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Abstract

Most medium access control mechanisms discard collided packets and consider interference harmful.
Recent work on Analog Network Coding (ANC) suggests a different approach, in which multiple interfering
transmissions are strategically scheduled. The received collisions are collected and then used in a decoding
process, such as the ZigZag decoding process, where the packets involved in the collisions are extracted. In
this paper, we present an algebraic representation of collisions and describe a general approach to recovering
collisions using ANC.

To study the effect of using ANC on the performance of MAC layers, we develop an ANC-based algorithm
that implements an abstract MAC layer service, as defined in [1, 2], and analyze its performance. This study
proves that ANC can significantly improve the performance of MAC layer services, in terms of probabilistic
time guarantees for packet delivery. We illustrate how this improvement at the MAC layer can translate
into faster higher-level algorithms, by analyzing the time complexity of a multiple-message network-wide
broadcast algorithm that uses our ANC-based MAC service.

1 Introduction

The nature of wireless networks is intrinsically different from that of wired networks because the wireless
medium is shared among many transmitters. The conventional approach to the Medium Access Control
(MAC) problem is contention-based protocols in which multiple transmitters simultaneously attempt to access
the wireless medium and operate under rules that provide enough opportunities for all nodes to transmit.
Examples of such protocols in packet radio networks are ALOHA [3], MACAW [4], and CSMA/CA [5].

In contention-based protocols it is possible that two or more nodes transmit their packets simultaneously,
which can result in a collision at the receiver. The colliding packets are generally considered to be lost.
Therefore, these protocols strive to avoid simultaneous transmissions by nearby nodes. Recently, Gollakota
and Katabi [6] showed how one might recover collided packets in an 802.11 system using ZigZag decoding,
if there are relatively few colliding packets and enough transmissions involving these packets. Their scheme
requires the network to operate at a sufficiently high signal-to-noise ratio (SNR) that noise can be neglected
and per-symbol detection can be assumed to be error-free in the absence of a collision on that symbol. In
fact, they suggest that each collision can be treated as a linear equation over the packets involved. Therefore,
packets are recoverable if the resulting system of linear equations has a unique solution. This gives rise to the
possibility of designing MAC protocols that exploit Analog Network Coding (ANC) [7] to increase network
capacity. In such MAC protocols, unlike the conventional protocols, interference is not considered harmful.
In fact, such protocols strategically schedule simultaneous transmissions in order to increase network capacity.
Note that, as in digital network coding, packets are mixed together in ANC. However, in digital network
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coding, the sender mixes the contents of packets before transmission whereas in ANC the wireless channel
naturally mixes the packets.

In this paper, we present a new MAC protocol, CMAC , which exploits Analog Network Coding, and prove
that it provides strong correctness and performance guarantees. Formally, we prove that CMAC implements
the probabilistic MAC layer specification introduced in [1, 2]. This layer provides probabilistic upper bounds
on the time for a packet to be delivered to any neighboring node (the receive delay bound), and on the
total amount of time for a sender to receive an acknowledgment of successful delivery to all neighbors (the
acknowledgment delay bound). It also provides a bound on the amount of time for a receiver to receive some
packet from among those currently being transmitted by neighboring senders (the progress bound).

Showing that our CMAC protocol implements the probabilistic MAC layer allows us to compare the bounds
achieved using ANC to those achieved using more conventional protocols. In Section 5, we show that CMAC
implements the probabilistic MAC layer with receive delay bound, acknowledgment delay bound, and progress
bound all of the form O

(
∆ + ∆

c log(∆
ε )
)
. where ∆ is the maximum node degree and c is the maximum number

of packets for which a collision can be decoded. In particular, if c is Ω(∆), then using ANC, a node can deliver
a packet to all its neighboring nodes (and receive a packet from any given neighboring node) in time O(∆+ 1

ε ).
In contrast, the exponential decay protocol DMAC presented in [1, 2] has larger receive and acknowledgment
delay bounds, of the form O(∆ log(1

ε ) log(∆)), but a smaller progress bound, O(log(∆)). In Section 6, we
present another MAC protocol, DCMAC , which improves the progress bound of CMAC to O(log(∆)) without
increasing the receive and acknowledgment delay bounds. DCMAC achieves these bounds by interleaving
CMAC and DMAC .

An advantage of implementing the probabilistic MAC layer using ANC is that it allows us to easily analyze
the effect of using ANC on the time complexity of higher-level algorithms such as network-wide broadcast
algorithms. For example, in Section 7, we combine our analysis of CMAC with the analysis of a high-level
multiple-message global broadcast protocol over the probabilistic MAC layer (from [1, 2]). This yields time
bounds for multi-message broadcast over the basic network. Our results show that time complexity of multi-
message broadcast can be significantly improved using ANC.

The remainder of the paper is organized as follows. In Section 2, we discuss related work. Section 3
presents our network assumptions, including the key facts about Analog Network Coding. Section 4 describes
the probabilistic abstract MAC layer, as defined in [2]. Sections 5 and 6 present our two algorithms to
implement the probabilistic MAC layer. Section 7 describes a simple network-wide broadcast algorithm and
analyzes its time complexity. Section 8 concludes.
Notation: Let C denote the set of complex numbers. Throughout the paper, log denotes the base two
logarithm and ln the natural logarithm. For any positive integer n, [n] denotes the set {1, . . . , n}.

2 Related Work

Analog Network Coding was first presented in [7]. For high SNR regimes, the asymptotic optimality of ANC
was recently shown in [8, 9]. Its asymptotic optimality in terms of rate-diversity trade-off was established
in [10, 11]. The use of of ANC, as a generalization of ZigZag, in possible combination with digital network
coding, in order to increase the throughput of packetized multiple-access systems, has been considered in
[12]. In that work, an algebraic model for ANC was derived, which takes into account explicitly symbols,
digital network coding, modulation, and channel effects, such as attenuation, delay and additive combination
of signals. We use that model in this paper to model the algebraic interaction among nodes. The use of ZigZag
without additional digital network coding has recently been considered by [13] to improve congestion control
and maximize aggregate utility of the users. That approach does not construct an explicit MAC mechanism
such as the one we provide in this paper.

The first abstract MAC layer specification was defined by Kuhn, Lynch, and Newport [14, 15]. This basic
layer provides worst-case guarantees for packet receipt and acknowledgment. These papers also present and
analyze greedy global broadcast algorithms over the basic MAC layer. Khabbazian et al. [1, 2] continued
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this work by developing a probabilistic version of the MAC layer specification (the one used throughout
this paper), presenting exponential decay algorithms to implement both layers, analyzing global broadcast
algorithms over both layers, and showing how to combine the high-level and low-level results automatically to
obtain performance results for global broadcast over an underlying collision-prone network model. Other work
using abstract MAC layers includes algorithms for Neighbor Discovery over these layers [16, 17].

3 The Network Model

Fix a static undirected graph, G = (V,E). Let n = |V | be the number of vertices, ∆ the maximum degree, and
D the diameter (i.e., the maximum hop distance between two vertices in G). We assume that n active nodes
reside at the n vertices of G. Nodes have unique identifiers. We assume that the nodes have local knowledge
of the graph; in particular, they know ∆ and know the identifiers of their neighbors in G.

