast cancer represents more than a quarter of cancers diagnosed in American 

women.  It is one of the most common forms of cancer, second only to skin, and one of 

the leading causes of cancer-related deaths in US women, second only to lung cancer 

(American Cancer Society).  During the period of 2001 through 2005 the incidence rate 

of female breast cancer was 126.1 per 100,000 women and the mortality rate was 25 per 

100,000 women (Ries LAG et al. 2008).      

Importantly, breast cancer is not a single disease, but instead represents a group of 

neoplasms that all arise in the breast.  Among the different breast cancer neoplasms, 

carcinomas are the most common.  Carcinomas are defined as a type of cancer that arises 

from epithelial cells.  Ductal carcinoma in-situ (DCIS) and invasive ductal carcinoma 

(IDC) are the most common forms of non-invasive and invasive breast cancer, 

respectively.  In fact, IDC represents approximately 70% of all breast cancers 

(MayoClinic.com).  In order to improve the treatment of breast cancer, it is necessary to 

understand the causes of cancer, the progression of the disease and the factors that 

facilitate its progression. 

 

Cancer is Caused by Alterations in the DNA of Normal Cells 

Cancer is caused by both genetic and epigenetic alterations of cells that transform 

them into cancer cells.  Moreover, it is clear that multiple alterations are required to 

convert a normal cell into a cancer cell. Accordingly, the formation of a tumor is a multi-

step evolutionary process, with each successive modification providing one cell in the 
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population with some selective advantage (Hanahan and Weinberg, 2000).  Properties 

that confer a selective advantage on cells in a tumor include unregulated growth and 

proliferation, evasion of apoptosis, increased replicative potential, the induction of 

angiogenesis, and eventually invasion and metastasis (Hanahan and Weinberg, 2000).   

Ultimately, a subset of cells is created, the cancer cells, which have accumulated all of 

the necessary genetic alterations that provide this set of cells with the properties 

necessary to form a robustly growing tumor. 

 

The Progression of Ductal Carcinomas from Normal Breast Tissue 

In order to understand the progression of ductal breast carcinomas from 

hyperplasia to a robustly growing and invasive tumor, it is essential to know the normal 

context in which it arises.  The normal mammary gland contains ducts that serve as 

passageways for milk.  A duct consists of a layer of epithelial cells, which line the lumen 

of the duct, and they are surrounded by a layer of myoepithelial cells and a basement 

membrane (Bissell MJ and Radisky D. 2001).  The basement membrane is composed of 

various types of extracellular matrix (ECM) proteins (Bissell MJ and Radisky D. 2001).  

ECM proteins serve as a scaffold for various cellular structures.  The ductal structure 

described above is surrounded by an environment that is referred to as the stroma, which 

is discussed in detail below. 

The initial stages of tumor progression including hyperplasia, dysplasia and 

carcinoma in-situ all occur in the confines of the duct.  As the tumor evolves the 

basement membrane can be broken down and the carcinoma cells are able to invade into 
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the surrounding tissue; this is called invasive ductal carcinoma (IDC) (Kalluri and 

Zeisberg, 2006).  Following invasion into the surrounding tissue, the cancer cells can 

travel to other sites in the body and form secondary tumors, the process called metastasis.  

Metastasis requires several steps beginning with intravasation of cancer cells in the 

primary tumor into a blood vessel.  Metastatic cells travel through the blood stream to a 

secondary site in the body and extravasate into the new tissue.  Finally, the extravasated 

cells proliferate at the new site forming a secondary tumor. 

 

Tumor Progression is Facilitated by Changes that Occur Outside of the Cancer Cells  

Research was initially focused on identifying the genetic abnormalities within the 

cancer cell and how they endow a cell with the capacity to complete the multiple steps of 

tumorigenesis from hyperplasia to metastasis.  This research has lead to the identification 

of many genes that are responsible for some aspect of tumor progression.  However, 

cancer progression not only involves changes that occur within the cancer cell, but also 

changes that occur in the environment surrounding the cancer cells.  The environment 

surrounding the cancer cells, like the environment surrounding the ducts in the normal 

breast, is referred to as the stroma.   It is important to recognize the changes in the stroma 

surrounding the cancer cells, because they are essential for many aspects of tumor 

progression. 

The normal mammary stroma and the tumor stroma include two components, an 

extracellular protein component and a cellular component (Figure 1).   In the normal 

breast, the stroma comprises the majority of the tissue volume (Rønnov-Jessen L et al. 
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1996).  Interestingly, in a disease marked by the unregulated proliferation of cancer cells, 

the tumor stroma can in some cases comprise a majority of the tumor mass (Rønnov-

Jessen L et al. 1996).  However, the tumor stroma is distinct from the normal stroma in 

both the extracellular protein component and cellular component.  Furthermore, the 

changes in the stroma impact tumor initiation, angiogenesis, invasion and metastasis, as 

illustrated below. 
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The Cellular Component of the Stroma and Its Impact on Tumor Progression 

The stromal cells present in a carcinoma can include fibroblasts, myofibroblasts, 

endothelial cells, smooth muscle cells and several immune cell types.  There are several 

distinctions in the cellular component of the stroma compared to the normal tissue that 

can occur during tumor progression.  First, the organization of the cell types in the tumor 

stroma can be different relative to the normal tissue.  For example, blood vessels within a 

tumor can be structurally different from their normal counterparts.  In tumors, blood 

vessels have been described as leaky and tortuous (Bergers G and Benjamin LE 2003).  

Additionally, unlike normal vessels, the blood vessels in tumors are not always fully 

covered by smooth muscle cells (Bergers G and Benjamin LE 2003).  Secondly, the 

diversity of stromal cell types present can be perturbed during tumor progression.  One of 

the more distinctive changes seen in the stroma of breast carcinomas, and the focus of my 

studies, is the presence of a cell type called the myofibroblast, which is absent in the 

normal mammary tissue (Skalli O et al. 1986, Barth PJ et al. 2002, Chauhan H et al. 

2003, Yazhou C et al. 2004).  Finally, the gene expression profile of the stromal cells 

present in breast carcinomas can be distinct from the profile of stromal cells present in 

the normal breast tissue (Allinen M et al 2004).   

The cells present in the stroma of tumors are not just an altered form of  their 

normal counterparts, but play essential roles in tumor progression that have both positive 

and negative influences on tumor progression.  In this thesis, I focus on the functional 

aspects of stromal cells that facilitate the multiple steps of tumor progression, including 

tumor initiation, angiogenesis, invasion, metastasis and drug resistance.  Furthermore, the 
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impact specifically of myofibroblasts on tumor progression will be discussed in a 

subsequent section. 

 

Stromal Cells Can Facilitate Tumor Initiation 

Although cancer originates because of changes in the DNA of cancer cells, the 

stromal cells can facilitate tumor initiation in the normal precursors of the cancer cell.  It 

has been demonstrated that alterations in stromal fibroblasts can cause neoplastic 

phenotypes in normal neighboring epithelial cells.  The cytokine, transforming growth 

factor-β (TGF-β) affects several distinct cell types, including stromal fibroblasts, by 

binding to a TGF-β receptor expressed by these cells and has been implicated in several 

aspects of tumorigenesis.  Bhowmick et al. demonstrated that when the transforming 

growth factor-β type II receptor (TGF-β-IIR) is knocked-out in stromal fibroblasts of 

mice, it leads to neoplasia in the prostate and invasive cancers in the forestomach 

(Bhowmick NA et al. 2004).  These data demonstrate that alterations in the stroma can 

lead to changes that facilitate the initiation of tumorigenesis.     

Stromal cells were also shown in a mouse model of invasive squamous cell 

carcinoma to aid in initial tumor formation (Coussens LM et al., 2000).  In this model, 

squamous carcinomas are initiated by the transgenic expression of an oncogene, the 

human papillomavirus type 16 (HPV16) early region, under a keratin 14 promoter.  The 

tumors in the K14-HPV16 mice are infiltrated by mast cells, neutrophils and 

macrophages, all of which express matrix metalloproteinase-9 (MMP-9) (Coussens LM 

et al., 2000).  MMPs, as will be discussed later, are thought to play multiple roles in 
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tumor progression through their ability to degrade ECM proteins (Lynch and Matrisian, 

2002).  In the study by Coussens et al., the occurrence of squamous cell carcinomas is 

reduced when K14-HPV16 mice are crossed to mice lacking MMP-9.  Furthermore, the 

wild type tumor phenotype can be recapitulated by providing the MMP-9 deficient 

animals with wild type bone marrow through a bone marrow transplantation procedure.  

These data suggest that the expression of MMP-9 by these stromal cell types is important 

for initial tumor formation and that these stromal cells are of bone marrow origin.  These 

experiments taken together reveal the impact that stromal cells can have on tumor 

formation at very early stages. 

 

Stromal Cells are Essential for Angiogenesis 

Following the initiation of a tumor, cancer cells, like normal cells, rely on a blood 

supply to survive.  A tumor needs to induce angiogenesis, which is the growth of new 

blood vessels, if it is to grow and progress past a certain size (Hanahan D and Folkman J 

1996).  Angiogenesis is probably the most well known example of cancer cells needing 

additional cell types to aid in their growth.  Blood vessels, which consist of endothelial 

cells surrounded by a layer of smooth muscle cells, are essential to the survival of normal 

tissue and tumor tissue because they provide oxygen and essential nutrients to the cells in 

these tissues.  While tumor cells themselves can directly induce angiogenesis, other cell 

types recruited to the tumor stroma, like mast cells, macrophages and neutrophils, have 

been implicated in various animal models to play a role in the induction of angiogenesis 

during tumor formation (Coussens LM et al. 1999, Lin EY et al 2006, Nozawa H et al. 
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2006).  Thus, stromal cells are involved in two aspects of tumor angiogenesis: first, the 

stromal endothelial and smooth muscle cells are essential in the formation of tumor blood 

vessels; secondly, other stromal cell types can aid in the induction of angiogenesis.     

Angiogenesis not only effects primary tumor growth but also affects the 

establishment and subsequent growth of metastasis.  In Id-deficient mutant mice, which 

show defective angiogenesis during tumor growth, the primary tumor growth of Lewis 

lung carcinoma (LLC) cells is decreased and metastasis to the lung is greatly inhibited 

(Lyden D et al. 1999).  Moreover, metastasis of the LLC cells to the lungs following tail 

vein injection is also inhibited in these mice.  These data suggest that in the Id-deficient 

mutant mice there are problems with the ability of the tumors cells to get to the lung 

and/or the colonization of the lung by the tumor cells.  It is thought that angiogenesis not 

only provides nutrients to the growing tumor and its secondary metastasis, but also serves 

to create conduits for the tumor cells to move to other sites in the body.  

Angiogenesis has been associated with disease progression in cancer patients and 

represents a prime therapeutic target.  An increase in the number of blood vessels in the 

tumor mass has been associated with poor prognosis in breast and prostate cancer 

(Hanahan D and Folkman J 1996).  Based on clinical data and the essential role 

angiogenesis plays during tumor progression, one avenue of clinical therapies has been 

focused on inhibiting the process of angiogenesis.  Vascular endothelial growth factor 

(VEGF) is the most well known inducer of angiogenesis.  It acts as both a growth factor 

and chemoattractant for endothelial cells, as discussed later (Cross MJ et al., 2003).  One 
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way to inhibit the actions of VEGF is through the development of antibodies that bind 

VEGF and inhibit its activity.   

Therapies that target the stromal cells recruited to a tumor are useful for two 

reasons; first, stromal cells influence the course of disease progression; secondly, they 

can contribute to the resistance of tumors to particular drugs.  In a study by Shojaei F et 

al., it was demonstrated that the growth of some xenograft tumors is greatly inhibited by 

a monoclonal antibody that neutralizes VEGF (anti-VEGF) and these tumors were 

therefore dubbed sensitive tumors (Shojaei F et al. 2007).  On the other hand, there were 

other tumor xenografts that were more resistant to anti-VEGF’s inhibitory effects and 

these were designated as refractory tumors.  The authors went on to demonstrate that the 

sensitive tumors are rendered less sensitive when the tumor cells are mixed with 

CD11b+Gr-1+ myeloid cells that were previously isolated from refractory tumors or the 

bone marrow of mice bearing refractory tumors.  Furthermore, the growth of the 

refractory tumors is inhibited to a greater extent when the anti-VEGF treatment is 

combined with an anti-Gr-1 treatment, an antibody that recognizes Gr-1.  These data 

reveal that the recruitment of myeloid cells can play a role in tumors that are insensitive 

to anti-VEGF treatment (Shojaei F et al. 2007).  The study of angiogenesis during tumor 

formation provides a prime example of the potential therapeutic benefits of exploring the 

biology of stromal cells in cancer.  
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Stromal Cells Affect Tumor Cell Invasion and Metastasis 

In addition to initial tumor formation and angiogenesis, stromal cells affect both 

tumor cell invasion and metastasis.  For example, mammary stromal fibroblasts lacking 

the TGF-β-IIR enhanced tumor formation and invasion when co-mingled with mouse 

breast cancer cells, relative to wild-type fibroblasts (Cheng N et al. 2005).  The knock-out 

of the TGF-β-IIR in fibroblasts led to an increase in secretion of hepatocyte growth factor 

(HGF, also known as scatter factor (SF)) by these cells.  A neutralizing antibody to HGF 

was demonstrated in vitro to inhibit the increase in proliferation and migration of mouse 

mammary carcinoma cells in response to the knock-out fibroblasts (Cheng N et al. 2005).  

This data suggests that fibroblasts present in the tumor stroma can promote tumor cell 

invasion though the secretion of specific factors recognized by the cancer cells.   

Stromal cell types of the myeloid lineage within tumors have been implicated in 

facilitating both tumor invasion and metastasis (Lin EY et al. 2001, Kitamura T et al 

2007, Yang L et al. 2008).  The myeloid lineage of cells consists of the myeloid 

progenitors and the cells they give rise to, including macrophages, neutrophils, mast cells, 

and dendritic cells among other cell types (Janeway CA et al. 2001).  In clinical data, the 

presence of macrophages in a majority of cancer studies is correlated with poor prognosis 

(Pollard 2004).  Furthermore, macrophage infiltration has been correlated with both a 

decrease in the relapse-free survival and in the overall survival of breast cancer patients 

(Leek RD et al. 1996).     

As demonstrated above, stromal cells play functional roles that can facilitate the 

multiple steps of tumorigenesis and targeting their recruitment can be therapeutically 
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beneficial.  Specifically, the growth of tumors was inhibited by targeting the factor, 

VEGF, which can induce angiogenesis.   Thus, it is important to understand the 

mechanisms behind the recruitment of stromal cells to the sites of tumors formation.   

Additionally, it is important to understand the mechanisms underlying the functional 

roles of stromal cells during tumorigenesis.   

 

The Protein Component of the Stroma and Its Importance for Cancer and Stromal 
Cell Interaction 
 

One of the main means by which cell types communicate and affect the biology of 

surrounding cells is through the release of proteins into the extracellular environment.  As 

mentioned above, the stroma of the normal breast tissue and the tumor stroma contain an 

extracellular protein component.  The protein component of the stroma can consist of 

several types of extracellular proteins including ECM proteins, growth factors, cytokines, 

chemokines, and proteases.  Importantly, the composition, abundance, and distribution of 

extracellular proteins in the stroma of mammary carcinomas are distinct from those found 

in the normal mammary stroma (Rønnov-Jessen L et al. 1996).  

