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Abstract

Understanding invariance and discrimination
properties of hierarchical models is arguably
the key to understanding how and why such
models, of which the the mammalian visual
system is one instance, can lead to good gen-
eralization properties and reduce the sample
complexity of a given learning task. In this
paper we explore invariance to transforma-
tion and the role of layerwise embeddings
within an abstract framework of hierarchi-
cal kernels motivated by the visual cortex.
Here a novel form of invariance is induced by
propagating the effect of locally defined, in-
variant kernels throughout a hierarchy. We
study this notion of invariance empirically.
We then present an extension of the abstract
hierarchical modeling framework to incorpo-
rate layer-wise embeddings, which we demon-
strate can lead to improved generalization
and scalable algorithms. Finally we analyze
experimentally sample complexity properties
as a function of architectural parameters.

1. Introduction

In recent years learning machines have shown to yield
good generalization for a variety of tasks. Advances
in designing general purpose learning machines are,
however, constrained by at least two factors: typically
many labeled data are needed to achieve good perfor-
mance, and often substantial prior knowledge about
the problem at hand must be used to obtain state of
the art results on complex tasks such as image un-

derstanding. In the context of kernel machines, prior
knowledge corresponds to specific data representations
obtained by choosing kernels, or equivalently feature
maps.

It is natural, however, to ask whether there are gen-
eral principles which might allow one to learn data
representations for a wide variety of problems. In this
paper we adopt the perspective that such a principle
can be a decomposability property which is satisfied in
many domains: we will assume that the data is roughly
describable by a hierarchy of parts, and work with a
class of hierarchical “derived kernels” designed around
this assumption introduced by Smale et al. (Smale
et al., 2009). The derived kernel formalism general-
izes and simplifies important aspects of several recent
hierarchical architectures inspired by the visual cor-
tex (Fukushima, 1980; LeCun et al., 1998; Wersing &
Korner, 2003; Serre et al., 2007a;b; Jarrett et al., 2009),
while preserving many of the key components.

We explore several important aspects of learning with
hierarchical models. Our first, and primary, concern is
that of invariance to transformation. It has been ar-
gued (e.g. (Zoccolan et al., 2007)) that it is the trade-
off between invariance and discrimination properties
which specifically underpins learning from extraordi-
narily small samples in the mammalian cortex. We
first study a new kind of invariance to transforma-
tion induced by propagating local invariance, as given
by invariant kernels defined on small image patches,
bottom-up, throughout a hierarchy. A set of exper-
iments and a discussion analyzing invariance to ro-
tation of objects in grayscale images is given. We
then show empirically that invariance to translation
(as “built-in” to the model via spatial pooling) com-
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bined with the decomposability assumption inherent
in the hierarchy leads to a reduction in sample com-
plexity for a labeled image classification task. How
and where attentional effects and context-dependent
priors might be included is also discussed.

The second contribution of this paper is to extend
the derived kernel framework to incorporate more gen-
eral feature maps and pooling functions at each layer
of the hierarchy. As an example of such a general
feature map, we show that layer-wise KPCA embed-
dings (Schlkopf et al., 1998) can be profitably em-
ployed to reduce the computational complexity of the
model and scale to large datasets while increasing clas-
sification accuracy. As we will describe in the following
section, each layer of the derived kernel hierarchy is as-
sociated with image patches of a specific size. KPCA
or other feature maps applied at each layer leads to
a family of algorithms which rely on the geometry of
image patches at different scales in an interesting and
non-trivial way.

In Section 2 we describe the derived kernel framework,
and in Section 3 extensions incorporating general fea-
ture maps and pooling functions are proposed. In
Section 4 we provide a discussion comparing different
notions of invariance found in the literature, and for-
malize the new notion of invariance. We then present
layerwise KPCA embeddings and scalable low-rank ap-
proximations in Section 5. Section 6 gives a detailed
empirical analysis of invariance discussed in Section 4,
and natural low-rank approximations emerging from
the discussion in Section 5. Our empirical work con-
cludes with an experimental analysis of sample com-
plexity. We then end with a few remarks in Section 7.