We assume a slotted system, with slots of duration tslot = 1. When a node transmits in some slot, its
message reaches all G-neighboring nodes, and no other nodes. Thus, each node j, in each slot, is reached
by some collection of packets from its transmitting neighbors. What j actually receives is defined as follows:
(a) If j transmits, then it receives silence, ⊥. Thus, a node cannot receive a packet while it is transmitting.
(b) If j does not transmit and is reached by no packets, then it receives silence. (c) If j does not transmit and
is reached by exactly one packet from another node, then it receives that packet. (d) If j does not transmit
and is reached by two or more packets, then it receives a collision. We assume that each node stores all
the received packets and collisions, and uses analog network coding (such as ZigZag decoding) to decode the
collided packets.

A packet is essentially a vector of N symbols over a finite field Fq, where q is a power of two. We represent
a packet as a polynomial over the delay variable D, with coefficients being the symbols of Fq that form the
packet. The mapping from the packet to the corresponding physical signal is a result of modulation. For a
system such as ZigZag, which performs per-symbol detection, no channel coding precedes the modulation. For
more general ANC, however, there may also be a channel code, requiring the use of interference cancellation
over the entire packet, rather than symbol-wise operations as in ZigZag. For the sake of simplicity, we discuss
here the case where no channel code is added, although our discussion can be extended to the case where we
have channel coding (because the effect of the noise is not entirely negligible on a symbol-by-symbol bases).
We abstract the modulation to be a one-to-one map M from symbols over Fq to the complex number field

M : Fq → C.

Using the model of [12], an equivalent representation of the collisions of w packets at receiver j in l time
slots is given by 

Cs1j (k)
Cs2j (k)

...
Cslj (k)

 =


As1i1 . . . As1iw
As2i1 . . . As2iw

...
...

Asli1 . . . Asliw




Si1(k)
Si2(k)

...
Siw(k)

 ,

k = 1, . . . , N,

where Csj ∈ CN represent the collision in time slot s, Si ∈ CN is the signal (packet) transmitted by sender i,
and Asi ∈ C are random variables corresponding to the combination of the modulation and channel propagation
effects, as well as the transmission decision of sender i at time slot s.

Note that ZigZag relies on there being non-zero time shifts among colliding packets, whereas general ANC
does not. The process of decoding by inverting this matrix is more general than the ZigZag procedure of [6].
For example, consider the case where two different nodes collide twice in two different time slots. If the offsets
between two packets in the two time slots are exactly the same, the ZigZag decoding process fails. However,



4

the transfer matrix A may still be full-rank because of the change in the channel gains over time, and hence,
we may decode the packets by Proposition 1. The decoding process results in the signals corresponding to
the original packets. The signals then have to be demodulated to obtain the original data. This algebraic
representation formalizes the intuition introduced in [6] that every collision is like a linear equation in the
original packets. Let

A =


As1i1 As1i2 . . . As1iw
As2i1 As2i2 . . . As2iw

...
...

...
Asli1 Asli2 . . . Asliw

 .

Proposition 1. Let P , |P | = w, be a set of packets. Consider a node j. Let S, |S| = l, be a set of slots
such that in every slot in S, node j receives a packet in P or a collision involving packets in P . The received
packets/collisions can be represented by a system of linear equations of the form C(k) = A × S(k), where
k = 1, 2, . . . , N and A is an l×w transfer matrix. Given this representation, if the transfer matrix A has rank
w (i.e., full rank) over the field C, then it is possible to decode all packets in P .

So far, we have assumed that a collision of any number of packets can be treated as a linear equation
involving those packets. The largest number of packets that can be allowed to collide for collision recovery
to still work depends on the range of the received SNR. In practice, as the number of packets involved in a
collision increases, it becomes less likely that the collision can be used for decoding. Hence, towards a more
realistic setup, we assume that any collision involving more than c (a fixed parameter) packets is not useful
and will be discarded. Throughout the paper, we assume that 4 ≤ c ≤ ∆. Note that at most ∆ packets are
involved in a collision based on our network assumptions. Thus, a decoder with parameter c = ∆ is as powerful
as one with parameter c > ∆.

4 The Probabilistic Abstract MAC Layer

In order to make precise claims about the correctness and performance of a MAC-layer algorithm, one requires
a formal specification of what a MAC layer should do. For our definition of MAC layer behavior, we use the
probabilistic abstract MAC layer specification defined in [1, 2]. According to this specification, a MAC layer
provides an external interface by which it accepts packets from its environment (a higher-level protocol) via
bcast(m) input events and delivers packets to neighboring nodes via rcv(m) output events. It also provides
acknowledgments to senders when their packets have been successfully delivered to all neighbors, via ack(m)
output events. Finally, it accepts requests from the environment to abort current broadcasts, via abort(m)
input events.1

The specification is implicitly parameterized by three positive reals, frcv, fack, and fprog. These bound
delays for a specific packet to arrive at a particular receiver, for an acknowledgment to be returned to a sender,
and for some packet from among many competing packets to arrive at a receiver. The specification also has
corresponding parameters εprog, εrcv, and εack, which represent probabilities that the delay bounds are not
attained. Finally, it has a parameter tabort, which bounds the amount of time after a sender aborts a sending
attempt when the packet could still arrive at some receiver.

We model a MAC layer formally as a Probabilistic Timed I/O Automaton (PTIOA), as defined by Mitra [18].
A MAC layer PTIOA Mac can be composed with an environment PTIOA Env and a network PTIOA Net.
This composition, written as Mac‖Env‖Net, is itself a PTIOA, and yields a unique probability distribution on
executions. To satisfy our specification, a MAC layer Mac must guarantee several conditions, when composed
with any Env and with Net. To define these requirements, we assume some constraints on Env: an execution

1In the distributed algorithms research community, where this work originated, “packets” are generally called “messages”, which
explains our use of the letter m.
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α of Mac‖Env‖Net is well-formed if 1. it contains at most one bcast event for each m (i.e., all packets are
unique), 2. any abort(m)i2 event is preceded by a bcast(m)i but not by an ack(m)i or another abort(m)i, and
3. any two bcasti events have an intervening acki or aborti (i.e., each node handles packets one at a time).

The specification says that the Mac automaton must guarantee the following conditions, for any well-
formed execution α of Mac‖Env‖Net. There exists a cause function that maps every rcv(m)j event in α to a
preceding bcast(m)i event, where i 6= j, and that maps each ack(m)i and abort(m)i to a preceding bcast(m)i.
The cause function must satisfy:

1. Receive restrictions: If bcast(m)i event π causes rcv(m)j event π′, then (a) Proximity: (i, j) ∈ E. (b)
No duplicate receives: No other rcv(m)j caused by π precedes π′. (c) No receives after acks: No ack(m)i
caused by π precedes π′. (d) Limited receives after aborts: π′ occurs no more than tabort time after an
abort caused by π.

2. Acknowledgment restrictions: If bcast(m)i event π causes ack(m)i event π′, then (a) No duplicate acks:
No other ack(m)i caused by π precedes π′. (b) No acks after aborts: No abort(m)i caused by π precedes
π.