The extracellular protein component of the stroma is essential for tumor 

progression, because the stromal cells incorporated into the growing tumor mass are 

determined by the extracellular proteins secreted by the cancer cells.  Subsequently, the 

extracellular proteins secreted by the stromal cells affect the biology of the cancer cells 

and also serve to recruit other stromal cell types.  Each of the multiple steps of tumor 

formation is affected by this communication and therefore greatly influences the 

progression of the disease.  This communication is the mechanism that underlies the 



 

 23 

functional impact that stromal cells and cancer cells have on each other.  Thus, it is 

important to elucidate some of the specific differences in the extracellular protein 

environment present in breast cancer relative to normal breast tissue.  Additionally, it is 

critical to understand the biological consequences of this communication and how this 

communication produces an effect on tumor progression.   

 

The Gene Expression Profiles of Stromal Cells are Affected by Extracellular Proteins 

It has already been established that the extracellular protein environment within a 

tumor is distinct relative to the normal tissue.  These changes in the extracellular 

environment can lead to changes in the gene expression profiles of the tumor stromal 

cells relative to the normal tissue.  As mentioned previously, the expression profiles of 

stromal cells in breast carcinomas were shown to be different from the stromal cells in a 

normal mammary gland (Allinen M et al 2004).  Specifically, Allinen et al. isolated 

different cell populations from the normal breast and those from mammary carcinomas.  

The populations of cells that they examined were epithelium, myoepithelium and 

myofibroblasts, leukocytes, and endothelium.  After isolating each of the cell types they 

performed gene expression arrays on the different populations.  In each of the cell 

populations the gene expression profile of the cells isolated from mammary carcinomas 

was different from that isolated from a normal mammary gland (Allinen M et al 2004). 

Interestingly, the gene expression profiles of stromal cells in tumors have been 

correlated with disease outcome.  In a study by Bacac et al., they examined a set of 

upregulated genes in the stromal cells of a mouse model of invasive prostate cancer 
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(Bacac M et al. 2006).  The authors demonstrate that the human homologs of this 

upregulated gene set were positively correlated with decreased disease-free recurrence 

periods in patients with prostate cancer.  While not true for other types of cancer, this 

upregulated gene set was also positively correlated with a shorter metastasis-free survival 

and a decreased overall survival in human patients with breast cancer (Bacac M et al. 

2006).   In another recently published paper, an expression signature derived from the 

stromal cells of invasive breast cancer was reported to have predictive power in patients 

(Finak G et al. 2008).  Thus, an understanding of the changes in stromal cell gene 

expression induced during tumorigenesis could lead to a difference in how cancer 

patients are treated.  

Changes that occur in the stromal gene expression profile during tumorigenesis 

could be the result of two factors; first, changes in the gene expression of a particular 

stromal cell type in response to the altered extracellular protein environment.  Secondly, 

it could be the result of a change in the composition of stromal cell types present relative 

to the normal tissue stroma.  It is most likely that the stromal gene expression pattern in 

tumors is a combination of both these factors.  In light of the clinical data presented 

above, it is important to understand how growth factors, chemokines, cytokines, ECM 

proteins, and proteases produce these changes in the stromal cells and how these factors 

facilitate tumor progression.  
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The Secretion Growth Factors, Chemokines and Cytokines and Their Effects on Stromal 
Cells and Tumors Cells  
 

The release of growth factors, chemokines, and cytokines by cancer cells affect 

certain stromal cell types because particular subsets of stromal cells express the 

appropriate receptor.  Furthermore, the secretion one ligand by a cancer cell has the 

ability to influence multiple cell types (Figure 2A).  For example, tumor cells can induce 

angiogenesis by secreting one of the members of the VEGF family of proteins called 

VEGF-A.  VEGF-A in the extracellular environment is recognized by two 

transmembrane receptors VEGF-receptor-1 (VEGFR1) and VEGF-receptor-2 (VEGFR2) 

(Cross MJ et al., 2003).   VEGF-A induces angiogenesis because endothelial cells express 

both VEGFR-1 and VEGFR-2 and therefore respond to VEGF-A (Cross MJ et al., 2003).  

VEGFR-1 is also expressed by other cell types including hematopoietic stem cells, 

monocytes and macrophages (Cross MJ et al., 2003). Similarly, VEGFR-2 expression is 

not limited to endothelial cells.  The expression of a particular receptor by several 

different cell types is not limited to VEGFR-1 and VEGFR-2, but is also true for many 

other types of receptors.  The overlapping expression of receptors on multiple cells types 

is the reason the secretion of one factor by a cancer cell can influence multiple cell types.   

The binding of a ligand to its receptor produces changes in gene expression on the 

receptor expressing cell that can lead to several functional consequences (Figure 2B).  

For example, the binding of VEGF-A to the VEGFR-2 receptor on endothelial cells can 

lead to several biological outputs including migration, proliferation, and cell survival 

(Cross MJ et al., 2003).  Each of these responses seems appropriate based on the fact that  
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VEGF-A induces the growth of new blood vessels.  Thus, a cancer cell can recruit certain 

tumor-promoting stromal cells to the site of tumor formation because some of the factors 

they release induce the migration of these cells upon binding to the receptor.  These 

factors are said to act as chemoattractants.  Furthermore, once a stromal cell type is 

present, the cancer cells can increase the numbers of these stromal cells through the 

release of extracellular proteins that promote their proliferation or survival.  The stromal 

cells recruited into the tumor microenvironment can then secrete growth factors, 

chemokines, and cytokines that reciprocally affect the tumor cells’ proliferation, survival, 

invasion and metastasis.  

In addition to the effects mentioned above, the binding of ligands to their cognate 

receptors can also induce changes in the gene expression profiles of stromal cells that 

lead to the differentiation or trans-differentiation of a recruited stromal cell.  For 

example, TGF-β is thought to cause the trans-differentiation of fibroblasts into 

myofibroblasts (Desmoulière A et al. 1993).  The myofibroblasts created could then 

impact tumor progression in multiple ways, as presented below.   

 

The Secretion of Extracellular Matrix Proteins and Their Effect on Tumor Progression 

ECM proteins are also present in the tumor microenvironment and affect tumor 

progression.  The ECM protein environment present in the tumor is distinct from the 

normal tissue.  Carcinomas of the breast can display a desmoplastic stroma, often referred 

to as the desmoplastic response in contrast to normal breast tissue.  The desmoplastic 
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stroma is typified by the increased deposition of ECM proteins including collagen and 

fibronectin (Rønnov-Jessen L et al. 1996).   

The changes in the ECM can begin to occur prior to invasion and direct contact of 

the carcinoma cells with the stroma.  In a study examining 18 patients with DCIS, in-situ 

hybridization demonstrated the increased expression of collagen, fibronectin, and ED-A+ 

fibronectin by stromal cells surrounding the duct (Brown LF et al. 1999).  Furthermore, 

in a mouse model of prostate cancer, Bacac M et al. demonstrated an increase in the 

expression of particular extracellular matrix proteins, including pro-collagen type III, pro-

collagen type IV, and biglycan in the stroma of invasive tumors, relative to the stroma of 

prostate intraepithelial neoplasia (Bacac M et al. 2006).  While one might have initially 

suspected the distinction in extracellular proteins to be simply caused by the altered 

cancer cells, the stromal cells are clearly contributing to the changes seen in the 

extracellular protein environment.  Furthermore, the study by Bacac M et al. 

demonstrates that the stromal gene expression profile continues to change over the course 

of tumor progression.  

The ECM proteins secreted into the tumor microenvironment are recognized by 

their own set of cell surface receptors found on both stromal cells and tumor cells.  As 

mentioned earlier, ECM proteins provide a scaffold for the growth of cells and cellular 

structures.  ECM protein receptors can also transduce signals that lead to cell growth, 

survival, and migration (Kass L et al. 2007).  Thus, ECM proteins are thought to play a 

role in several aspects of tumorigenesis including invasion (Kass L et al. 2007).  Finally, 
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the remodeling of ECM proteins by factors such as proteases contributes to disease 

progression as discussed below.   

 

The Secretion of Proteases and Their Effects on Tumor Progression 

In addition to the secretion of ECM proteins, growth factors, chemokines and 

cytokines by the recruited stromal cells, they can secrete proteases that also affect tumor 

progression.  Proteases are proteins with an enzymatic function that allow them to cleave 

specific protein substrates.  Interestingly, it has been demonstrated in a mouse model of 

prostate cancer that one of the most over-represented set of genes in the stroma of 

invasive tumors, compared to the stroma of prostate intraepithelial neoplasia, falls into 

the category termed endopeptidase activity (Bacac M et al. 2006).  Some of the genes in 

this set are capable of re-modeling the extracellular environment through their ability to 

degrade specific proteins.   

Matrix-remodeling proteins include matrix metalloproteinases (MMPs). MMPs 

represent a family of proteases that cleave specific target proteins and, as their name 

implies, they degrade ECM proteins (Lynch and Matrisian, 2002).  MMPs show a 

distinctive pattern of expression during breast cancer progression.  A matrix 

metalloproteinase, stromelysin-3 (Str-3), was shown to be expressed by the stromal cells 

in breast carcinomas but absent in the normal mammary gland (Basset P et al. 1990, Wolf 

C et al.1993).  Additionally, the expression of other MMPs in breast cancer including: 

MMP-2, MMP-9, MMP-11, MMP-12, and MMP-14; while showing different patterns of 

expression, were all expressed by stromal cells (Heppner KJ, 1996).  Similar to Str-3, 
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Heppner et al. demonstrate that these other MMPs expressed by the stromal cells were 

seldom seen in normal breast tissue.  

The changes in MMP expression detected during tumorigenesis affect the biology 

of the cancer cells in at least two ways.  First, MMPs released by stromal cells can affect 

cancer pathogenesis through their ability to degrade ECM proteins that might serve as 

barriers to infiltrating cancer cells, thus promoting tumor cell invasion. (Lynch and 

Matrisian, 2002).  Secondly, MMPs may also play a role in tumor formation through their 

ability to increase the availability of growth factors and cytokines in the extracellular 

space that can then bind to their cognate receptors (Lynch and Matrisian, 2002).  For 

example, it has been shown that inhibition of MMP-9 reduces angiogenesis and tumor 

formation in a mouse model of pancreatic cancer (Bergers G et al., 2000).  The authors 

were able to demonstrate that MMP-9 regulates the availability of VEGF, a potent 

inducer of angiogenesis.  

The crosstalk between tumor cells and stromal cells through the release of 

extracellular proteins can control many aspects of tumorigenesis. Thus, the 

communication between cancer cells and stromal cells is a prime target therapeutically 

because of its impact on tumor progression.  However, the particular subsets of stromal 

cells present in the tumor stroma are most likely recruited in response to different sets of 

factors.  Thus, it is important to understand how particular stromal cell populations effect 

tumor progression and the factors that induce their recruitment.  
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Myofibroblasts are Present at Sites of Wound Healing, Fibrosis and Breast 
Carcinoma  
 

In my studies, I have focused on the recruitment of a stromal cell type called the 

myofibroblast.  Myofibroblasts were originally identified as altered fibroblasts present at 

the sites of wound healing.  Myofibroblasts have also been described at sites of fibrosis, 

which is characterized by the superfluous deposition of ECM proteins (Gabbiani G 2003, 

Hinz B et al. 2007, De Wever O et al. 2008).  In addition to their role in tumor formation, 

myofibroblasts are actively involved in wound repair, in part through the secretion of 

extracellular matrix molecules, growth factors, and cytokines important in the resolution 

of the wound.  Furthermore, myofibroblasts display contractile abilities and play a role in 

the contraction of wounds (Powell DW et al. 1999, De Wever O et al. 2008, Gabbiani G 

2003).  Thus, myofibroblasts aid in the wound healing process in several ways.  In 

contrast to wound healing, where myofibroblasts play a positive role in the repair 

process, they appear to be conspirators in the formation of tissue fibrosis and tumor 

formation (Hinz B et al. 2007).  Furthermore, unlike wound healing, where 

myofibroblasts are no longer present following resolution of the wound, they are thought 

to be continuously present in areas of fibrosis and during the growth of carcinomas 

(Gabbiani G 2003, De Wever O et al. 2008).   

As mentioned previously, probably one of the most distinctive changes in the 

stroma of mammary carcinomas is the presence of numerous myofibroblasts.  

Myofibroblasts in cancer are sometimes referred to as activated-fibroblasts and are most 

often distinguished from fibroblasts by their expression of alpha-smooth muscle actin (α-
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SMA).  In the normal mammary gland α-SMA expression is limited to myoepithelial 

cells and the smooth muscle cells that line blood vessels (Skalli O et al. 1986, Lazard D 

et al. 1993).  In contrast to the normal mammary gland, α-SMA can be expressed by 

approximately 80% of the cells present in the stroma of breast carcinomas (Sappino AP et 

al. 1988).  Furthermore, in many mammary carcinomas, including invasive ductal 

carcinomas, α-SMA is expressed by myofibroblasts that populate the tumor stroma.  

Indeed, myofibroblasts are particularly interesting because they are absent in the normal 

mammary gland but present in mammary carcinomas (Skalli O et al. 1986, Barth PJ et al. 

2002, Chauhan H et al. 2003, Yazhou C et al. 2004). 

Recently, clinical studies have investigated whether the presence of 

myofibroblasts correlates with disease progression.  In colorectal cancer the presence of 

myofibroblasts, as assessed by immunohistochemistry using an antibody recognizing α-

SMA, was negatively correlated with overall survival and disease-free survival (Tsujino 

T et al. 2007).  In another study looking at 58 patients with invasive ductal carcinomas, 

tumors were scored as either being positive for myofibroblasts or negative (when the 

percent of α-SMA expressing fibroblasts were <10%) for myofibroblasts.  After 

examining each group for the percentage of patients with positive lymph node metastasis, 

the subset of patients scored as being positive for myofibroblasts (n=33) had a higher 

percentage of lymph node-positive patients, 72.7%, than the subset scored as negative for 

myofibroblasts (n=25), 44% (Yazhou C et al. 2004).  These studies suggest that the 

presence of myofibroblasts during tumor formation results in a poor prognosis for the 
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patient.  However, they do not illuminate the specific contributions of myofibroblasts to 

the progression of a tumor.  

 

Myofibroblasts Play Several Roles in Tumor Progression 

A number of studies examine the role of myofibroblasts and fibroblasts in tumor 

progression as a population referred to as cancer associated fibroblasts (CAFs).  CAFs 

isolated from carcinomas are most likely to be a mixture of myofibroblasts and 

fibroblasts.  Myofibroblasts and fibroblasts facilitate several aspects of tumor progression 

including initiation, angiogenesis and invasion.   

 

CAFs Involvement in Facilitating Tumor Initiation 

CAFs have been shown to facilitate tumor initiation.  In a prostate cancer model, 

Olumi et al. use initiated prostate cells that are genetically abnormal and express the 

oncogene SV40-T antigen but do not form tumors when injected into mice (Olumi AF et 

al.  1999).  However, they demonstrated that CAFs were capable of fostering tumor 

formation when they were co-mixed with these initiated prostate cells, whereas normal 

fibroblasts had no effect on tumor formation.  In addition to demonstrating a role for 

CAFs in the early stages of tumorigenesis, these data also suggest that CAFs are 

functionally distinct from normal fibroblasts. 
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CAFs Involvement in the Promotion of Angiogenesis  

CAFs can aid in the process of angiogenesis by providing potent pro-angiogenic 

molecules.  As stated above, angiogenesis is essential for tumor progression and can be 

initiated by VEGF.  Some have demonstrated that in response to hypoxic conditions both 

normal and cancer-associated mammary fibroblasts upregulate expression of VEGF 

mRNA (Hlatky L et al. 1994).  Additionally, when murine mammary carcinoma cells 

were grown subcutaneously in transgenic mice that express green fluorescent protein 

(GFP) under the control of a VEGF promoter, GFP expression was detected in the tumor 

mass (Fukumura D et al., 1998).  Histological analysis revealed that GFP expression was 

detected in cells whose morphology was consistent with that of fibroblasts.  Thus, these 

data suggest that CAFs may induce angiogenesis during tumor growth through their 

ability to secrete VEGF.     

