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Abstract
Approximating ideal program outputs is a common tech-
nique for solving computationally difficult problems, for ad-
hering to processing or timing constraints, and for perfor-
mance optimization in situations where perfect precision is
not necessary. To this end, programmers often use approx-
imation algorithms, iterative methods, data resampling, and
other heuristics. However, programming such variable ac-
curacy algorithms presents difficult challenges since the op-
timal algorithms and parameters may change with different
accuracy requirements and usage environments. This prob-
lem is further compounded when multiple variable accuracy
algorithms are nested together due to the complex way that
accuracy requirements can propagate across algorithms and
because of the resulting size of the set of allowable compo-
sitions. As a result, programmers often deal with this issue
in an ad-hoc manner that can sometimes violate sound pro-
gramming practices such as maintaining library abstractions.

In this paper, we propose language extensions that ex-
pose trade-offs between time and accuracy to the compiler.
The compiler performs fully automatic compile-time and
install-time autotuning and analyses in order to construct op-
timized algorithms to achieve any given target accuracy. We
present novel compiler techniques and a structured genetic
tuning algorithm to search the space of candidate algorithms
and accuracies in the presence of recursion and sub-calls to
other variable accuracy code. These techniques benefit both
the library writer, by providing an easy way to describe and
search the parameter and algorithmic choice space, and the
library user, by allowing high level specification of accu-
racy requirements which are then met automatically without
the need for the user to understand any algorithm-specific
parameters. Additionally, we present a new suite of bench-
marks, written in our language, to examine the efficacy of
our techniques. Our experimental results show that by re-
laxing accuracy requirements, we can easily obtain perfor-
mance improvements ranging from 1.1x to orders of magni-
tude of speedup.

1. Introduction
Traditionally, language designers and compiler writers have
operated under the assumption that programs require a fixed,
strongly defined behavior; however, this is not always the
case in practice. For certain classes of applications, such as
NP-hard problems or problems with tight computation or
timing constraints, programmers are often willing to sacri-
fice some level of accuracy for faster performance. In this
paper, we broadly define these types of programs as variable
accuracy algorithms. There are many different classes of
variable accuracy algorithms spanning many different fields.

One class of variable accuracy algorithms are approxima-
tion algorithms in the area of soft computing [28]. Approxi-
mation algorithms are used to find approximate solutions to
computationally difficult tasks with results that have prov-
able quality. For many computationally hard problems, it is
possible to find such approximate solutions asymptotically
faster than it is to find an optimal solution. A good example
of this is BINPACKING. Solving the BINPACKING problem
is NP-hard, yet arbitrarily accurate solutions may be found
in polynomial time [9]. Like many soft computing problems,
BINPACKING has many different approximation algorithms,
and the best choice often depends on the level of accuracy
desired.

Another class of variable accuracy algorithms are itera-
tive algorithms used extensively in the field of applied math-
ematics. These algorithms iteratively compute approximate
values that converge toward an optimal solution. Often, the
rate of convergence slows dramatically as one approaches
the solution, and in some cases a perfect solution cannot be
obtained without an infinite number of iterations [26]. Be-
cause of this, many programmers create convergence crite-
ria to decide when to stop iterating. However, deciding on a
convergence criteria can be difficult when writing modular
software because the appropriate criteria may not be known
to the programmer ahead of time.

A third class of variable accuracy algorithms are algo-
rithms in the signal processing domain. In this domain, the
accuracy of an algorithm can be directly determined from the
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problem specification. For example, when designing digital
signal processing (DSP) filters, the type and order of the fil-
ter can be determined directly from the desired sizes of the
stop, transition and pass-bands as well as the required fil-
tering tolerance bounds in the stop and pass-bands. When
these specifications change, the optimal filter type may also
change. In some cases, it may even be desirable to first re-
sample an input, process the signal at a lower sampling rate,
and then re-sample it back to the original rate. Since many
options exist, determining the best approach is often diffi-
cult, especially if the exact requirements of the system are
not known ahead of time.

