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Abstract
We present QuickStep, a novel system for parallelizing sequential
programs. QuickStep deploys a set of parallelization transforma-
tions that together induce a search space of candidate parallel pro-
grams. Given a sequential program, representative inputs, and an
accuracy requirement, QuickStep uses performance measurements,
profiling information, and statistical accuracy tests on the outputs of
candidate parallel programs to guide its search for a parallelization
that maximizes performance while preserving acceptable accuracy.
When the search completes, QuickStep produces an interactive re-
port that summarizes the applied parallelization transformations,
performance, and accuracy results for the automatically generated
candidate parallel programs. In our envisioned usage scenarios, the
developer examines this report to evaluate the acceptability of the
final parallelization and to obtain insight into how the original se-
quential program responds to different parallelization strategies. It
is also possible for the developer (or even a user of the program
who has no software development expertise whatsoever) to simply
use the best parallelization out of the box without examining the
report or further investigating the parallelization.

Results from our benchmark set of applications show that
QuickStep can automatically generate accurate and efficient paral-
lel programs — the automatically generated parallel versions of five
of our six benchmark applications run between 5.0 and 7.7 times
faster on 8 cores than the original sequential versions. Moreover, a
comparison with the Intel icc compiler highlights how QuickStep
can effectively parallelize applications with features (such as the
use of modern object-oriented programming constructs or desir-
able parallelizations with infrequent but acceptable data races) that
place them inherently beyond the reach of standard approaches.

1. Introduction
For the last several decades, improvements in uniprocessor per-
formance have been the primary source of increased computing
power. It is clear, however, that fundamental limits on the underly-
ing computing substrate will eliminate this source of performance
improvement. The computing community will instead be forced to
rely on parallel computing for future performance improvements.
Indeed, this trend is already evident. Within the last several years,
uniprocessor performance has not significantly improved. During
this same time, computers with multiple processor cores have be-
come the industry standard. Unfortunately, the difficulty of devel-
oping parallel software is a key obstacle to exploiting the consid-
erable computational power that multiprocessors (such as modern
multicore machines) otherwise have to offer.

We present a new system, QuickStep, that is designed to help
developers obtain parallel software that can effectively exploit
modern multicore computing platforms. Instead of relying on the
developer to manually identify and implement appropriate paral-
lelization strategies, QuickStep implements a set of parallelization
transformations. Given an initial sequential program, these trans-

formations induce a search space of candidate parallel programs.
Guided by performance measurements, a simple static analysis,
loop profiling information, memory profiling information, and sta-
tistical accuracy tests on the outputs of test executions, QuickStep
automatically searches this space to find a parallel program that
maximizes performance subject to a specified accuracy goal. The
developer can then examine this program and the accompanying
automatically generated interactive parallelization report to deter-
mine the overall acceptability of the final parallelization and obtain
insight into the parallelization process. We anticipate that varying
degrees of investigation into the parallelization will be appropriate
in different contexts. In some contexts we expect the developer (or
even a user who has no software development expertise at all) to
simply accept and use the best parallelization with further investi-
gation into the parallelization strategy or automatically generated
parallel code.

1.1 Transformations
QuickStep implements three kinds of transformations:

• Parallelism Introduction Transformations: Transformations
that introduce parallel execution. QuickStep currently imple-
ments one parallelism introduction transformation: loop paral-
lelization. Note that because the iterations of the resulting par-
allel loop execute without synchronization, anomalies such as
data races may cause the parallel program to crash or produce
an unacceptably accurate result.
• Accuracy Enhancing Transformations: Transformations that

are designed to enhance the accuracy of the parallel program.
If a parallelism introduction transformation produces an un-
acceptably accurate program, accuracy enhancing transforma-
tions may restore acceptably accurate execution. QuickStep im-
plements two accuracy enhancing transformations: synchro-
nization introduction, which replaces unsynchronized opera-
tions with synchronized operations (the goal is to eliminate data
races), and privatization, which gives each thread its own copy
of otherwise shared local variables (the goal is to eliminate in-
terference between parallel loop iterations).
• Performance Enhancing Transformations: Transformations

that are designed to enhance the performance of the paral-
lel program. QuickStep implements two performance enhanc-
ing transformations: replication introduction, which replicates
objects accessed by parallel tasks, then combines the repli-
cas for sequential access (the goal is to eliminate bottlenecks
associated with frequently executed synchronized operations
on shared objects) and loop scheduling, which applies differ-
ent parallel loop scheduling algorithms (the goal is to find a
scheduling policy that interacts well with the specific character-
istics of the loop).



1.2 Searching The Parallelization Space
Given an initial sequential program, the parallelization transforma-
tions induce a space of corresponding parallel programs. QuickStep
searches this space as follows. QuickStep attempts to parallelize a
single loop at a time, prioritizing the attempted parallelization of
loops that consume more execution time over the attempted paral-
lelization of loops that consume less execution time. QuickStep first
applies the parallelization transformation to the current loop. It then
explores the parallelization space for this loop by repeatedly ap-
plying accuracy and performance enhancing transformations (pri-
oritizing accuracy enhancing transformations until it has obtained
acceptably accurate execution).

If it is unable to obtain an acceptably accurate parallelization,
QuickStep abandons the current loop and moves on to the next.
Once it has processed the most time-consuming loops and obtained
the final parallelization, QuickStep produces an interactive paral-
lelization report that a developer can navigate to evaluate the ac-
ceptability of this parallelization and obtain insight into how the
application responds to different parallelization strategies.

1.3 Accuracy Metric
In many cases it may be desirable to produce a parallel program that
produces the same result as the original sequential program. But in
other cases the best parallel version may, because of phenomena
such as infrequent data races or reordered parallel accumulations,
produce a result that differs within acceptable bounds from the re-
sult that the sequential program produces. QuickStep is therefore
designed to work with an accuracy metric that quantifies the differ-
ence between an output from the original sequential program and
a corresponding output from the automatically generated parallel
program run on the same input [30, 32]. The accuracy metric first
uses an output abstraction (which typically selects relevant output
components or computes a measure of the output quality) to obtain
a sequence of numbers o1, . . . , om from a sequential execution and
a corresponding sequence ô1, . . . , ôm from a parallel execution on
the same input. It then uses the following formula to compute the
distortion d, which measures the accuracy of the parallel execution:

d =
1

m

mX
i=1

˛̨̨̨
oi − ôi
oi

˛̨̨̨
The closer the distortion d is to zero, the less the parallel execu-
tion distorts the output. Note that because each difference oi − ôi
is scaled by the corresponding output component oi from the se-
quential execution and because the sum is divided by the number
of output components m, it is possible to meaningfully compare
distortions d obtained from executions on different inputs even if
the number of selected outputs is different for the different inputs.
Given an accuracy metric, an accuracy bound b is an upper bound
on the acceptable distortion.

1.4 Statistical Accuracy Test
QuickStep’s statistical accuracy test executes the parallel program
multiple times, treating each execution as a Bernoulli trial which
succeeds if the execution satisfies the accuracy bound b (i.e., if the
observed distortion d is at most b) and fails if it does not. The
test terminates when QuickStep has observed enough executions
to make a statistically well-founded judgement to either accept or
reject the parallelization. QuickStep uses the Wald sequential prob-
ability ratio (SPR) test (see Section 4) to make this judgement. Dur-
ing its search of the parallel program space, QuickStep sets the pa-
rameters of this test to accept a parallelization if the program satis-
fies the accuracy bound at least 90% of the time with a false positive
rate of at most (approximately) 10% (i.e., QuickStep accepts an un-
acceptably inaccurate program at most approximately 10% of the

time). During the final accuracy test, the program must satisfy the
accuracy bound at least 99% of the time with a false positive rate
of at most (approximately) 1%. See Section 4 for more details.

It is possible for a parallelization to cause the program to fail
to produce a well-formed output (typically because the program
crashes). In such cases QuickStep rejects the parallelization (al-
though it would be possible to configure QuickStep to accept par-
allelizations that have a low likelihood of failing in this way).

1.5 Primary Usage Scenario
Our primary usage scenario involves a developer who wants to ob-
tain a parallel version of an existing sequential program. The devel-
oper provides QuickStep with an output abstraction, an accuracy
goal, and a set of representative inputs. QuickStep then searches
the induced space of parallel programs, using the representative in-
puts to perform the test executions required to statistically evaluate
the accuracy of the candidate parallel programs, drive the explo-
ration of the search space, and find the final parallelization. Finally,
QuickStep produces a parallelization report that summarizes the
applied transformations and the accuracy and performance results.

The developer examines the report to obtain an overview of the
characteristics of the final parallelization, then uses the report to
evaluate the applied parallelization and determine the overall ac-
ceptability of this parallelization. If appropriate, the developer may
either accept or reject the parallelization or use the parallelization
as a basis for further development. The developer may also use
the report to investigate the characteristics of other candidate paral-
lelizations to obtain insight into the characteristics of the explored
space of parallel programs.

More generally, we anticipate a spectrum of usage scenarios. At
one end of the spectrum, the developer will examine the generated
parallel program as outlined above, fully understand the parallel
program, make an acceptability decision based on this understand-
ing, and potentially apply further transformations to manually ob-
tain an even more desirable parallelization. At the other end of the
spectrum, the developer (or even a user with no software develop-
ment expertise at all) may use QuickStep as a parallelizing com-
piler — he or she may simply rely on the accuracy results from the
representative inputs and accept the final parallelization without ex-
amining the parallel program at all. And of course, we envision in-
termediate scenarios based on more or less thorough examinations
of the automatically generated parallel program, with the specific
context determining the usage pattern.

1.6 Experimental Results
To evaluate the effectiveness of QuickStep’s approach, we obtained
a set of benchmark sequential programs, then used QuickStep to
parallelize this set of programs and generate corresponding paral-
lelization reports. Our results show that QuickStep is able to effec-
tively parallelize five out of the six programs, with the final parallel
versions running, on our test inputs, between a factor of 5.0 and 7.7
faster (on 8 cores) than the corresponding sequential versions.

We used the parallelization reports to evaluate the acceptabil-
ity of the final parallelizations. Our evaluation shows that, for the
programs in our benchmark set, QuickStep is able to produce par-
allelizations that are acceptable for all inputs (and not just the rep-
resentative inputs that it uses to drive the exploration of the search
space). Moreover, each final parallel program contains at most a
handful of parallel loops, each of which requires at most only
several synchronization or replication transformations to produce
an acceptably accurate program with good parallel performance.
The parallelizations are therefore amenable to developer evaluation
with reasonable developer effort.



1.7 Comparison With the Intel icc Compiler
For comparison purposes, we also compiled the benchmarks with
the Intel icc parallelizing compiler [1]. When configured to paral-
lelize only loops that will increase performance, the icc compiler
finds only one small loop to parallelize. When this constraint is re-
moved, it finds only small inner loops whose parallelization does
not improve and in some cases significantly degrades the perfor-
mance (because the parallelization overhead overwhelms the per-
formance gains from parallel execution).

These results highlight a key advantage of the QuickStep ap-
proach. QuickStep, like almost all parallelizing compilers, is de-
signed to exploit parallelism available in loops. But unlike stan-
dard compilers (which statically analyze the sequential program to
produce a parallel program with identical semantics), QuickStep
simply applies transformations, then uses the results of test execu-
tions to determine if the resulting parallelization is (statistically) ac-
ceptably accurate. QuickStep can therefore easily parallelize outer
loops with large loop bodies that use constructs (such as object ref-
erences) that are difficult or impossible for standard compilers to
successfully analyze. QuickStep can also produce desirable paral-
lelizations (for example, efficient parallelizations that may contain
infrequent data races) that are inherently outside the scope of stan-
dard techniques. As our comparison with the Intel icc compiler il-
lustrates, these properties can enable QuickStep to find effective
parallelizations that lie well beyond the reach of standard paral-
lelizing compilers.

1.8 Comparison with Jade Parallelizations
We also discuss the difference between the QuickStep paralleliza-
tions and the Jade [31] parallelizations for corresponding applica-
tions (when such applications exist). Even though Jade is an implic-
itly parallel language with sequential semantics, we find that there
are significant differences in the amount of effort required to use the
two different approaches. To use Jade, a developer must understand
the computation in enough detail to modify the application to intro-
duce Jade task constructs at appropriate locations within the source
code. QuickStep, on the other hand, operates directly on unmodi-
fied sequential programs with no need for the developer to modify
the source code (unless such modifications are necessary to create
or expose enough parallelism for QuickStep to find a parallelization
with good parallel performance). QuickStep can also produce sta-
tistically accurate parallel computations that may contain data races
and execute nondeterministically; Jade programs execute have no
data races and execute deterministically.