2. Setting & Hierarchical Framework

The use of hierarchical learning architectures to ob-
tain complex data representations has recently re-
ceived considerable interest in machine learning and
computer vision (Wersing & Korner, 2003; Hinton &
Salakhutdinov, 2006; Serre et al., 2007b; Jarrett et al.,
2009; Lee et al., 2009). Hierarchical parts-based de-
scriptions are ubiquitous among these publications,
and date at least back to (Fukushima, 1980). The
principle of decomposability of the input data is also
at the heart of several Bayesian techniques (Geman &
Johnson, 2002; Lee & Mumford, 2003), but has, most
importantly, served the human visual system well.

In this paper we adopt the “derived kernel” framework
proposed by (Smale et al., 2009), and test empirically
several results presented therein. The framework de-
scribes, in functional analytical terms, a family of hi-

erarchical kernels and associated feature maps, and
seeks to provide an analytically tractable avenue for
the analysis of complicated models. The framework
also captures essential components of a broad class
of architectures, including convolutional neural net-
works (LeCun et al., 1998) and the model of (Serre
et al., 2007b). Here we recall derived kernels and their
feature maps in the context of images.

Derived kernels are learned from unlabeled data and
can be equivalently thought of as defining a hierarchi-
cal feature map which can be used as an unsupervised
preprocessing step for a given learning problem. The
ingredients needed to define the derived kernel consist
of: (1) An architecture defined by a finite number of
nested patches (for example subdomains of the square
Sq ⊂ R2), (2) a set of transformations from a patch to
the next larger one, (3) a suitable family of function
spaces defined on each patch, and (4) a set of templates
which connect the mathematical model to a real world
setting.

We will first give the definition of the derived kernel
in the case of an architecture composed of three layers
of patches u, v and Sq in R2. The patches are nested,
u ⊂ v ⊂ Sq, and are square, centered, and axis aligned.
Assume that we are given a function space on Sq, de-
noted by Im(Sq), as well as the function spaces Im(u),
Im(v) defined on subpatches u, v, respectively. Func-
tions are assumed to take values in [0, 1], and can be
interpreted as grey scale images. Next, assume a fi-
nite set Hu of transformations that are maps from the
smallest patch to the next larger patch h : u→ v, and
similarly Hv with h : v → Sq. Examples of transfor-
mations are translations, scalings and rotations, how-
ever we will consider only translations here. The trans-
formations are embeddings of u in v and of v in Sq.
A translation h ∈ Hv can be thought of as moving
the image over the “receptive field” v. The last and
most fundamental ingredient are families of template
sets Tu ⊂ Im(u) and Tv ⊂ Im(v), assumed here to be
discrete, finite and endowed with the uniform prob-
ability measure. The templates are a key semantic
component of the model and can be simply thought of
as sets of patches (of different size) randomly sampled
from images in some database.

In this paper “kernel” refers to reproducing ker-
nels (Aronszajn, 1950), and we will deal primarily
with inner product kernels which are known instances
of reproducing kernels. We additionally always as-
sume that K(x, x) 6= 0 for all x ∈ X and denote
with K̂ kernels normalized according to K̂(x, x′) =

K(x,x′)√
K(x,x)K(x′,x′)

. Clearly in this case K̂ is a reproduc-
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ing kernel and K̂(x, x) = 1 for all x ∈ X. The kernel
normalization provides a more interpretable as well as
comparable quantity, as the similarity between two im-
ages should not depend on the size of the image.

2.1. The Derived Kernel

Given the above objects, we can describe the construc-
tion of the derived kernel in a bottom-up fashion. The
process starts with a normalized initial reproducing
kernel on Im(u)× Im(u) denoted by K̂u(f, g) that we
assume to be non-negative valued.