Work form our own lab has demonstrated that CAFs in breast cancer can enhance 

tumor formation through their ability to induce angiogenesis (Orimo A et al. 2005).  In 

this study, fibroblasts were isolated from 6 invasive ductal carcinomas of the breast 

(CAF1-6), normal breast tissue from the same patient (counterpart fibroblasts 1-6), and 

normal breast tissue from a patient without cancer.  In four out of the six cases, cancer-

associated fibroblasts enhanced the tumor formation of MCF-7 Ras breast cancer cells 

relative the actions of both normal and counterpart fibroblasts.  Examination of tumors 

derived from MCF-7 Ras cells co-mingled with CAF1 demonstrated an increase in 

angiogenesis relative to both the normal and counterpart fibroblasts (Orimo A et al. 

2005).  It was also discovered that several of the CAF populations displayed increased 
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expression of the chemokine stromal-derived factor-1 (SDF-1), and that inhibition of 

SDF-1 was sufficient to prevent the enhanced tumor formation and angiogenesis. 

 

CAFs Involvement in Invasion and Metastasis 

CAFs are thought to play a role in promoting tumor invasion and metastasis 

through several mechanisms, which include their ability to secrete specific growth factors 

and matrix-remodeling proteins (Kalluri and Zeisberg, 2006).  In a transwell assay, 

conditioned media from myofibroblasts, created by treating fibroblasts with conditioned 

media from squamous carcinoma cells (SCCs), were able to promote the migration of 

SCCs in an HGF-dependant manner (Lewis MP et al. 2004).  Additionally, 

myofibroblasts isolated from colon adenocarcinomas, relative to fibroblasts isolated from 

the adjacent normal tissue, show an increased ability to promote in vitro invasion of 

colon cancer cells into collagen gels (De Wever O et al.  2004). In the same study, 

fibroblasts differentiated into myofibroblasts through treatment with TGF-β are also 

capable of promoting the invasion of colon cancer cells relative to untreated fibroblasts.  

The ability of myofibroblasts to promote invasion in this study was attributed to their 

ability to secrete both HGF and Tenascin-C (De Wever O et al.  2004). Thus, fibroblasts 

and myofibroblasts are not only present at the site of tumor formation, but they are also 

capable of influencing multiple steps in tumorigenesis. 
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Questions Addressed 

In my studies, I wanted to identify the factors responsible for the recruitment of 

myofibroblasts to the site of breast cancer formation.  I focused on this cell type for two 

reasons: first, it is present in carcinomas of the breast, but absent in the normal mammary 

gland; second, it plays a functional role in tumor progression.  These two 

factors/considerations make myofibroblasts an important therapeutic target, because 

blocking their recruitment should inhibit them from affecting tumor formation without 

affecting the normal physiology of the breast.  Thus, it is important to identify the factors 

responsible for recruiting these cells to the site of tumor formation. 

When this work began, a novel experimental model of breast cancer development, 

termed BPLER, was developed in our lab and was demonstrated to form tumors with 

areas that contain numerous myofibroblasts; the histopathology of these tumors 

resembled that of adenocarcinomas found in the clinic.  In my work, I wanted to identify 

and investigate factors secreted by the BPLER tumor cells that are responsible for the 

presence of numerous myofibroblasts seen in the desmoplastic areas of the BPLER 

tumors.  

  In a second line of experiments, I was interested in whether the cell types that 

give rise to myofibroblasts are derived from the bone marrow.  I was interested in the 

source of myofibroblasts because they are present in carcinomas and not in the normal 

mammary gland, which suggests that they are derived from another cell type.  

Myofibroblasts could be derived from a preexisting cell type in the adjacent tissue or they 

could also be derived from a systemic source like the bone marrow/blood.  The source of 
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the cells recruited into the tumor stroma has important therapeutic implications, because 

if a cell type is recruited from the bone marrow, it would be advantageous to intercept it 

in the blood stream, thereby blocking its recruitment.       

In my work, I was interested in whether one of our genetically engineered tumor 

models is capable of recruiting cell types from the bone marrow.  Myofibroblasts, in 

addition to smooth muscle cells, express α-SMA.  As mentioned earlier, Sappino AP et 

al. assessed that α-SMA can be expressed by approximately 80% of the cells present in 

the stroma of breast carcinomas (Sappino AP et al. 1988).  Thus, I wanted to specifically 

investigate whether any of the α-SMA-positive stromal cells present in our tumor model 

are derived from the bone marrow.   
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Introduction 

Myofibroblasts are detectable in both ductal carcinoma in situ (DCIS) and 

aggressive breast carcinomas. However, they are not detected in the normal mammary 

gland (Skalli O et al. 1986, Lazard D et al. 1993, Barth PJ et al. 2002, Chauhan H et al. 

2003, Yazhou C et al. 2004).  This critical observation supports the hypothesis that 

myofibroblasts play a functional role in tumor progression and suggests the potential 

clinical utility of identifying the factors involved in the recruitment of myofibroblasts to 

the site of tumor formation so that this recruitment process may be pharmacologically 

blocked.  

Myofibroblasts are not only detected at sites of tumor formation, but are also 

detected at other pathological/inflammatory states, such as wound healing and fibrosis.  

The cell type(s) that give rise to myofibroblasts under various circumstances is still being 

elucidated and most likely depends on the tissue and pathological situation being studied.  

For example, the liver- specific hepatic stellate cell is thought to be a precursor to 

myofibroblasts found in liver fibrosis, but is likely distinct from the myofibroblast 

precursor in breast tumors (Hinz B et al. 2007).  Furthermore, it is possible that 

myofibroblasts present within a single tissue may be derived from several alternative 

sources.  One such source is resident tissue fibroblasts, which are one of the most well 

studied precursors.  Myofibroblasts are often distinguished from fibroblasts by their 

expression of α-smooth muscle actin (α-SMA).  Interestingly, α-SMA is also expressed 

by blood vessel-associated smooth muscle cells, which represent yet another potential 

source of myofibroblasts (Rønnov-Jessen L et al. 1995).  It has also been postulated that 
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endothelial cells and epithelial cells, through the process of endothelial-mesenchymal 

transition (EndMT) and epithelial-mesenchymal transition (EMT), respectively, are also 

potential sources of myofibroblasts (Hinz B et al. 2007, Zeisberg EM et al. 2007, Kalluri 

R and Zeisberg M 2006).  Lastly, the presence of bone marrow/blood-derived 

myofibroblasts has also been demonstrated in models of fibrosis and cancer (Hinz B et al. 

2007, Ishii G et al. 2003, Sangai T et al. 2005, Direkze NC et al. 2004, Guo X et al. 

2008).  Taken together these data suggest that myofibroblasts present at the site of tumor 

formation may be derived from several sources, including neighboring cell types in the 

local tissue microenvironment or from systemic sources such as the bone marrow and 

blood. 

Secreted proteins are likely necessary to recruit and/or differentiate these 

myofibroblast precursors as well as to support the growth and proliferation of 

myofibroblasts.  Candidate factors include growth factors, cytokines, extracellular matrix 

proteins (ECM), and proteases.  One of the most well studied factors is transforming 

growth factor-β (TGF-β).  TGF-β, which induces the presence of myofibroblasts in 

granulation tissue when injected subcutaneously into rat, increases the expression of α-

SMA in human fibroblasts in vitro (Desmoulière A et al. 1993).  Fibroblasts isolated from 

the breast and then kept quiescent were shown to induce α-SMA expression under TGF-β 

stimulation, but not under stimulation by platelet-derived growth factor (PDGF), 

interleukin-1 (IL-1), insulin-like growth factor-1 (IGF-1), acidic fibroblast growth factor 

(aFGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), or 

interferon-γ (IFN-γ) (Rønnov-Jessen L and Petersen OW, 1993).  Furthermore, TGF-β 
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has been implicated in differentiating fibrocytes, a cell type in peripheral blood, into 

myofibroblast-like cells and plays a role in inducing both the EMT and EndMT (Abe R et 

al. 2001, Schmidt M et al. 2003, Zeisberg EM et al. 2007, Kalluri R and Zeisberg M 

2006).   

In addition to the factors that directly act on myofibroblast precursors, it is also 

possible that factors secreted by cancer cells recruit myofibroblasts through an indirect 

mechanism, such as through the stimulation of intermediate cell types.  One such 

mechanism may be initiated by granulocyte-macrophage colony-stimulating factor (GM-

CSF) secretion. GM-CSF is a potent inducer of macrophages, which are thought to 

induce the appearance of myofibroblasts in other pathological situations through the 

expression of TGF-β (Serini G and Gabbiani G, 1999).   

Despite its inability to induce α-SMA expression in mammary fibroblasts, PDGF 

can induce the proliferation and migration of fibroblasts and is another critical factor that 

is likely to influence myofibroblast recruitment (Dong J et al. 2004, Tejada ML et al. 

2006).  Conditioned media from both a fibrosarcoma and lung carcinoma cell line was 

able to induce in vitro proliferation and migration of 3T3 fibroblasts.  Fractionation of the 

conditioned media identified PDGF-A as the factor responsible for these biological 

activities, although PDGF-C could also be playing a role.  Furthermore, PDGF-B, when 

added exogenously, induced similar effects. (Dong J et al. 2004, Tejada ML et al. 2006).  

In a separate study it was demonstrated that c-ras transfected MCF-7 mammary 

carcinoma cells have a higher tumor incidence when injected into mice, and more 

importantly, the tumors that grew out showed an increase in the incorporation of 



 

 46 

myofibroblasts (Shao ZM et al. 2000).  These increases were inhibited upon expression 

of a dominant-negative form of PDGF-A.  Furthermore, more recent data suggests that 

PDGF-C is involved in the in-vivo recruitment of cancer-associated fibroblasts (CAFs) in 

a melanoma model (Anderberg C et al. 2009).  In the study by Anderberg C et al, some of 

these CAFs identified also expressed α-SMA, but this was not quantitated.  These data 

taken together suggest a model where PDGF plays a role in the recruitment and 

accumulation of fibroblasts to the site of tumor formation, while other factors, including 

TGF-β, are responsible for their differentiation into myofibroblasts.   

Lastly, ECM proteins and proteases may also contribute to the presence of 

myofibroblasts at the site of tumor formation.  Fibronectin secreted from mouse colon 

cancer cells can induce fibroblast migration, and a disintegrin and metalloproteinase with 

thrombospondin motifs (ADAMTS) was recently implicated in the recruitment of 

myofibroblasts in a lung cancer model (Morimoto M and Irimura T 2001, Rocks N et al. 

2008).  In this study by Rocks N et al., tumors derived from BZR cancer cells 

overexpressing ADAMTS display an increase in the recruitment of α-SMA-positive 

cells.  Additionally, conditioned media from the ADAMTS-expressing cells promoted the 

in vitro migration of fibroblasts, which was inhibited by neutralizing antibodies against 

either TGF-β or interleukin-1β.  These data suggest that in addition to the recruitment 

and differentiation of myofibroblast precursors, the local environment may be remodeled 

to support the influx and growth of myofibroblasts.  

Several factors have been implicated in the recruitment of myofibroblasts to the 

site of tumor formation; however our understanding remains incomplete.  Not only are 
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there several potential precursors of myofibroblasts, they are all likely to respond to 

unique combinations of secreted factors, and their recruitment can either be direct or 

indirect.  We therefore sought to identify factors specifically involved in the recruitment 

of myofibroblasts to breast carcinoma cells. 

In order to determine the factors important for the recruitment of myofibroblasts 

in breast carcinoma, it is important to have a model that 1) recapitulates what is 

histologically seen in human tumors and 2) forms tumors with areas of myofibroblast-

rich stroma.  These criteria were met by a cell line developed in our lab termed BPLER.  

This cell line was derived from a reduction mammoplasty utilizing a chemically defined 

medium tailored for the growth of breast epithelial cells.  Using a protocol previously 

developed in the lab, the newly isolated breast epithelial (BP) cells were transformed 

through the expression of hTERT (L), the SV40 early region (E) and H-Ras V12 (R) 

(Ince TA et al. 2007).   In parallel, HMLER cells were derived by isolating mammary 

epithelial cells using the common HMEC media, which were then transformed using the 

same genes as in the BPLER cells.  While these two epithelial cell lines are isolated from 

the breast and transformed with the same genes, they show very different phenotypes 

when injected into immune-compromised mice.  The HMLER cells form poorly 

differentiated carcinomas and do not metastasize.  In contrast, the BPLER cells form 

tumors that histologically resemble adenocarcinomas found in the clinic and that 

metastasize in mice to the lungs.  More importantly for our studies, unlike the HMLER 

cells which contain little desmoplastic stroma, the BPLER tumors contain areas with a 

desmoplastic stroma. The desmoplastic areas of the BPLER tumors consist of many α-
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SMA-positive myofibroblasts (Figure 1).  We have also employed two widely used 

xenograft models, MCF-7 Ras and MDA-MB-231, for comparison to the BPLER tumor 

xenografts.  The MCF-7-Ras and MDA-MB-231 cells are breast carcinoma cell lines 

originally derived from a pleural effusion in patients with invasive ductal carcinoma.   
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As mentioned above, the BPLER tumors form with areas of myofibroblast-rich 

desmoplastic stroma.  In order to identify factors important for the recruitment of 

myofibroblasts, we compared paracrine factors released by the BPLER cells relative to 

MDA-MB-231, MCF-7 Ras and HMLER cells.  In this study we identified four factors 

including CXCL1, vascular endothelial growth factor (VEGF), CCL5, and IL-6 that were 

differentially expressed in the various tumor models.  We tested the ability of VEGF, 

CCL5, and CXCL1 to affect the recruitment of α-SMA-positive stromal cells to MCF-7 

Ras tumors, and our results suggest that VEGF, but not the other two factors, increases 

primary tumor formation and the recruitment of α-SMA-positive cells.  
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Results 

Identification of Secreted Factors Potentially Important in the Recruitment of 
Myofibroblasts  
 

Preliminary observations suggested that, when compared to tumors formed by 

MCF-7 Ras and MDA-MB-231 cells, the BPLER tumors recruit more α-SMA-positive 

cells and the α-SMA-positive cells are distributed more widely and uniformly through 

the tumor mass (Figure 2).  In order to identify factors that may be important for the 

recruitment of myofibroblasts to the BPLER xenograft tumors, we wanted to compare the 

paracrine factors secreted by the BPLER cells to those secreted by MCF-7-Ras, MDA-

MB-231, and HMLER cells.  This was accomplished by comparing the secreted proteins 

present in the conditioned media of in vitro cultures from these cells.  The factors present 

in the conditioned media were detected using an antibody array purchased from 

RayBiotech Inc., which allows for the simultaneous detection of 79 proteins.  The 

proteins detected by the array are shown in Figure 3A and include growth factors, 

chemokines, and cytokines.  The secreted protein profiles for each of the cell lines are 

displayed in Figure 3B.  Using this approach, we identified four cytokines that appeared 

to be expressed at higher levels in the BPLER cells and expressed at lower levels in the 

other cell lines; these cytokines were CXCL1/GRO-α, RANTES/CCL5, VEGF and IL-6.  