Perhaps more significantly, some Jade programs require sub-
stantial developer effort to reallocate data structures so that the Jade
object structure works effectively with the Jade task structure to
enable the Jade run-time system to exploit sufficient parallelism.
QuickStep, on the other hand, works directly with the application’s
original data structures. There are counterbalancing advantages:
QuickStep requires less developer involvement, but Jade applica-
tions can execute on both shared-memory and message-passing
platforms without modification. QuickStep can only produce paral-
lelizations for computing platforms that provide the abstraction of
a single shared address space.

Finally, QuickStep and Jade can exploit different kinds of par-
allelism. QuickStep is designed to exploit loop-level parallelism;
Jade was designed to exploit potentially irregular parallelism avail-
able across tasks regardless of the specific control constructs used
to generate the computation. QuickStep is designed to produce po-
tentially nondeterministic but statistically accurate computations
that may contain data races (or potentially reordered loop iterations
that may introduce acceptable amounts of noise into the output);
Jade was designed to produce computations that execute determin-
istically without data races in accord with the sequential semantics.

1.9 Scope
QuickStep is designed to parallelize programs whose main source
of parallelism is available in loops. The loop iterations need not
be independent — they can update shared data as long as the
updates to shared objects commute [34]. They can also contain
unsynchronized data races and other forms of nondeterminism as
long as these phenomena do not make the output unacceptably
inaccurate. QuickStep can also automatically eliminate bottlenecks
that arise when the program combines multiple contributions into a
single result.

We acknowledge that there are many programs that require dif-
ferent parallelization strategies. Examples include programs with
producer/consumer parallelism and programs with complex data-
dependent parallel dependence graphs. QuickStep is not designed
to effectively parallelize such programs. But within its intended
scope, QuickStep can offer unprecedented parallelization capabili-
ties. Because it is not handicapped by the need to analyze the pro-
gram, it can parallelize programs with complex features that lie
well beyond the reach of any previously envisioned parallelizing
compiler. Because it does not need to generate a parallel program
that always produces the identical result as the sequential program,
also it has access to a broader range of parallelization strategies
than previously envisioned parallelizing compilers.

Of particular interest are programs that heavily use modern pro-
gramming constructs such as objects and object references. Several
of the sequential programs in our benchmark set are written in C++
and use these constructs heavily. QuickStep has no difficulty paral-
lelizing programs that use these constructs. Traditional paralleliz-
ing compilers, of course, have demonstrated impressive results for
programs that use affine access functions to access dense matrices,
but are typically not designed to analyze and parallelize programs
that heavily use object references. Our results show that QuickStep,
in contrast, can effectively parallelize programs that use such con-
structs.

QuickStep’s statistical accuracy guarantees are based on sam-
pling executions of the parallel program on representative inputs.
These guarantees are not valid for inputs that elicit behavior sig-
nificantly different from the behavior that the representative inputs
elicit. It is therefore the responsibility of the developer or user to
provide inputs with characteristics representative of the inputs that
will be used in production. The developer evaluation of the final
parallelization can also help to ensure that the final parallelization
is acceptable for all inputs.

The statistical accuracy guarantees are also not valid for hard-
ware platforms whose characteristics differ significantly from those
on which the final accuracy test was performed. Moving applica-
tions between hardware platforms may therefore require the reex-
ecution of at least the final accuracy test. It is also possible for the
best parallelization to change, in which case it may be advisable to
reexecute the entire parallelization process.

1.10 Contributions
This paper makes the following contributions:

• Basic Approach: It introduces the basic QuickStep approach of
developing a set of parallelization transformations, then search-
ing the resulting induced space of parallel programs to find a
program that maximizes performance while preserving accept-
ably accurate execution.
• Parallelization Transformations: It identifies three kinds of

parallelization transformations (parallelism introduction, accu-
racy enhancing, and performance enhancing transformations)
and presents specific instances of each kind of transformation.
These instances are designed to work together to produce effi-
cient and accurate parallel programs.



• Search Algorithm: It presents an algorithm for automatically
searching the induced space of parallel programs. This algo-
rithm uses profiling information, performance measurements,
and accuracy results from executions on representative inputs
to guide the search.
• Statistical Accuracy Tests: It introduces the use of statistical

accuracy tests to determine if the likelihood that a candidate
parallel program will produce an acceptably accurate result is
acceptable.
• Interactive Parallelization Reports: It introduces interactive

parallelization reports that present the performance and accu-
racy characteristics of the candidate parallel programs, identify
the applied transformations for each program, and summarize
the overall search process. These reports are designed to facili-
tate developer evaluation of the automatically generated parallel
programs and to help the developer obtain insight into how the
original sequential program responds to various parallelization
strategies.
• Experimental Results: It presents experimental results ob-

tained by using QuickStep to parallelize a set of benchmark
sequential applications. These results show that QuickStep is
able to produce accurate and efficient parallel versions of five
of the six applications. And our examination of the resulting
parallelizations indicates that they are acceptable for all inputs
and not just the representative inputs used to drive the paral-
lelization process.
• Comparison With Other Approaches: It presents a compar-

ison with the Intel icc parallelizing compiler and the Jade par-
allelizations of corresponding applications. The icc comparison
highlights how QuickStep (in comparison with other paralleliz-
ing compilers) is capable of automatically parallelizing appli-
cations that are inherently beyond the reach of standard ap-
proaches. The Jade comparison highlights how QuickStep (in
comparison with an implicitly parallel language) can minimize
or even eliminate developer effort in obtaining a successful par-
allelization.

2. Example
Figure 1 presents an example that we use to illustrate the oper-
ation of QuickStep. The example computes pairwise interactions
between simulated water molecules (both stored temporarily in
scratchPads for the purposes of this computation). The two loops
in interf generate the interactions. interact calls cshift to
compute the results of each interaction into two 3 by 3 arrays (Res1
and Res2). updateForces then uses the two arrays to update the
vectors that store the forces acting on each molecule, while addval
updates the VIR accumulator object, which stores the sum of the
virtual energies of all the interactions.

2.1 Profiling Runs
QuickStep starts with the source code of the program, some rep-
resentative inputs, an output abstraction (which identifies relevant
outputs) and an accuracy bound of 0.003, all specified by the devel-
oper. QuickStep next runs the sequential computation on the repre-
sentative inputs and records the running times and outputs. It next
generates an instrumented version of the program that counts the
number of instructions executed in each loop and records the dy-
namic loop nesting information. It then runs this instrumented ver-
sion of the program to obtain the loop profiling information (which
identifies the most time-consuming loops in the program and the
dynamic nesting relationships between these programs). QuickStep
next generates an instrumented version of the program that gener-
ates a trace of the addresses that the program reads and writes. It

void ensemble::interf(){
int i, j;
scratchPad *p1, *p2;

for(i = 0; i < numMol-1; i++) {
for(j = i+1; j < numMol; j++){

p1 = getPad(j);
p2 = getPad(i);
interact(p1,p2);

}
}

}

void ensemble::interact
(scratchPad *p1, scratchPad *p2) {
double incr, Res1[3][3], Res2[3][3];

incr = cshift(p1,p2,Res1,Res2);
p1->updateForces(Res1);
p2->updateForces(Res2);
VIR.addval(incr);

}

void scratchPad::updateForces(double Res[3][3]) {
this->H1force.vecAdd(Res[0]);
this->Oforce.vecAdd(Res[1]);
this->H2force.vecAdd(Res[2]);

}

Figure 1: Example Computation

then runs this version to obtain the memory profiling information
(which identifies potentially interfering accesses from parallel loop
iterations).

2.2 Search of the Parallelization Space
The loop profiling information indicates that almost all of the
execution time is spent in an outer loop that iterates over the time
steps in the simulation. QuickStep’s attempted parallelization of
this loop fails because it produces computations with unacceptable
accuracy.

QuickStep next moves on to the interf outer loop. It gener-
ates parallel code that executes the iterations of this loop in paral-
lel. This initial parallelization (with no synchronization except the
barrier synchronization at the end of the loop) produces parallel ex-
ecutions that are close to accurate enough but, in the end, fail the
statistical accuracy test.

The memory profiling information indicates that there are po-
tential data races at multiple locations in the parallel loop, with the
densest races occurring within the accumulator addval opera-
tion invoked from the interact method. Figure 2 presents (rel-
evant methods of) the accumulator class. Each accumulator
contains several additional implementations of the basic addval
operation — the addvalSync operation, which uses a multiple
exclusion lock to make the addval execute atomically, and the
addvalRepl operation, which adds the contributions into local
replicas without synchronization.1 Based on the memory profil-
ing information, QuickStep invokes the synchronized version of the
addval method, changing the call site in interact to invoke the
addvalSync method instead of the addval method.

This transformation produces a parallel program with statisti-
cally acceptable accuracy but unacceptable performance. The par-
allel program takes almost the same time to execute as the origi-
nal sequential program. QuickStep operates on the assumption that
there is a bottleneck on the synchronized addvalSync updates and
that this bottleneck is the cause of the poor performance. It there-
fore replaces the call to addvalSync with a call to the replicated

1 The actual implementation of this accumulator uses padding to avoid
potential false sharing interactions.



class accumulator {
double *vals;
volatile bool isCached;
volatile double cachedVal;
pthread_mutex_t mutex;
double cache() {
double val = 0.0;
for (int i = 0; i < num_thread; i++) {
val+= vals[i]; vals[i] = 0;

}
cachedVal += val; isCached = true;
return val;

}
public:
double read() {
if (isCached) return cachedVal;
return cache();

}
void addval(double d) {
if (!isCached) cache();
cachedVal = cachedVal + d;
isCached = true;

}
void addvalSync(double d) {
pthread_mutex_lock(&mutex);
addval(d);
pthread_mutex_unlock(&mutex);

}

void addvalRepl(double d) {
if (isCached) isCached = false;
vals[this_thread] += d;

}
};

Figure 2: Example Accumulator

version of the addval method, changing the call site in interact
to invoke the addvalRepl method. The initial test executions in-
dicate that this version has good performance. And the remaining
data races (which occur when the computation updates the vectors
that store the forces acting on each molecule) occur infrequently
enough so that the computation produces acceptably accurate re-
sults.

After a similar parallelization process for the remaining time
intensive loop, the outer loop in the poteng method (not shown),
which accounts for the vast majority of the remaining execution
time, QuickStep has found several parallelizations that exhibit
both good performance and acceptably accurate output. QuickStep
takes the parallelization with the best performance and runs the fi-
nal, more stringent, statistical accuracy test on this parallelization,
which passes the test to become the final accepted parallelization.

2.3 Interactive Report
As it explores the induced space of parallel programs, QuickStep
produces a log whose entries specify the applied parallelization
transformations, the performance, and the accuracy for each ex-
ecution of each generated parallel program. QuickStep processes
this log to produce an interactive report that the developer can
examine to evaluate the final parallelization and gain insight into
how the different transformations affect the parallel behavior of
the application. The interactive report takes the form of a set of
(dynamically generated) linked web pages. The interactive re-
ports for the benchmark programs in this paper are available at
http://people.csail.mit.edu/dkim/quickstep/.

2.3.1 The Start Page
Figure 3 presents a screen shot of the start page of the interactive re-
port for the Water application from our benchmark suite (the exam-
ple presented in this section is a simplified version of this applica-
tion) running on the 1000 input. QuickStep produces a similar page

Figure 3: QuickStep Interactive Report Screen Shot



Figure 4: Source Code for Parallelized Loop

Figure 5: Source Code for Replication Transformation

for each combination of application and input in the benchmark
suite. This page summarizes the final parallelization of this appli-
cation. The header presents the number (in this case, Paralleliza-
tion 10) of the final parallelization, the mean speedup (in this case,
6.869 on 8 cores), and the mean distortion (in this case, 0.002).

The Transformation section of the page provides information
about the applied transformations for the final version, with links
to the transformed source code. In our example, the final parallel
program has two parallel loops (at lines 1146 and 1686 of the file
Water.C). The computation spends 36.5% of its time in the first loop
and 62.6% of its time in the second. The links in the report take
the developer directly to these loops in the source code. Figure 4
presents the linked source code containing the second parallelized
loop. QuickStep inserts the #pragma at line 1688 to parallelize the
loop.

The report indicates that each parallel loop has a single applied
replication transformation (the call to vecAdd at line 1159 of Wa-
ter.C was replaced with a call to the replicated version vecAddRepl
of this operation and the call to addval at line 1644 of Water.C
was replaced with a call to the replicated version addvalRepl of
this operation), no private variables, and no applied synchroniza-
tion transformations (other parallel versions have applied synchro-
nization transformations). Figure 5 presents the linked source code
containing the transformed call site (line 1161) where QuickStep
replaced the call to vecAdd with a call to vecAddRepl.

The report indicates that the interf loop uses the modulo
scheduling policy while the poteng loop uses the dynamic loop
scheduling policy. The Final Metrics section of the page presents
speedup and distortion results from the final statistical accuracy
test. Note that only 5 of the 1606 executions exceeded the accuracy
bound 0.003. Clicking on the green + sign (following the Final
Metrics title) opens up a table with results from the individual
executions.