Next, an object of central importance, the “neural re-
sponse” feature map of f at t, is defined as:

Nv(f)(t) = max
h∈H

K̂u(f ◦ h, t), (1)

where f ∈ Im(v), t ∈ Tu and H = Hu. The neural
response of f is a map Nv(f) : Tu → [0, 1]. We can
interpret the neural response as a vector in R|Tu| with
coordinates Nv(f)(t), for t ∈ Tu. The corresponding
inner product on R|Tu| is defined as 〈·, ·〉L2(Tu). The
derived kernel on Im(v)× Im(v) is then defined as

Kv(f, g) = 〈Nv(f), Nv(g)〉L2(Tu), (2)

and can be normalized to obtain the kernel K̂v. The
process repeats by defining the second layer neural re-
sponse as

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t), (3)

where in this case f ∈ Im(Sq), t ∈ Tv and H = Hv.
The new derived kernel is now on Im(Sq) × Im(Sq),
and is given by

KSq(f, g) = 〈NSq(f), NSq(g)〉L2(Tv), (4)

where 〈·, ·〉L2(Tv) is the L2 inner product with respect
to the uniform measure 1

|Tv|
∑
t∈Tv

δt. As before, KSq

is normalized to obtain the final derived kernel K̂Sq.

The above construction can be easily generalized to an
n layer architecture given by sub-patches v1 ⊂ v2 ⊂
· · · ⊂ vn = Sq. In this case we use the notation
Kn = Kvn

and similarly Hn = Hvn
, Tn = Tvn

, and
the definition is given formally using induction:
Definition 2.1. Given a non-negative valued, normal-
ized, initial reproducing kernel K̂1, the m-layer derived
kernel K̂m, for m = 2, . . . , n, is obtained by normaliz-
ing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where

Nm(f)(t) = max
h∈Hm−1

K̂m−1(f ◦ h, t), t ∈ Tm−1.

In our discussion, subscripts will be dropped when the
statement holds for any layer m within an architecture.
Note that the normalized neural response is the feature
map associated to the derived kernel, and provides a
natural representation for any function f .

The derived kernel definitions can also be written com-
pactly as

NSq(f) = max
h∈H

{
ΠvN̂v(f ◦ h)

}
, (5)

where the max operation is assumed to apply
component-wise, and the operator Πv : L2(Tu) →
L2(Tv) is defined as (Πv)t,t′ = N̂v(t)(t′) with t ∈ Tv
and t′ ∈ Tu. The operator Π can be seen as a |Tv|×|Tu|
matrix so that each step in the recursion amounts to
matrix-vector multiplications (“filtering”) followed by
max operations (“pooling”). The construction of the
operator Π is the unsupervised learning step in the
model; a simple way to learn it is by randomly sam-
pling image patches, and this idea hinges on the as-
sumption that the space Im(Sq) is endowed with a
“mother” probability measure ρ.

If the transformation spaces Hi are endowed with
probability measures ρHi

, the measures mark a nat-
ural entry point for incorporating notions of attention
and context-dependent priors. Such a measure can
be used to bias the template sampling mechanism to-
wards exploring particular regions of an image, such
as in the case of a rudimentary attention-like mecha-
nism whereby prior information guides the search to
interesting parts of an image.

3. General Feature Maps and Pooling
Functions

We extend the basic derived kernel defined in the pre-
vious section in two ways that will lead to improved
generalization and scalability properties: we consider
general pooling functions and more sophisticated pro-
cedures for defining the feature maps at each layer,
while preserving the overall architecture. The gener-
alized framework is perhaps best illustrated by way of
the following diagram:

K̂1 K̂2 . . . K̂n−1 K̂n

K̃1

Φ1
?

pool -

K̃2

Φ2
?

pool -

. . . K̃n−1

Φn−1
?

pool -

Figure 1. General feature maps and pooling can be defined
at each layer.
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The pooling operation can be generalized by consider-
ing different positive, bounded functionals acting on
functions on H. For a fixed function f ∈ Im(vi)
and a template t ∈ Ti−1 we can consider the posi-
tive real valued function on H = Hi−1,i defined by
F (h) = Ff,t(h) = K̂i−1(f ◦h, t). If K̂ and hence F are
sufficiently regular and in particular F ∈ Lp(H, ρH),
different pooling operations can be defined by con-
sidering Lp norms of F . The original definition of
the neural response simply takes the uniform norm
in L∞(H) ‖F‖∞ = suph∈H F (h). Another natural
choice is the L1 norm