In addition, the Mac automaton must guarantee three probabilistic upper bounds on packet delays. If
π is a bcast event in a closed execution β3, then we say that π is active at the end of β provided that π is
not terminated with an ack or abort in β. The probabilistic MAC layer guarantees the following probabilistic
bounds. Here, the notation Prβ refers to the conditional distribution on executions that extend β.

1. Receive delay bound: Let β be a closed execution that ends with a bcast(m)i at time t. Let j be a neighbor
of i. Define the following sets of time-unbounded executions that extend β: A, the executions in which
no abort(m)i occurs, and B, the executions in which rcv(m)j occurs by time t + frcv. If Prβ(A) > 0,
then Prβ(B|A) ≥ 1− εrcv.

2. Acknowledgment delay bound: Let β be a closed execution that ends with a bcast(m)i at time t. Define
the following sets of time-unbounded executions that extend β: A, the executions in which no abort(m)i
occurs, and B, the executions in which ack(m)j occurs by time t+ fack and is preceded by rcv(m)j for
every neighbor j of i. If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εack.

3. Progress bound: Let β be a closed execution that ends at time t. Let I be the set of neighbors of j that
have active bcasts at the end of β, where bcast(mi)i is the bcast at i, and suppose that I is nonempty.
Suppose that no rcv(mi)j occurs in β, for any i ∈ I.
Define the following sets of time-unbounded executions that extend β: A, the executions in which no
abort(mi)i occurs for any i ∈ I, and B, the executions in which, by time t + fprog, at least one of the
following occurs: an ack(mi)i for every i ∈ I, a rcv(mi)j for some i ∈ I, or a rcvj for some packet whose
bcast occurs after β.
If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εprog.

The receive bound says that, with high probability, a packet is received by a particular neighbor within
time frcv. The acknowledgment bound says that, with high probability, a packet is acknowledged within time
fack, and moreover, the acknowledgment is “correct” in that the packet has actually been delivered to all
neighbors. The progress bound says that, if a nonempty set of j’s neighbors have active bcasts at some point,
and none of these packets has yet been received by j, then with high probability, within time fprog, either j
receives one of these packets or something newer, or else all of these end with acks. This is all conditioned on
absence of aborts.

2Here and elsewhere, subscripts are used to identify the node at which the event occurs.
3An execution of a PTIOA is closed if it is a finite sequence of discrete steps and trajectories, ending with a trajectory whose

domain is a right-closed time interval. Formal details of such definitions appear in [19, 18].
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5 Implementing the MAC Layer Using ANC

In this section, we present a new ANC-based algorithm to implement the probabilistic MAC layer. This
algorithm yields smaller receive and acknowledgment delay bounds than the DMAC algorithm in [1, 2]. The
progress bound, on the other hand, is larger. In Section 6, we combine our new algorithm with DMAC to
obtain a small progress bound as well.

5.1 Probability that a Matrix is Full-Rank

The heart of the analysis of the algorithm is the following lemma, which expresses a lower bound on the
probability that a matrix B generated randomly from an arbitrary matrix A has full rank. In Section 5.2,
we use such random matrices to model the transmission behavior of the neighbors of a particular node k,
where entry Bi,j corresponds to the transmission behavior of node j in slot i. The conclusion of the lemma is
used there to show that, assuming that the algorithm executes for enough slots, with high probability, node k
receives enough information to recover a set of packets.

Construction of a random matrix: Let l and w be positive integers. Let A be an arbitrary matrix of
size l×w, with elements in C−{0}. Let p be a real number, 0 ≤ p ≤ 1. We construct a random l×w matrix B
from A according to the following two-step procedure: Start with B = A. First, for each (i, j) independently,
keep Bi,j unchanged with probability p and set it to 0 with probability 1−p. Second, for each i independently,
keep row i of B unchanged with probability p and set it to be identically 0 with probability 1− p.

Lemma 1. Let l and w be positive integers. Let A be an arbitrary matrix of size l × w, with elements in
C−{0}. Let p and ε be real numbers, with 0 < p ≤ 1

2 and 0 < ε < 1. Let c be a positive integer with c ≥ 4 and
wp ≤ c

2 . Suppose

l ≥

⌈
14e
e−1

1− p

(
w +

ln(w + 1) + 2 ln(1/ε)
p

)⌉
.

Let B be a random matrix constructed from A as described above. Then, with probability at least 1− ε, B has
at least w independent rows, each containing at most c non-zero elements.

Proof Sketch. Instead of fixing the number of rows of B, assume that we construct B by adding rows until
there are w rows with at most c non-zero entries that span Rw. The lemma then follows by showing that with
probability at least 1− ε, the resulting matrix has at most l rows.

For each d ∈ [w], we define random variables Xd and Yd. Let Xd be the smallest integer such that the sub-
matrix spanned by the rows with at most c non-zero entries among the first Xd rows of B has rank d. Further,
we define X0 = 0 and Yd = Xd −Xd−1. Note that to prove the lemma, we need to show that Pr(Xw > l) < ε.

In the following, we refer to non-zeroed rows of B as the rows that are not set to 0 at the end of the
construction of B. The non-zeroed rows of B are random vectors in Cw, where each coordinate is non-zero
independently with probability p. Assume that we are given d − 1 linearly independent vectors x1, . . . ,xd−1

for some integer d ≥ 1. The core of the proof is to lower bound the probability that a new non-zeroed row of
B has at most c non-zero entries and is linearly independent to the given d− 1 vectors. For simplicity, assume
that the vectors xi are vectors from the standard basis of Cw. Hence, each of them is non-zero in exactly
one coordinate and an additional vector is linearly independent iff it is non-zero in at least one coordinate in
which none of the d − 1 vectors xi is non-zero. The probability that all these w − d + 1 coordinates are 0 in
a random non-zeroed row is (1− p)w−d+1 since all coordinates are set to something non-zero with probability
p. The parameter c is chosen such that the probability that a non-zeroed row has at most c non-zero entries
is lower bounded by some constant q. It can be shown that the probability that a non-zeroed row has at most
c non-zero entries and is linearly independent of x1, . . . ,xd−1 is at least

pd =
1
7
·
(

1− (1− p)w−d+1
)
.
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Further it can be shown that the same bound holds if the vectors x1, . . . ,xd−1 are arbitrary vectors in Cw.
Therefore for each d ≥ 0 and row i > Xd−1, if row i is not set to 0 in the final step of the construction of B,
the probability that row i contains at most c non-zero entries and is independent of the first Xd−1 rows is at
least pd. Thus, the random variables Yd are dominated by independent geometric random variables Zd with
parameter (1− p)pd. Using a Chernoff bound, it can be shown that

Pr(Xd ≤ l) ≤ Pr

(
d∑
i=1

Zd ≤ l

)
≤ 1− ε.

This completes the proof sketch. A detailed proof appears in Appendix D.

5.2 The Coding Algorithm

In this section, we describe a simple contention-resolution protocol, which is used in our MAC algorithm. Let
c be the threshold parameter defined for ANC (in Section 3). Let ρ = c

2∆ . Note that ρ ≤ 1
2 , as c ≤ ∆.