The relative expression of these factors was then confirmed by an enzyme-linked 

immunosorbent assay (ELISA) (Figure 3C-F).  For the ELISA measurements, the various 

cell lines were plated at different densities depending on their proliferation rate and the 

number of cells, at the end of the experiment, was counted following the collection of the 
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conditioned medium.  The ELISA measurements confirm that CXCL1/GRO-α, 

RANTES/CCL5, VEGF, and IL-6 are indeed expressed at higher levels in vitro in the 

BPLER cells when compared to MDA-MB-231, MCF-7 Ras and HMLER cells. 
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Figure 3: 
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Figure 3 (continued): 
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Determining the Effect of CXCL1, CCL5, and VEGF on In-Vivo Tumor Growth  
 

As noted above, preliminary observations suggested that BPLER tumors recruited 

more α-SMA-positive cells than the MCF7-Ras cells.  Therefore, we wanted to 

determine if CXCL1, CCL5, or VEGF played a role in recruitment of α-SMA-positive 

stromal cells in the MCF-7 Ras tumor model.  We infected MCF-7-Ras cells with 

retroviral constructs to stably overexpress each of the three genes.  For initial 

experiments, we used the mouse CXCL1 (mCXCL1, also mouse Gro-1), the mouse 

VEGF164 (mVEGF164), and the human CCL5 (hCCL5) genes.   Three different expression 

vectors were used: mCXCL1 and mVEGF164 were expressed from the pBabe-zeo vector 

(pBzeo); hCCL5 was expressed from the pLZ-IRES-GFP (pLZR) vector; and a truncated 

mutant of human CCL5, CCL5 (9-68) (∆hCCL5), which has been described as an 

antagonist of CCL5 (Gong JH et al. 1996), was expressed in the pWZL-Blast vector.  We 

also generated three control cell lines, each expressing one of the empty vectors.  We 

confirmed the expression of each of the factors by ELISA (Figure 4A).  mCXCL1 and 

mVEGF were only detected in the MCF-7-Ras cells containing the mCXCL1 gene or the 

mVEGF164 gene, respectively, and hCCL5 was detected in the MCF-7-Ras cells 

containing either the hCCL5 gene or the ∆hCCL5 gene.   

We next determined if the expression of these various factors had any effect on 

the in vitro proliferation of these cell lines.  As shown in Figure 4B, there are no major 

differences observed in their proliferation.  We then wanted to see whether the expression 

of these factors would influence tumor formation.  Each of the factor-expressing cell lines 

were injected subcutaneously into NOD-SCID mice and tumor formation was assessed.  
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The mVEGF164-expressing MCF-7-Ras cells, but not those expressing mCXCL1, hCCL5, 

or ∆hCCL5, displayed enhanced tumor growth, as assessed by final tumor weight (Figure 

4C).   
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Examining the Recruitment of α-SMA-Positive Cells and CD34-Positive Cells to the 
Factor Expressing MCF-7-Ras Tumors Grown in NOD-SCID Mice 
 

Given that the mVEGF164-expressing tumors displayed an increase in tumor 

growth, we wanted to test the hypothesis that mVEGF164, more than the other factors, 

increases the recruitment of α-SMA-positive myofibroblasts and enhances tumor growth.  

The expression of α-SMA in breast carcinomas is not confined to myofibroblasts, but is 

also expressed by smooth muscle cells, which associate with endothelial cells to form 

blood vessels, and myoepithelial cells (Skalli O et al. 1986, Lazard D et al. 1993).  

Therefore, it was important to distinguish between the recruitment of both α-SMA-

positive stromal cells and α-SMA-positive smooth muscle cells.  

To do so, tumor sections from each of the factor-overexpressing carcinomas were 

co-stained with antibodies against α-SMA and CD34, a marker of endothelial cells, and 

analyzed using immunofluorescence.  In order to quantitate the recruitment of these cell 

types, we used the Cell Profiler image analysis program.  Using this program, a module 

was designed to measure the total area stained for CD34 and the total area stained for α-

SMA within a given image.  The cell profiler program also produces a photomicrograph 

that outlines the areas it has identified as blue (DAPI staining), green (CD34 staining), or 

red (α-SMA staining).  An example of the photomicrographs produced by the program is 

displayed in Supplementary Figure 1. 

mVEGF164-expressing MCF-7-Ras (MCF-7-Ras-mVEGF164) tumors, but not the 

other chemokine over-expressing tumors, displayed an increase in the recruitment of α-

SMA-positive cells and CD34-positive cells as assessed by the average area per tumor 
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section stained for α-SMA and CD34, respectively (Figure 5A and B).  There was a 1.5 

fold increase in the average area per tumor section stained for α-SMA compared to the 

pBzeo control tumors.  The mVEGF164 tumors also displayed a 5.5 fold increase in the 

average area per tumor section stained for CD34, relative the control pBzeo tumors.  In a 

second analysis, MCF-7-Ras-mVEGF164 tumors were compared to another control cell 

line, the MCF-7-Ras cells expressing the pWZL-GFP vector.  In this experiment the 

mVEGF164-expressing tumors displayed a 1.2 fold and 4.3 fold increase in the average 

area per tumor section stained for α-SMA and CD34, respectively, confirming the results 

of the first analysis (Supplementary Figure 2A).  Furthermore, a cursory examination of 

the MCF-7-Ras-mVEGF164 tumor sections revealed that some of them had what appeared 

to be extensive areas of necrosis.  The large necrotic looking areas in some of the 

mVEGF164 tumors might be a result of their increased size. 
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Figure5: 
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Figure 5 (continued): 
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These results suggest that mVEGF164 enhances the recruitment of CD34-positive 

cells and α-SMA-positive cells.  The dramatic increase in CD34-positive cells confirms 

that the mVEGF164 expressed in our cells is indeed functional, given the well 

characterized role of VEGF in inducing angiogenesis.  We next examined whether the 

increase in α-SMA-positive cells was due to an increase in α-SMA-positive cells 

associated with CD34-positive cells.  We compared the total area stained by α-SMA and 

CD34 in individual tumor sections and found no correlation between α-SMA-positivity 

and CD34-positivity (R2=0.18).  Furthermore, by looking at the localization of α-SMA-

positive cells within a tumor section, there are numerous α-SMA-positive cells that are 

clearly not proximal to CD34-positive cells (Figure 5C).  This suggests that the increase 

in α-SMA-positive cells is not solely from an increase in smooth muscle cells, but also 

from another α-SMA-positive cell type which we hypothesize is myofibroblasts. 

Discussion  

By comparing the factors secreted by BPLER cells relative to other breast 

carcinoma cells lines, we identified CXCL1, CCL5, VEGF and IL-6 as potential 

candidates responsible for the recruitment of myofibroblasts to the site of BPLER tumor 

formation.  The expression of mVEGF164, but not mCXCL1 nor hCCL5 in MCF-7-Ras 

cells resulted in increased tumor growth and α-SMA-positive cell recruitment.  Our data 

suggest that these α-SMA-positive cells are not only vessel-associated smooth muscle 

cells, but also contain myofibroblasts. 
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While other studies have implicated other factors including PDGF and TGF-β in 

the recruitment of myofibroblasts to breast carcinomas, our results suggest a role for 

VEGF in recruiting myofibroblasts to the sites of breast cancer formation.  There are 

many approved drugs that target VEGF signaling such as Avastin, which neutralizes the 

VEGF ligand, and Sutent, which blocks a VEGF receptor (Folkman J, 2007).  It will be 

interesting to see how these drugs affect the recruitment of myofibroblasts, in addition to 

their anti-angiogenic effects, and if this can be applied to the clinic.           
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Materials and Methods 

Cell Lines and Tissue Culture:  The BPLER, BPHER-3, and HMLER cells were 

obtained from within the lab and were created as previously explained (Elenbaas B et al. 

2001, Ince TA et al. et al. 2007).  The HMLER cells used in this study were not the ones 

used in the study by Ince TA et al. (Ince TA et al. et al. 2007).  The BPLER and BPHER-

3 cells were cultured as previously described except that the final concentration of 

glutamine was 1mM instead of 2mM (Ince TA et al. et al. 2007).  In general, the 

HMLER-HR cells were cultured in a 1:1 mix of Dulbecco’s Modified Eagle’s (DME) 

Medium and F12 Medium.  The DME/F12 mix was supplemented with 5% calf serum, 

10 ng/mL of EGF, 1-2 ug/mL of hydrocortisone, 10 ug/ul of insulin, penicillin and 

streptomycin.  The HMLER cells were cultured in a 1:1 mix of MEGM or MEMB 

(LONZA, Walkersville MD) and DME/F12 Media supplemented as described above but 

without the calf serum.  MCF-7 Ras and MDA-MB-231 cells were cultured under 

standard conditions. 
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Tumor Xenografts:  Nude mice were bought from Taconic (Hudson, NY).  The NOD-

SCID mice were bred in the lab.  For subcutaneous injection, all cancer cell lines were 

resuspended in BD Matrigel™ Matrix (BD Biosciences, Bedford MA) diluted in tissue 

culture media.  For BPLER xenografts approximately 1x106 cells were injected.  For the 

NOD-SCID mouse experiment and the NUDE experiment looking at the MCF-7 Ras cell 

line variants, approximately 5x105 cells were injected subcutaneously. 

 

Measurement of Chemokines by Antibody Array:  For the arrays, media conditioned 

by HMLER-1, BPLER-1, MDA-MB-231 or MCF-7 Ras cells was placed on the Human 

Cytokine Array V from Raybiotech (RayBiotech, Norcross GA).  The arrays were then 

washed and processed according to the manufacturer’s protocol.   

 

Preparation of Conditioned Media for Measurement by ELISA: Conditioned media 

for each of the cell lines was produced in the same way, but was not necessarily done on 

the same day.  On the first day the cells were plated into 10cm culture dishes in triplicate.  

The number of cells plated per 10cm dish was approximately: 1x106 BPLER-1 cells, 

5x105 HMLER cells, 1.5x106 or 1 x106 MCF7-Ras cells, 2x106 or 1 x106 MDA-MB-231 

cells.  The media was changed on the second day.  On the third day the media was 

changed again and was then collected 24 hours later.  Next, the conditioned media was 

passed through a 0.45 um filter in order to remove any floating cells or debris.  The 

media was then aliquoted placed at -20°C.  After collecting the conditioned media the 

number of cells on each of the plates was determined using a coulter counter.  
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Conditioned media was also produced to confirm the overexpression of human CCL5, 

human ∆CCL5, mouse GRO -1 and mouse VEGF in the MCF-7 Ras cell line variants.  

The MCF-7 Ras cell lines were plated at 1x106 cells per 10cm tissue culture dish in 

triplicate.  The cells were allowed to grow for 2 days and then media was conditioned 

overnight.  The media was collected and the cells were counted similar to the other 

experiment, except that the conditioned media was passed through the 0.45 um filter after 

the samples were thawed and right before being measured by ELISA. 

 

Creation of the MCF-7 Ras Chemokine Expressing Cell Lines: The following vectors 

were used: pBabe-zeo, pWZL-blast-GFP, pLZR-GFP, pBabe-zeo-mGRO-1, pBabe-zeo-

mVEGF, pWZL-blast-∆hCCL5, pLZR-hCCL5-GFP.  The pLZR-hCCL5-GFP construct 

produces a bi-cistronic message containing the sequence for human CCL5 and GFP.  In 

general, the transfections and infections using the pBabe and pWZL vectors were carried 

out similar to what has been previously described (Stewart SA et al 2003).  Cells infected 

with virus produced by using pBabe-zeo were selected in media containing at least 33.3 

ug/mL of zeocin.  Cells infected with virus produced by using pWZL-blast were selected 

in media containing at least 2 ug/mL of blastacidin.  Control non-infected cells were also 

treated with either blastacidin or zeocin.  Viral supernatant containing the control pLZR-

GFP gene and the pLZR-hCCL5-GFP gene was obtained from T. Karnoub in lab 

(Karnoub AE et al. 2007).  Infected cells were selected using fluorescence-activated cell 

sorting (FACS) by gating for GFP expression.  The cells were then cultured for a period 

of time before undergoing a second round of FACS for GFP expression.         
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ELISA:  The human IL-6, human CCL5, human VEGF, human CXCL1 and mouse 

VEGF ELISAs were purchased from R&D Systems, Minneapolis MN.  The mouse GRO 

ELISA was purchased from Immuno-Biological Laboratories, Japan.  The conditioned 

media was removed from the -20°C freezer and thawed.  For the experiment comparing 

different cell lines, conditioned media was diluted 1:4 in DME medium for the human 

CXCL1 ELISA and1:1 in DME medium for the CCL5, IL-6 and VEGF ELISAs.  For 

measuring the levels of overexpression in the MCF-Ras cell line variants, conditioned 

media was not diluted for measurement of mouse CXCL1 by ELISA.  For the other 

measurements, the conditioned media was diluted 1:19 in DME medium.  After dilution, 

the samples were added to the ELISA plates and the ELISAs were run following the 

manufacturer’s protocol.  At the end of the experiment the absorbance was read at 450nm 

and 595nm.  The absorbance at 595nm was subtracted from the absorbance at 450nm to 

take into account any general absorbance not due to the color reagent.  The numbers 

plotted on the graph is the amount of protein (pg/mL) per million cells in the diluted 

media. 

 

Proliferation Assays: The MCF-7 Ras cell line variants were plated in triplicate into 96 

well plates.  The cell lines were plated at a density of 1000 cells per well.  The 

proliferation assays were performed using the CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (Promega, Madison WI) and following the manufacturer’s protocol.  

The final absorbance was obtained by subtracting the absorbance at 750nm from the 
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absorbance at 492 nm.  The proliferation was measured over the course of seven days.  

The media was changed every other day.  On the day proliferation was measured, the 

media was removed and replaced with fresh media before starting the Assay.  

 

Immunohistochemistry and Immunofluorescence: Tumor and tissues were dissected 

from the mice and placed into PBS and then fixed in 4-10% formalin overnight at a 

minimum.  The tissues were then kept in 70% ethanol until they could be processed 

further.  Next, the tissues were embedded into paraffin wax.  The embedded tumors were 

sectioned and placed on glass slides.  For staining, the tumors sections on the slides were 

deparaffinized by incubating them in xylenes for at least 12 minutes.  The sections were 

then rehydrated through serial dips in 100% ethanol, 95% ethanol, 70% ethanol and then 

placed in phospho-buffered saline (PBS).  For antigen retrieval, the slides were placed 

into 0.01M citrate buffer (pH 6.0) and heated in the microwave at 50% power for a 

minimum of 6 minutes.  Then, the slides were left to cool in the citrate buffer for 1 hour.  

After antigen retrieval, the slides were rinsed in PBS and then placed in a blocking buffer 

for a minimum of 30 minutes.  Before blocking slides for immunohistochemistry, some 

of the sections were incubated in methanol containing approximately 2% hydrogen 

peroxide for 15 minutes in order to quench any endogenous peroxidases.  Following the 

methanol treatment, the slides were rinsed with PBS-T before putting them into the 

blocking buffer.  The slides were blocked in PBS containing 0.1% TWEEN-20 (PBS-T) 

and 5% inactivated fetal calf serum (IFS).  The primary antibodies were made up in PBS-

T containing 2% IFS.  In general the antibody dilutions used were: mouse monoclonal 
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anti-α-SMA antibody (Vector Laboratories, Burlingame CA) 1:50 and a rat monoclonal 

anti-CD34 (MEC 14.7) antibody (Novus Biologicals, Littleton CO) 1:100.  The sections 

were placed in primary antibody overnight.  The next day the primary antibody was 

removed and the slides were washed with PBS.  Following the washes, the slides were 

placed in secondary antibody for approximately 1 hour.  The secondary antibodies were 

diluted in PBS containing 1%IFS.   