The All Parallelizations section summarizes the search process.
A single graph plots the speedup (left Y axis) and distortion (right
Y axis) as a function of the different parallel versions of the pro-
gram as a function of the revision number (each time QuickStep
generates a new parallel program, it assigns the new version of the
program the next available revision number).

Figure 6: QuickStep Parallelization 2 Report

The final section contains links to similarly formatted pages
that summarize the applied parallelization transformations, perfor-
mance results, and distortion results for the full set of parallel pro-
grams that QuickStep visited (starting with Parallelization 1) as it
explored the parallel program search space.

2.3.2 Interactive Report Navigation
We anticipate that developers may navigate the interactive reports
as follows. They may first direct their attention to the header in-
formation on the start page to obtain an overview of the perfor-
mance and accuracy of the final parallelization. They may next use
the links in the page to locate the parallel loops and synchroniza-
tion and replication transformation sites (navigating to pages such
as those presented in Figures 4 and 5). They may then use their
own source code navigation system to explore relevant parts of the
source code of the application and determine if the parallelization
is acceptable for all inputs (and not just the representative inputs
provided by the developer).

The developers may also examine the pages for other paral-
lelizations to obtain a better understanding of the characteristics
of these parallelizations. For example, the developer may examine
versions that use synchronization transformations instead of repli-
cation transformations or different loop schedulers to better under-
stand the performance consequences of these alternatives. The de-
veloper may also browse through the set of parallelizations with
best performance.

The developer accesses the reports for different parallelizations
by clicking on the corresponding identifiers in the All Paralleliza-
tions Table in the start page. Figure 6, for example, presents the
report for Parallelization 2 (the initial parallelization of the loop on
line 1686 of Water.C, which accounts for 62.6% of the executed
instructions). The report presents the mean speedup, mean distor-
tion, and total execution time required to perform the trial execu-
tions. The developer can also use the links to access the transformed
source code locations. The Metrics table contains data obtained on
individual test executions, including the execution time, speedup



Figure 7: QuickStep Parallelization 3 Report

and distortion for each execution. For Parallelization 2, even though
the mean distortion is 0.0029, which is less than the accuracy bound
b=0.003, the results from the individual test executions exceed the
bound frequently enough to cause QuickStep to reject the paral-
lelization.

Based on an analysis of the memory profiling information,
QuickStep next applies a synchronization transformation to the
densest potential source of data races, a call (at line 1644 of Wa-
ter.C) to vecAdd of the class vector. Figure 7 presents the report
for this parallelization. A comparison of the reports from Paral-
lelizations 2 and 3 indicates that this transformation significantly
decreased the distortion, but also significantly decreased the per-
formance. The next parallelization (Parallelization 4, see Figure 8)
replaces the synchronization with a replication, preserving accept-
ably accurate execution and restoring good performance.

Figures 9 and 10 present the second (Parallelization 11) and
third (Parallelization 16) best parallelizations. By comparing the
Transformation tables from the best (Parallelization 10) and second
best (Parallelization 11) parallelizations, the developer can see that
the difference between the parallelizations is the scheduling policy
for the loop at line 1146 of Water.C — the best parallelization uses
the dynamic policy, while the second best uses the modulo policy.
A similar comparison (as well as using the links to examine the
corresponding source code for the parallelized loops) indicates that
the difference between the best (Parallelization 10) and third best

Figure 8: QuickStep Parallelization 4 Report

(Parallelization 16) parallelizations is that the best parallelizes the
outer loop at line 1146 of Water.C while the third best parallelizes
the nested loop at line 1156 of Water.C.

3. Analysis and Transformation
QuickStep is structured as a source-to-source translator that aug-
ments the original sequential program with OpenMP directives to
obtain a parallel program. The QuickStep analysis phases use the
LLVM compiler infrastructure [20].

3.1 Loop Profiler
The QuickStep loop profiler produces an instrumented version of
the sequential program that, when it executes, counts the num-
ber of times each basic block executes. The instrumentation also
maintains a stack of active nested loops and counts the number of
(LLVM bit code) instructions executed in each loop, propagating
the instruction counts up the stack of active nested loops so that
outermost loops are credited with instructions executed in nested
loops.

The loop profiler produces two outputs. The first is a count of
the number of instructions executed in each loop during the loop
profiling execution. The second is a directed graph that captures the
dynamic nesting relationships between different loops (note that the
loops may potentially be in different procedures).



Figure 9: QuickStep Parallelization 11 Report

3.2 Memory Profiler
The QuickStep memory profiler produces an instrumented version
of the sequential program that, when it executes, generates a trace
of the addresses that it reads and writes. Given the memory profil-
ing information for a given loop, the memory profiler computes the
interference density for each store instruction s, i.e., the sum over
all occurrences of that store instruction s in the trace of the num-
ber of store instructions p in parallel iterations that write the same
address. Conceptually, the interference density quantifies the prob-
ability that a store instruction p in a parallel iteration will interfere
with a sequence of (otherwise atomic) accesses that completes with
the execution of the store instruction s. The interference density is
used to prioritize the application of the synchronization and repli-
cation transformations, with the transformations applied first to op-
erations that contain store instructions with the higher interference
density. QuickStep is currently configured to apply synchronization
introduction transformations only to loops in which all writes to a
given address are preceded by a corresponding read from that ad-
dress. The goal is to apply the transformation only within loops that
access the object exclusively with atomic read/write updates (and
not other accesses such as initializations).

Figure 10: QuickStep Parallelization 16 Report

int t;
#pragma omp parallel for private(t) schedule(static)
for (i = 0; i < n; i++) { t = a[i]+b[i]; c[i] = t; }

Figure 11: OpenMP Parallel Loop Directives

3.3 Parallelization and Privatization
Figure 11 presents an example that illustrates how QuickStep uses
OpenMP directives to specify parallel loops. This parallel for
OpenMP directive causes the iterations of the loop to execute in
parallel. When the parallel loop executes, it uses the static sched-
uler (we discuss available schedulers below in Section 3.5) to
schedule its iterations onto the underlying parallel machine. Each
iteration of the loop is given its own private version of the variable t
so that its accesses to t do not interfere with those of other parallel
iterations.

QuickStep uses a simple intraprocedural dataflow analysis to
determine which variables to privatize. This analysis finds all lo-
cal scalar variables that iterations of the parallel loop first write,
then read. The parallelization transformation inserts all such vari-
ables into the private clause of the OpenMP loop parallelization
directive.



3.4 Synchronization and Replication Transformations
QuickStep’s synchronization and replication transformations oper-
ate on objects that provide multiple implementations of standard
operations. Some operations are synchronized for atomic execution
in parallel environments. Others operate on thread-local replicas
of the object state (with the replicas coalesced when appropriate).
QuickStep can work with any object that provides synchronized or
replicated methods. We have implemented a QuickStep component
that, given a class, automatically generates an augmented class that
contains synchronized and replicated versions of the methods in the
class. This component performs the following steps:

• Synchronization: It augments instances of the class with a
mutual exclusion lock, then generates synchronized versions
of each method. Each synchronized method acquires the lock,
invokes the standard (unsynchronized) version of the method,
then releases the lock.
• Replication: It augments instance of the class with an array of

replicas. Each array element contains a replica of the state of the
object. There is one array element (and therefore one replica)
for each thread in the parallel computation. It also generates
the replicated version of each method (this version accesses the
local replica).
• Caching: It modifies the original versions of the methods to

check whether the object state is distributed across multiple
replicas and, if so, to combine the replicas to obtain a single
cached version of the state. The method then operates on this
cached version. The specific combination mechanism depends
on the object. In our current system the automatically generated
code simply adds up the values in the replicas. QuickStep, of
course, supports arbitrary combination mechanisms.
• Padding: It generates additional unused memory (pads) to sep-

arate the replicas so that they fall on different cache lines. The
goal is to eliminate any false sharing [9] that might otherwise
degrade the performance.

Quickstep can work with instances of any class that use any
mechanism to obtain alternate implementations of standard opera-
tions. So a developer could, for example, provide implementations
that use atomicity mechanisms such as transactional memory or
other lock-free synchronization mechanisms [18].

As it searches the space of parallel programs, the QuickStep
search algorithm may direct the QuickStep compiler to perform
synchronization or replication introduction transformations. The
QuickStep compiler implements each such transformation by mod-
ifying the corresponding call site to invoke the appropriate synchro-
nized or replicated version of the method instead of the original
version.

3.5 Loop Scheduling
OpenMP supports a variety of loop scheduling policies via the
schedule clause of the parallel for directive [25]. In general,
these policies may vary in the cache locality, load balancing, and
scheduling overhead that they elicit from the loop, with different
policies working well for different loops.

QuickStep currently searches three loop scheduling policies:
dynamic (when a thread goes idle, it executes the next available
loop iteration), static (each thread executes a single contiguous
chunk of iterations, with the chunks assigned at the start of the par-
allel loop), and static,1 (each thread executes a discountiguous
set of iterations, with the iterations assigned to threads at the start of
the parallel loop in a round-robin manner). The parallelization re-
ports refer to the static,1 scheduling strategy as modulo schedul-
ing.

4. Statistical Accuracy Test
QuickStep uses the Wald sequential probability ratio (SPR) test [40,
43] as the foundation of its statistical accuracy test. The SPR test
works with a sequence of independent, identically-distributed (IID)
Bernoulli variables Xi ∈ {0, 1} from a distribution with unknown
probability of success p = Pr(Xi = 1). In this section we describe
the details of the SPR test and its application to determining the
program reliability.

4.1 Model
Ideally, QuickStep’s statistical accuracy test should select all paral-
lelizations with a high enough probability of producing an accept-
able result (“good” parallelizations), and reject all other paralleliza-
tions (“bad” parallelizations). In practice, however, the statistical
accuracy test may encounter an unlikely sequence of samples that
cause it to make an incorrect decision (either rejecting a good paral-
lelization or accepting a bad parallelization). We therefore consider
the following four probabilities: PG is the probability that the test
will correctly accept a good parallelization, 1 − PG is the prob-
ability that the test will incorrectly reject a good parallelization,
PB is the probability that the test will incorrectly accept a bad par-
allelization, 1 − PB is the probability that the test will correctly
reject a bad parallelization. Together, PG and PB completely char-
acterize the risks associated with making a wrong decision. Ideally,
PG should be close to 1 and PB should be close to 0.

QuickStep’s statistical accuracy test works with a candidate par-
allelized application (QuickStep automatically generates this paral-
lelization), an accuracy bound b, and an accuracy metric (see Sec-
tion 1.3). The test repeatedly executes the parallelized application;
for each execution, the accuracy metric produces a distortion di.
We obtain the IID Bernoulli variables Xi for the SPR test by com-
paring the distortions di to the bound b:

Xi =


1 if di ≤ b
0 if di > b

4.1.1 Reliability Tolerances
The probability p that the program will produce an acceptable re-
sult (i.e., Pr(Xi = 1) = p) is (in general, forever) unknown —
the test uses sampling to reason about the relationship between p
and a user-provided reliability goal r, but (in general), will never
obtain complete information about p. The test therefore works with
a tolerance around r within which it may give arbitrary answers.
Specifically, the user provides a lower reliability interval ε0 and an
upper reliability interval ε1. Together, r, ε0, and ε1 define the lower
target probability p0 = r − ε0 and the upper target probability
p1 = r + ε1. QuickStep’s statistical accuracy test identifies par-
allelizations for which p is, with high probability, at least as large
as p1. We model this decision as a hypothesis testing problem with
composite hypotheses H0 : p ≤ p0 (i.e., the probability that the
application will produce an acceptable result is at most p0) and
H1 : p ≥ p1 (i.e., the probability that the application will produce
an acceptable result is at least p1). If the test acceptsH0, QuickStep
will reject the parallelization. If the test acceptsH1, QuickStep will
accept the parallelization. Since we typically view incorrectly re-
jecting a good parallelization as more acceptable than incorrectly
accepting a bad parallelization, we typically use a one-sided test in
which ε0 = 0.

4.1.2 Approximate True and False Positive Bounds
In general, no statistical hypothesis testing algorithm that relies on
sampling can be perfect — any such algorithm may encounter an
unlikely sequence of samples that causes it to incorrectly accept or
reject a given hypothesis. The accuracy test therefore works with
an approximate false positive bound α and an approximate true



positive bound β. As discussed below in Section 4.2,α and β bound
the probability that QuickStep will incorrectly accept or reject H0

and H1.

4.1.3 IID Executions
The statistical accuracy test assumes that test executions of the
parallel application are independent and identically distributed. To
promote the validity of this assumption, we ensure that executions
do not reuse results from previous executions and that no two
executions run at the same time.

We note that, in the presence of execution schedule dependent
phenomena such as data races, changing aspects of the underlying
execution environment (such as the computational load, thread
scheduler, number of cores or other hardware characteristics) may
change the probability that an execution of the program will satisfy
the accuracy bound b. So the statistical accuracy tests are valid
only for the specific execution environment in which they were
performed.