Definition 1 (Rε, where ε is a real, 0 < ε < 1).

Rε =

⌈
14e
e−1

1− ρ

(
∆ +

ln(∆ + 1) + 2 ln(1/ε)
ρ

)⌉

Lemma 2. Rε = O
(
∆ + ∆

c log(∆
ε )
)
.

Proof. 1− ρ ≥ 1
2 . Thus,

Rε =

⌈
14e
e−1

1− ρ

(
∆ +

ln(∆ + 1) + 2 ln(1/ε)
ρ

)⌉

=

⌈
14e
e−1

1− ρ

(
∆ +

ln
(
(∆ + 1)(1/ε)2

)
c

2∆

)⌉

= O
(

∆ +
∆
c

log(
∆
ε

)
)
.

Our contention resolution algorithm, which we call simply Coding, has a single explicit parameter, ε. It
also uses c as an implicit parameter.

Coding(ε), where ε is a real, 0 < ε < 1: Assume I is a set of nodes, 1 ≤ |I| ≤ ∆, and j is a distinguished
node not in I. All the nodes in I participate in the algorithm, and j may or may not participate. Each
participating node i has a packet mi, assumed fixed for the entire algorithm.

The algorithm runs for exactly Rε slots. Every participating node participates in all slots, with no node
starting or stopping participation part-way through the algorithm. At every slot, each participating node i
transmits packet mi with probability exactly ρ = c

2∆ .

Lemma 3. In Coding(ε), with probability at least 1 − ε, node j receives all packets mi, i ∈ I, by the end of
the algorithm.

Proof. The probability that node j receives all packets if it participates in the algorithm is at most equal to
the probability that j receives all packets if it does not participate. So we assume without loss of generality
that j participates.
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We construct a random matrix B of size Rε × |I|, in Rε steps. In step l, 1 ≤ l ≤ Rε, we define row l,
as follows. If j transmits in slot l, then row l is identically 0. If j does not transmit in slot l, then write
I = {iw|1 ≤ w ≤ |I|}. For every w, 1 ≤ w ≤ |I|, let Bl,w = 0 if node iw does not transmit in slot l; otherwise
let Bl,w be a non-zero complex number (which corresponds to the channel gain from node iw to node j and
the offset of iw’s packet).

Now we apply Lemma 1, with l in the statement of that lemma equal to Rε, w in the lemma equal to |I|,
and p = ρ. Since

|I|ρ = |I| c
2∆
≤ c

2
,

and

l = Rε =

⌈
14e
e−1

1− ρ

(
∆ +

ln(∆ + 1) + 2 ln(1/ε)
ρ

)⌉
,

the conditions required by Lemma 1 hold. Therefore, by Lemma 1, with probability at least 1 − ε, B has a
set S of |I| independent rows, each containing at most c non-zero elements. Any row in S corresponds to a
collision that j receives during the execution of Coding(ε). Consequently, by Proposition 1, j can decode all
the packets mi, i ∈ I, by the end of the algorithm, with probability at least 1− ε.

5.3 The CMAC Algorithm

Now we present our MAC algorithm, CMAC , which is based on the Coding algorithm.

CMAC (ε), where 0 < ε < 1: We group slots into Coding phases, each consisting of Rε slots. At the
beginning of every Coding phase, each node i that has an active bcast(m)i participates in Coding(ε) with packet
m. Node i executes exactly one Coding phase, and then outputs ack(m)i at the end of the phase. However,
if node i receives an abort(m)i from the environment before it performs ack(m)i, it continues participating in
the rest of the Coding phase but does not perform ack(m)i.

Meanwhile, node i tries to receive packets from its neighbors, in every slot. It may receive a packet directly,
without any collisions, or indirectly, by decoding collisions. When it receives any packet m′ from a neighbor for
the first time, it delivers that to its environment with a rcv(m′)i event, at a real time before the time marking
the end of the slot.

Note that, in a single slot, node i may receive several packets and deliver them to its environment, by decoding
a collection of received collisions. Also note that node i may continue processing a packet for some time after
it is aborted; thus, CMAC handles aborts differently from the DMAC algorithm in [1, 2]. Besides increasing
the tabort bound, this way of handling aborts admits the possibility that the environment may submit a new
packet while node i is still transmitting on behalf of the aborted one. According to the rules of CMAC , node
i will begin handling the new packet at the start of the next Coding phase.

We now give several lemmas expressing properties of CMAC (ε). These lemmas are analogous to some in [1].
The “executions” referred to here are executions of the composition CMAC‖Env‖Net, for any environment
Env.

Lemma 4. In every time-unbounded execution, the Proximity, No duplicate receives, No receives after acks,
No duplicate acks, and No acks after aborts conditions are satisfied. Also, no rcv happens more than time Rε
after a corresponding abort.

The next lemma provides an absolute bound on acknowledgment time.

Lemma 5. In every time-unbounded execution α, the following holds. Consider any bcast(m)i event in α,
and suppose that α contains no abort(m)i. Then an ack(m)i occurs by the end of the next Coding phase that
begins after the bcast(m)i.

Proof. Immediate from the definition of CMAC
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The remaining properties are probabilistic. For these lemmas, we fix any environment Env and consider
probabilities with respect to the unique probability distribution on executions of CMAC‖Env‖Net. The first
lemma, which is analogous to Lemma 5.5 in [1], bounds the receive delay.

Lemma 6. Let i, j ∈ V , i a neighbor of j. Let β be a closed execution that ends with a bcast(m)i event. Let
cp be the first Coding phase that starts strictly after the bcast(m)i.
Define the following sets of time-unbounded executions that extend β: A, the executions in which no abort(m)i
occurs, and B, the executions in which, by the end of coding phase cp, a rcv(m)j occurs.
If Prβ(A) > 0, then Prβ(Ā ∪B) ≥ Prβ(B|A) ≥ 1− ε.

Proof. The first inequality is easy to see, as in [1]. For the second, assume A, that is, no abort(m)i occurs.
Let I be the set of neighbors of j participating in Coding phase cp. Since no abort(m)i occurs, i ∈ I, and so
|I| ≥ 1. Then, Lemma 3 implies that, with probability at least 1− ε, a rcvj for every packet mi′ , i′ ∈ I occurs
in phase cp. In particular, rcv(m)j occurs. Therefore, Prβ(B|A) ≥ 1− ε, as needed.

The second lemma, which is analogous to Lemma 5.6 in [1], bounds the acknowledgment delay and gives a
probabilistic guarantee that acknowledgments are preceded by receives.

Lemma 7. Let i ∈ V . Let β be any closed prefix of a time-unbounded execution that ends with a bcast(m)i
event. Let cp be the first Coding phase that starts strictly after the bcast(m)i.
Define the following sets of time-unbounded executions that extend β: A, the executions in which no abort(m)i
occurs, and B, the executions in which, by the end of coding phase cp, ack(m)i occurs and is preceded by
rcv(m)j for every neighbor j of i.
If Prβ(A) > 0, then Prβ(Ā ∪B) ≥ Prβ(B|A) ≥ 1− ε∆.