A key challenge when writing and using variable accu-
racy code arises from maintaining the abstraction boundary
between the library writer and the library user. The library
writer understands the algorithm and the various choices and
parameters affecting accuracy, but does not know the accu-
racy requirements for each use case. Because special-casing
an algorithm for each foreseeable accuracy requirement can
be extremely tedious and error-prone, library writers often
follow the practice of exposing many internal algorithmic
parameters to the interface of their library. Regrettably, while
the library user knows the application’s requirements, how
the exposed implementation-specific parameters and algo-
rithmic choices of the library impact these accuracy require-
ments may not be clear. Thus, this practice represents a ma-
jor breakdown in the library abstraction barrier of variable
accuracy programs.

This practice is exemplified by the fmincon() func-
tion in Matlab [1], which attempts to find the minimum
of a user-specified nonlinear multivariate function subject
to a set of specified constraints. fmincon() takes accuracy
and optimization options specified by an options struc-
ture. This structure contains 42 fields that the user can set
to specify various options such as which of three algo-
rithms to use, how many iterations to run, and what toler-
ances to use. Additionally, there are a number of options
specific to each of the three algorithms, some of which fur-
ther affect additional algorithmic choices. For example, the
value specified in the PrecondBandWidth option used by
the trust-region-reflective algorithm will indirectly
affect both the number of preconditioning iterations per-
formed, as well as the type of factorization algorithm used
during the preconditioning phase. This option can have a
dramatic effect on the performance of the solver; however,
since constructing preconditioners is still an open and active
area of research, determining a good choice for this option
with respect to one’s accuracy needs requires familiarity
with state-of-the-art preconditioning techniques.

Yet another challenge arises when a program is con-
structed by composing multiple variable accuracy modules,
or by recursively calling variable accuracy functions. In this
type of program, the best top-level performance and accu-
racy may be obtained by using higher or lower accuracies for

intermediate components of the algorithm. In such cases, the
space of composition choices and intermediate accuracies
becomes extremely large with different compositions hav-
ing drastically different convergence rates. For example, at
each recursive level of a multigrid solver, it may be possible
to solve to a lower accuracy (e.g.: by performing fewer iter-
ations of an iterative solver) while still meeting the accuracy
requirement of the final solution. However, manually deter-
mining what accuracy level to use at each recursive step can
be extremely onerous because each of the accuracies in-turn
dictate whether to continue recursively or to use iterative or
direct solutions. The problem is exacerbated by the fact that
full multigrid solvers (the version of multigrid usually in use
today) use an estimation phase to determine an initial ap-
proximation to the solution to accelerate convergence. This
estimate is also determined using the recursive multigrid al-
gorithm, and its accuracy directly affects the rate of conver-
gence towards the final solution [8].

In this paper we propose a novel set of language exten-
sions and an accuracy-aware compiler to address the chal-
lenges in writing variable accuracy code. With our exten-
sions, accuracy time trade-offs are made visible to the com-
piler, enabling it to perform empirical autotuning to build
optimized algorithms for each accuracy level required by
a user. As we will show, these extensions simplify writing
variable accuracy code both for the library writer and for the
library user.

For the library writer, our compiler automates the other-
wise tedious search over both the algorithmic search space
and the parameter space to find algorithms with the best per-
formance that meet each required level of accuracy. This
is done without forcing the library writer to sacrifice con-
trol over how the algorithm operates or how accuracy is
achieved. For the library user, our extensions allow the spec-
ification of top-level accuracy requirements without the li-
brary user needing to understand any parameters and choices
that are specific to the implementation details of the algo-
rithm. This helps create a better abstraction barrier that sep-
arates the details of the algorithms in a library from the re-
quirements of the library user.

By using an autotuning approach, our compiler is also
able to automatically find the best composition of nested
calls to variable accuracy code. In this way the compiler
is able to construct programs that target the computational
power of the algorithm to where it counts most, which can
have a significant performance impact on the final algorithm.
Finally, the resulting code will perform well across archi-
tectures as none of the accuracy-based decisions need to be
hard-coded. Instead, when porting to a new platform, the
program can be autotuned again without requiring program-
mer intervention.