∫
H
F (h)dρH(h), which corre-

sponds to an average. More generally one can consider
‖F‖p =

(∫
H
F (h)pdρH(h)

)1/p
. The neural response

for an arbitrary pooling function Ψ is given by

N(f)(t) = Ψ(F ), with F (h) = K̂m−1(f ◦ h, t).

where F : H → R+. As we argue below in Section 4,
the pooling function plays an important role in estab-
lishing invariance properties so that consideration of
different pooling possibilities is an essential part of the
modeling process.

For a generalized architecture as shown in Figure 1,
compact recursive definitions for the generalized neu-
ral response and derived kernel can be given.

Definition 3.1 (Generalized Derived Kernels). Given
the feature maps Φm : L2(Tm−1)→ Fm, 2 ≤ m ≤ n, a
pooling function Ψ, and a non-negative valued, nor-
malized, initial reproducing kernel K̃1, the m-layer
derived kernel K̂m, for m = 2, . . . , n, is obtained
by normalizing Km(f, g) :=

〈
Ñm(f), Ñm(g)

〉
L2(Tm−1)

,

and the m-layer generalized derived kernel K̃m, for
m = 2, . . . , n, is given by

K̃m(f, g) :=

〈
(Φm ◦ Ñm)(f), (Φm ◦ Ñm)(g)

〉
Fm∥∥(Φm ◦ Ñm)(f)

∥∥
Fm

∥∥(Φm ◦ Ñm)(g)
∥∥
Fm

where

Ñm(f)(t) = Ψ
[(
K̃m−1(f ◦ h, t)

)
h∈Hm−1

]
(6)

for f ∈ Im(vm), t ∈ Tm−1.

As we will discuss below in Section 5 and demonstrate
experimentally in Section 6, this generalized neural re-
sponse leads to flexible, scalable algorithms.

4. Invariance in Hierarchical Models

A goal of central importance in the study of hierarchi-
cal architectures and the visual cortex alike is that of
understanding the invariance-selectivity tradeoff, and

how invariance and selectivity contribute towards pro-
viding an improved representation useful for learning
from data. In this section we discuss invariance prop-
erties of the derived kernel, and compare the notion
of propagated invariance explored in this paper with
other forms appearing in the literature. The discussion
is complemented by a set of experiments in Section 6,
which verify invariance properties and confirm that as-
sumptions built into the current class of hierarchical
models apply to and are useful for practical supervised
classification tasks.

4.1. Types of Invariance Found in Hierarchical
Models

Invariance in hierarchical models can arise in predom-
inantly one of three ways. The simplest case corre-
sponds to pooling over specific transformations (e.g.
(Serre et al., 2007a; Lee et al., 2009; Jarrett et al.,
2009)). For example, we can look for the best match
of a template in an image by comparing translations
and rotations of the template to all patches of the im-
age and taking the largest correlation. In this case the
transformations are “built-in” to the model, leading
to high computational cost. Although it is often the
case that the modeler will integrate domain knowledge
directly into an architecture by imposing this form of
invariance, it is not always obvious what the effect will
be in a complex hierarchy involving nested analysis of
images and their sub-patches. A preliminary empirical
study of this kind of invariance can be found in (Good-
fellow et al., 2009). A second form of invariance, preva-
lent in slow subspace learning (Wiskott & Sejnowski,
2003) and similarity learning (Bar-Hillel et al., 2005),
arises from training. In this case the type of invariance
is not always known explicitly, but is adapted to the
modes of variation in the dataset in accordance with
an objective function which may or may not involve
data labels. Deep belief networks (Hinton & Salakhut-
dinov, 2006) and models that effectively compress the
data have also been known to achieve small amounts of
invariance, but still much less than that of algorithms
where a particular invariance is integrated directly.