Proof. As before, the first inequality is easy. Lemma 5 implies that ack(m)i occurs by the end of phase cp.
For the rcv(m)j events, by Lemma 6, the probability that each individual rcv(m)j event occurs by the end of
cp is at least 1− ε. Then, using a union bound, the probability that all the rcv(m)j events occur by the end
of cp is at least 1− ε∆.

The third lemma, which is analogous to Lemma 5.4 in [1], gives a bound for progress.

Lemma 8. Let j ∈ V and β be a closed execution that ends at time t. Let I be the set of neighbors of j that
have active bcasts at the end of β, where bcast(mi)i is the bcast at i. Suppose that I is nonempty. Suppose
that no rcv(mi)j occurs in β, for any i ∈ I. Let cp be the first Coding phase that starts strictly after time t.
Define the following sets of time-unbounded executions that extend β: A, the executions in which no abort(mi)i
occurs for any i ∈ I; B, the executions in which, by the end of cp, at least one of the following occurs: a rcv(mi)j
for some i ∈ I, or a rcvj for some packet whose bcast occurs after β; and C, the executions in which, by the
end of cp, ack(mi)i occurs for every i ∈ I.
If Prβ(A) > 0, then Prβ(Ā ∪B ∪ C) ≥ Prβ(B ∪ C|A) ≥ 1− ε.

Proof. The first inequality is easy. As shown in the proof of Lemma 5.4 in [1], we have

Prβ(B ∪ C|A) ≥ Prβ(B|C̄ ∩A),

so, for the first conclusion, it suffices to show that Prβ(B|C̄ ∩A) ≥ 1− ε. Thus, assume C̄ ∩A, that is, that by
the end of cp, not every i ∈ I has an ack(mi)i, and no abort(mi)i occurs for any i ∈ I. Then some neighbor
of j in I participates in phase cp. Let I ′ be the set of neighbors of j participating in cp. Note that every node
in I ′ participates in all slots of phase cp, since no node stops participating part-way through the phase. Then
|I ′| ≥ 1 and thus by Lemma 3, with probability at least 1 − ε, a rcvj for every packet mi′ , i′ ∈ I ′ occurs in
phase P. Therefore,

Prβ(B|C̄ ∩A) ≥ 1− ε,

as needed.
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5.4 Implementing the Probabilistic MAC Layer

In this subsection, we fix ε, 0 < ε < 1, and fix tCphase, the time for a Coding phase, to be Rε. We define the
following parameter values: frcv = fack = fprog = 2tCphase; εrcv = εprog = ε; εack = ε∆; and tabort = tCphase.

Theorem 1. CMAC (ε) implements the probabilistic MAC Layer with parameters as defined above.

Proof. Similar to the proof of Theorem 5.7 in [1], using Lemmas 4-8.

The following corollary follows directly from Lemma 2 and Theorem 1.

Corollary 1. CMAC (ε) implements the probabilistic MAC layer with frcv, fack, fprog, and tabort = O
(
∆ + ∆

c log(∆
ε )
)
,

εrcv = εprog = ε, and εack = ε∆.

In the important case where c is large compared to ∆, this bound can be specialized and simplified as follows:

Corollary 2. If c = Ω(∆) then CMAC (ε) implements the probabilistic MAC layer with frcv, fack, fprog, and
tabort = O(∆ + log(1

ε )), εrcv = εprog = ε, and εack = ε∆. If in addition ε = Ω( 1
c∆

) for a constant c, then the
time bounds are all O(∆).

For comparison, the DMAC algorithm [1, 2] yields larger bounds of frcv = fack = O(∆ log(1
ε ) log(∆)), with

εrcv = ε and εack = ε∆. However, DMAC yields a smaller fprog bound, of O(h log(∆)), with εprog = (7
8)h, for

any positive integer h. In the next section, we show how to reduce the fprog bound to this level.

6 An Improved MAC Layer Implementation

In this section, we describe a second MAC layer implementation that achieves both the O
(
∆ + ∆

c log(∆
ε )
)

receive and acknowledgment bounds of CMAC and the O(log(∆)) progress bounds of DMAC . The new algo-
rithm essentially combines CMAC and DMAC using time-division multiplexing. CMAC is used to guarantee
the receive and acknowledgment bounds, while DMAC guarantees the progress bound. We call the combined
algorithm DCMAC .

6.1 The DCMAC Algorithm

Formally, DCMAC uses the Coding algorithm described in Section 5.2 and the Decay algorithm of [1, 2].
The Decay algorithm operates for exactly σ = dlog(∆ + 1)e slots, in which participating nodes transmit with
successively doubling probabilities, starting with 1

2σ and ending with 1
2 .

DCMAC (ε), where 0 < ε < 1: We use odd-numbered slots for Decay and even-numbered slots for
Coding(ε). We group odd slots into Decay phases, each consisting of σ slots, and group even slots into
Coding phases, each consisting of Rε slots. The two types of phases are not synchronized with respect to each
other.

At the beginning of each Decay phase, each node i that has an active bcast(m)i executes Decay with packet
m. At the beginning of each Coding phase, each node i that has an active bcast(m)i executes Coding(ε) with
packet m and outputs ack(m)i at the end of that Coding phase.

If node i receives an abort(m)i or performs an ack(m)i, it performs no further transmission on behalf of
packet m in the odd slots; that is, it stops participating in a Decay phase as soon as an abort or ack happens.
However, if node i receives an abort(m)i before it performs ack(m)i, it continues participating in the rest of
the Coding phase and does not perform ack(m)i.

Meanwhile, node i keeps trying to receive, in every slot. In even slots, it may receive a packet directly,
without collisions, or indirectly, by decoding collisions. In odd slots, it does not try to decode collisions, but
just looks for packets that arrive directly. When node i receives any packet m′ for the first time, in either
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an odd or even slot, it delivers that to its environment with a rcv(m′)i event, at a real time before the time
marking the end of the slot.

Thus, as in the CMAC algorithm, node i may receive several packets in one slot, by decoding a collection of
received collisions. Also note that node i may handle two different packets in consecutive odd and even slots,
because of the different handling of aborts in the odd and even slots. However, i handles at most one packet
in each slot, odd or even.

We now give lemmas expressing properties of DCMAC . These are analogous to those for CMAC , in
Section 5.3, but now we consider executions of the composition DCMAC‖Env‖Net. The first four lemmas are
very similar to before, but the fifth one, which deals with the progress bound, is somewhat different because
it depends on Decay rather than Coding.

Lemma 9. In every time-unbounded execution, the Proximity, No duplicate receives, No receives after acks,
No duplicate acks, and No acks after aborts conditions are satisfied. Also, no rcv happens more than time
2Rε after a corresponding abort.

Lemma 10. In every time-unbounded execution α, the following holds. Consider any bcast(m)i event in α
and suppose that α contains no abort(m)i. Then an ack(m)i occurs at the end of the Coding phase that begins
after the bcast(m)i.