We have implemented our language extensions in the
context of the PetaBricks programming language and com-
piler [3]. PetaBricks is a programming language that allows
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algorithmic choice to be expressed at the language level.
PetaBricks automatically selects and constructs algorithms
optimized for each target architecture using empirical au-
totuning methods. More background on the PetaBricks lan-
guage and compiler is provided in Sections 2 and 4.1.

1.1 Contributions
We make the following contributions:

• We have introduced a novel programming language that
incorporates algorithmic accuracy choices. This includes
support for multiple accuracy metrics, which provide a
general-purpose way for users to define arbitrary accu-
racy requirements in any domain.

• We have developed a technique for mapping variable ac-
curacy code so that it can be efficiently autotuned without
the search space growing prohibitively large.

• We have implemented a language, compiler, and run-
time system to demonstrate the effectiveness of our tech-
niques.

• We have implemented a suite of six benchmarks, repre-
sentative of commonly used algorithms with variable ac-
curacy requirements.

• We demonstrate the importance of algorithmic choice by
showing that for different accuracy levels our autotuner
chooses different algorithmic techniques.

• We show that by using variable accuracy one can get a
speedup up to four orders of magnitude over using the
highest accuracy code.

1.2 Outline
Section 2 provides a description of the PetaBricks language
through an example program. Section 3 continues by de-
scribing the language extensions made to support variable
accuracy. Section 4 provides background on the PetaBricks
compiler infrastructure. Section 5 describes our accuracy-
aware autotuner. Section 6 presents our suite of benchmarks
and results. Finally, Sections 7 and 8 present related work
and draw conclusions.

2. PetaBricks Language Background
The PetaBricks language provides a framework for the pro-
grammer to describe multiple ways of solving a problem
while allowing the autotuner to determine which of those
ways is best for the user’s situation. It provides both algo-
rithmic flexibility (multiple algorithmic choices) as well as
coarse-grained code generation flexibility (synthesized outer
control flow).

At the highest level, the programmer can specify a trans-
form, which takes some number of inputs and produces some
number of outputs. In this respect, the PetaBricks transform
is like a function call in any common procedural language.
The major difference with PetaBricks is that we allow the

1 transform kmeans
2 from P o i n t s [ n , 2 ] / / Array o f p o i n t s ( each column
3 / / s t o r e s x and y c o o r d i n a t e s )
4 through C e n t r o i d s [ s q r t ( n ) , 2 ]
5 to Ass ignmen t s [ n ]
6 {
7 / / Ru le 1 :
8 / / One p o s s i b l e i n i t i a l c o n d i t i o n : Random
9 / / s e t o f p o i n t s

10 to ( C e n t r o i d s . column ( i ) c ) from ( P o i n t s p ) {
11 c=p . column ( r an d ( 0 , n ) )
12 }
13
14 / / Ru le 2 :
15 / / Ano ther i n i t i a l c o n d i t i o n : C e n t e r p l u s i n i t i a l
16 / / c e n t e r s ( kmeans++)
17 to ( C e n t r o i d s c ) from ( P o i n t s p ) {
18 C e n t e r P l u s ( c , p ) ;
19 }
20
21 / / Ru le 3 :
22 / / The kmeans i t e r a t i v e a l g o r i t h m
23 to ( Ass ignmen t s a ) from ( P o i n t s p , C e n t r o i d s c ) {
24 whi le ( t r u e ) {
25 i n t change ;
26 A s s i g n C l u s t e r s ( a , change , p , c , a ) ;
27 i f ( change ==0) re turn ; / / Reached f i x e d p o i n t
28 N e w C l u s t e r L o c a t i o n s ( c , p , a ) ;
29 }
30 }
31 }