4.2 Sequential Hypothesis Testing
The SPR test performs n trials to obtain n Bernoulli variables Xi,
1 ≤ i ≤ n. The number of trials n is determined by the values
of the Bernoulli variables — the test terminates as soon as it has
observed enough trials to accept or reject the relevant hypotheses.
The test algorithm is therefore iterative and requires a single new
observation at each step.

We denote the n Bernoulli variables as a single n-dimensional
random variable X = (X1, X2, . . . Xn). At each step the algo-
rithm calculates the ratio between two interpretations of the vari-
ables X1, X2, ...Xn it has observed so far:

L(X) = log
Pr(X|H1)

Pr(X|H0)
(1)

The test compares the log likelihood ratioL(X) with two values
A and B (B < A). It stops and accepts hypothesis H1 if L(X) ≥
A. If L(x) ≤ B, the test stops and accepts hypothesis H0. If
B < L(X) < A, it does not stop. It instead continues on to the
next iteration, performs the next trial, and updates the log likelihood
ratio L(X).

For a single execution, Pr(Xi|H0) = Pr(Xi|p ≤ p0) ≤ p0,
and Pr(Xi|H1) = Pr(Xi|p ≥ p1) ≥ p1. The functionL(Xi) has
a minimum value when Pr(Xi|H0) = p0 and Pr(Xi|H1) = p1.
Using these equalities will provide the most conservative decision
by the test.

Since each random variable Xi represents an independent
outcome of the parallel program execution, then Pr(X|Hk) =Qn
i=0 Pr(Xi|Hk) = (1− pk)fpn−fk (k ∈ {0, 1}), where f is the

number of executions that failed to produce an acceptable result,
and n − f is the number of executions that produced acceptable
result. The formula for the log likelihood ratio becomes:

L(X) = (n− f) log
p1

p0
+ f log

1− p1

1− p0
(2)

The values A and B used as stopping criterion for the test, are
related to the risks of test making a wrong decision. Specifically,
they are related to the probability of accepting a good paralleliza-
tion, PG = Pr[H1|H1], and the probability of accepting a bad
parallelization, PB = Pr[H1|H0]. α and β determine PG and PB
as follows:

PB
PG
≤ α

β
≤ e−A (3)

1− PG
1− PB

≤ 1− β
1− α ≤ e

B (4)

To find suitable values forA andB, Wald showed that it suffices
to set A = log β

α
and B = log 1−β

1−α , which are computationally
simplest solutions. In that case, since PB , PG ∈ [0, 1], PB ≤ PB

PG

and 1− PG ≤ 1−PG
1−PB

, the inequalities (3) and (4) become:

PB ≤
α

β
(5)

1− PG ≤
1− β
1− α (6)

From these inequalities we can conclude that in general case the
values of α and β are not equal to PB and PG when A and B have
the values described in previous paragraph. However, it is possible
to use inequalities (5) and (6) to calculate the appropriate values
of parameters α and β that yield the desired probabilities PB and
PG. For example, if α = 0.091 and β = 0.91, then PG ≥ 0.9
and PB ≤ 0.1. As a special case, when α → 0, and β → 1, the
bounds can be approximated to PB ≤ α and β ≤ PG. In that case,
the user selected bounds are approximate representatives of PG and
PB . For example, if α = 0.01 and β = 0.99, PG = 0.9898 . . .
(which is very close to β), and PB = 0.0101 . . . (which is very
close to α).

4.3 Precision/Time Trade-offs
The values of α, β, p0, and p1, together with the (at the start of the
test) unknown number of failed executions f determine the number
of iterations required for the SPR test to terminate.

Higher accuracy requires more observations, i.e., more execu-
tions of the parallel application, for the SPR test to accept or re-
ject the parallelization. The equation (2) suggests that the terms of
L(X) don’t contribute equally to the final value when the probabil-
ities p0 and p1 close to 1. The coefficient log 1−p1

1−p0
will have sig-

nificantly larger absolute value than log p1
p0

. The number of failed
executions encountered until that time, f , will thus have a domi-
nant impact on the number of required executions, which implies
that the test can decide on clearly unacceptable parallelizations af-
ter fewer runs. On the other hand, more trials will be required for
the test to accept a parallelization, especially if the value of p is
close to p1, i.e. if f 6= 0.

For example, if p0 = 0.9, p1 = 0.95, α = 0.091 and
β = 0.91, the SPR test requires 43 executions in order to accept the
parallelization if all results are acceptable. On the contrast, only 4
executions are required to reject the parallelization if all results are
unacceptable. If there is one execution that produced unacceptable
result, the SPR test will require 57 executions before accepting the
parallelization. For stronger bounds, p0 = 0.99, p1 = 0.995,
α = 0.01 and β = 0.99, the parallelization is accepted after
performing at least 913 executions and rejected after performing at
least 7 executions. Accepting a parallelization when a single failed
execution is observed will require 1051 executions in total.

In general, it is necessary to make a trade-off between the ac-
curacy of the statistical test and the time required to perform the
test. QuickStep uses two sets of accuracy bounds to improve the
speed of exploration. The bounds are relaxed during the intermedi-
ate steps in the search space exploration, resulting in a significantly
smaller number of required executions, but also a larger probabil-
ity of an incorrect decision. QuickStep performs the final accuracy
test with stronger accuracy bounds, and therefore a smaller proba-
bility of an incorrect decision. This design promotes a more rapid
exploration of the search space at the potential cost of the search
producing a final parallelization that the final test rejects (in which
case the final test moves on to try the next best parallelizations until
it finds a parallelization that it can accept).

During the parallelization space search we set r = 0.90, ε0 = 0,
ε1 = 0.05, α = 0.091, and β = 0.91. The probability that the SPR
test will accept a good parallelization is PG ≥ 0.9 and probability



that it will accept a bad parallelization isPB ≤ 0.1. During the final
accuracy test we set r = 0.99, ε0 = 0, ε1 = 0.005, α = 0.01, and
β = 0.99. The probabilities that the SPR test will accept good and
bad parallelizations, are, respectively PG ≥ 0.99 and PB ≤ 0.01.

4.4 The Hoeffding Inequality
In previous work [21] we used the Hoeffding inequality [19] to de-
termine if a candidate parallelization satisfies a desired statistical
accuracy bound. The test performs test executions to obtain an es-
timator p̂ of the unknown probability p that the parallelization will
produce an acceptably accurate result. It works with a desired pre-
cision 〈δ, ε〉 and performs enough test executions so that it can use
the Hoeffding inequality if Pr(p̂ > p + ε) ≤ δ. Unlike the SPR
test, the number of test executions is fixed in advance as a func-
tion of δ and ε only — the test does not use results from completed
test executions to determine if it has enough information to deter-
mine if the parallelization is acceptably accurate and terminate. In
general, using the Hoeffding inequality requires the test to perform
substantially more executions than the SPR test to obtain compara-
ble statistical guarantees.

5. Parallelization Search Space Algorithm
We next present the algorithm that searches the induced space
of parallel programs. The goal is to find a parallelization that
maximizes performance subject to satisfying the accuracy bound.
The search algorithm is structured as an algorithm that searches the
parallelization space associated with a single loop and an algorithm
that invokes the single-loop algorithm as it combines single-loop
parallelizations into parallelizations involving multiple loops.

5.1 Parallelization Search for Individual Loops
Figure 12 presents the algorithm that searches the parallelization
space associated with a single loop. This algorithm is invoked to
explore the space generated when the loop is added to a set of other
loops that QuickStep has already parallelized.

The algorithm takes as input a loop ` whose parallelization
to explore, a set P of loops that are already parallelized, and a
set I of information about previously explored parallelizations.
Specifically, I contains, for each such parallelization, sets S and T
of synchronizations and replications (respectively) applied to call
sites in the parallelized loops, a set T of scheduling policies for the
parallelized loops, and a mean speedup s and distortion d for the
parallelization.

The algorithm searches the space of parallel programs for the
candidate loop ` as follows:

1. Initial Parallelization: QuickStep first generates a paralleliza-
tion that executes ` in parallel (with no applied synchronization
or replication transformations) in the context of the previous
parallelization of the loops in P (this parallelization includes
the applied synchronization and replication transformations for
these loops). It uses the statistical accuracy test to determine if
this parallelization is acceptably accurate.

2. Synchronization Transformations: If the current paralleliza-
tion is not acceptably accurate, QuickStep next applies syn-
chronization introduction transformations to ` in an attempt to
restore acceptably accurate parallel execution. It applies these
transformations according to the priority order established by
the memory profiling information, with operations containing
higher interference-density store instructions prioritized over
operations containing lower interference-density store instruc-
tions. As it applies the transformations, it builds up a set S` of
call sites to apply synchronization introduction transformations.
It only places a transformation into S` if improves the accuracy
of the parallelization.

INPUTS

` – the loop to parallelize.
P – the set of loops that were previously parallelized.
I – the set of all results.

OUTPUTS

I – updated set of parallelization results.

LOCALS

S – the set of call sites for synchronization introduction.
R – the set of call sites for replication introduction.
T – the set of loop scheduling policies.
S` – a set of synchronization introduction call sites for loop `.
R` – a set of replication introduction call sites for loop `.
C – a set of call sites for synchronization or replication introduction.
p – indicator of whether the parallelization is acceptable.

AUXILIARY FUNCTIONS

visit(P, S, R, T ) – runs the program with the loops in P parallelized with
loop scheduling policies T , synchronization introduction transforma-
tions applied at S, and replication introduction transformations applied
at R. Returns the status (pass/fail) according to the selected statistical
accuracy bounds, mean speedup and distortion from the test executions.
Also generates log entries used to produce the interactive report.

candidates(`) – returns the set of candidate synchronization and replica-
tion introduction call sites, CS and CR for loop `.

next(C) – the highest priority synchronization or replication introduction
call site in C according to the memory profiling information.

transformations(P, I) – returns a set of transformations for the set of
loops P from the result set I .

SEARCH-LOOP

S, R, T = transformations(P , I)
p, s, d = visit(P ∪ {`}, S, R, T )
CS , CR = candidates(`), C = CS ∪ CR, S` = ∅ B = ∅
repeat

while b < d ∧ C 6= ∅ do
c = next(C)
p′, s′, d′ = visit(P ∪ {`}, S ∪ S` ∪ {c}, R, T )
if p′ = true ∧ d′ < d

S` = S` ∪ {c}, d = d′, s = s′, p = true
end
C = C \ {c}

end
C = S` ∩ CR, R` = ∅
while C 6= ∅ do

c = next(C)
p′ , s′, d′ = visit(P ∪ {`}, (S ∪ S`) \ {c},

R ∪ R` ∪ {c}, T )
if p′ = true ∧ s < s′ ∧ d′ ≤ b

S` = S` \ {c}, R` = R` ∪ {c}
d = d′, s = s′, p = true

end
C = C \ {c}

end
until d ≤ b or S` = ∅
foreach t in OpenMP loop schedule types do

p′, s′, d′ = visit(P ∪ {`}, S ∪ S`, R ∪ R`,
(T \ {〈`, 〉}) ∪ {〈`, t〉})

if p′ = true ∧ s ≤ s′ ∧ d′ ≤ b
S = S ∪ S`, R = R ∪ R`
T = (T \ {〈`, 〉}) ∪ {〈`, t〉}, p = true

end
end
if p = true then return I ∪ {(P ∪ {`}, S, R, T , s, d)}
else return I

Figure 12: Parallelization Space Search Algorithm for One Loop



3. Replication Transformations: QuickStep next applies repli-
cation introduction transformations in an attempt to maximize
the performance while preserving acceptably accurate execu-
tion. For each synchronization introduction call site in S`, it
replaces the synchronization introduction transformation with
the corresponding replication introduction transformation. As
it applies the transformations, it builds up a set R` of replica-
tion introduction transformations. It only places a replication
transformation into R` (and removes it from S`) if it improves
performance while maintaining acceptable accuracy.
Note that it is possible for the performance improvements asso-
ciated with replication to increase the data race density within
the loop. In the worst case this increase can cause the paral-
lelization to exceed its accuracy bound. In this case the algo-
rithm returns back to apply additional synchronization transfor-
mations (potentially followed by additional replication transfor-
mations) to restore acceptably accurate execution.

4. Loop Scheduling: QuickStep finally tries all of the different
loop scheduling policies for the current loop `. If it encounters
an acceptably accurate parallelization with better performance
than the previous best alternative, it accepts this new scheduling
policy.

5.2 Exploring the Search Space
Figure 13 presents the algorithm for the exploration of the entire
parallelization space. QuickStep prioritizes the parallelization of
the most time consuming loops by traversing the dynamic loop
nesting graph G. It starts from the most time-consuming loops in
priority order, with the priority determined by the amount of time
spent in the loop (as indicated by the loop profiling information).