For immunohistochemistry, the Vectastain Elite ABC kits (Vector Laboratories, 

Burlingame CA) were used to detect the primary antibody.  After incubation with the 

secondary antibody, the slides were washed with PBS.  The slides were then placed in the 

ABC reagent for 30 minutes. Next, the slides were rinsed several times in PBS.  The 

Nova Red Kit (Vector Laboratories, Burlingame CA) was used to detect positive cells.  

Following the Nova Red treatment, the slides were placed into water before 5 being 

stained with Hematoxylin.  Next the slides were rinsed in water, dipped twice in 2% 

Glacial Acetic Acid, rinsed with water, dipped once in 0.1% NH3OH and then rinsed 

again with water.  The sections were then dehydrated by serial rinses in 70%, 95% and 

then 100% Ethanol.  Before being mounted, the slides were incubated in xylenes.  

Following the xylenes treatment, the slides were mounted with a glass slide using either 

Permount (Fisher Scientific, Fair Lawn NJ) or VectaMount (Vector Laboratories, 

Burlingame CA).   

For immunofluorescence, fluorescent conjugated secondary antibodies were used 

to detect the primary antibody.  A donkey anti-mouse Alexa Fluor® 594 and a donkey 

anti-rat Alexa Fluor® 488 (Invitrogen: Molecular Probes, Eugene OR) were used to 
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detect the α-SMA antibody and CD34 antibody, respectively.  The secondary antibodies 

were used at a 1:200 dilution.  Following the secondary antibody incubation the slides 

were rinsed several times with PBS.  A DAPI Nucleic Acid Stain (Invitrogen: Molecular 

Probes, Eugene OR) was used to detect the cell nuclei.  The stock solution of DAPI was 

made according to the manufacturer’s protocol.  The stock solution was diluted in PBS at 

1:10,000 and the slides were stained with DAPI for 10 minutes.  Following the nucleic 

acid stain, the slides were rinsed twice with water and a cover slip was mounted on the 

slide with SlowFade® Gold antifade reagent (Invitrogen: Molecular Probes, Eugene OR).  

The slides were then placed at 4oC in the dark until pictures could be taken with a 

fluorescent microscope.   

 

Cell Profiler Analysis:  Pictures of the immunofluorescently stained tumors were taken 

on a fluorescent microscope using the 20x objective.  Approximately, one to ten pictures 

were taken of a single tumor section, depending on the size of the tumor.  For each area, a 

picture was taken of the α-SMA-positive stain, the CD34-postive stain, and the DAPI 

stain.  After all the pictures were taken, the images were loaded into the Cell Profiler 

Program for analysis.  The Cell Profiler program calculated the area covered by each of 

the stains within a single image.  Because, some of the mVEGF164-expressing tumors 

may have been cut in half to fit them into the tissue cassette, the average percent area per 

tumor section stained for both the CD34 stain and α-SMA stain was calculated as 

follows:  The area covered by either of the stains in a photomicrograph was calculated by 

taking the area stained divided by the total area and then multiplying it by 100.  Next, for 
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each tumor section on a slide, a number of photomicrographs were taken depending on 

the size of the tumor, and the percent area stained for each of the photomicrographs was 

added together and divided by the number of photomicrographs to give the average 

percent area stained for that tumor section.  The average percent area stained for each of 

the tumor sections within an experimental group were then added together and divided by 

the number of tumor sections in the group. 

 

Statistical Analysis:  T-tests were performed using excel.  A one-tailed T-test with 

unequal variance was performed to calculate the p-values for all comparisons.  
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Introduction 
   

Carcinomas arise from the uncontrolled proliferation of cancer cells, but they also 

contain numerous non-cancer cells that are collectively identified as stromal cells.  

Stromal cells affect multiple steps of tumor progression, including initiation, 

angiogenesis, invasion, and metastasis.  Consequently, it is important to investigate the 

origins of these stromal cells in order to understand how they are recruited to sites of 

tumor formation and how this process may be potentially blocked.  Cell types in the 

stroma can be recruited from the adjacent microenvironment, but they can also be 

recruited systemically from blood/bone marrow.  In our studies, we have been interested 

in examining the recruitment of bone marrow-derived (BMD) cells to the sites of 

mammary carcinoma formation.   

Several studies have demonstrated the ability of tumors to recruit BMD cells.  In 

bone marrow transplantation studies, it has been shown that 58% of the F4/F80-positive 

macrophages and some of the myeloid cells (not quantitated) present in a gastric 

hyperplasia model and colorectal cancer model, respectively, are derived from the bone 

marrow (Guo X et al. 2008, Kitamura T et al. 2007).  In the later case it was reported that 

the myeloid cells localized to the invasive fronts of the tumors.  Additionally, some 

groups have also shown to various degrees that BMD cells are incorporated into tumor 

blood vessels (Lyden D et al. 2001, Ruzinova MB et al. 2003, Aghi M and Chiocca EA 

2005). 

The critical impact on cancer progression of recruiting BMD cells has been 

brought to light by a series of bone marrow transplantation studies.  In a mouse model of 
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squamous carcinoma, the incidence of low grade tumors is decreased in a matrix 

metalloproteinase-9 (MMP-9) deficient background, and normal tumor progression is 

restored by the transplantation of wild-type bone marrow into the MMP-9 knock-out 

mice (Coussens LM et al. 2000).  In this particular model, MMP-9 appears to be 

expressed by a group of myeloid lineage cells (macrophages, neutrophils, and mast cells) 

within the tumors of wild type animals.  In another study, the impaired growth of 

xenografts in Id1+/-Id3+/- mice was attributed to a failure to induce angiogenesis, which 

was restored through the transplantation of wild type bone marrow into Id1+/-Id3+/- 

(Lyden D et al. 2001).  In this model, the recruitment of bone marrow-derived endothelial 

cells into the tumors is believed to be responsible for restoring tumor growth to wild type 

levels.  Recently, the recruitment of BMD cells has been implicated in tumor drug 

resistance to anti-vascular endothelial growth factor (VEGF) treatment (Shojaei F et al. 

2007).  In this case, the data suggest that CD11b+Gr-1+ myeloid cells are responsible for 

this activity.    

These studies collectively demonstrate that various BMD cell types are involved 

in certain aspects of tumorigenesis, such as local remodeling and angiogenesis.  However 

these studies likely only skim the surface of the full effects of BMD stromal cells, given 

the heterogeneity of the stromal compartment and how robustly these cells seem to 

influence tumor progression.  These studies further suggest that targeting BMD stromal 

cells may be an important strategy to explore for cancer therapy and it will be critical to 

identify additional BMD cell types and their unique functions in cancer. 
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The cell type we wanted to focus on in these studies is the myofibroblast, which is 

an attractive candidate due to the fact that myofibroblasts are present in breast 

carcinomas, but not in the normal mammary gland (Skalli O et al. 1986, Barth PJ et al. 

2002, Chauhan H et al. 2003, Yazhou C et al. 2004).  Furthermore, myofibroblasts are 

thought to influence tumor progression in multiple ways (Kalluri R and Zeisberg M 2006, 

De Wever O et al. 2008).  Thus, myofibroblasts would represent an optimal therapeutic 

target that can be inhibited without affecting the normal physiology of the breast.   

It was originally thought that myofibroblasts were derived from cell types present 

in the adjacent tissue.  This is supported by evidence that fibroblasts isolated from the 

mammary gland can be induced to express α-smooth muscle actin (α-SMA), a marker of 

myofibroblasts, upon treatment with transforming growth factor-β (TGF-β) (Rønnov-

Jessen and Petersen, 1993).  Additionally, mammary fibroblasts can also be induced to 

express α-SMA when they are co-cultured with breast cancer cells (Rønnov-Jessen L et 

al. 1995).  It is also possible that other resident stromal cell types could be precursors to 

myofibroblasts present in carcinomas, including vascular smooth muscle cells, 

endothelial cells and even the carcinoma cells themselves (Rønnov-Jessen L et al. 1995, 

Hinz B et al. 2007, Zeisberg EM et al. 2007, Kalluri R and Zeisberg M 2006).   

More recently it has been proposed that myofibroblasts are also recruited 

systemically from the blood or bone marrow.  There is evidence of a circulating cell 

population present in the blood, termed fibrocytes, which are capable of giving rise to α-

SMA-positive myofibroblast-like cells.  Fibrocytes are thought to be recruited into sites 

of wounding where they play a role in wound repair (Bucala R et al. 1994, Abe R et al. 
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2001, Schmidt M et al. 2003).  More importantly however, BMD-myofibroblasts have 

also been detected in various models of cancer (Ishii G et al. 2003, Sangai T et al. 2005, 

LaRue AC et al. 2006, Ishii S et al. 2008).  BMD-myofibroblasts were shown to be 

incorporated into a human pancreatic cancer model, Capan-1, growing subcutaneously in 

immune-compromised mice (Ishii G et al. 2003).  The authors demonstrate that at an 

early time point about 13% of the myofibroblasts are derived from the bone marrow, 

while at later time points approximately 40% are of bone marrow origin (Ishii G et al. 

2003).  It was also demonstrated that myofibroblasts present in other xenograft tumor 

models, including the MDA-MB-231 and MDA-MB-468 breast cancer models, originate 

from the bone marrow (Sangai T et al. 2005).  In the study by Sangai T et al., they 

examined a panel of human tumor xenograft models and reported that the degree of 

BMD-myofibroblast incorporation varied from zero to about 30%.   

The presence of BMD-myofibroblasts was also demonstrated in two 

autochthonous tumor models of pancreatic and gastric mouse model of cancer, where 

25% and 12%, respectively, of myofibroblasts were derived from the bone marrow 

(Direkze NC et al. 2004, Guo X et al. 2008).  Finally, BMD-myofibroblasts were 

identified, but not quantified, in two cases of human cancer; one was a gastric cancer and 

the other a rectal adenoma (Worthley DL et al.  2009).  In these two cases the female 

patients had undergone a bone marrow transplant procedure from a male donor, allowing 

BMD cells to be identified by the presence of a Y chromosome.       

The presence of bone marrow-derived cell types in tumors, including α-SMA-

positive myofibroblasts, has been demonstrated for several cancer models.  However, the 



 

 82 

number of α-SMA-positive BMD-myofibroblasts recruited to the site of tumor formation 

varies significantly, which is important to understand so that these cells can be studied in 

the appropriate tumor models and tissue-specific functions might also be revealed.  We 

sought to determine if our BPHER-3 tumor model recruits cell types from the bone 

marrow, more specifically, we wanted to investigate whether our model recruits α-SMA-

positive stromal cells from the bone marrow.  Our results demonstrate that the BPHER-3 

tumor model is able to recruit BMD-cells.  However, the data suggest that very few of the 

α-SMA-positive cells present in the BPHER-3 tumors are bone marrow-derived.  Rather, 

we hypothesize that the majority of the α-SMA-positive cells are recruited from the local 

tissue microenvironment.  
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Results 

The Recruitment of Bone Marrow-Derived Cells to BPHER-3 Tumors at Different 
Time Points During Tumor Growth  
 

We generated chimeric mice by transplanting bone marrow from green 

fluorescent protein (GFP) transgenic mice into GFP non-expressing mice. The chimeric 

mice were injected subcutaneously with tumor cells, and recruitment of GFP-positive 

cells to the site of tumor growth was assessed by fluorescence microscopy.  Due to the 

fact that the BPLER cells described earlier in this thesis were already GFP-positive, 

BPHER-3 cells were used instead for injection.  BPHER-3 cells were derived in the same 

way as BPLER cells but originated from a different patient and do not express GFP.  We 

assumed that the BPHER-3 tumors would recruit myofibroblasts in a similar way as 

BPLER tumors. However, it is likely that there are differences between them. 

To test if stromal cells in the BPHER-3 xenografts were derived from the bone 

marrow, BPHER-3 cells were injected into NOD-SCID mice previously engrafted with 

Rag1-/- GFP transgenic bone marrow.  In these mice, blood and certain bone marrow 

cells are GFP-positive, while the cells of the recipient mice do not express GFP.  The 

production of these mice is outlined in Figure 1A.  Tumor cells were injected bilaterally 

at subcutaneous sites in NOD-SCID mice so that each mouse had two subcutaneously 

growing tumors.  In this experiment, we also examined the recruitment of BMD cells at 

different times during tumor growth.   
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Figure 1: 
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Figure 1 (continued): 
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BPHER-3 tumor-bearing mice were sacrificed at several points during tumor 

progression, and the recruitment of BMD cells was assessed by fluorescence microscopy.  

We found that BMD GFP-positive cells were associated with the tumor mass at all time 

points analyzed (Figure 1B and C).  Using a fluorescence dissecting microscope, we 

detected BMD cells in the tumors as early as day 17 and at all the other time points 

analyzed including the final day 50 time point (Figure 1B and C).  Additionally, BMD 

GFP-positive cells were found in the lung, liver, kidney, mammary fat pad (MFP) and the 

lymph node located in the MFP (Figure 1B).  Tumor sections from each of the time 

points were stained with antibodies against GFP and α-SMA and analyzed by 

immunofluorescence.  Both GFP and α-SMA positive cells were detected, thereby 

confirming the ability of BPHER-3 tumors to recruit both BMD and α-SMA-positive 

cells into the tumor stroma (Figure 2).  However, at this point we have not examined any 

relationship between the α-SMA-positive cells and the BMD cells.   
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Figure 2: 
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Figure 2 (continued): 

 

 

 

 

 

 

The Recruitment of Bone Marrow Derived Cells to MDA-MB-231 and BPHER-3 
Tumors 
 

Due to the fact that NOD-SCID mice tolerated the bone marrow transplants 

poorly, we conducted the remaining experiments in NUDE mice.  BHPER-3 and MDA-

MB-231 cells were injected into chimeric NUDE mice previously engrafted with Rag1-/- 

GFP transgenic bone marrow.  Similar to the previous experiment, we demonstrated that 

the BPHER-3 and MDA-MB-231 human mammary xenograft tumors were capable of 

recruiting BMD and α-SMA-positive cells in the NUDE chimeric mice (Figure 3 and 4).  
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Figure 4: 
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Figure 4 (continued): 

 

 

The Source of α-SMA-Positive Cells in the BPHER-3 Tumors 
 

We next sought to determine if the BPHER-3 tumor model recruited BMD-α-

SMA-positive cells.  As mentioned above, it has previously been reported that MDA-

MB-231 tumors are capable of recruiting BMD-myofibroblasts (Sangai T et al. 2005).  

Seven BPHER-3 tumors from the experiment shown in Figure 3 were stained for α-SMA 

and GFP and analyzed by immunofluorescence.  For each of the tumors, roughly 100 α-

SMA-positive cells were identified and categorized by GFP status as positive, negative, 

or could not be determinined with any certainty (ND).   