Figure 1. Pseudocode for kmeans

programmer to specify multiple pathways to convert the in-
puts to the outputs for each transform. Pathways are speci-
fied in a dataflow manner using a number of smaller building
blocks called rules, which encode both the data dependen-
cies of the rule and C++-like code that converts the rule’s in-
puts to outputs. Dependencies are specified by naming the
inputs and outputs of each rule, but unlike in a tradition-
ally dataflow programming model, more than one rule can
be defined to output the same data. Thus, the input depen-
dences of a rule can be satisfied by the output of one or more
rules. It is up to the PetaBricks compiler and autotuner to
decide which rules to use to satisfy such dependencies by
determining which are most computationally efficient for a
given architecture and input. For example, on architectures
with multiple processors, the autotuner may find that it is
preferable to use rules that minimize the critical path of the
transform, while on sequential architectures, rules with the
lowest computational complexity may fair better. The fol-
lowing example will help to further illustrate the PetaBricks
language.

2.1 Example Program
Figure 1 presents an example PetaBricks program, kmeans.
This kmeans program groups the input Points into a num-
ber of clusters and writes each points cluster to the output
Assignments. Internally the program uses the intermediate
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Rule 3
(run once)

Points Centroids

Assignments

Rule 2
(run once)

Rule 1
(run n times)

Input Intermediate Output

Figure 2. Dependency graph for kmeans example. The rules
are the vertices while each edge represents the dependencies
of each rule. Each edge color corresponds to each named
data dependence in the pseudocode.

data Centroids to keep track of the current center of each
cluster. The transform header declares each of these data
structures as its inputs (Points), outputs (Assignments),
and intermediate or ”through” data structures (Centroids).
The rules contained in the body of the transform define the
various pathways to construct the Assignments data from
the initial Points data. The transform can be depicted using
the dependence graph shown in Figure 2, which indicates the
dependencies of each of the three rules.

The first two rules specify two different ways to initial-
ize the Centroids data needed by the iterative kmeans solver
in the third rule. Both of these rules require the Points in-
put data. The third rule specifies how to produce the output
Assignments using both the input Points and intermediate
Centroids. Note that since the third rule depends on the out-
put of either the first or second rule, the third rule cannot be
executed until the intermediate data structure Centroids has
been computed by one of the first two rules. The autotuner
and compiler will make sure the program will satisfy these
dependencies when producing tuned code.

Additionally, the first rule provides an example of how the
autotuner can synthesize outer control flow. Instead of using
a rule that explicitly loops over every column of Centroids
2D array, the programmer has specified a computation that
is done for each column of the output. The order over which
these columns are iterated is then synthesized and tuned by
the compiler and autotuner. Columns may also be processed
in parallel if dependencies are satisfied. Operations can be
specified on a per-row or per-cell basis as well, allowing
optimizations such as cache-blocking to be automatically
discovered.

To summarize, when our transform is executed, the clus-
ter centroids are initialized either by the first rule, which per-
forms random initialization on a per-column basis with syn-
thesized outer control flow, or the second rule, which calls
the CenterPlus algorithm. Once Centroids is generated, the
iterative step in the third rule is called.

3. PetaBricks Language Extensions for
Variable Accuracy

In this section, we introduce our language extensions to
PetaBricks that add our variable accuracy support. We start
by presenting our kmeans example again, this time aug-
mented to support variable accuracy invocations.

At a high level, our language extensions extend the idea of
algorithmic choice to include choices between different ac-
curacies. The extensions also allow the user to specify how
accuracy should be measured. Our new accuracy-aware au-
totuner then searches to optimize for both time and accu-
racy. The result is code that probabilistically meets users’
accuracy needs. Optionally, users can request hard guaran-
tees at runtime by checking output quality, and if needed,
re-executing a transform.

3.1 Example with Variable Accuracy
Figure 3 presents our kmeans example with our new variable
accuracy extensions. The updates to the code are highlighted
in light blue. The example uses three of our new variable
accuracy features.