QuickStep explores the graph in depth-first fashion, pruning the
search space in cases (1) when the resulting parallelization is unac-
ceptably inaccurate, (2) when parallel execution of any remaining
loops cannot theoretically, according to Amdahl’s law, deliver bet-
ter performance than the current best parallelization, and (3) when
it has successfully parallelized an outer loop, it does not attempt
to parallelize any fully nested inner loops (the algorithm finds such
nested inner loops by finding predominators in G; this option can
be turned off). Exploring fully nested inner loops can optionally be
turned on, to find a regions that can benefit from nested parallelism.

QuickStep attempts to parallelize one loop at a time from the
priority list of loops, and tries to discover the optimal synchro-
nization, replication, and scheduling policies that for the current
loop when parallelized together with previously parallelized loops.
At each point in time, QuickStep maintains a set of all acceptable
parallelizations I . For each such parallelization I records the sets
S and R of applied synchronization and replication transforma-
tions, the set T of loop scheduling policies, and the observed mean
speedup s and distortion d. The algorithm updates I whenever it
successfully parallelizes another loop.

When QuickStep finishes exploring the parallel program search
space, it orders the accepted parallelizations according to the per-
formance, then runs the final statistical accuracy test on the par-
allelizations in order until it finds the parallelization with the best
performance that passes the final test. This parallelization is the fi-
nal parallelization.
5.3 Interactive Parallelization Report
The report generator (written in Ruby) processes the log generated
by the search algorithm, extracting the relevant information and
placing this information in an SQLite database. It uses the Ruby
on Rails framework to retrieve the appropriate information from
the database and dynamically generate web pages that present this
information to the developer as the developer navigates through the
report.

INPUTS

L – the set of loops in execution time priority order.
G – the dynamic loop nesting graph.

OUTPUTS

I – set of parallelization results for the explored loops.

LOCALS

V – the set of visited loop sets .
R – the set of results for all loops.
S – the stack containing loop states to visit.

AUXILIARY FUNCTIONS

successor(`, G) – returns loops that are immediate successors of a loop `
in graph G.

profitable(P, L, G, I) – finds the theoretical speedup for the part of the
graph G that can be accessed from set of loops P , and returns true if it
is greater than best result in I .

acceptable(P, I) – returns true if there is a set of transformations for a
loop set P which can produce acceptable result.

filter(L, P, G) – filters out the loops from the set L that are fully nested
inner loops of loops in P .

order(I) – orders the results according to speedup and returns the set of
loops and belonging transformations.

QUICKSTEP

V = ∅, I = ∅, S = ∅
foreach `0 in L

S ← (`0, ∅)
while S 6= ∅ do

S → (`, P ′) , P = P ′ ∪ {`}
if P ∈ V then continue
V = V ∪ {P}
if not profitable(P , L, G, I) then continue
I = SEARCH− LOOP ( `, P ′, I )
if not acceptable(P , I) then continue
foreach `s in filter(L, P , G) do

S ← (`s, P )
end

end
end
foreach P , S, R, T in order(I) do

p, s, d = visit(P , S, R, T )
if p = true then return (P , S, R, T , s, d)

end
return ∅

Figure 13: QuickStep Search Algorithm

6. Experimental Results
We used QuickStep to parallelize six scientific computations:

• Barnes-Hut: A hierarchical N-body solver that uses a space-
subdivision tree to organize the computation of the forces acting
on the bodies [3]. Barnes-Hut is implemented as an object-
oriented C++ computation.
• Search: Search is a program from the Stanford Electrical Engi-

neering department [11]. It simulates the interaction of several
electron beams at different energy levels with a variety of solids.
It uses a Monte-Carlo technique to simulate the elastic scatter-
ing of each electron from the electron beam into the solid. The
result of this simulation is used to measure how closely an em-
pirical equation for electron scattering matches a full quantum-
mechanical expansion of the wave equation stored in tables.
Search was originally parallelized as part of the Jade project
and is implemented in C.



• String: String uses seismic travel-time inversion to construct
a two-dimensional discrete velocity model of the geological
medium between two oil wells [17]. Each element of the veloc-
ity model records how fast sound waves travel through the cor-
responding part of the medium. The seismic data are collected
by firing seismic sources in one well and recording the seismic
waves digitally as they arrive at the other well. The travel times
of the waves can be measured from the resulting seismic traces.
The application uses the travel-time data to iteratively compute
the velocity model. String was originally parallelized as part of
the Jade project [31] and is implemented in C.
• Volume Rendering: Volume Rendering that renders a three-

dimensional volume data set for graphical display [23]. It uses
ray tracing to produce a sequence of views of the volume
data. Volume Rendering was originally developed as part of
the SPLASH-2 project [44] and is implemented in C.
• Water: Water evaluates forces and potentials in a system of

water molecules in the liquid state. Water is derived from the
Perfect Club benchmark MDG [6] and performs the same com-
putation. Water is implemented as an object-oriented C++ com-
putation.
• Panel Cholesky: A program that factors a sparse positive-

definite matrix. The columns of the matrix have been aggre-
gated into larger-grain objects called panels. This aggregation
increases both the data and task grain sizes [35]. Panel Cholesky
was originally parallelized as part of the Jade project [31] and
is implemented in C.

Table 1 presents the number of lines of code (excluding whites-
pace and comments) and the programming language used to imple-
ment each benchmark.

6.1 Methodology
We obtained the applications in our benchmark suite along with two
representative inputs for each application. We specified appropriate
accuracy requirements for each application and used QuickStep to
automatically parallelize the applications, using the representative
inputs to perform the required profiling and parallel executions.
We performed all executions on an Intel Xeon E5520 dual quad-
core machine running Ubuntu Linux, using LLVM 2.7 to compile
all of the versions of the applications. All parallel executions use
eight threads. We set the accuracy bound b to be 0.003 for all
benchmarks. We use the statistical bounds specified in section 4.3.

6.2 Quantitative Results
Table 2 presents the quantitative results for each application. All of
the numbers in this table either appear directly in the corresponding
interactive report or are computed from numbers that appear in this
report. The table contains one row for each combination of appli-
cation and input. The first column (Best Parallel Version) contains
entries of the form x of y, where x is the revision number of the
final parallel version of the application (i.e., the version with the
best performance out of all parallel versions that satisfy the accu-
racy requirement) and y is the number of revisions that QuickStep
generated during its exploration of the search space. The second
column (Speedup) presents the mean speedup (over all test exe-
cutions) of the final version of the application when run on eight
processors. The speedup is calculated as the mean execution time
of the original sequential program (with no parallelization over-
head whatsoever) divided by the mean execution time of the final
version. The third column (Distortion) presents the mean distor-
tion of the final version. The fourth column (Search Time) presents
the total time (in minutes) required to perform all of the parallel
executions during the search of the space of parallel programs. The

Application Lines of Code Language
Barnes Hut 1,224 C++
Search 272 C
String 864 C
Volume Rendering 2,822 C
Water 2,246 C++
Panel Cholesky 1,597 C

Table 1: Benchmark Applications

fifth column (Check Run/Fail) shows the number of executions that
were required in order to pass the statistical accuracy test for the
final parallelization. Five of 1606 executions of Water failed to sat-
isfy the accuracy bound b. For all of the other benchmarks all of
the executions satisfied the accuracy bound. The sixth, and final
column (Check Time) presents the total time (in minutes) required
to perform the test executions during the final statistical accuracy
test for the final version of the application. Comparison of the par-
allelization space search time and final statistical accuracy test time
shows that considerable time saves are obtained by using two sets
of accuracy bounds.

We note that, with the exception of String, both inputs induce
identical parallelizations. As discussed further below, for String the
different parallelizations produce roughly equivalent performance
for both inputs and both parallelizations are acceptable. Out of all
applications, Panel Cholesky was the only application for which
QuickStep was not able to find a viable parallelization that in-
creases the performance.

The table also presents data for two versions of Water — one
with the standard bound b = 0.003; the other with the bound
b = 0.0 (which forces the parallel version to deterministically
produce the same result as the sequential version). As described
further in Section 6.7 below, we attribute the lower performance
with b = 0.0 to the additional synchronization required to eliminate
the data races that otherwise introduce noise into the output.

Table 3 shows the loops that were parallelized. The first column
(Loop) contains the location of the loop – source file name and
line number. The second column (Parallel) presents the percentage
of instructions that are executed within the loop. It represents the
work that can be done in parallel. The third column (WPI) presents
the amount of work that is executed within single invocation of
the loop. The fourth column (Instructions) presents total number of
instructions that were executed within the loop. The sixth column
shows the number of times the loop was invoked. The seventh col-
umn (Synchronized/Replicated Sites) shows the number of method
call sites in the code that were replaced with synchronized (the first
number) or replicated (the second number) version of the method
after parallelizing the loop. The results show that most of the loops
that QuickStep parallelized execute significant amount of work in
total and in each execution of the loop, amortizing for potential
runtime library overhead.

6.3 Barnes-Hut
The representative inputs for Barnes-Hut differ in the number of
bodies they simulate and the number of time steps they perform.
The accuracy metric computes the relative differences between the
various aspects of the state of the final system, specifically the total
kinetic and potential energy and the position and velocity of the
center of mass.

The report indicates that Barnes-Hut spends almost all of its
time in the outer loop that iterates through the time steps in the
simulation. The attempted parallelization of this loop fails because
the resulting parallel computation crashes with a segmentation vio-
lation. QuickStep proceeds on to the main force computation loop,



Application Input Best Parallel Version Speedup Distortion Search Time (min) Check Run/Fail Check Time (min)

Barnes-Hut 16K bodies 2 of 16 6.168 0.000 27.4 913/0 41.3
256K bodies 2 of 16 5.760 0.000 47.4 913/0 77.6

Search 500 particles 16 of 16 7.743 0.000 63.6 913/0 33.5
750 particles 16 of 16 7.756 0.000 92.9 913/0 50.0

String big 4 of 10 7.608 0.0005 8.98 913/0 18.0
inv 4 of 13 7.582 0.0005 17.1 913/0 34.3

Volume Rendering head 3 of 7 6.153 0.000 23.5 913/0 52.4
head-2 3 of 7 5.047 0.000 6.8 913/0 15.3

Water (b = 0.003) 1000 molecules 10 of 33 6.869 0.0021 180.2 1606/5 64.5
1728 molecules 11 of 34 7.009 0.0010 228.9 913/0 43.9

Water (b = 0.0) 1000 molecules 12 of 35 6.183 0.0000 189.2 913/0 40.7
1728 molecules 12 of 35 6.123 0.0000 231.5 913/0 50.1

Panel Cholesky TK15 35 of 111 1.01 0.000 5.9 – –

Table 2: Quantitative Results for Benchmark Applications

which iterates over all the bodies, using the space subdivision tree
to compute the force acting on that body. This loop is nested within
the time step loop; the report indicates that Barnes-Hut spends the
vast majority of its time in this loop. Because there are no cross-
iteration dependences in the force computation loop, QuickStep’s
parallelization of this loop produces a parallel program that de-
terministically produces the same result as the original sequential
program. QuickStep proceeds on to attempt to parallelize several
more loops (both alone and in combination with each other and
the main force computation loop), but even after the application of
replication introduction transformations in these loops it is unable
to produce a parallelization that outperforms the parallelization of
the main force computation loop by itself. We attribute the perfor-
mance loss to unsuccessfully amortized parallelization overhead.

6.4 Search
The representative inputs for Search differ in the number of parti-
cles they trace. The accuracy metric computes the relative differ-
ence between the number of particles that scatter out of the front of
the solid in the sequential and parallel computations.

The report indicates that Search spends almost all of its com-
putation time within a single inner loop. All parallelizations that
attempt to execute this loop in parallel fail because the program
crashes with a segmentation fault. QuickStep also explores the par-
allelization of various combinations of five outer loops, each of
which executes the inner loop. Together, these loops account for
almost all of the computation time.

QuickStep is able to parallelize all of these loops with no ap-
plied synchronization or replication transformations. Further inves-
tigation reveals that all iterations of these loops are independent and
the resulting final parallel program executes without distortion. An
examination of the source code reveals that the loops are simply
repeated versions of the same code and perform the same compu-
tation — each loop iterates over a set of points, with the inner loop
tracing a fixed number of particles for each point to compute the
number of particles that exit the front of the simulated material. The
iterations of the outer loops are independent and the parallelization
is therefore valid for all inputs.

The execution times are quite sensitive to the scheduling pol-
icy. Search obtains its best performance (over 7.7 on 8 cores) when
all loops use the dynamic policy with proportionally worse perfor-
mance as more loops use the static and modulo policy.

6.5 String
The representative inputs for String differ in the starting model of
the geology between the two oil wells and in the number of rays
that they trace through the velocity model. The accuracy metric is
based on the final velocity model — specifically, it computes the

mean scaled difference between corresponding components of the
velocity models from the sequential and parallel computations.