The first type of invariance is appealing because it al-
lows one to include specific domain knowledge when
available, but is brute-force and can be prohibitive
computationally. The second form is advantageous in
the absence of knowledge about the problem, but re-
quires training and often lacks interpretability. A third
means for imposing invariance, which is our focus here,
involves enforcing invariance of a similarity metric de-
fined on small patches of images, and allowing local
invariance to propagate up the hierarchy. This new
method has the benefit that the computational cost
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does not increase, and the particular local invariance
can be chosen to reflect problem-specific knowledge.
We discuss this type of invariance in more detail be-
low.

4.2. Invariance Properties of the Neural
Response Feature Map

We will consider invariance with respect to some set
of transformations R = {r | r : v → v}. We say that
the neural response or derived kernel is invariant to
the transformation r ∈ R whenever N̂(f) = N̂(f ◦
r) (or equivalently K̂n(f ◦ r, f) = 1). The following
important assumption relates the transformations R
and the translations H “built-in” to the model:

Assumption 1. Fix any r ∈ R. Then for each h ∈ H,
there exists a unique h′ ∈ H such that r ◦ h = h′ ◦ r,
and the map h 7→ h′ is surjective.

Note that r on the left hand side of the Assumption
maps vm+1 to itself, while on the right hand side r
maps vm to itself. As an example, let R be rotations
about the origin and let H be translations so that f ◦h
is an image patch obtained by restricting an image f
to a sub-patch. The assumption says that rotating an
image and then taking a restriction (patch) is equiv-
alent to first taking a (different) restriction and then
rotating the resulting image patch.

Given this assumption, we recall the following invari-
ance result:

Proposition 4.1 ((Smale et al., 2009)). If the initial
kernel satisfies K̂1(f, f ◦ r) = 1 for all r ∈ R, f ∈
Im(v1), then

N̂m(f) = N̂m(f ◦ r),

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

This result says that if Assumption 1 holds (at all lay-
ers), and an appropriate local invariance holds via K̂1

– the kernel defined on the smallest patches – then the
neural responses at all layers are invariant to the trans-
formations inR. In particular, the final representation
will be invariant to global transformations of the input.
Thus if invariance of the initial kernel is enforced, then
this invariance is seen to propagate to higher layers and
impose additional invariance properties. These invari-
ances collectively lead to rich equivalence classes of
inputs, the members of which get mapped to the same
representation by the hierarchy.

5. Layer-wise KPCA Embeddings and
Scalability

We provide an example illustrating the feature map
extension proposed in Section 3 and consider the case
of a canonical feature map associated to the Mercer
expansion of the derived kernel at a given layer. This
example corresponds to applying KPCA (but without
centering in this case) to the neural responses of the
templates, and projecting the responses of templates
and input images presented to the hierarchy onto a
principal subspace. By projecting the neural response
vectors onto only the first k < |T | principal compo-
nents, there is hope that for some small k one can
achieve a computational speedup without sacrificing
performance on the task. Section 6 suggests that in-
deed only a small number of components k are needed
in practice.

Note that each space Im(v) can be endowed with a
probability measure ρv. Starting from the mother
measure on Im(Sq) and a given measure ρH on H =
Hvn−1,Sq, the product space Im(Sq) × H can be en-
dowed with the corresponding product measure P .
The measure ρvn−1 on Im(vn−1) is then defined as the
pushforward measure ρv = P ◦ π−1 defined by the
map π = πv : Im(Sq) × H → Im(v) mapping (f, h)
to f ◦ h. The construction then repeats in a similar
fashion for the previous layer, proceeding from the top
downwards. At any layer we can then consider the
integral operator

L
K̂
F (f) =

∫
Im(v)

K̂(f, g)F (g)dρv(g)

whose spectrum we denote by (σj , φj)
p
j=1, with p ≤ ∞.

In practice the measure ρv can be replaced by the em-
pirical measure underlying the corresponding template
set T . Now consider the map Φ : Im(v)→ `2 such that
f 7→ Φ(f) =

(√
σ1φ1(f),

√
σ1φ2(f), . . . ,

√
σNφN (f)

)
,

with N < p. Recalling the Mercer expansion of a
kernel, one can see that the above feature map corre-
sponds to replacing the derived kernel with a truncated
derived kernel of the form

K̃(f, g) =
N∑
j=1

σjφj(f)φj(g).