The remaining properties are probabilistic. Fix any environment Env and consider the unique probability
distribution on executions of CMAC‖Env‖Net. The first lemma bounds the receive delay, and the second
bounds the acknowledgment delay and gives a probabilistic guarantee that acknowledgments are preceded by
receives. The proofs are similar to those of Lemmas 6 and 7, respectively.

Lemma 11. Let i, j ∈ V , i a neighbor of j. Let β be a closed execution that ends with a bcast(m)i event. Let
cp be the first Coding phase that starts strictly after the bcast(m)i.
Define the following sets of time-unbounded executions that extend β: A, the executions in which no abort(m)i
occurs, and B, the executions in which, by the end of coding phase cp, a rcv(m)j occurs. If Prβ(A) > 0, then

Prβ(Ā ∪B) ≥ Prβ(B|A) ≥ 1− ε.

Lemma 12. Let i ∈ V . Let β be any closed prefix of a time-unbounded execution that ends with a bcast(m)i
event. Let cp be the first Coding phase that starts strictly after bcast(m)i.

Define the following sets of time-unbounded executions that extend β: A, the executions in which no
abort(m)i occurs, and B, the executions in which, by the end of coding phase cp, ack(m)i occurs and is
preceded by rcv(m)j for every neighbor j of i. If Prβ(A) > 0, then

Prβ(Ā ∪B) ≥ Prβ(B|A) ≥ 1− ε∆.

The final lemma gives the progress bound.

Lemma 13. Let j ∈ V and h be a positive integer. Let β be a closed execution that ends at time t. Let I be
the set of neighbors of j that have active bcasts at the end of β, where bcast(mi)i is the bcast at i. Suppose
that I is nonempty. Suppose that no rcv(mi)j occurs in β, for any i ∈ I. Let dp be the hth Coding phase that
starts strictly after time t.

Define the following sets of time-unbounded executions that extend β: A, the executions in which no
abort(mi)i occurs for any i ∈ I; B, the executions in which, by the end of Decay phase dp, at least one
of the following occurs: a rcv(mi)j for some i ∈ I, or a rcvj for some packet whose bcast occurs after β; and
C, the executions in which, by the end of Decay phase dp, ack(mi)i occurs for every i ∈ I. If Prβ(A) > 0,
then

Prβ(Ā ∪B ∪ C) ≥ Prβ(B ∪ C|A) ≥ 1−
(

7
8

)h
.

Proof. Analogous to that of its counterpart, Lemma 5.4 in [1].
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6.2 Implementing the Probabilistic MAC Layer

Fix ε, 0 < ε < 1, and fix tDphase, the time for a Decay phase, to be σ = dlog(∆ + 1)e. Let h be any positive
integer. We define parameter values: frcv = fack = 4tCphase; fprog = 2(h + 1)tDphase; εrcv = ε; εack = ε∆;
εprog = (7

8)h; and tabort = 2tCphase.

Theorem 2. DCMAC (ε) implements the probabilistic MAC Layer with parameters as defined above.

Proof. Similar to the proof of Theorem 5.7 in [1], using Lemmas 9-13.

The following corollary follows directly from Lemma 2 and Theorem 2.

Corollary 3. DCMAC (ε) implements the probabilistic MAC layer with frcv, fack, and tabort = O
(
∆ + ∆

c log(∆
ε )
)
,

fprog = O(h log(∆)), εrcv = ε, εack = ε∆, and εprog = (7
8)h.

Again, we specialize the bound to the case where c is large:

Corollary 4. If c = Ω(∆), then DCMAC (ε) implements the probabilistic MAC layer with frcv, fack, and
tabort = O(∆ + log(1

ε )), fprog = O(h log(∆)), εrcv = ε, εack = ε∆, and εprog = (7
8)h. If in addition ε = Ω( 1

c∆
)

for some constant c, then the bounds for frcv, fack, and tabort are all O(∆).

These bounds compare favorably in all dimensions with those of DMAC .

7 Multi-Message Broadcast

The Multi-Message Broadcast (MMB) problem is widely studied in the distributed algorithms research commu-
nity. In this problem, an arbitrary number of uniquely-identified messages originate at arbitrary nodes in the
network, at arbitrary times; the problem is to deliver all messages to all nodes. We assume that each message
fits in a single MAC-layer packet. An MMB protocol has an external interface by which it receives messages
from its environment via arrive(m) input events and delivers messages to the environment via deliver(m)
output events. We describe the Basic Multi-Message Broadcast (BMMB) protocol from [14, 15].

Basic Multi-Message Broadcast Protocol (BMMB): Every node i maintains a FIFO queue named
bcastq and a set named rcvd. Both are initially empty. If node i does not have a pending MAC-layer
transmission and bcastq is not empty, node i composes a packet containing the message m at the head of
bcastq, removes m from bcastq, and passes the packet to the MAC layer for transmission, using a bcast output
event. If node i receives an arrive(m) input event, it immediately performs a deliver(m) output and adds m
to the back of bcastq and to the rcvd set. If node i receives a message m from the MAC layer, it first checks
rcvd. If m ∈ rcvd it discards the message. Otherwise, node i immediately performs a deliver(m) output, and
adds m to the back of bcastq and to the rcvd set.

We now consider executions of BMMB composed with DCMAC and some environment that generates
the messages. The following definitions are summarized from [1].

Definition 2 (Nice executions). A bcast(m) event that occurs at node i at time t0 in an execution is nice if
the corresponding ack(m) event occurs by time t0 + fack and is preceded by a corresponding rcv(m) event at
every neighbor j of i. An execution is nice if all bcast events in the execution are nice.

Definition 3 (The set overlap(m)). Let α be a nice execution and m be a message such that arrive(m)
occurs in α. Then we define overlap(m) to be the set of messages m′ whose processing overlaps the interval
between the arrive(m) and the final ack(m) event for m anywhere in the network. Formally, this means that
an arrive(m′) event precedes the final ack(m) event and the final ack(m′) event follows the arrive(m) event.

The following theorem follows from Theorem 7.20 of [1] and Corollary 3. It assumes an upper bound k on the
total number of messages that arrive from the environment in any execution.
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Theorem 3. Let m be a message and ε be a real, 0 < ε < 1. Then BMMB composed with DCMAC ( ε
2nk∆)

guarantees that, with probability at least 1 − ε, the following hold: 1. α is a nice execution. 2. Suppose an
arrive(m) event occurs in α at node i at time t0. Let k′ = |overlap(m)|. Then deliver(m) events occur at all
other nodes in α by time t0 +O

((
D + log(nkε )k′

)
log(∆)

)
+ (k′ − 1)

(
∆ + ∆

c log(∆nk
ε )
)
.

8 Conclusions

We have presented a MAC layer design, CMAC , based on Analog Network Coding. We have proved its basic
correctness and performance properties by showing that CMAC implements a formal probabilistic abstract
MAC layer specification. This analysis shows that the new design improves on a traditional probabilistic
retransmission algorithm DMAC in two of three performance metrics (the receive and acknowledgement delay
bounds), while doing worse on one (the progress bound). However, a hybrid design combining CMAC and
DMAC achieves the best of both algorithms.