The report indicates that String spends almost all of its compu-
tation time within a single outer loop. This loop implements a com-
putation that traces rays from the set of seismic sources through the
discretized velocity model of the geology between two oil wells.
For each ray, String computes the time the ray takes to travel from
one oil well to the other as it propagates through the velocity model.
It then compares the traced travel time to an experimentally mea-
sured travel time and backprojects the difference along the path of
the ray to update the velocity model.

QuickStep is able to parallelize this loop. Our examination of
the source code indicates that the resulting parallel computation
may contain data races — it is possible for two iterations to update
the same location in the model of the geology at the same time.
The fact that the distortion is small but nonzero (0.0005 for the
two representative inputs) reinforces our understanding (based on
an examination of the source code) that while some data races may
actually occur in practice, they will occur infrequently enough so
that they do not threaten the acceptable accuracy of the computa-
tion.

For each input, QuickStep is also able to successfully parallelize
an additional loop. The loops are not the same, but they come from
the same loop nest. The search for the big input finds an outer loop
in the loop nest, while the search for the inv input inv finds an
inner loop. In both cases, the loop nest contributes to less than 4%
of the execution time. Manual inspection shows that the iterations
of these loops are independent and therefore parallelizing the loops
does not affect the distortion.

We executed each final parallelization on the input used to
derive the other parallelization, with the number of executions
determined by the statistical accuracy test. All executions on input
satisfied the statistical accuracy bounds. The parallel version from
the inv input produced a mean speedup of 7.55 and distortion of
0.0004 for the big input; the parallel version from the big input
produced a mean speedup of 7.57 and distortion of 0.0005 for the
inv input. These numbers suggest that both parallelizations are
acceptable; inspection of the source code via the interactive report
confirms this acceptability.

6.6 Volume Rendering
The representative inputs for Volume Rendering differ in the size
of the input volume data. The accuracy metric is based on the final
image that the application produces as output — specifically, it
computes the mean scaled difference between corresponding pixels
of the images from the sequential and parallel computations.

The report indicates that Volume Rendering spends almost all
of its time in three nested loops: an outer loop that iterates over



Benchmark Loop Parallel WPI Instructions Invocations Synchronized/Replicated Sites
Barnes Hut 16K barnes.C (1383) 94.40% 7.49 · 107 7.49 · 109 100 0/0
Barnes Hut 256K barnes.C (1383) 94.30% 1.81 · 1010 1.44 · 1011 8 0/0
Search 500 search.c (396) 19.40% 1.70 · 108 1.19 · 109 7 0/0

search.c (322) 35.60% 1.82 · 108 2.19 · 109 12 0/0
search.c (351) 13.80% 4.38 · 108 2.19 · 109 5 0/0
search.c (368) 28.40% 1.75 · 108 1.75 · 109 10 0/0
search.c (291) 2.75% 1.69 · 108 1.69 · 108 1 0/0

Search 750 search.c (396) 19.40% 2.55 · 108 1.79 · 109 7 0/0
search.c (322) 35.80% 2.74 · 108 3.29 · 109 12 0/0
search.c (351) 13.50% 2.48 · 108 1.24 · 109 5 0/0
search.c (368) 28.50% 2.62 · 108 2.62 · 109 10 0/0
search.c (291) 2.75% 2.53 · 108 2.53 · 108 1 0/0

String big doloop.c (750) 98.90% 1.19 · 1010 3.57 · 1010 3 0/0
doslow.c (204) 1.12% 2.94 · 106 4.03 · 108 2 0/0

String inv doloop.c (750) 96.10% 3.68 · 1010 7.35 · 1010 2 0/0
doslow.c (206) 3.86% 2.94 · 106 2.95 · 109 1004 0/0

Volume Rendering head adaptive.c (359) 98.70% 1.21 · 1011 2.81 · 1010 360 0/0
Volume Rendering head-2 adaptive.c (359) 98.70% 7.81 · 107 2.81 · 1010 360 0/0
Water 1000 (b = 0.003) water.C (1146) 36.50% 7.51 · 108 2.25 · 1010 30 0/1

water.C (1686) 62.60% 1.25 · 109 3.87 · 1010 31 0/1
Water 1728 (b = 0.003) water.C (1146) 35.60% 2.24 · 109 2.69 · 1010 12 0/1

water.C (1686) 63.80% 3.71 · 109 4.82 · 1010 13 0/1
Water 1000 (b = 0.0) water.C (1146) 36.50% 7.51 · 108 2.25 · 1010 30 0/1

water.C (1686) 62.60% 1.25 · 109 3.87 · 1010 31 1/1
Water 1728 (b = 0.0) water.C (1146) 35.60% 2.24 · 109 2.69 · 1010 12 0/1

water.C (1686) 63.80% 3.71 · 109 4.82 · 1010 13 1/1
Panel Cholesky TK15 tree.c (243) 2.90% 2.98 · 107 2.98 · 107 1 0/0

symb.c (352) 1.60% 1.65 · 107 1.65 · 107 1 0/0
tree.c (218) 1.95% 2.00 · 107 2.00 · 107 1 0/0

Table 3: QuickStep Detailed Results

the views in the view sequence, a nested loop that iterates over
y-axis of the current view, and an inner loop that, given a y-axis
from the enclosing loop, iterates over the x-axis to trace the rays
for the corresponding x,y points in the view. QuickStep first tries
to parallelize the outer loop. This parallelization fails because the
application crashes with a segmentation violation.

QuickStep next attempts to parallelize the nested loop (which it-
erates over the y-axis). This parallelization succeeds and produces
a parallel computation with good performance and no distortion.
QuickStep also succeeds in parallelizing the inner loop by itself,
but this parallelization does not perform as well as the paralleliza-
tion of the nested loop (which contains the inner loop). The loop
scheduling policy has a significant effect on the performance —
the dynamic and modulo strategies deliver speedups of between 5
and 6 on 8 processors, while the static strategy only produces a
speedup of around 3 on 8 processors. An examination of the source
code indicates that the ray tracing computations are independent
and that the parallelization is valid for all inputs.

6.7 Water
The representative inputs for Water differ in the number of water
molecules they simulate and the number of simulation steps. The
accuracy metric for Water is based on several values that the simu-
lation produces as output, specifically the energy of the system, in-
cluding the kinetic energy of the system of water molecules, the in-
tramolecular potential energy, the intermolecular potential energy,
the reaction potential energy, the total energy, the temperature, and
a virtual energy quantity.

The reports indicate that the vast majority of the computation
time in Water is consumed by an outer loop that iterates over the
time steps in the simulation. The attempted parallelization of this
loop fails because the resulting distortion is much larger than the

accuracy bound. As discussed in Section 2, QuickStep proceeds to
successfully parallelize the outer loops in the interf and poteng
computations. Both parallelizations involve the application of first
synchronization introduction, then replication introduction trans-
formations. While the final computation has some unsynchronized
data races, these data races occur infrequently enough to keep the fi-
nal distortion (0.002) within the accuracy bound (0.003 for this ex-
ample). When running the statistical test on the input 1000, five of
the executions produce output whose distortion is over the accuracy
bound. For that reason, the test needs to perform more executions
to obtain the evidence it needs to verify that the likelihood of a par-
allel execution satisfying the accuracy bound is acceptable. Once
again, the static scheduling policy (speedup of 5 on 8 proces-
sors) performs significantly worse than the dynamic and modulo
policies (speedup of close to 7 on 8 processors).

When the accuracy bound is set to 0.0, QuickStep is able to
find a parallelization that speeds up the execution of the program
without producing any distortion. The results for this experiment
are presented in Table 2, example Water (b=0.0). In addition to
the loops and transformations for the b = 0.003 parallelization,
QuickStep applies an additional synchronization introduction that
eliminates the data races from the parallelization with b = 0.003.
The speedup of the parallelization with bound b = 0.0 is approx-
imately 6.2 (as opposed to approximately 7 with b = 0.003). We
attribute the decreased performance to the additional synchroniza-
tion required to force the parallelization to deterministically pro-
duce the same result as the original sequential program. These two
parallelizations highlight the trade-off between maximizing per-
formance and maximizing accuracy. It also highlights QuickStep’s
ability to produce the most appropriate parallelization for the spe-
cific bound b.



QuickStep ICC -par-threshold=0 ICC -par-threshold=99
Benchmark Loops Speedup Parallel WPI Loops Speedup Parallel WPI Loops Speedup Parallel WPI
Barnes-Hut 16K 1 6.168 94.40% 7.49 · 107 22/3 0.003 44.75% 41 0 - - -
Barnes-Hut 256K 1 5.760 94.30% 1.81 · 1010 22/3 t/o 45.03% 41 0 - - -
Search 500 5 7.743 99.95% 4.38 · 108 13/0 0.984 0.00% 0 1/0 0.976 0.00% -
Search 750 5 7.756 99.95% 2.74 · 108 13/0 1.009 0.00% 0 1/0 0.994 0.00% -
String big 2 7.608 100.00% 3.57 · 1010 12/4 0.058 11.74% 87 0 - - -
String inv 2 7.582 99.96% 3.68 · 1010 12/5 0.060 14.61% 1671 0 - - -
VolRend head 1 6.153 98.70% 1.21 · 1011 13/1 0.105 4.69% 90 5/0 0.991 0.73% -
VolRend head-2 1 5.047 98.70% 7.81 · 107 13/1 0.102 4.69% 90 5/0 0.976 0.73% -
Water 1000 (b=0.003) 2 6.869 99.10% 1.25 · 109 21/12 0.011 69.83% 264 0/0 - - -
Water 1728 (b=0.003) 2 7.009 99.40% 3.71 · 109 21/12 0.011 69.97% 264 0/0 - - -
Water 1000 (b=0.0) 2 6.183 99.10% 1.25 · 109 21/12 0.011 69.83% 264 0/0 - - -
Water 1728 (b=0.0) 2 6.123 99.40% 3.71 · 109 21/12 0.011 69.97% 264 0/0 - - -
Panel Cholesky TK15 3 — 6.45% 2.98 · 107 15/1 0.032 10.84% 4738 3/1 1.000 10.68% 4738

Table 4: Comparison between QuickStep and Intel icc Parallelizing Compiler

6.8 Panel Cholesky
The input for the Panel Cholesky benchmark is the TK15 matrix
from the Harwell-Boeing sparse matrix collection. The accuracy
metric is based on the ability of the computed factorization to
successfully solve a linear equation with a known correct solution.
If the norm of the computed solution differs from the known correct
solution by more than a given tolerance, the computation fails the
accuracy test.

The report indicates that the attempted parallelization of the
most time-consuming loops in the computation fails because the
resulting parallel computations fail the accuracy test. QuickStep
is able to find one parallelization that satisfies the accuracy test
during the exploration of the search space and (barely) improves
the performance. But this parallelization fails the final acceptability
test because some of the trial executions crash.

Several characteristics of this application place it well beyond
the reach of QuickStep (or, for that matter, any existing or envi-
sioned parallelizing compiler [35]). The computation groups the
columns of the sparse matrix into panels (sequences of adjacent
columns with identical non-zero structure). It then performs the
sparse Cholesky factorization at the granularity of panels. The pri-
mary problem is that the structure of the important source of con-
currency in this application (performing updates involving differ-
ent panels) depends on the specific pattern of the nonzeros in the
matrix. Moreover, any parallel execution must order all updates to
each panel before all subsequent uses of the panel. These ordering
constraints emerge from the semantics of the application — there
is no loop in the computation that can be parallelized to exploit
this source of concurrency. Instead, the standard approach is to use
an inspector/executor approach to extract the nonzero pattern from
the matrix, analyze the nonzero pattern to build a schedule of the
legal parallel execution, then execute this schedule to execute the
computation in parallel.

This application illustrates a limitation of the QuickStep ap-
proach (as well as the different approaches behind virtually all other
parallelizing compilers). QuickStep is designed to exploit concur-
rency available in loops whose iterations can execute (when aug-
mented with appropriate synchronization) in any order without pro-
ducing a result that fails the accuracy test. The ordering constraints
in Panel Cholesky place it beyond the reach of this approach. Note,
however, that ordering constraints are not the same as data depen-
dences — QuickStep is often capable of parallelizing loops with
data dependences between iterations. In fact, iterations of paral-
lelized loops in both Water and String have data dependences. But
because the loop iterations commute (produce acceptably accurate

results regardless of the order in which they execute), violating
these data dependences does not cause these applications to pro-
duce a result that fails the accuracy test. QuickStep can therefore
parallelize these applications even in the presence of data depen-
dences between loop iterations.