Alternatively, using the above truncated kernel can be
seen as equivalent to working with low-rank approxi-
mations of the Π matrices appearing at each layer, as
defined in Equation (5). In this case the approxima-
tion scheme is exactly the truncated SVD.

The above reasoning is not specific to KPCA, how-
ever. Other feature maps, for example incorporating
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further geometric information or sparsity constraints
may also be used. In the context of deep belief net-
works, (Weston et al., 2008) has previously explored
using Laplacian embeddings at each layer of a DBN.

6. Empirical Analysis

In this section we present experimental results veri-
fying the properties and performance of the derived
kernel architecture, in particular in the setting of the
generalized derived kernel that was developed in Sec-
tions 3 and 5. The purpose of this empirical evaluation
is twofold. First, we verify the extent to which the
theoretical invariance properties of the derived kernel
hold in practice, given that we must necessarily work in
a finite, discrete setting where the theoretical results
might not apply completely. It is therefore interest-
ing to quantify the extent to which the theoretical and
empirical results agree. Second, we compare the classi-
fication performance of the generalized derived kernel
with embeddings given by KPCA to the performance
of the original derived kernel. Here the goal is not to
achieve the best possible classification accuracies, but
rather to check the goodness of the data representation
that the neural response encoding provides. In partic-
ular we will be working in an impoverished regime, in
which we only use a small number of training images.
Moreover, the classifications are performed using a 1-
nearest neighbor rule defined by the distance induced
by the derived kernel. This simple choice of classifier
highlights the role of neural response as a data repre-
sentation.

6.1. Experimental Setup

The experiments in this section use two databases of
images: the MNIST dataset of handwritten digits (Le-
Cun et al., 1998) and the Caltech101 dataset (Fei-Fei
et al., 2006).

MNIST. Each image in the MNIST dataset is 28 ×
28 pixels in grayscale. Experiments using the MNIST
dataset are performed using a three-layer architecture
with patch sizes u = 12×12, v = 20×20, and Sq = 28×
28, except for the low-rank approximation experiment
in Section 6.4 in which a two-layer architecture is also
used with patch sizes u = 12 × 12 and Sq = 28 ×
28. The template sets are constructed by randomly
extracting 500 image patches (of size u and v) from
images which are not used in the train or test sets.
The transformations at each stage are taken to be all
possible translations.

Caltech101. We use a subset of 8 categories from
the Caltech101 dataset: binocular, cup, gramophone,

grand piano, headphone, inline skate, laptop, and
umbrella. The images are resized to be 100 × 100
pixels. Experiments using the Caltech101 dataset are
performed using a three-layer architecture with patch
sizes u = 24 × 24, v = 60 × 60, and Sq = 100 × 100,
with 500 templates per layer. The transformations at
each layer are taken to be translations with a 3 pixel
hop size.

6.2. Transformation Invariance

In this section we investigate the experimental invari-
ance of the derived kernel when the transformation is
a rotation. For the initial kernel at the first layer, we
use the histogram kernel:

K̂hist(f, g) =
〈hist(f),hist(g)〉
‖hist(f)‖‖hist(g)‖

,

where hist(z) denotes the histogram representa-
tion of the image z with 101 bins centered at
0, 0.01, . . . , 0.99, 1. In the ideal setting, this initial ker-
nel is invariant to rotation. However, Proposition 4.1
might not apply in practice because we are working in
a finite and discrete setting, and Assumption 1 might
not hold since the set of translations H is not exhaus-
tive. Furthermore, a rotated image might become dis-
torted or have different pixel intensity distributions
because of cropping and zero-padding. The rotation
invariant architecture is then compared to the usual ar-
chitecture built from normalized inner product kernels,
which should not be rotation invariant. For Proposi-
tion 4.1 to be meaningful, the architecture using his-
togram kernel should exhibit some degree of rotation
invariance, while the architecture using inner product
kernel should be sensitive to rotation. We present the
results of two experiments that confirm this hypothe-
sis.