As the results demonstrate, an overwhelming majority, >90%, of the α-SMA-

positive cells analyzed in this experiment were GFP-negative (Figure 5).  In the analysis 

of these 7 tumors only one α-SMA-positive cell was scored as GFP-positive, which is 
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shown in Figure 6A.  On average, only 0.15% and 3.16% of the α-SMA-positive cells 

were scored as GFP-positive and ND, respectively (Figure 5).  
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Figure 5: 
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Figure 5 (continued): 

 

 

 

The extremely low abundance of BMD-α-SMA-positive cells could have been the 

result of a relatively low level, approximately 30%, of bone marrow reconstitution by the 

GFP-positive donor cells.  To address this possibility two tumor sections derived from 

BPHER-3 tumor-bearing chimeric mice that had previously been engrafted with Rag1-/- 

GFP transgenic bone marrow were also examined.  The reconstitution in these mice, as 

measured in the blood after the experiment, was 62.5% and 88% as shown in Table 1 of 

Figure 5.  It must also be noted that one tumor was derived from a chimeric NUDE 
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mouse and one from a chimeric NOD-SCID mouse, and in both cases the BPHER-3 

tumors were grown contralaterally to a weakly tumorigenic cell line HMLER-HR.  After 

examining the α-SMA-positive cells from these tumors, once again we found that >90% 

of them were GFP-negative.  Furthermore, between these two tumors, zero α-SMA-

positive cells were scored as GFP-positive, while 2.82% were scored as ND   Taken 

together, these experiments  indicate that the bone marrow is not a major source of α-

SMA-positive stromal cells recruited to BPHER-3 tumors grown subcutaneously.   

It has been shown that MDA-MB-231 cells are capable of recruiting bone 

marrow-derived α-SMA-positive myofibroblasts (Sangai T et al. 2005).  We examined 

three MDA-MB-231 tumors for recruitment of bone marrow derived α-SMA-positive 

cells.  Similar to what was seen for the BPHER-3 tumors, among the α-SMA-positive 

cells analyzed in our MDA-MB-231 tumors, very few are derived from the GFP-positive 

donor bone marrow.   

To qualify this interpretation, it remained formally possible that GFP expression 

is somehow turned off in the BMD α-SMA-positive stromal cells.  This seems unlikely, 

given that we repeatedly observed other BMD GFP-positive cells recruited to the site of 

tumor formation, indicating that GFP would have to be turned off in some populations of 

BMD cells and not others.  Additionally, α-SMA and GFP staining do appear to 

colocalize in tumor sections derived from tumor-bearing Rag1-/- GFP transgenic mice, 

suggesting that it is indeed possible to colocalize α-SMA and GFP (Figure 6).  It thus 

seems unlikely that GFP expression is turned off specifically in α-SMA-positive cells 

derived from the bone marrow in the BPHER-3 tumors grown in chimeric NUDE mice. 
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Discussion        

In summary, we were able to demonstrate and confirm that BPHER-3 and MDA-

MB-231 tumors, respectively, are capable of recruiting cell types from the blood/bone 

marrow.  In addition to BMD cells, BPHER-3 tumors are capable of recruiting α-SMA-

positive cells.  However, we show that >90% of the α-SMA-positive cells analyzed were 

not derived from the donor GFP-positive bone marrow.  These data suggest that among 

the α-SMA-positive cells analyzed in the BPHER-3 tumors, an overwhelming majority 

of them are derived from local precursors.   

There is currently a debate in the field regarding the origins of myofibroblasts 

recruited to the site of tumor formation (Ishii G et al. 2003, Sangai T et al. 2005, Direkze 

NC et al. 2004, Guo X et al. 2008).  This is most likely due to the fact that there is no 

reliable molecular marker that exclusively identifies myofibroblasts.  The α-SMA-

positive myofibroblasts identified by various groups may represent a heterogeneous pool 

of cells rather than a pure population of myofibroblasts.  Some of the α-SMA-positive 

cells in this pool may be derived from the bone marrow while others are derived from 

local precursors.  In our study, the data suggest that the great majority of the α-SMA-

positive cells, which could include myofibroblasts and smooth muscle cells, recruited to 

the subcutaneously growing BPHER-3 tumors are derived from the local environment.  

The potential candidates in the local environment include fibroblasts and smooth muscle 

cells (Desmoulière A et al. 1993, Rønnov-Jessen and Petersen, 1993, Rønnov-Jessen L et 

al. 1995).  Understandably, there would be a great benefit to the identification of BMD-

myofibroblasts given the drugability of cell types in the blood as opposed to cell types 
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embedded in solid tissue.  However, the identification of factors or pathways responsible 

for the recruitment or differentiation of cells in the local microenvironment might lead to 

potential pharmacological targets.    
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Materials and Methods 

Cell Lines and Tissue Culture:  The BPHER-3 cells were obtained from within the lab 

and were created as previously explained (Ince TA et al. et al. 2007).  BPHER-3 cells 

were cultured as previously described except that the final concentration of glutamine 

may have been 1mM instead of 2mM (Ince TA et al. et al. 2007).  MDA-MB-231 cells 

were cultured under standard conditions. 

 

Bone Marrow Transplant Procedure: Femurs were isolated from Rag1-/- x EGFP 

transgenic mice and placed in Hanks’ balanced salt solution (HBSS; GIBCO) containing 

insulin.  The bone marrow cells (BMCs) were then flushed from the femurs with 3 ml of 

Hanks’ balanced salt solution containing insulin, using a 26 gauge needle.  The BMCs 

were then passed several times through a 19 gauge needle in order to create a single cell 

suspension.  Next, the BMCs were washed approximately 2 times with PBS or HBSS.  

Then, the BMCs were counted using a hemocytometer and resuspended in PBS or HBSS.  

Following resuspension, approximately 2x106 cells were injected retro-orbitally into 

either NOD-SCID or NUDE mice that had previously been irradiated with approximately 

300 rads or 600 rads, respectively.  Approximately, one to four weeks following the bone 
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marrow transplantation, the mice were tested for the engraftment of the GFP-positive 

cells.  To test for the relative amount of engraftment, a sample of blood was taken from 

each of the mice, and in some experiments the red blood cells were lysed with red blood 

cell lysis buffer (Sigma) before flow cytometry analysis.  The relative percent of GFP-

positive cells in the blood was then measured by flow cytometry. 

 

Tumor Xenografts: Nude mice were bought from Taconic (Hudson, NY).  The NOD-

SCID and Rag1-/- x EGFP transgenic mice were bred in the lab.  The production of the 

chimeric mice is outlined above in the bone marrow transplant procedure.  For 

subcutaneous injection, BPHER-3 and MDA-MB-231 cells were resuspended in BD 

Matrigel™ Matrix (BD Biosciences, Bedford MA) diluted in tissue culture media.  The 

chimeric mice were injected with tumors cells approximately 1 to 2 weeks following the 

measurement of the percent reconstitution. 

 

Immunofluorescence: Tumor and tissues were dissected from the mice and placed into 

PBS and then fixed in 4-10% formalin overnight at a minimum.  The tissues were then 

kept in 70% ethanol until they could be processed further.  Next, the tissues were 

embedded into paraffin wax.  The embedded tumors were sectioned and placed on glass 

slides.  In general immunofluorescence was performed as follows: The tumors sections 

on the slides were deparaffinized by incubating them in xylenes for at least 12 minutes.  

The sections were then rehydrated through serial dips in 100% ethanol, 95% ethanol, 

70% ethanol and then placed in phospho-buffered saline (PBS).  For antigen retrieval, the 



 

 101 

slides were placed into 0.01M citrate buffer (pH 6.0) and heated in the microwave at 50% 

power for a minimum of 6 minutes.  Then, the slides were left to cool in the citrate buffer 

for 1 hour.  After antigen retrieval, the slides were rinsed in PBS and then placed in a 

blocking buffer for a minimum of 30 minutes.  The slides were blocked in PBS 

containing 0.1% TWEEN-20 (PBS-T) and 5% horse serum.  The primary antibodies were 

made up in PBS-T containing 2% horse serum.  In general the antibody dilutions used 

were: the goat anti-GFP antibody (AbCam, Cambridge MA) was used at 1:400 for the 

detection of GFP and a mouse monoclonal SV40 T Ag (Pab 101) Antibody (Santa Cruz 

Biotechnology, Santa Cruz CA) was used at approximately 1:100 for the detection of 

Large T Antigen. The sections were placed in primary antibody overnight.  The next day 

the primary antibody was removed and the slides were washed with ImmunoStain Wash 

Buffer and/or PBS (Gene Tex Inc., Irvine, CA).  Following the washes, the slides were 

placed in secondary antibody for approximately 1 hour.  The secondary antibodies were 

diluted in PBS containing 2% horse serum.   

Next, fluorescent conjugated secondary antibodies were used to detect the 

primary antibody.  A donkey anti-mouse Alexa Fluor® 594 was used to detect the α-

SMA antibody and the SV40 T Ag antibody, while a donkey anti-goat Alexa Fluor® 488 

(Invitrogen:Molecular Probes, Eugene OR) was used to detect the GFP antibody.  The 

secondary antibodies were used at a 1:200 dilution. 

Following the secondary antibody incubation the slides were rinsed several times 

with PBS.  A DAPI Nucleic Acid Stain (Invitrogen: Molecular Probes, Eugene OR) was 

used to detect the cell nuclei.  The stock solution of DAPI was made according to the 
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manufacturer’s protocol.  The stock solution was diluted in PBS at 1:10,000 and the 

slides were stained with DAPI for 10 minutes.  Following the nucleic acid stain, the 

slides were rinsed twice with water and a cover slip was mounted on the slide with 

SlowFade® Gold antifade reagent (Invitrogen: Molecular Probes, Eugene OR).  The 

slides were then placed at 4oC in the dark until pictures could be taken with a fluorescent 

microscope or examined under the fluorescent dissecting microscope.   

 

Analysis of α-SMA-Positive Cells for Expression of GFP: Tumor sections were 

analyzed by eye through a 100x objective for the co-expression of GFP and α-SMA.  In 

general cells were scored as follows: first, a α-SMA positive cell was found and then was 

scored positive for GFP expression if GFP extended the length of the α-SMA staining 

and a nuclei could be seen by examining the DAPI staining.  Cells not fitting the previous 

criteria were scored as negative.  Additionally, with some α-SMA positive cells it was 

hard to determine whether they were positive or negative and thus they were scored as 

non-determinable (ND).  Pictures of some of the areas analyzed were taken using the 

Zeiss LSM510 Laser scanning confocal system. 
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The presence of stromal cells within carcinomas can have a profound impact on 

the pathology of the disease.  This collection of non-cancerous cells surrounding and 

intermingled with the cancer cells within a tumor can be comprised of many cell types 

such as immune, endothelial, smooth muscle, and myofibroblasts.  Clinical studies 

suggest that the presence of myofibroblasts in tumors leads to a poor prognosis for cancer 

patients, potentially by promoting angiogenesis and invasion (Tsujino T et al. 2007, 

Yazhou C et al. 2004, Kalluri R and Zeisberg M 2006, De Wever O et al. 2008, Orimo A 

et al. 2005, Lewis MP et al. 2004, De Wever O et al.  2004).  Interestingly, 

myofibroblasts are present in breast carcinomas, but not present in the breast under 

normal circumstances (Skalli O et al. 1986, Lazard D et al. 1993, Barth PJ et al. 2002, 

Chauhan H et al. 2003, Yazhou C et al. 2004).  These observations collectively indicate 

that myofibroblasts represent a prime therapeutic target because they could be inhibited 

with minimal collateral damage done to the normal physiology of the breast.  Thus, it is 

important to discover the factors that recruit this cell type to the site of breast carcinomas 

because they will provide us with a better understanding of this tumor-promoting cell 

type and may prove to be important therapeutic targets.  In these studies we used a newly 

developed breast carcinoma model, which forms tumors that contain areas with numerous 

myofibroblasts, in order to identify paracrine factors important in the recruitment of 

myofibroblasts (Ince TA et al 2007).  
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Factors Involved in the Recruitment of Myofibroblasts to the Site of Breast Cancer 
Formation 
 
 

In a screen to identify factors secreted by BPLER cells that contribute to the 

recruitment of myofibroblasts, we identified CXCL1, VEGF, CCL5 and IL-6 as 

candidates.  We tested the effects of mouse CXCL1 (mCXCL1), mouse VEGF164 

(mVEGF164), and human CCL5 (hCCL5) on primary tumor formation and on their ability 

to recruit α-SMA-positive cells. 

The Effects of VEGF, CXCL1, and CCL5 expression in Breast Carcinoma 
Formation 
 

We demonstrated that when mVEGF164, but not hCCL5 or mCXCL1, is expressed 

in MCF-7-Ras cells, tumor formation in mice is enhanced.  The mVEGF164 expressing 

tumors appear to show increased angiogenesis as assessed by staining of the tumor 

sections with the endothelial marker CD34.  In agreement with this, it has been 

previously been reported  that the expression of either human VEGF121 or VEGF165 in 

MCF-7 cells leads to increased tumor incidence and growth with a concomitant increase 

in tumor angiogenesis (Fenton BM et al. 2004).   

We have also shown that MCF-7-Ras cells ectopically expressing mVEGF164, but 

not hCCL5 or mCXCL1, form tumors that show increased incorporation of α-SMA-

positive cells.  As mentioned previously, smooth muscle cells, which express α-SMA, 

surround endothelial cells to form blood vessels.  Because the MCF-7-Ras tumors 

expressing mVEGF164 show an increase in the incorporation of cells expressing CD34, a 

marker of endothelial cells, the increased presence of α-SMA-positive cells in these 
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tumors could be the result of an increase in blood vessels lined by smooth muscle cells.  

However, we found no correlation between the CD34-positive areas and the α-SMA-

positive areas of the tumors.  Furthermore, it was noted that within a tumor section, there 

were numerous α-SMA-positive cells that were clearly not proximal to CD34-positive 

cells.  These observations led to the hypothesis that the increase in the average area 

stained for α-SMA in the mVEGF164 tumors is primarily the result of an increase in the 

number of α-SMA-positive myofibroblasts.  It is unclear how this increased 

incorporation occurs; however we propose several possible mechanisms below. 

The inability of mCXCL1 to increase the recruitment α-SMA-positive cells to 

MCF-7-Ras tumors could be a consequence of expression level.  As shown in Chapter II, 

while human CCL5 was ectopically expressed at higher levels in the MCF-7-Ras cells 

compared to BPLER cells, mouse CXCL1 was expressed at much lower levels when 

compared to endogenous expression in BPLER cells.  Therefore, the level of mouse 

CXCL1 expression in the MCF-7-Ras cells may have been insufficient to elicit the 

recruitment of myofibroblasts in vivo.   

CXCL1 remains an intriguing factor to us because it has been demonstrated that 

treatment of human fibroblasts with CXCL1 results in their senescence, as assessed by β-

galactosidase staining (Yang G et al. 2006).  Furthermore, fibroblasts stimulated by 

CXCL1 are able to promote tumor formation of immortalized human ovarian epithelial 

cells compared to untreated fibroblasts (Yang G et al. 2006).  These data suggest that 

CXCL1 secreted by cancer cells may be particularly important in stimulating adjacent 

fibroblasts.  One interesting possibility is that CXCL1 leads to the terminal differentiation 
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of fibroblasts into myofibroblasts, which may exhibit certain senescent phenotypes that 

promote tumorigenesis, as elegantly reported by J. Campisi and colleagues (Krtolica A et 

al. 2001).  Future studies should investigate the ability of human CXCL1 to induce the 

differentiation of fibroblasts into myofibroblasts. 

Mechanisms of VEGF-A Action 
 

There are multiple mechanisms that VEGF-A could utilize to induce the 

incorporation of myofibroblasts into the tumor stroma, and our understanding is obscured   

by several aspects.  First, there are several potential precursors to the myofibroblasts that 

VEGF-A could directly stimulate, including fibroblasts, smooth muscle cells, bone 

marrow-derived cells, endothelial cells, and the carcinoma cells themselves (Rønnov-

Jessen L et al. 1995, Sangai T et al. 2005, Hinz B et al. 2007, Zeisberg EM et al. 2007, 

Kalluri R and Zeisberg M 2006).  Secondly, it is unclear whether VEGF-A acts alone or 

in combination with other factors secreted by the MCF-7 Ras cells.  Finally, there could 

be indirect, multi-step mechanisms involving VEGF-A stimulation of intermediate cell 

types, which lead, in turn, to the incorporation of myofibroblasts. 