6.9 Comparison With Intel icc Compiler
To provide a comparison point with standard parallelizing compiler
techniques, we attempted to use the Intel icc compiler [1] to par-
allelize our benchmark applications. The icc compiler checks for
loop-carried data dependences, parallelizing the loop only if it can
prove at the compile time that no such dependence exists and the
loop is a profitable target for parallelization. The developer can in-
fluence the parallelization process by selecting a threshold for the
profitability of parallelizing loops. The threshold can take a value
between 0 — accept any parallelizable loop, and 100 — accept only
loops that have high probability of being profitable (100 is the de-
fault value). For a threshold of 100, the icc compiler must be able
to determine the number of loop iterations at compile time before
it will parallelize the loop [39]. For smaller thresholds, the loop
iteration count can be determined at runtime.

The results in Table 4 provide insight into the differences be-
tween the QuickStep and Intel icc compilers. The table presents re-
sults for QuickStep parallelizations, Intel icc parallelizations with
threshold 0 (with this threshold the icc compiler parallelizes all par-
allelizable loops), and Intel icc parallelizations with threshold 99
(selecting profitable loops with iteration count unknown at compile
time). We also compiled the applications with icc with threshold
100. We omit the results from this experiment from the table — the
icc compiler was able to recognize only one loop in entire set of
benchmark applications, and that loop contributed to less than 1%
of execution time of the application.

For each compiler, the first column (Loops) presents the number
of the loops that the compiler parallelized. For icc we present
both the total number of loops (the first number), and loops that
contribute to more than 1% of the executed instructions (the second
number). The second column (Speedup) presents the speedup of
the parallel version over the corresponding sequential version of
the program. The third column (Parallel) shows the percentage
of instructions that are executed from within parallelized loops,
relative to the total number of parallel instructions. The fourth
column (WPI – Work per Invocation) presents the mean number
of instructions that were executed within single execution of the
parallel loop. Table 5 presents additional details of the loops that
the Intel icc compiler at threshold 0 parallelized. This table only



Benchmark Loop Parallel WPI Instructions Invocations
Barnes-Hut 16K lib.h (156) 16.50% 41.0 1.92 · 1010 4.68 · 108

barnes.C (84) 13.80% 34.0 1.60 · 1010 4.72 · 108

barnes.C (72) 12.70% 35.0 1.49 · 1010 4.26 · 108

Barnes-Hut 256K lib.h (156) 16.60% 41.0 2.55 · 1010 6.22 · 108

barnes.C (84) 13.90% 34.0 2.13 · 1010 6.26 · 108

barnes.C (72) 13.10% 35.0 2.01 · 1010 5.74 · 108

String big rayspace.c (87) 2.85% 87.0 1.03 · 109 1.18 · 107

rayspace.c (94) 2.85% 87.0 1.03 · 109 1.18 · 107

rayspace.c (79) 2.72% 83.0 9.83 · 108 1.18 · 107

rayspace.c (101) 2.46% 75.0 8.88 · 108 1.18 · 107

String inv doslow.c (224) 3.76% 1671.3 2.87 · 109 1.72 · 106

rayspace.c (87) 2.84% 87.0 2.17 · 109 2.49 · 107

rayspace.c (94) 2.84% 87.0 2.17 · 109 2.49 · 107

rayspace.c (79) 2.70% 83.0 2.07 · 109 2.49 · 107

rayspace.c (101) 2.44% 75.0 1.87 · 109 2.49 · 107

volume Rendering head raytrace.c (102) 3.93% 90.0 4.56 · 109 5.06 · 107

Volume Rendering head-2 raytrace.c (102) 3.93% 90.0 1.12 · 109 1.25 · 107

Water 1000 water.C (1435) 11.90% 240.9 7.34 · 109 3.05 · 107

water.C (1491) 11.70% 237.9 7.25 · 109 3.05 · 107

water.C (1463) 11.70% 237.7 7.24 · 109 3.05 · 107

lib.h (156) 7.25% 41.0 4.48 · 109 1.09 · 108

water.C (1529) 6.62% 264.3 4.09 · 109 1.55 · 107

water.C (1186) 6.41% 264.3 3.96 · 109 1.50 · 107

water.C (1571) 2.96% 203.0 1.83 · 109 9.00 · 106

water.C (1590) 2.96% 203.0 1.83 · 109 9.00 · 106

water.C (1609) 2.96% 203.0 1.83 · 109 9.00 · 106

water.C (1193) 1.96% 138.9 1.21 · 109 8.71 · 106

water.C (120) 1.79% 28.0 1.11 · 109 3.95 · 107

water.C (1208) 1.39% 128.0 8.59 · 108 6.71 · 106

Water 1728 water.C (1435) 11.90% 240.9 8.99 · 109 3.73 · 107

water.C (1491) 11.80% 239.1 8.92 · 109 3.73 · 107

water.C (1463) 11.80% 238.4 8.89 · 109 3.73 · 107

lib.h (156) 7.34% 41.0 5.54 · 109 1.35 · 108

water.C (1529) 6.78% 264.0 5.12 · 109 1.94 · 107

water.C (1186) 6.25% 264.0 4.73 · 109 1.79 · 107

water.C (1571) 2.95% 203.0 2.23 · 109 1.10 · 107

water.C (1590) 2.95% 203.0 2.23 · 109 1.10 · 107

water.C (1609) 2.95% 203.0 2.23 · 109 1.10 · 107

water.C (120) 1.89% 28.0 1.43 · 109 5.09 · 107

water.C (1193) 1.87% 139.3 1.41 · 109 1.01 · 107

water.C (1208) 1.36% 128.0 1.03 · 109 8.06 · 106

Panel Cholesky TK15 num.c (372) 9.87% 4738.1 1.01 · 108 2.14 · 104

Table 5: Intel icc Parallelizing Compiler Detailed Results

includes loops that account for more than 1% of the executed
instructions.

Although QuickStep parallelizes only a few loops in every
benchmark, with the exception of Panel Cholesky these loops per-
form almost all of the work. Specifically, for all benchmarks except
Panel Cholesky, the parallelized parts of the program account for
more than 90% of the total computational work.

After relaxing the requirement that loop iteration count must be
known at compile time (i.e. setting the threshold to 99), icc paral-
lelizes additional loops in some of the benchmarks. But paralleliz-
ing these loops does not increase the performance. Only one loop
contributes to more than 1% of the execution time. Because the
parallelized loops typically execute a only small amount of work
per iteration (column WPI), the parallelization usually degrades the
performance.

With threshold 0, the icc compiler parallelizes over 10 loops per
application. Most of these loops contribute only in a minor way,
accounting for less than 1% of the work. Moreover, these loops
are not good parallelization candidates — although the compiler is

able to parallelize loops that together account for (in the best case)
almost 70% of the executed instructions, the amount of work per
iteration is so small (see the WPI column in Table 4) that the paral-
lelization overhead usually substantially degrades the performance.
In some cases the parallelized application executes more than a fac-
tor of ten slower than the sequential application.

A manual inspection shows that many of the time-consuming
loops that the icc compiler was able to parallelize iterate over
arrays. False sharing effects associated with the parallelization of
such loops can cause an additional slowdown.

Parallelizing such loops can cause as additional slowdown of
the application due to the false sharing of array elements, which
are distributed and updated in all processor caches. Running par-
allel versions on representative inputs reveals a considerable slow-
downs. Additionally, the work performed by these loops is con-
tained within outer loops, that are identified and successfully paral-
lelized by QuickStep.

These results highlight the difficulty of performing the static
analysis required to parallelize large outer loops using standard



techniques. There are two reasons that QuickStep did not even con-
sider the parallelization of many of the loops that the icc compiler
parallelized. First, many of these loops account for less than 1%
of the executed instructions (this is the cutoff below which the
QuickStep compiler does not attempt to parallelize the loop). Sec-
ond, many of the loops were nested inside outer loops that Quick-
Step was able to successfully parallelize (in its current configura-
tion QuickStep does not attempt to parallelize loops nested inside
successfully parallelized outer loops). These results highlight the
importance of parallelizing outer loops and the QuickStep’s effec-
tiveness to obtain good parallel performance by parallelizing such
loops.

6.10 Comparison With Jade Parallelizations
Jade is an implicitly parallel language that developers can use
to subdivide the computation into tasks and specify how each
task accesses data. The Jade run-time system examines the data
access specifications to dynamically execute the Jade program in
parallel while preserving the data dependences between tasks (and
therefore the sequential semantics of the Jade application).

Several of the benchmarks in this paper (Search, String, and
Panel Cholesky) were originally parallelized as part of the Jade
project [31]. Parallel versions of Water and Volume Rendering were
also developed as part of the Jade project, but the Water and Volume
Rendering benchmarks in this paper came from other projects. We
next compare the Jade and QuickStep parallelizations.

6.10.1 Search
The Search main computation is generated by two nested loops.
The QuickStep parallelization only executes the outer loop in paral-
lel; the Jade parallelization recodes the loops to exploit parallelism
available across both loops. The Jade parallelization maintains a
separate copy of the data modified in the inner loop — the number
of particles that exit the front of the material for each tracked point.
The computation then combines the counts from each task to obtain
the final counts.

The QuickStep parallelization, on the other hand, maintains a
single copy of the array that stores the number of particles that exit
the front of the material. The parallel loop iterations write disjoint
elements of this array. Even though the Jade implementation ex-
ploits more of the available concurrency, the QuickStep paralleliza-
tion exploits more than enough concurrency to obtain good parallel
performance on the target hardware platform — on this platform,
there is no pressing need to exploit the concurrency present in both
loops.

6.10.2 String
Like Search, the String main computation is generated by two
nested loops, with QuickStep parallelizing only the outer loop
and the Jade parallelization exploiting concurrency available across
both loops. In the Jade parallelization each task maintains a sepa-
rate copy of the updated geometry model. When the tasks finish,
the computation combines these models to obtain the final geom-
etry model. The QuickStep parallelization maintains a single copy
of the geometry model. The unsynchronized updates to this model
from parallel loop iterations may (infrequently) interfere. These
data races introduce a small amount of noise into the final result.

The Jade implementation can exploit more of the available con-
currency and executes deterministically to produce the same result
as the sequential version. However, the outer loop parallelized by
QuickStep has more than enough concurrency for the computation
to deliver good parallel performance on the target hardware plat-
form. And the QuickStep version is acceptably accurate.

6.10.3 Volume Rendering
Recall that the vast majority of the work in Volume Rendering
takes place inside two nested loops that together iterate over a
two-dimensional image array. The outer loop iterates over the y-
axis of the image array; the inner loop iterates over the x-axis of
this array. The body of the loop computes the value for the corre-
sponding pixel of the image array, with different iterations execut-
ing independently because they write different elements of the im-
age array. The Jade parallelization exploits concurrency available
across both loop nests. The QuickStep parallelization exploits con-
currency available only across the outer loop. This outer loop par-
allelization provides more than enough concurrency for the compu-
tation to deliver good parallel performance on our target hardware
platform.

In the QuickStep parallelization, the iterations of the parallel
loop write different elements of the image array. There are therefore
no data races and the parallel version deterministically produces the
same result as the sequential version. In the Jade parallelization dif-
ferent tasks also write different elements, but the image array object
granularity interacts poorly with the parallelism detection and ex-
ploitation algorithms in the Jade implementation, which computes
the task dependence information at the granularity of Jade objects.
Because the image array is a single Jade object, parts of tasks that
specify writes to the array execute sequentially, even if they write
different array elements. Potential solutions include decomposing
the image array (which would require modifying those parts of the
computation that access the array) or replicating the image array
(which would increase the amount of memory required to execute
the computation).

One Jade version uses a third alternative — each task specifies
a deferred write to the image array during the ray tracing com-
putation, then converts this deferred write to a write specification
only when it writes the raytracing information into the image ar-
ray. In this way the raytracing computations can execute in paral-
lel, with the writes to the image array executing in the same order
as in the sequential version. Another Jade version uses a fourth al-
ternative, the disjoint write specification, which enables tasks that
specify disjoint writes to the same object to execute in parallel. The
current Jade implementation implements this specification only on
shared-memory platforms and does not check that the writes are
actually disjoint (it is possible to build an implementation without
these limitations).

6.10.4 Water
The two most time-consuming subcomputations in Water (the
interf and poteng subcomputations) are generated by two
nested loops that iterate over interactions between pairs of wa-
ter molecules. QuickStep parallelizes only the outermost loops of
these two subcomputations (these outermost loops have more than
enough concurrency to deliver good parallel performance on the
target hardware platform). The Jade parallelization exploits con-
currency available across both the outer and inner loops in both
loop nests. It also replicates all data structures that the parallel
tasks write and combines the replicas at the end of the each sub-
computation.

The QuickStep parallelization, on the other hand, replicates
only the scalar variables that the parallel loop iterations update.
The iterations update the remaining non-replicated shared array
variables efficiently without synchronization — the resulting data
races occur infrequently enough so that the parallelization can still
produce a statistically acceptable result. In this way the QuickStep
parallelization exploits the ability of the application to tolerate
infrequent data races to insert synchronization and replication only
when required to ensure statistically accurate execution.