6.2.1. Distribution Comparison

In this experiment we compare the distribution of the
derived kernel values between rotated images K(f, f ◦
r) with the derived kernel values between distinct im-
ages K(f, g). We sample one image per class and ro-
tate each image 12 times, with rotation angles multi-
ples of 30◦, and compute the pairwise derived kernel
values between the resulting images. We then compare
the distribution of the “within-class” values K(f, f ◦r)
with the “between-class” values K(f, g). If the archi-
tecture is rotation invariant, then we expect to see that
the within-class distribution is strongly peaked at 1. In
practice, we observe that the kernel values are close to
1, so in this experiment we compare the distributions
of 1−K(·, ·) instead.
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Figure 2 shows the results of this experiment on the
MNIST and Caltech101 (subset) datasets. The left
panel of Figure 2(a) shows the comparison of the Q-Q
(quantile-quantile) plots of the within- and between-
class values across the histogram and inner product
kernel for the MNIST dataset. The Q-Q plot measures
the degree of similarity between two distributions. The
diagonal line in each plot is the line y = x, and the
shape of the plot with respect to this line indicates the
relative dispersion of the two probabilities. In our case,
the Q-Q plot of the histogram kernel (left) is vertical
in the beginning, which indicates strong concentration
of the within-class values at 0. In contrast, the plot
for the inner product kernel (right) lies below the line
y = x, which indicates that the within-class values is
more dispersed than the between-class values.

The right panel of Figure 2(a) provides another view
of this result. The diagram in the figure shows the
mean and standard deviation of each empirical dis-
tribution. The ranges of the kernel values of the his-
togram and inner product kernel are rescaled to be the
same to allow us to present a meaningful visual com-
parison in the diagram. From the figure it is clear that
in the histogram architecture the within-class values
are very concentrated compared to the between-class
values, while in the inner product architecture, the
within- and between-class values are almost the same.

Figure 2(b) shows the results of the same experiment
on the Caltech101 (subset) dataset. In the left panel,
although the two Q-Q plots lie above the y = x line,
the plot for the histogram kernel is much steeper, and
even vertical in the beginning, which indicates strong
concentration at 0. Moreover, this is also confirmed
by the diagram in the right panel. On the other hand,
while the within-class values in the inner product ker-
nel is also more compressed compared to the between-
class values, it is not concentrated at 0, and the com-
pression is not too severe.

Together the results presented in this section confirm
our hypothesis that the architecture with histogram
kernel exhibits invariance to rotation, while the archi-
tecture with inner product kernel lacks it.

6.2.2. Image Identification and Classification

The second experiment is to identify or classify a ran-
domly rotated image using the derived kernel. We
sample 30 images per class from a given dataset, and
for each image we encode both the original image and
a randomly rotated version of it. Then for every ro-
tated image f ◦ r, we use the derived kernel K to find
an original image g among those sampled that maxi-
mizes K(f ◦r, g), and count how many times we find f

and g to be equal (“identification” task) or to be in the
same class (“classification” task). Table 1 shows the
accuracy results of the experiments, averaged over 50
independent trials, on the MNIST (9 digit classes, 1s
through 9s) and Caltech101 (subset) datasets. The ac-
curacy of the experiment using the L2 distance is also
presented for comparison. From the table, we see that
the histogram kernel yields significantly better perfor-
mances compared to the inner product kernel and the
L2 distance, in both datasets and both tasks. This
result confirms that the histogram kernel architecture
exhibits a degree of rotation invariance, while the inner
product architecture is sensitive to it.

Table 1. Accuracy of the identification and classification
tasks via randomly rotated images.