First the accuracy metric, on line 2, defines an addi-
tional transform, kmeansaccuracy, which computes the ac-
curacy of a given input/output pair to kmeans. PetaBricks
uses this transform during autotuning and sometimes at run-
time to test the accuracy of a given configuration of the
kmeans transform. The accuracy metric transform computes
the

√
2n∑
D2

i
, whereDi is the Euclidean distance between the

i-th data point and its cluster center. This metric penalizes
clusters that are sparse and is therefore useful for determin-
ing the quality of the computed clusters. Accuracy metric
transforms such as this one might typically be written any-
way for correctness or quality testing, even when program-
ming without variable accuracy in mind.

The accuracy variable k, on line 3 controls the num-
ber of clusters the algorithm generates by changing the size
of the array Centroids. The variable k can take different
values for different input sizes and different accuracy levels.
The compiler will automatically find an assignment of this
variable during training that meets each required accuracy
level.

The for enough loop on line 26 is a loop where the
compiler can pick the number of iterations needed for each
accuracy level and input size. During training the compiler
will explore different assignments of k, algorithmic choices
of how to initialize the Centroids, and iteration counts for
the for enough loop to try to find optimal algorithms for
each required accuracy.

The next section goes on to explain each new variable
accuracy feature in more detail.

3.2 Variable Accuracy Extensions
In order to support variable accuracy we made the following
extensions to PetaBricks:
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1 transform kmeans
1 a c c u r a c y m e t r i c kmeansaccuracy
2 a c c u r a c y v a r i a b l e k
1 from P o i n t s [ n , 2 ] / / Array o f p o i n t s ( each column
2 / / s t o r e s x and y c o o r d i n a t e s )
3 through C e n t r o i d s [ k , 2 ]
4 to Ass ignmen t s [ n ]
5 {
6 / / Ru le 1 :
7 / / One p o s s i b l e i n i t i a l c o n d i t i o n : Random
8 / / s e t o f p o i n t s
9 to ( C e n t r o i d s . column ( i ) c ) from ( P o i n t s p ) {

10 c=p . column ( r and ( 0 , n ) )
11 }
12
13 / / Ru le 2 :
14 / / Ano ther i n i t i a l c o n d i t i o n : C e n t e r p l u s i n i t i a l
15 / / c e n t e r s ( kmeans++)
16 to ( C e n t r o i d s c ) from ( P o i n t s p ) {
17 C e n t e r P l u s ( c , p ) ;
18 }
19
20 / / Ru le 3 :
21 / / The kmeans i t e r a t i v e a l g o r i t h m
22 to ( Ass ignmen t s a ) from ( P o i n t s p , C e n t r o i d s c ) {
23 for enough {
24 i n t change ;
25 A s s i g n C l u s t e r s ( a , change , p , c , a ) ;
26 i f ( change ==0) re turn ; / / Reached f i x e d p o i n t
27 N e w C l u s t e r L o c a t i o n s ( c , p , a ) ;
28 }
29 }
30 }
31

1 transform kmeansaccuracy
2 from Ass ignmen t s [ n ] , P o i n t s [ n , 2 ]
3 to Accuracy
4 {
5 Accuracy from ( Ass ignmen t s a , P o i n t s p ){
6 re turn s q r t (2∗ n / S u m C l u s t e r D i s t a n c e S q u a r e d ( a , p ) ) ;
7 }
8 }

Figure 3. Pseudocode for variable accuracy kmeans. The
new variable accuracy code is highlighted in light blue.

• The accuracy metric keyword in the transform

header allows the programmer to specify the name of
another user-defined transform to compute accuracy from
an input/output pair. This allows the compiler to test the
accuracy of different candidate algorithms during train-
ing. It also allows the user to specify a domain specific
accuracy metric of interest to them.

• The accuracy variable keyword in the transform

header allows the user to define one or more algorithm-
specific parameters that influence the accuracy of the
program. These variables are set automatically during
training and are assigned different values for different
input sizes. The compiler explores different values of
these variables to create candidate algorithms that meet
accuracy requirements while minimizing execution time.