In addition to providing an objective basis for comparing MAC layer designs, the abstract MAC layer allows
us to combine complexity bounds for MAC layer designs with complexity bounds for higher-level protocols
that run over MAC layers. To illustrate this, we showed how to combine a high-level global broadcast protocol
with an ANC-based MAC layer, and easily obtain complexity bounds for the combination.

Future work will include explicit consideration of other metrics, such as capacity, and comparison of ANC-
based strategies with more different kinds of MAC-layer designs. It would also be interesting to study how
the results can be extended to accommodate packet erasures. The development of the MAC we have provided
here has considered physical-layer ANC and not higher layer network coding. The use of our MAC and related
approaches could be considered in the presence of transport-layer network coding, since the two network coding
approaches are compatible [12]. Moreover, our work here has considered coding only for local node interactions
but invites questions of considering it for larger, multihop networks, particularly when transport-layer coding
is integrated. The interaction between the broadcast MAC and network coding at the transport layer has been
shown to provide, in a simple, opportunistic, fashion, considerable gains in a multihop setting [20]. Moreover,
a MAC-aware coding approach in multihop networks can lead to even more considerable gains [21].
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A Binomial Random Variables

Lemma 14. Let X be a binomial random variable. Then Pr (X ≤ dE[X]e) ≥ 1
2 and Pr (X > dE[X]e) ≤ 1

2 .

Proof. This follows from the fact that the median of X is either bE[X]c or dE[X]e.

Lemma 15. Let X be a random variable with binomial distribution B(n, p), where n is a positive integer and
p is a real, 0 < p < 1. Then Pr(X = 1) ≥ Pr(X = 0)(1− Pr(X = 0)).

Proof. Bernoulli’s inequality implies that Pr(X = 0) = (1− p)n ≥ 1− np, so 1− Pr(X = 0) ≤ np. Therefore,

Pr(X = 1) = np(1− p)n−1

≥ np(1− p)n

= npPr(X = 0)
≥ (1− Pr(X = 0)) Pr(X = 0).

B Sequences of Geometric Random Variables

Lemma 16. Let k be a positive integer. Let Xi, i ∈ [k], be independent geometric random variables, where Xi

has parameter pi. Define X =
∑k

i=1Xi, µ = E[X] =
∑k

i=1 1/pi, and pmin = mini∈[k] pi.
Then for every ε > 0,

Pr
(
X ≥ 2µ+

4 ln(1/ε)
pmin

)
≤ ε.

Proof. We prove this using a Chernoff-type argument. For every γ > 0 and every t ≥ 0, we have

Pr(X ≥ t) = Pr
(
eγX ≥ eγt

)
≤

E
[
eγX

]
eγt

=
∏k
i=1 E

[
eγXi

]
eγt

,

where the inequality follows by applying Markov’s inequality. We first derive a bound on E[eγXi ]. Assume
that γ = pmin/4 ≤ 1/4, yielding eγ − 1 ≤ pmin/3. Then for every i ∈ [k], we get

E
[
eγXi

]
=

∞∑
s=1

pi(1− pi)s−1eγs

=
pie

γ

1− (1− pi)eγ
(1+x≤ex)

≤ e
eγ−1

pie
γ−(eγ−1)

(eγ−1≤ pmin
3

)

≤ e
pmin

3pie
γ−pmin

(eγ>1)

≤ e
pmin
2pi .

Plugging this into the previous inequality, we obtain

Pr(X ≥ t) ≤ e
pmin

2
·
Pk
i=1

1
pi
− γt = e

pmin
2
·(µ− t2).

The lemma now follows by using t = 2µ+ 4 ln(1/ε)/pmin.



16

Lemma 17. Let k be a positive integer and q, p, and ε be positive reals less than one. Let Xi, i ∈ [k], be
independent geometric random variables, where Xi has parameter pi = q(1−(1−p)k+1−i). Define X =

∑k
i=1Xi.

Then

Pr
(
X ≤ 2e

(e− 1)q

(
k +

ln(k + 1) + 2 ln(1/ε)
p

))
≥ 1− ε.

Proof. We show that

E[X] ≤ e

(e− 1)q
·
(
k +

ln(k + 1)
p

)
. (1)

The lemma then follows directly from Lemma 16 because the smallest probability pi is pk = pq. In order to
prove (1), we partition the variable Xi into two parts. For every x, we have 1− x ≤ e−x and therefore we get

pi ≥ q
(

1− e−p(k+1−i)
)

(2)

for every i ∈ [k]. Let I1 ⊂ [k] be the set of i ∈ [k] for which p(k + 1 − i) ≥ 1, and let I2 = [k] \ I1 be the
set of i ∈ [k] for which p(k + 1 − i) < 1. For every i ∈ I1, (2) yields pi ≥ q(1 − 1/e). For x < 1, we have
e−x ≤ 1− e−1

e · x and therefore we obtain pi ≥ e−1
e · qp(k + 1− i) for every i ∈ I2. Together, these yield

E[X] =
k∑
i=1

1
pi

=
∑
i∈I1

1
pi

+
∑
i∈I2

1
pi

≤ e

(e− 1)q
·

k +
1
p
·
k∑
j=1

1
j


≤ e

(e− 1)q
·
(
k +

H(k)
p

)
,

where H(k) denotes the harmonic sum
∑k

j=1 1/j. Inequality (2) and thus the lemma now follow from the fact
that H(k) ≤ ln(k + 1).

C Linear Independence of Random Vectors

Lemma 18. Let d and w be positive integers, 1 ≤ k ≤ w. Let x1, . . . ,xd−1 ∈ Cw be d− 1 linearly independent
vectors. Let p be a positive real, p ≤ 1/2, c be an integer, where c ≥ 4 and wp ≤ c/2, and z = (z1, . . . , zw) ∈{
C \ {0}

}w be a vector.
Construct a random vector y = (y1, . . . , yw) ∈ Cw as follows. For every i ∈ [w], independently, set yi = zi with
probability p and yi = 0 with probability 1− p.
Then the probability that y has at most c non-zero coordinates and that y is linearly independent of all the
vectors x1, . . . ,xd−1 is at least

pd :=
1
7
·
(

1− (1− p)w−d+1
)
. (3)

Proof. Let C be the event that y has at most c non-zero coordinates and let I be the event that y is linearly
independent of x1, . . . ,xd−1. We aim to show that Pr(C ∩ I) ≥ pd.

Let W ⊂ [w] be a set of size |W | = d−1 such that the vectors x1, . . . ,xd−1 restricted to only the coordinates
in W are still linearly independent. Note that such a set W always exists and that W can be obtained, e.g., by
Gaussian elimination. By the choice of W , there exist α1, . . . , αd−1 ∈ C such that for the linear combination

v = (v1, . . . , vd−1) =
d−1∑
i=1

αi · xi, (4)



17

we have vi = −yi for all i ∈W . The vector y is linearly independent of x1, . . . ,xd−1 if and only if y + v 6= 0,
i.e., there is a coordinate j 6∈ W such that yj + vj 6= 0. We define three random variables N1, N2, N

′
2 ⊆ [w] as

follows:

N1 = |{i|i ∈W, yi 6= 0},
N2 = |{i|i /∈W, yi 6= 0}|,
N ′2 = |{i|i /∈W, yi + vi 6= 0}|.