Dataset: MNIST
Task Histogram Inner product L2

identify 37.39% 8.84% 8.05%
classify 47.40% 27.13% 27.64%

Dataset: Caltech101
Task Histogram Inner product L2

identify 88.62% 21.98% 9.94%
classify 91.35% 34.06% 24.64%

6.3. Sample Complexity

In this experiment we confirm empirically that, when
used as an unsupervised data preprocessing step, the
neural response provides a representation which leads
to lower sample complexity of a supervised task. We
apply two- and three-layer derived kernels to an 8-class
MNIST classification task (digits 2s through 9s), with
3-pixels of random, artificial translation applied to the
images. We use varying numbers of images per class
for training and 30 images per class for testing. Fig-
ure 3 shows the classification accuracies as functions
of the number of training images per class, averaged
over 50 random test sets while holding the training
and template sets fixed. An L2 baseline is also given
for comparison.

Figure 3 shows that three-layer architecture achieves
higher accuracy with fewer training examples com-
pared to the other two models. We find, for example,
that in order to obtain 65% accuracy the 2-layer de-
rived kernel based classifier needs about 11 examples
per class, while the 3-layer derived kernel based clas-
sifier requires only 5 examples. The overall behavior
confirms that: (1) the hierarchical assumption holds
for this task, and (2) in terms of sample complexity,
two layers is better than none, and three is better than
two.
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(a) Results for MNIST.
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(b) Results for Caltech101.

Figure 2. Results for rotation invariance tests. In each subfigure the left panel shows the Q-Q plot and the right panel
shows the comparison of the mean value and standard deviation.
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Figure 3. Empirical sample complexities of the digit classi-
fication task using two and three layer hierarchical models.

6.4. Scalability and Layer-wise Low-rank
Approximations

In this section we investigate the classification perfor-
mance of the derived kernel architecture using layer-
wise low-rank approximations to the integral operator
associated with the derived kernel, as developed in Sec-
tion 5. Figure 4 shows the accuracies for the 8-class
MNIST classification task with 5 training images and
30 test images per class, when taking different num-
bers of components in the approximation at all layers.
Although there are originally 500 templates at each
layer, the experiments show that only 20-25 compo-
nents gives similar accuracy as the full rank case. The
computational advantage of working with such an ap-
proximation is substantial.

Our last experiment compares the performance of
PCA and KPCA in the 8-class MNIST classification
task with three-layer architectures and 30 training and
testing images per class. For KPCA we use the Gaus-
sian kernel KG(x, y) = e−γ(x−y)2 , where the γ parame-
ter at each layer is estimated using the average nearest
neighbors distances from the encoded templates. Fig-
ure 5 shows the classification accuracies for the PCA
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Figure 4. Classification accuracy with layer-wise low rank
approximations to the integral operator.

and Gaussian PCA architectures as the number of
components varies. The accuracies are averaged over
50 trials. The accuracy for the original three-layer ar-
chitecture with no extension method is also given for
reference. We make the following observations from
Figure 5:

1. Classification accuracies for both PCA and Gaus-
sian PCA architectures tend to increase as the
number of components increases.

2. PCA reaches its stable accuracy at 30 compo-
nents, but this accuracy is slightly lower than the
accuracy of the original architecture.

3. Gaussian PCA reaches its stable accuracy at 150
components, and this accuracy is the same as that
of the original architecture.

4. For small number (< 50) of components, PCA
outperforms Gaussian PCA. Therefore, PCA pro-
vides a substantial computational speed-up at the
cost of slightly lower accuracy. On the other hand,
If our goal is to reach the best accuracy, then
Gaussian PCA with 150 components also provides
computational benefits.
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Figure 5. Accuracy of PCA and Gaussian PCA on 8-class
MNIST classification task.

7. Conclusions

We have explored a new form of invariance and
the impact of layer-wise feature maps in a family
of biologically-inspired hierarchical “derived” kernels.
We extended the derived kernel framework of (Smale
et al., 2009) to include more general layer-wise em-
beddings and pooling functions, and verified that the-
oretical notions of bottom-up, “propagated” invari-
ance hold empirically when applied to real-world data.
We suggested that the application of layerwise feature
maps, in particular KPCA, can lead to scalable algo-
rithms, and a class of methods more generally which
might merit further study. The assumption that im-
ages can be decomposed into parts was also shown
to hold experimentally, and furthermore led to repre-
sentations which reduced the sample complexity of a
corresponding classification task.
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