• The accuracy bins keyword in the transform header

allows the user to define the range of accuracies that
should be trained for and special accuracy values of in-
terest that should receive additional training. The com-
piler can add such values of interest automatically based
on how a transform is used. If not specified, the default
range of accuracies is 0 to 1.0.

• The for enough statement defines a loop with a compiler-
set number of iterations. This is useful for defining iter-
ative algorithms. This is syntactic sugar for adding an
accuracy variable to specify the number of iterations
of a traditional loop.

• The scaled by keyword on data inputs and outputs al-
lows the user to indicate that data may be down-sampled
or up-sampled using a user provided transform (or one of
a number of built-in transforms). This is useful for algo-
rithms operating on discrete samples of continuous data,
such as signal/image processing. This is syntactic sugar
for adding a wrapper-transform that has algorithmic
choices for scaling with each allowed re-sampler or not
re-sampling at all. The size to re-sample to is controlled
with an accuracy variable in the generated transform.

• The semantics for calling variable accuracy transforms
is also extended. When a variable accuracy transform
calls another variable accuracy transform (including re-
cursively), the required sub-accuracy level is determined
automatically by the compiler. This is handled by ex-
panding each sub-call into an either ... or statement
which allows the compiler to call the variable accuracy
transform with different sub-accuracies.
When a variable accuracy transform is called from fixed
accuracy code, the desired level of accuracy must be
specified. We use template-like, “<N>”, syntax for speci-
fying desired accuracy. This syntax may also be option-
ally used in variable accuracy transforms to prevent the
automatic expansion described above.

• The keyword verify accuracy in the rule body directs
the compiler to insert a run time check for the level of
accuracy attained. If this check fails the algorithm can be
retried with the next higher level of accuracy or the user
can provide custom code to handle this case. This key-
word can be used when strict accuracy guarantees, rather
than probabilistic guarantees, are desired for all program
inputs. See Section 3.3 for a discussion of accuracy guar-
antees.

3.3 Accuracy Guarantees
PetaBricks supports the following types of accuracy guaran-
tees:

• Statistical guarantees are the most common technique
used, and the default behavior of our system. They work
by performing off-line testing of accuracy using a set
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Figure 4. Flow for the compilation of a PetaBricks program with a single transform. (Additional transforms would cause the
center part of the diagram to be duplicated.)

of program inputs to determine statistical bounds on an
accuracy metric to within a desired level of confidence.

• Run-time checking can provide a hard guarantee of ac-
curacy by testing accuracy at runtime and performing ad-
ditional work if accuracy requirements are not met. Run-
time checking can be inserted using the verify accuracy

keyword. This technique is most useful when the accu-
racy of an algorithm can be tested with low cost and may
be more desirable in case where statistical guarantees are
not sufficient.

• Domain specific guarantees are available for many
types of algorithms. In these cases, a programmer may
have additional knowledge, such as a lower bound accu-
racy proof or a proof that the accuracy of an algorithm
is independent of data, that can reduce or eliminate the
cost of runtime checking without sacrificing strong guar-
antees on accuracy.

As with variable accuracy code written without language
support, in Petabricks, deciding which techniques to use to
guarantee accuracy and what accuracy metrics to use is a
decision left to the programmer.

4. Compiler
In this section, we describe the changes we made to the
PetaBricks compiler to support our new language exten-
sions. We start by providing a brief background of the origi-
nal compiler.

4.1 PetaBricks Compiler Infrastructure Background
Figure 4 displays the general flow for the compilation of a
PetaBricks transform. Compilation is split into two repre-
sentations. The first representation operates at the rule level,
and is similar to a traditional high level sequential interme-
diate representation. The second representation operates at

the transform level, and is responsible for managing choices
and for code synthesis.