VEGF-A is a ligand for two receptor tyrosine kinases (RTKs), VEGFR-1 and 

VEGFR-2.  While initially identified as a key activator of vasculogenesis and 

angiogenesis, these receptors are expressed by a surprisingly wide variety of cells types 

as shown in Figure 1A and 1B (Olsson AK et al. 2006, Cross MJ et al. 2003).  While less 

well characterized, there is also data that suggests VEGF-A receptors are expressed by 

some fibroblast and myofibroblast populations (Orimo A et al. 2001, Decaussin M et al. 

1999).  Finally, VEGF receptors are also expressed by some breast carcinoma cells (Lee 
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TH et al. 2007, Wu Y et al. 2006).  These important findings suggest that VEGF likely 

plays a much broader role in cellular signaling beyond its well-known role in the vascular 

compartment.  Our results are in accord with this idea, implicating VEGF in the induction 

of myofibroblast incorporation in the tumor stroma that may only be tangentially related 

to its role in inducing tumor angiogenesis.  I propose that VEGF interacts with one or 

several of these cell types to induce the incorporation of α-SMA-positive myofibroblasts.   

VEGF-A can induce several biological responses that are important for the 

recruitment of stromal cells.  For example, the binding of VEGF-A to VEGFR-2 

expressed on endothelial cells results in the activation of several downstream effector 

pathways that are able to induce proliferation, migration, and cell survival as shown in 

Figure 1A (Olsson AK et al. 2006, Cross MJ et al. 2003).  It is possible that these 

pathways are also activated downstream of VEGFR-2 activation in other cell types. 

Additionally, VEGFR-2 activation of endothelial cells leads to an increase in vascular 

permeability, which may be important in the recruitment of stromal cells, as discussed in 

detail below (Olsson AK et al. 2006, Cross MJ et al. 2003).  Endothelial cells express 

VEGFR-1 and VEGFR-2, but it is thought that the effects of VEGF-A mentioned above 

are, by and large, mediated through VEGFR-2 (Cross MJ et al. 2003, Nagy JA et al. 

2007).  VEGFR-1, instead, mediates the migration of monocytes, macrophages, and 

hematopoietic stem cells in response to VEGF-A.  However, the downstream effector 

pathways of VEGFR-1 are less clear (Olsson AK et al. 2006, Cross MJ et al. 2003).  

Some of the signaling molecules thought to interact with VEGFR-1 are shown in Figure 

1B.  Given that VEGFR-1 is expressed by a wide variety of cell types, we would be very 
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interested in exploring the possibility that VEGF acts in novel pathways downstream of 

VEGFR-1 activation to induce non-canonical cellular functions, including myofibroblast 

induction. 
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Direct Mechanisms of VEGF-A Action 
 

There are several direct mechanisms that may be used by VEGF-A to increase the 

incorporation of myofibroblasts as shown in Figure 2.  We define direct mechanism as 

the ability of VEGF to directly stimulate a myofibroblast precursor or the myofibroblast 

itself. Two likely candidates for myofibroblast precursor cells are smooth muscle cells 

and fibroblasts.  VEGF-A has been shown to affect both of these cell types in various 

biological contexts.  It was demonstrated that MCF-7 tumors ectopically expressing 

VEGF-A and treated with tamoxifen display increased desmoplasia, as assessed by 

increased stromal area (Qu Z et al. 2008). Strikingly, the study concluded that the 

majority of the stroma consisted of fibroblasts based on their morphology; however the 

mechanism underlying the increase in desmoplasia in these tumors remains unknown 

VEGF-A has also been shown to increase the in vitro migration and proliferation of 

dermal fibroblasts and keloid fibroblasts, respectively (Wu WS et al. 2006, Ball SG et al. 

2007).  Interestingly, the data suggest that the migration of human dermal fibroblasts in 

response to VEGF-A is mediated through activation of the platelet-derived growth factor 

receptor (PDGFR) (Ball SG et al. 2007).  As shown in Figure 1B, VEGFR-1 expression 

has been documented in smooth muscle cells.  It has also been shown that expression of 

VEGF in the intestinal epithelium leads to the formation of cysts surrounded by α-SMA-

positive cells (Boquoi A et al. 2009).  In the normal intestine, α-SMA expression is 

confined for the most part to smooth muscle cells surrounding blood vessels and to 

mesenchymal cells present in the crypts (Boquoi A et al. 2009).  However, it has also 

been demonstrated that VEGF-A can inhibit pericyte functions; these have many 
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attributes of smooth muscle cells (Greenberg JI et al. 2008).  Collectively, these studies 

demonstrate the ability of VEGF-A to affect both fibroblasts and smooth muscle cells, 

suggesting that in our experiments, mVEGF164 may contribute to the incorporation of 

myofibroblasts through its effects on these myofibroblast precursors. 

It has also been postulated that myofibroblasts can be derived from endothelial 

cells and carcinoma cells themselves through the processes of endothelial-to-

mesenchymal transition (EndMT) and epithelial-to-mesenchymal transition (EMT), 

respectively (Hinz B et al. 2007, Zeisberg EM et al. 2007, Kalluri R and Zeisberg M 

2006).  It is well known that endothelial cells express VEGF receptors and VEGF 

receptor expression has also been demonstrated in breast carcinoma cells (Olsson AK et 

al 2006, Lee TH et al. 2007, Wu Y et al. 2006).  mVEGF164, either alone or in 

combination with other factors secreted by the MCF-7 Ras cells, could thus facilitate 

these processes in endothelial cells or in MCF-7 Ras cells themselves. 

Other factors have already been implicated in the recruitment of myofibroblasts to 

the sites of breast carcinoma formation, including TGF-β and PDGF.   Our data leads me 

to include VEGF in this important family of secreted factors that induces myofibroblast 

incorporation into the tumor stroma. One interesting possibility is that VEGF-A acts 

directly on the local pool of myofibroblast precursors to induce their proliferation or 

recruitment, and another factor subsequently induces their differentiation into 

myofibroblasts.  This model is especially plausible, given the known ability of TGF-β to 

induce the differentiation of fibroblasts into myofibroblasts and its ability to induce 

EndMT and EMT (Gabbiani G 2003, Hinz B et al. 2007, Zeisberg EM et al. 2007, Thiery 
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JP 2002).  It will thus be important to see if VEGF-A and TGF-β, or other combinations 

of factors, can act synergistically to induce myofibroblast incorporation in the tumor 

stroma.   

One can address these possibilities in future studies by examining the effects of 

conditioned media from MCF-7-Ras cells expressing mVEGF164 on the proliferation, 

migration, and transdifferention of fibroblasts, smooth muscle cells, endothelial cells and 

breast carcinoma cells relative to control cell conditioned media , mVEGF164 alone, or 

mVEGF164 with TGF-β.  
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Figure 2: 
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Figure 2 (continued): 
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Indirect Mechanisms of VEGF-A Action 
 

As discussed above, VEGF-A’s ability to induce the incorporation of 

myofibroblasts in the stroma may not be through direct stimulation of myofibroblasts or 

its precursors, but rather through indirect action on another stromal cell type (Figure 2).  

A precedent for this model is the ability of GM-CSF to induce the presence of 

myofibroblasts potentially by recruiting myeloid cells, such as macrophages, which 

secrete TGF-β.  The TGF-β secreted by the recruited macrophages is then thought to 

recruit and/or differentiate myofibroblasts (Serini G and Gabbiani G 1999).  In this vein, 

VEGFR-1 is known to be expressed by monocytes and macrophages, which migrate in 

response to VEGF-A (Olsson AK et al 2006).   We thus envision a model where VEGF-

A is secreted by carcinoma cells, resulting in recruitment of these TGF-β−secreting 

monoctyes and macrophages (Figure 2).  The secreted TGF-β could then cause 

fibroblasts to differentiate into myofibroblasts at the site of tumor growth.  In addition to 

VEGF-A, there may be additional signals secreted by tumor cells that induce the 

expression of TGF-β in monocytes or macrophages. 

 In future studies, it will be interesting to analyze the MCF-7 Ras tumors 

expressing mVEGF164 for the presence of monocytes and macrophages relative to control 

tumors.  An increase in monocytes and macrophages would justify experiments that 

examine the ability of conditioned media from the MCF-7 Ras cells expressing 

mVEGF164 to induce the in vitro migration and proliferation of monocytes and 

macrophages, as well as its ability to induce the secretion of TGF-β.  If mVEGF164 is not 
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acting alone, it will be important to identify collaborating factors through a screen using 

the in vitro experiments established above.  

In addition to acting on immune cells, VEGF-A’s ability to induce the presence of 

myofibroblasts in the stroma may be operating through other indirect mechanisms 

(Figure 2).  VEGF-A not only induces angiogenesis but it also induces vascular 

permeability (Nagy JA et al.  2007).  Increased permeability can subsequently lead to an 

efflux of proteins from the blood stream to the tumor, leading not only a release of 

growth factors but the deposition of extracellular matrix (ECM) (Nagy JA et al.  2007). 

One possible scenario is that local resident fibroblasts may be stimulated by or recruited 

to the deposited ECM and proteins, where they undergo terminal differentiation into 

myofibroblasts.   

We noted earlier that some of the mVEGF164-expressing tumors contained what 

appeared to be to be extensive areas of necrosis.  In another interesting scenario, it is 

possible that a major immune response to necrosis leads to an influx of immune cells that 

subsequently secrete signals that induce the influx of myofibroblasts as discussed above.  

To address this possibility, one can analyze smaller tumors that have not yet become 

necrotic for the absence of α-SMA positive cells compared to tumors with large necrotic 

regions.   

    One of the most promising aspects of our identification of VEGF in the 

induction of myofibroblast incorporation is the fact that numerous inhibitors of the VEGF 

signaling pathway already exist and are in use in the clinic.  It would be interesting to 

treat our mice with Avastin and other anti-angiogenic drugs to see if they affect 



 

 120 

myofibroblast recruitment.  If recruitment were inhibited, this would suggest, 

surprisingly, that these drugs may act on multiple stromal cell types to inhibit tumor 

growth. 

The Recruitment of Bone Marrow-Derived Cells to the Site of Tumor Formation 
 
 
 Until now we have focused on the prospect of inhibiting myofibroblast 

incorporation into tumors by targeting the factors that either recruit them or differentiate 

their precursors.  I now switch my focus to understanding precisely where these cells 

reside and if this physiological niche can be therapeutically targeted.  Several studies 

have shown that bone marrow-derived (BMD) cells that home to primary tumor sites can 

enhance tumor progression (Coussens LM et al. 2000, Lyden D et al. 2001, Shojaei F et 

al. 2007).  Of particular interest to us was the fact that some of these BMD cell types are 

known to express α-SMA and that up to 80% of stromal cells present in breast 

carcinomas can express α-SMA (Ishii G et al. 2003, Sangai T et al. 2005, Direkze NC et 

al. 2004, Guo X et al. 2008, LaRue AC et al. 2006, Ishii S et al. 2008, Worthley DL et al.  

2009, and Sappino AP et al. 1988).  This led me to hypothesize that in breast carcinomas, 

myofibroblasts or their precursors originate from the bone marrow. 

In our studies we therefore examined whether the α-SMA-positive cells 

incorporated into our BPHER-3 tumors are bone marrow-derived (BMD).   Surprisingly, 

we demonstrated that nearly 100% of all α-SMA-positive cells analyzed in our tumor 

model are not derived from the bone marrow, which strongly suggests that they are in 

fact derived from cells present in the adjacent tissue.   
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This result was surprising to us, given that the recruitment of α-SMA-positive 

bone marrow-derived myofibroblasts (BMD-MFs) has previously been described in 

human xenograft tumor models, autochthonous mouse tumor models, and 2 cases of 

human cancer (Ishii G et al. 2003, Sangai T et al. 2005, Direkze NC et al. 2004, and Guo 

X et al. 2008, LaRue AC et al. 2006, Ishii S et al. 2008, Worthley DL et al.  2009).  

Sangai and colleagues demonstrated that of all myofibroblasts recruited to MDA-MB-468 

and MDA-MB-231 human breast xenograft tumors, 14% and 20.6%, respectively, were 

bone marrow-derived.  In contrast, our studies using another human breast carcinoma 

model demonstrated that essentially none of the α-SMA-positive stromal cells appear to 

be recruited from the bone marrow.  These conflicting results raise important questions 

regarding the identification of BMD-MFs, as discussed below. 

In both ours and previously cited studies, the recruitment of BMD-MFs was 

assessed by the co-localization of a bone marrow-specific marker, such as GFP, and α-

SMA.  Unfortunately, α-SMA has been the only molecular marker used to identify cells 

as myofibroblasts.  In addition to the expression of α-SMA, cellular morphology has also 

been used for the identification of these cells.  Using these criteria, several studies have 

shown that in certain tumor models, α-SMA-myofibroblasts incorporated into the tumors 

can indeed be bone marrow-derived.   

The discrepancy between these other studies and our own, which show no 

derivation from the bone marrow, may be explained by the fact that the α-SMA-positive 

cells represent a heterogeneous population of cells.  Under these circumstances, there are 

two possible scenarios that may explain our data.  First, it is possible that there are two 
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lineages of myofibroblasts—one originating from the bone marrow and another 

originating from the adjacent tissue.  In this case, our BPHER-3 model may represent a 

unique system to study myofibroblast recruitment exclusively from the adjacent tissue.   

A second possible scenario is that the α-SMA-positive population contains not 

only myofibroblasts and smooth muscle cells, but a variety of other fibroblast-like cell 

types.  In this case, it is possible that the absence of BMD-MF in our studies can be 

explained simply by the fact that our BPHER-3 tumor cells preferentially recruited these 

other cell types rather than myofibroblasts from the bone marrow.  In this case, it will be 

critical to further stratify the heterogeneous α-SMA-positive population in order to 

identify and target other critical cell types in the tumor stroma. 

Cellular heterogeneity in the fibroblast compartment of the tumor stroma has 

indeed been previously reported (Sugimoto H et al. 2006).  These other authors analyzed 

the fibroblasts incorporated into both a 4T1 breast tumor model and a Rip1-Tag2 

pancreatic cancer model.  In their study, heterogeneity within the fibroblast population 

was established by showing differential expression of several molecular markers of 

fibroblasts and smooth muscle cells, including fibroblast specific protein-1 

(S100A4/FSP1), α-SMA, neuronal-glial antigen-2 (NG2), and the platelet-derived 

growth factor receptor-β (PDGFR-β) (Sugimoto H et al. 2006).  As Sugimoto et al 

showed in the fibroblast population, we hypothesize that the α-SMA positive population 

is also heterogeneous.  Defining other molecular markers of myofibroblasts will be a 

critical step in subdividing the α-SMA population into subtypes to better understand their 

functions and their origins.  
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One clear result from our studies is that the α-SMA-positive cells recruited to the 

BPHER-3 model are not bone marrow-derived, and thus are likely to have been derived 

locally from cells in the adjacent tissue.  Two candidate precursor cell types present in the 

adjacent tissue are smooth muscle cells and fibroblasts.  Smooth muscle cells already 

express α-SMA, and fibroblasts recruited to the site of tumor formation could give rise to 

α-SMA-expressing myofibroblasts.  In order to further define the α-SMA-positive cell 

population recruited to the site of BPHER-3 tumor growth, tumor sections should be co-

stained with α-SMA and other markers of both fibroblasts and smooth muscle cells.  This 

characterization will allow one to differentiate the respective contributions of 

myofibroblasts and smooth muscle cells to the α-SMA-positive stromal cells in our 

model. 