Notice that N1 +N2 is the number of non-zero elements of y, i.e., event C occurs if and only if N1 +N2 ≤ c.
Furthermore, event I occurs if and only if N ′2 > 0. Thus, Pr(C∩I) = Pr(N ′2 > 0∧N1 +N2 ≤ c). Every element
yi of y is zero with probability (1 − p), and is non-zero with probability p. Hence, the random variables N1

and N2 have binomial distributions with expected values µ1 = (d − 1)p and µ2 = (w − d + 1)p, respectively.
Note that

dµ1e+ dµ2e ≤ (d− 1)p+ (w − d+ 1)p+ 2
= wp+ 2

≤ c

2
+ 2

≤ c,

because, by the lemma’s statement, wp ≤ c
2 and c ≥ 4. Thus, we have:

Pr
(
N ′2 > 0 ∧N1 +N2 ≤ c

)
≥ Pr

(
N ′2 > 0 ∧N2 ≤ dµ2e ∧N1 ≤ dµ1e

)
= Pr

(
N ′2 > 0 ∧N2 ≤ dµ2e|(N1 ≤ dµ1e)

)
· Pr (N1 ≤ dµ1e)

≥ 1
2
Pr
(
N ′2 > 0 ∧N2 ≤ dµ2e|(N1 ≤ dµ1e)

)
,

(5)

where the first inequality is by the fact that dµ1e+ dµ2e ≤ c (see (5)) and the last inequality is by Lemma 14.

Claim 1: Pr (N ′2 = 0|N1 ≤ dµ1e) ≤ Pr (N2 = 0) .

Proof of Claim 1:
Recall that N ′2 = 0 iff yj + vj = 0 for all j ∈ [w] \ W . The values vj for j 6∈ W are determined by the
vectors xi and yj for j ∈ W . Hence, the values yj for j 6∈ W are independent of the values vj , j 6∈ W . We
define F = {j ∈ [w] \W |vj 6= 0}. For j 6∈ F , vj = 0 and therefore yj + vj = 0 iff yj = 0, which happens with
probability 1 − p. For j ∈ F , we can only have yj + vj = 0 if yj 6= 0, which happens with probability p. We
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therefore obtain

Pr
(
N ′2 = 0

∣∣N1 ≤ dµ1e)

=
∑

F ′⊆[w]\W

Pr
(
N ′2 = 0|N1 ≤ dµ1e ∧ |F | = f

)
Pr(|F | = f |N1 ≤ dµ1e)

≤
∑

F ′⊆[w]\W

Pr

 ∧
j /∈F ′

(yi = 0) ∧
∧
j∈F ′

(yj 6= 0)|N1 ≤ dµ1e ∧ F = F ′

Pr(F = F ′|N1 ≤ dµ1e)

=
∑

F ′⊆[w]\W

Pr

 ∧
j /∈F ′

(yi = 0) ∧
∧
j∈F ′

(yj 6= 0)|F = F ′

Pr(F = F ′|N1 ≤ dµ1e)

=
∑

F ′⊆[w]\W

p|F
′|(1− p)w−d+1−|F ′| · Pr(F = F ′|N1 ≤ dµ1e)

≤
∑

F ′⊆[w]\W

(1− p)w−d+1 · Pr(F = F ′|N1 ≤ dµ1e)

= (1− p)w−d+1

= Pr (N2 = 0) ,

where the second inequality follows from p ≤ 1
2 .

End of Claim 1.

We have:

Pr
(
N ′2 > 0 ∧N2 ≤ dµ2e|N1 ≤ dµ1e

)
= 1− Pr

(
N ′2 = 0 ∨N2 > dµ2e|N1 ≤ dµ1e

)
≥ 1− Pr

(
N ′2 = 0|N1 ≤ dµ1e

)
− Pr (N2 > dµ2e|N1 ≤ dµ1e)

= 1− Pr
(
N ′2 = 0|N1 ≤ dµ1e

)
− Pr (N2 > dµ2e)

≥ 1− Pr (N2 = 0)− Pr (N2 > dµ2e) , (6)

where the last inequality is by Claim 1. Using Lemma 14, we have Pr (N2 > dµ2e) ≤ 1
2 . Thus, by (6), we get

Pr
(
N ′2 > 0 ∧N2 ≤ dµ2e|N1 ≤ dµ1e

)
≥ 1

2
− Pr (N2 = 0) . (7)

Also, since dµ2e ≥ 1, by (6), we get

Pr
(
N ′2 > 0 ∧N2 ≤ dµ2e|N1 ≤ dµ1e

)
≥ Pr (N2 = 1) . (8)

If Pr(N2 = 0) ≤ 2
7 , we have

1
2
− Pr(N2 = 0) ≥ 2

7
(1− Pr(N2 = 0)) .

Otherwise, Pr(N2 = 0) > 2
7 and hence, by Lemma 15, we get

Pr(N2 = 1) ≥ 2
7

(1− Pr(N2 = 0)).

Therefore, using (7), (8), we have

Pr
(
N ′2 > 0 ∧N2 ≤ dµ2e|N1 ≤ dµ1e

)
≥ 2

7
(1− Pr(N2 = 0)). (9)
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Combining (5) and (9), we get

Pr(C ∩ I) = Pr
(
N ′2 > 0 ∧N1 +N2 ≤ c

)
≥ 1

2
Pr
(
N ′2 > 0 ∧N2 ≤ dµ2e|N1 ≤ dµ1e

)
≥ 1

2
· 2

7
(1− Pr(N2 = 0))

=
1
7

(1− Pr(N2 = 0))

=
1
7

(1− (1− p)w−d+1),

which concludes the proof.

D Proof of Lemma 1

Proof. Instead of fixing the number of rows of B, assume that we construct B by adding rows until there are
w rows with at most c non-zero entries that span all of Rw. The lemma then follows by showing that with
probability at least 1− ε, the resulting matrix has at most l rows.

For each d ∈ [w], we define random variables Xd and Yd. Let Xd be the smallest integer such that the
sub-matrix spanned by the rows with at most c non-zero entries among the first Xd rows of B has rank d.
Further, we define X0 = 0 and Yd = Xd −Xd−1.

The non-zero rows of B are chosen in the same way as vector y in the statement of Lemma 18. Therefore
by Lemma 18, for each d ≥ 0 and row i > Xd−1, if row i is not set to 0 in the final step of the construction of
B, the probability that row i contains at most c non-zero entries and is independent of the first Xd−1 rows is at
least pd = 1

7

(
1− (1− p)w−d+1

)
. Note that different rows are independent and that this is also independent of

Xd−1 and of the content of the first Xd−1 rows. Thus, the random variables Yd are dominated by independent
geometric random variables Zd with parameter (1 − p)pd. By applying Lemma 17 (using q = (1 − p)/7) and
the assumption on l, we then get

Pr(Xd ≤ l) = Pr

(
d∑
i=1

Yd ≤ l

)
≤ Pr

(
d∑
i=1

Zd ≤ l

)
≤ 1− ε.

This completes the proof.