6.10.5 Panel Cholesky
The Jade parallelization of Panel Cholesky relies on Jade’s abil-
ity to dynamically discover and exploit dynamic dependences be-
tween different tasks. The Jade dynamically analyzes the data ac-
cess specifications to execute tasks in parallel while preserving the
ordering constraints between tasks with dependences. In this way,
unlike QuickStep, Jade is able to exploit the concurrency available
in Panel Cholesky.

6.10.6 Discussion
Because of its support for irregular concurrency, Jade can exploit
forms of concurrency that are inherently beyond QuickStep’s loop-
based approach. However, Jade requires the developer to insert the
Jade task constructs and allocate Jade objects at a granularity that
works well with the task decomposition. QuickStep, on the other
hand, operates directly on sequential programs, minimizing and po-
tentially even eliminating developer involvement. Because Quick-
Step parallelizations insert standard OpenMP tags into the original
source code of the application, it is possible for the developer to
inspect (and, if desired, modify) the final parallelization.

For our benchmarks, the Jade parallelizations often exploit par-
allelism available in nested loops. While it is possible for Quick-
Step to exploit this additional parallelism, the QuickStep paral-
lelizations for our benchmarks exploit only outer loop parallelism
— it is not necessary to exploit nested loop parallelism to obtain
good parallel performance on our target hardware platform.

QuickStep uses execution profile information to guide the ap-
plication of the parallelism introduction, accuracy enhancing, and
performance enhancing transformations. The goal is to produce an
acceptable parallelization — i.e., a parallelization with good per-
formance and statistically accurate results. And in fact, the Quick-
Step Water and String parallelizations both contain infrequent data
races that cause them to execute nondeterministically within ac-
ceptable statistical bounds. The Jade parallelizations, of course, ex-
ecute deterministically with no data races. The Jade parallelizations
of Search, String, and Water achieve this deterministic execution by
replicating more data structures than the corresponding QuickStep
parallelizations:

• Search: For Search, the replication interacts with the exploita-
tion of nested loop parallelism. Because different iterations of
the inner loop access the same array entries, exploiting nested
loop parallelism would either introduce data races or require the
application of synchronization or replication transformations to
eliminate the data races. The QuickStep version sidesteps this
issue entirely by exploiting outer-loop parallelism only.
• String: The QuickStep version of String maintains a single

copy of the geometry model. Multiple parallel iterations of the
outer loop update the same elements of this model without syn-
chronization. The QuickStep version therefore has data races.
The Jade version avoids these data races (or, strictly speaking,
the sequentialization of the corresponding loop iterations) by
replicating the geometry model. String illustrates how Quick-
Step’s ability to tolerate infrequent data races makes it possi-
ble to avoid both replication and synchronization overhead for
shared data structures when the resulting data races occur infre-
quently enough to preserve acceptably accurate execution.
• Water: Water exhibits a mix of characteristics — the Quick-

Step version of Water ensures acceptably accurate execution by
replicating the updated scalar variables, but operates with only
a single version of updated array variables (the data races on the
updated array variables occur infrequently enough to leave the
computation acceptably accurate). The Jade version ensures de-
terministic execution by replicating all updated variables. Water

illustrates how QuickStep can productively select different syn-
chronization and replication strategies for variables with differ-
ent access patterns and characteristics. Of particular interest is
the fact that it can, when appropriate, produce efficient paral-
lelizations with infrequent unsynchronized data races.

Together, these examples illustrate how QuickStep’s exploration
of the search space induced by its parallelization transformations
enables it to tailor its parallelization strategy to the characteristics
of the application and target hardware platform at hand.

7. Threats To Validity
This paper has two basic conclusions. First, QuickStep’s combina-
tion of parallelization transformations and search of the resulting
induced parallel program space can produce efficient and accurate
parallel programs. Second, the final parallelizations are amenable
to developer evaluation for acceptability and the automatically gen-
erated interactive parallelization reports effectively facilitate this
evaluation.

We identify several threats to the validity of these conclusions.
First, the ability of QuickStep to find an acceptable paralleliza-
tion depends on the characteristics of the application. Based on
our experience with parallel applications, we believe that Quick-
Step will work well for most applications with loop-level paral-
lelism [5, 44]. It would also be relatively straightforward to gen-
eralize QuickStep to include parallelism introduction transforma-
tions that would enable QuickStep to parallelize recursive divide
and conquer applications [8, 36]. It is less clear how to general-
ize QuickStep to handle computations (such as the Panel Cholesky
factorization benchmark) that require irregular concurrency gener-
ation approaches. And, of course, some sequential programs may
simply not be amenable to parallelization by any means at all.

Second, for our benchmark set QuickStep produced parallel
programs that are acceptable for all inputs and not just the represen-
tative inputs. This result may not generalize to other programs —
QuickStep may produce parallel programs that are acceptably accu-
rate for the representative inputs but not for other inputs. Maintain-
ing comprehensive input suites (as is standard practice for many
software development projects) can minimize the chances of this
happening. The interactive reports also facilitate developer deter-
mination of the overall acceptability of the parallelizations. But it
is also possible for QuickStep to produce complex parallelizations
with enough parallel loops and parallelization transformations to
make it difficult for developers to evaluate the acceptability of the
final parallelizations.

Third, the parallelization may depend on the environment where
the program executes, including hardware, compiler and the oper-
ating system. These factors can influence the outcomes of parallel
program executions, including the accuracy. The same paralleliza-
tion may generate acceptable results in one environment but not in
another. It is therefore important to perform at least the final accu-
racy tests in the same environment as will be used for production
executions.

Finally, we found that the automatically generated interactive
parallelization reports effectively supported our acceptability eval-
uation. It is possible that other developers may prefer to have the
information presented in another form or may not find the informa-
tion useful.

8. Related Work
We discuss related work in parallelizing compilers, interactive
profile-driven parallelization, statistical accuracy models for par-
allel computations, and unsound program transformations.



8.1 Parallelizing Compilers
There is a long history of research in developing compilers that can
automatically exploit parallelism available in programs that manip-
ulate dense matrices using affine access functions. This research
has produced several mature compiler systems with demonstrated
success at exploiting this kind of parallelism [7, 16, 24]. Our tech-
niques, in contrast, are designed to exploit parallelism available in
loops regardless of the specific mechanisms the computation uses
to access data. Because the acceptability of the parallelization is
based on an analysis of the output of the parallelized program rather
than an analysis of the program itself with the requirement of gen-
erating a parallel program that produces identical output to the se-
quential program, QuickStep is dramatically simpler and less brit-
tle in the face of different programming constructs and access pat-
terns. To cite just one example, our results show that it can effec-
tively parallelize object-oriented computations written in C++ that
heavily use object references and pointers. The use of any one of
these programming language features is typically enough to place
the program beyond the reach of standard parallelizing compilers.

Commutativity analysis [2, 34] analyzes sequential programs to
find operations on objects that produce equivalent results regard-
less of the order in which they execute. If all of the operations in
a computation commute, it is possible to execute the computation
in parallel (with commuting updates synchronized to ensure atom-
icity). Our techniques, in contrast, analyze the output of the par-
allelized program rather than program itself. The goal is to find a
parallelization that produces acceptably accurate results rather than
results that are identical or equivalent to those that the sequential
program produces (of course, if the developer does require a paral-
lelization that produces identical or equivalent results, QuickStep is
capable of searching the space to find such a parallelization). Once
again, our approach produces a dramatically simpler compiler that
can successfully parallelize a broader range of programs.

Motivated by the difficulty of exploiting concurrency in sequen-
tial programs by a purely static analysis, researchers have devel-
oped approaches that use speculation. These approaches (either au-
tomatically or with the aid of a developer) identify potential sources
of parallelism before the program runs, then run the corresponding
pieces of the computation in parallel, with mechanisms designed
to detect and roll back any violations of dependences that occur
as the program executes [10, 27, 29, 41]. These techniques typi-
cally require additional hardware support, incur dynamic overhead
to detect dependence violations, and do not exploit concurrency
available between parts of the program that violate the speculation
policy. Our approach, in contrast, operates on stock hardware with
no dynamic instrumentation. It can also exploit concurrency avail-
able between parts of the program with arbitrary dependences (in-
cluding unsynchronized data races) as long as the violation of the
dependences does not cause the program to produce an unaccept-
ably inaccurate result.

Another approach to dealing with static uncertainty about the
behavior of the program is to combine static analysis with run-
time instrumentation that extracts additional information (available
only at run time) that may enable the parallel execution of the pro-
gram [15, 28, 29, 38]. Once again, the goal of these approaches is
to obtain a parallel program that always produces the same result as
the sequential program. Our approach, on the other hand, requires
no run-time instrumentation of the parallel program and can paral-
lelize programs even though they violate the data dependences of
the sequential program (as long as these violations do not unaccept-
ably perturb the output).

8.2 Profile-Driven Parallelization
Profile-driven parallelization approaches run the program on repre-
sentative inputs, dynamically observe the memory access patterns,

then use the observed access patterns to suggest potential paral-
lelizations that do not violate the observed data dependences [14,
37, 42]. The dynamic analysis may be augmented with a static anal-
ysis to recognize parallel patterns such as reductions. These po-
tential parallelizations are typically presented to the developer for
approval.

QuickStep is also designed for usage scenarios in which the
developer examines the parallelizations to determine their accept-
ability. But QuickStep uses a fundamentally different paralleliza-
tion approach — instead of attempting to preserve the data de-
pendences, it deploys a set of parallelization strategies that enable
it to explore a broad range of potential parallelizations. Specifi-
cally, QuickStep explores parallelizations that use synchronization
to make parallel operations atomic, use replication to eliminate bot-
tlenecks in the parallel execution, or contain infrequent unsynchro-
nized data races that do not unacceptably perturb the execution.
And of course, it can also parallelize simpler computations in which
the iterations of the resulting parallel loops are independent.

Our experimental results show that QuickStep’s broader reach
is important in practice. The final parallelizations of two of the ap-
plications in our benchmark set (String and Water) contain unsyn-
chronized data races that violate the underlying data dependences,
which places these efficient parallelizations beyond the reach of any
technique that attempts to preserve these dependences.

8.3 Statistical Accuracy Models for Parallel Computations
Recent research has developed statistical accuracy models for par-
allel programs that discard tasks, either because of failures or to
purposefully reduce the execution time [32]. A conceptually re-
lated technique eliminates idle time at barriers at the end of par-
allel phases of the computation by terminating the parallel phase as
soon as there is insufficient computation available to keep all pro-
cessors busy [30]. The results are largely consistent with the results
reported in this paper. Specifically, the bottom line is that programs
can often tolerate perturbations in the execution (discarding tasks,
reordering loop iterations, or data races) without producing unac-
ceptable inputs. There are several differences between this previous
research and the research presented in this paper. First, the goals
are different: the techniques presented in this paper are designed
to parallelize the program; previous techniques are designed to en-
able parallel programs to discard tasks or eliminate idle time. The
potential performance benefits of the research presented in this pa-
per are significantly larger (but could be enhanced by the previous
techniques). Second, the statistical approaches are significantly dif-
ferent. Previous research uses multiple linear regression to produce
a statistical model of the distortion as a function of the number of
discarded tasks. The research presented in this paper, on the other
hand, uses user-defined accuracy tests in combination with the SPR
test to obtain a statistical guarantee of the accuracy of the resulting
parallel computation. In comparison with previous approaches, this
approach requires fewer assumptions on the behavior of the paral-
lel computation but more test executions to obtain tight statistical
distortion bounds.

8.4 Unsound Program Transformations
We note that this paper presents techniques that are yet another
instance of an emerging class of unsound program transforma-
tions. In contrast to traditional sound transformations (which op-
erate under the restrictive constraint of preserving the semantics of
the original program), unsound transformations have the freedom
to change the behavior of the program in principled ways. Previ-
ous unsound transformations have been shown to enable applica-
tions to productively survive memory errors [4, 33], code injection
attacks [26, 33], data structure corruption errors [12, 13], mem-
ory leaks [22], and infinite loops [22]. The fact that all of these



techniques provide programs with capabilities that were previously
unobtainable without burdensome developer intervention provides
even more evidence for the value of this new approach.

9. Conclusion
The difficulty of developing parallel programs by hand has inspired
the development of compilers that are designed to automatically
parallelize sequential programs. During its long history, the field
has achieved demonstrated successes within specific computation
domains, but many computations remain well beyond the reach of
traditional approaches (which statically analyze the sequential pro-
gram to find tasks that can execute in parallel). The difficulty of
building compilers that use these approaches and the large classes
of programs that currently (and in some cases inherently) lie be-
yond their reach leaves room for simpler and more effective tech-
niques that can parallelize a wider range of programs. Our exper-
imental results indicate that QuickStep’s basic approach, which
involves the combination of parallelization transformations and
search of the resulting induced space of parallel programs guided
by test executions on representative inputs, provides both the sim-
plicity and broader applicability that the field requires.
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