Given that a majority of our α-SMA-positive stromal cells are derived from the 

local environment, it will be important to study the recruitment of these cells when the 

BPHER-3 cells are injected orthopically.  In fact, other avenues of cancer research have 

shown that tumors progress differently depending on their site of implantation.  

Specifically, some cancer models metastasize more frequently when injected 

orthotopically than subcutaneously (Lacroix M et al. 2004).  The anatomical location of 

tumor xenografts may have a profound impact on the types of cells recruited to the site of 

tumor formation, simply because the cellular environment surrounding the cells differs.   

Hence, orthotopic injection of cancer cells is more likely to recapitulate the natural tissue 

environment in which these types of tumors would arise in human patients.   
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Beyond these additional in vivo studies, I would also be interested in looking at 

the interactions of smooth muscle cells and fibroblasts isolated from the human 

mammary gland with our BPHER-3 cells in an in vitro setting.  This will allow one to 

evaluate the ability of the BPHER-3 cells to recruit smooth muscle cells and fibroblasts in 

a much more controlled setting.  Additionally, one could temporally monitor the 

transdifferentiation of fibroblasts and smooth muscle cells by immunofluorescence and 

potentially develop a screen to identify the relevant secreted factors involved in their 

differentiation and recruitment. 

The stromal response elicited during tumor formation can have a profound impact 

on the pathology of the disease and can, in certain cases, be a critical rate-limiting 

determinant of tumor growth.  Importantly, this is likely to be true for both primary tumor 

growth and the growth of secondary metastases.  For this reason, it is essential to 

understand the mechanisms that various carcinomas utilize to foster a tumor-promoting 

stroma and the sources of the recruited stromal cells.  Identification of secreted factors 

will allow one to better understand and inhibit this process.  Furthermore, knowing the 

origins of specific cell types in the tumor stroma would allow us to develop better 

therapeutic strategies to inhibit their recruitment.    
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Introduction 
 

It is well known that tumor cells are capable of perturbing the local environment 

that they colonize.  However, it is becoming increasingly evident that primary tumors can 

also induce changes in the environment of distant organs.  For example, it was reported 

that there is an increase in myeloid cells in both the spleens and peripheral blood of 

tumor-bearing mice (Melani C et al. 2003, Yang L et al. 2004).  Work from our own lab 

has demonstrated that primary tumors can affect the distribution of certain cell types in 

the bone marrow (McAllister SS et al 2008).  McAllister et al. have shown that MDA-

MB-231 or BPLER tumor-bearing mice display a decrease in Lin-/Sca1+/cKit+ cells in 

the bone marrow when compared to non-tumor bearing mice or mice bearing a PC-3 

tumor.  This work not only illustrates the ability of primary tumors to perturb the 

systemic environment, but also that these effects can be tumor type specific (McAllister 

SS et al 2008).  Work from other laboratories has further shown that a primary tumor is 

able to induce changes in the distal environment of the lung, including induction of 

matrix metalloproteinase-9 (MMP-9), S100A8, S100A9 and fibronectin expression 

(Hiratsuka S et al. 2002, Kaplan RN 2005, Hiratsuka S et al. 2006).  Additionally, 

primary tumors can also affect the cellular composition of the lung as shown by an 

increase in Mac 1+ cells in the lung of tumor-bearing animals (Hiratsuka S et al. 2006).   

Not only are tumors able to perturb distant sites in the body, but it is also clear 

that these changes can affect the pathology of the disease.  Work form our own lab by 

McAllister et al. has demonstrated that bone marrow cells (BMCs) prepared from a 

tumor-bearing animal are capable of stimulating the growth of weakly tumorigenic cells 
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in vivo, while BMCs from a non-tumor-bearing host fail to do so (McAllister SS et al 

2008).  It was also shown that certain aggressive tumor cell lines have the capacity to 

promote the outgrowth of a weakly tumorigenic cell line growing on the opposite side of 

the mouse.  Furthermore, they demonstrated that an aggressive tumor cell line was 

capable of inducing the outgrowth of weakly metastatic cells in the lung (McAllister SS 

et al 2008).  Additionally, the changes induced by primary tumors in the lung 

microenvironment mentioned above are also thought to play a role in the establishment of 

lung metastatic growth (Hiratsuka S et al. 2002, Kaplan RN 2005, Hiratsuka S et al. 

2006).  These data suggest that the ability of primary tumors to perturb the systemic 

environment has important ramifications for the successful establishment of distant 

metastases. 

Perturbation of the bone marrow compartment by primary tumors may be of 

particular therapeutic importance in light of recent data that implicate bone marrow-

derived cells in conferring tumor resistance to anti-vascular endothelial growth factor 

(VEGF) therapy (Shojaei F et al. 2007).  In this study, Shojaei et al. demonstrated that co-

injection of BMCs, isolated from mice bearing tumors that are more resistant to anti-

VEGF treatment, with B16F1 melanoma cells, which are more sensitive to anti-VEGF 

treatment, results in the promotion of tumor growth and increased resistance to anti-

VEGF treatment.  Thus, a tumor’s ability to affect the systemic environment may also 

have consequences for disease treatment.      
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 In this section we focus on the ability of subcutaneous human mammary 

xenografts to perturb the cellular composition of the blood.  The results presented in this 

section are considered preliminary.  
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Results 

Creation of Tumor Bearing and Control Mice for Blood Analysis 
 

BPHER-3, BPLER-1, HMLER-1, MCF-7 Ras and MDA-MB-231 cells were 

injected bilaterally and subcutaneously into NOD-SCID mice, and control mice were 

similarly injected with Matrigel.  Each group contained 5 mice except the MDA-MB-231 

and Matrigel groups which consisted of 8 and 10 mice, respectively.  Given that these 

cell lines form tumors at various rates, groups of mice were euthanized at different time 

points in order to obtain the same average tumor weight between the different xenograft 

models.  Two to three control mice were euthanized at each of the different time points.  

The BPHER-3, BPLER-1, MDA-MB-231, HMLER-1 and MCF-7 Ras tumors were 

allowed to progress for 19, 27, 19, 18, and 20 days, respectively.  The average tumor 

weights are shown in Figure 1A.  It is important to note that the HMLER-1 tumor 

weights were highly variable as will be addressed below. 

 

Description of Blood Analysis   
 

Following carcinoma formation, samples of blood were taken from both the 

tumor-bearing and control Matrigel-injected mice.  In order to look at the effects the 

tumors might have on various cell types in the blood, each sample of blood was subjected 

to a complete blood count (CBC), which includes a white blood cell count (WBC), red 

blood cell count (RBC) and a platelet count (Plat Ct).  Additionally, the hematocrit 

(HCT), mean corpuscular volume (RBC MCV), mean corpuscular hemoglobin (MCH), 

mean corpuscular hemoglobin concentration (MCHC), and the amount of hemoglobin in 
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the blood (Hgb) were measured in this analysis.   Finally, a differential count was 

performed on the blood samples, which specifically examines the composition of the 

white blood cell population and determines the percent of white blood cells that are of a 

specific cell type.  The individual cell types enumerated in the differential count include 

neutrophils (Neutr), immature neutrophils (Bands), lymphocytes (Lymphs), monocytes 

(Monos), and eosinophils (Eosins).  The numbers for each of these parameters among the 

different groups is displayed in Supplementary Figure 1. 

The results of the WBC, RBC, Neutrophil Differential and Lymphocyte 

Differential are shown in Figure 1B and C.  In this experiment there were a total of 10 

control mice.  It  was observed that if the 10 control mice were split into two groups of 5 

based on their date of birth, the WBC count was the only parameter that displayed a 

statistically significant difference, p=0.01 (Supplementary Figure 1).    Therefore, when 

possible, control mice (n=5) and tumor-bearing mice with the same date of birth were 

compared for the analysis of the WBC.  For the remaining measurements, tumor-bearing 

mice were compared to all 10 matrigel-injected control mice (all matrigel-injected control 

mice).  The numbers for each of the measurements along with the p-values for each of the 

comparisons between the different groups is displayed in Supplementary Figure 1.  
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Figure 1 (continued): 
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Analysis of Blood in Tumor-Bearing Mice 
 

The HMLER-1 tumor-bearing mice displayed the most dramatic blood cell 

perturbations, but it should be noted that this group also had the largest tumor burden 

(Figure 2).  The HMLER-1 tumor-bearing mice had a 3.8 fold increase in their WBC 

relative to all Matrigel-injected control mice; however this was not statistically 

significant (p=0.07).  The standard deviation of the WBC in the HMLER-1 tumor bearing 

mice was much greater than control values (Figure 2A).  This variability is likely due to 

the differences in tumor weights, given that among the 5 mice injected with HMLER-1 

cells, there appeared to be a correlation between the total tumor burden and the WBC 

(Figure 3A).  This result suggests that tumor burden alone can have an effect on 

perturbations in the blood.  

The HMLER-1 tumor-bearing mice did exhibit statistically significant changes in 

their neutrophil and lymphocyte differential, platelet count, HCT, MCH, and MCHC 

(Figure 2A, B and C).  Relative to all matrigel-injected control mice, HMLER-1 tumor-

bearing mice displayed an increase in their neutrophil differential, MCH, and MCHC, 

while they showed a decrease in their lymphocyte differential, HCT, and platelet count.  

These parameters did not show a strong correlation with tumor burden (Figure 3B-E). 
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The BPHER-3 tumor-bearing mice displayed the same trends as the HMLER-1 

tumor-bearing mice in terms of their WBC, neutrophil differential, and lymphocyte 

differential, however, the differences seen in the BPHER-3 mice were not statistically 

significant (Figure 1B and C).  Interestingly, in contrast to the HMLER-1 tumor-bearing 

mice, the BPHER-3 tumor-bearing mice showed statistically significant decreases in their 

MCH and MCHC relative to all Matrigel-injected control mice (Figure 2C). 

For the remaining tumor-bearing mice, including those injected with BPLER-1, 

MCF-7 Ras, and MDA-MB-231, there were no significant differences in the various 

blood cell measurements with the exception of the MCF-7 Ras tumor-bearing mice, 

which displayed a decrease in the lymphocyte differential relative to all Matrigel-injected 

control mice.  However, while some differences are very small, all the tumor-bearing 

groups displayed the trend of increased neutrophil differential and decreased lymphocyte 

differential relative to all matrigel-injected control mice (Figure 1B and C).   

Discussion 
 

While these results need to be repeated, there are some interesting observations 

and implications for future studies on systemic perturbations in the blood.  In summary, 

the HMLER-1 tumors were capable of perturbing certain cell types in the blood; however 

they also had the largest tumors relative to the other tumor models.  The tumor burden in 

the HMLER-1 group appears to correlate with the WBC, suggesting that tumor burden 

alone may have some effect on perturbing the systemic environment.  In a similar 

manner, it has been demonstrated in an autochthonous mouse mammary carcinoma 

model that Gr-1+Mac-1+ myeloid cells are increased in the blood during tumor 
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progression (Melani C et al. 2003).  The authors also demonstrated that the increase in 

the number of GR-1+/Mac-1+/ER-MP12+ cells during tumor progression appeared to be 

correlated with the number of tumors present in the mouse.  This is important to keep in 

mind when trying to discern systemic perturbations caused directly by the actions of a 

tumor versus being caused indirectly as a consequence of the increased tumor weight. 

The HMLER-1 tumor-bearing mice displayed statistically significant changes in 

the neutrophil differential count and lymphocyte differential count.  The HMLER-1 

tumor-bearing mice displayed an increase in the neutrophil differential and a decrease in 

the lymphocyte differential.  As mentioned earlier, the differential is calculated as a 

percentage of the white blood cell population.  If the absolute number of neutrophils and 

lymphocytes are calculated using the WBC in HMLER-1 tumor-bearing mice, then there 

is roughly a 5.2 fold increase in neutrophils, but also a 1.6 fold increase in lymphocytes 

relative to all Matrigel-injected control mice.  Future experiments may want to look at the 

absolute numbers of these cell types in a given volume of blood, this will help to 

elucidate which cell type(s) in the blood are perturbed the most in the tumor-bearing 

mice.  Furthermore, it is unknown at this point whether the ratio of neutrophils to 

lymphocytes or the absolute number of lymphocytes and neutrophils in the blood of 

tumor-bearing animals is important for tumor progression.       

These results also suggest that perturbations in the blood may be tumor cell type 

specific.  For example, the different effects on the MCH and MCHC caused by HMLER-

1 tumors compared to BPHER-3 tumors may suggest that these two tumor models have 
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some differences in their systemic perturbations.  These differences may shed light on 

how different tumor cell lines utilize blood cells during tumor progression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 143 

Acknowledgements:  We would like to thank Tina Yuan for her editing and critical 

comments on this chapter.  Also, we would like to thank Scott Valastyan for his editing 

on the figures presented in this chapter. We would also like to thank Sandra McAllister, 

Scott Valastyan, and Lynne Waldman for helpful discussions on this work.  We would 

especially like to thank Tina Yuan for her helpful discussions on this work. 

 

Materials and Methods 

 
Cell Lines and Tissue Culture:  The BPLER-1, BPHER-3, HMLER-1, and HMLER-

HR cells were obtained from within the lab and were created as previously explained 

(Elenbaas B et al. 2001, Ince TA et al. et al. 2007).  The BPLER-1 and BPHER-3 cells 

were cultured as previously described except that the final concentration of glutamine 

was 1mM instead of 2mM (Ince TA et al. et al. 2007).  In general, the HMLER-HR cells 

were cultured in a 1:1 mix of Dulbecco’s Modified Eagle’s (DME) Medium and F12 

Medium.  The DME/F12 mix was supplemented with 5% calf serum, 10 ng/mL of EGF, 

1-2 ug/mL of hydrocortisone, 10 ug/ul of insulin, penicillin and streptomycin.  The 

HMLER-1 cells were cultured in a 1:1 mix of MEGM or MEMB (LONZA, Walkersville 

MD) and DME/F12 Media supplemented as described above but without the calf serum.  

MCF-7 Ras and MDA-MB-231 cells were cultured under standard conditions.        

 

Tumor Xenografts:  For subcutaneous injection, all cancer cell lines were resuspended 

in BD Matrigel™ Matrix (BD Biosciences, Bedford MA) diluted in tissue culture media.  

For the blood analysis experiments comparing xenografts, the following number of cells 
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was used per injection: 1 x106 BPLER-1, HLMER-1 and BPHER-3 cells, 2 x106 MCF-7 

Ras and MDA-MB-231 cells.  

 

Complete Blood Count and Differential:  A sample of blood was taken intra-cardially 

and placed into a BD Microtainer® Tubes with EDTA (Becton, Dickinson and Company, 

Franklin Lakes NJ).  During this procedure, there is a possibility that the blood will clot 

and this could affect the subsequent analysis.  Additionally, the amount of blood sent to 

DCM may have been different between individual mice.  The blood samples were 

submitted to the Division of Comparative Medicine at MIT for a complete blood count 

and differential.   

 

Statistical Analysis:  T-tests were performed using excel.  A two-tailed T-test with 

unequal variance was performed to calculate the p-values for all comparisons.  
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Supplementary Material 
Figure 1: 
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Supplementary Material: Figure 1 (continued) 
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Supplementary Material: Figure 1 (continued) 
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