The main transform level representation is the choice de-
pendency graph, which is the primary way that choices are
represented in PetaBricks. At a high level, the information
contained in the choice dependency graph is similar to the
dependency graph shown for our example program in Fig-
ure 2, however, the data is represented as an “inverse” of that
graph: data dependencies (previously represented by edges)
are represented by vertices, while rules (previously repre-
sented by vertices) are represented by graph hyperedges.
Additionally, data may be split into multiple vertices in the
choice dependency graph if the transform contains rules that
operate on just subregions of that data. The PetaBricks com-
piler uses this graph to manage code choices and to synthe-
size the outer control flow of the rules.

The final phase of compilation generates an output binary
and a training information file containing static analysis in-
formation. These two outputs are used by the autotuner (de-
scribed in Section 5), to search the space of possible algo-
rithmic choices. Autotuning creates a choice configuration
file, which can either be used by the output binary to run
directly or can be fed back into the compiler to allow addi-
tional optimizations.

For more details on the PetaBricks compiler infrastruc-
ture see our prior work [3].

4.2 Representing Variable Accuracy
Representing variable accuracy algorithms presents a key
challenge both while compiling and while autotuning. The
main difficulty is that variable accuracy adds a new dimen-
sion to how one can evaluate candidate algorithms. With
fixed accuracy algorithms, the metric of performance can be
used to order algorithms. With variable accuracy, we plot
candidates on an accuracy/time grid. This naturally leads
to an optimal frontier of algorithms for which no other al-
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1 p o p u l a t i o n = [ . . . ]
2 m u t a t o r s = [ . . . ]
3 f o r i n p u t s i z e i n [ 1 , 2 , 4 , 8 , 16 , . . . , N ] :
4 t e s t P o p u l a t i o n ( p o p u l a t i o n , i n p u t s i z e )
5 f o r round i n [ 1 , 2 , 3 , . . . , R ] :
6 randomMuta t ion ( p o p u l a t i o n , m u t a t o r s , i n p u t s i z e )
7 i f a c c u r a c y T a r g e t s N o t R e a c h e d ( p o p u l a t i o n ) :
8 g u i d e d M u t a t i o n ( p o p u l a t i o n , m u t a t o r s , i n p u t s i z e )
9 p rune ( p o p u l a t i o n )

Figure 5. Pseudocode showing the high level flow of our autotuning algorithm. The individual phases are described in
Sections 5.5.1 to 5.5.4.

gorithm can provide a greater accuracy in less time. It is
not possible to evaluate the entire optimal frontier, how-
ever, since it can potentially be of infinite size. Instead, to
make this problem tractable, we discretize the space of ac-
curacies by placing each allowable accuracy into a bin. The
discretization can be specified by the user or can be auto-
matically inferred by the compiler based on how a variable
accuracy algorithm is used. For example, if an algorithm is
called with a specific accuracy, that specific accuracy can be
added as extra bin boundary by the compiler.

In the compiler, we represent these bins by extending and
using the representation for templates. A variable accuracy
algorithm is called with the syntax “Foo<accuracy>” and,
similar to templates, each requested accuracy is considered
by the compiler as a separate type. When variable accuracy
code calls other variable accuracy code, the sub-accuracy is
automatically determined by the compiler. This is done by
representing the sub-accuracy as an algorithmic choice to
call one of any of the accuracy bins. If a user wishes to call
a transform with an unknown accuracy level, we support
dynamically looking up the correct bin that will obtain a
requested accuracy.

5. Variable Accuracy PetaBricks Autotuner
In this section, we describe our autotuning approach for
constructing tuned variable accuracy programs. We will start
with a overview of our algorithm, then provide background
on some structures we use to represent different candidate
algorithms (configurations, training info files, and mutators),
and finally provide details on each of the phases of the
autotuning process.

The autotuner we present here has been rewritten both to
support variable accuracy and to explore the search space
of algorithms more efficiently. The autotuner in our prior
work [3] did not contain any support for tuning variable
accuracy programs because it could only optimize a single
metric (execution time). Our new autotuner is now able to
optimize two metrics. Since this increases the search space
dramatically, we had to introduce new guided search and
pruning techniques to help search the space. Each of the fol-

lowing sections describe new features added to the autotuner
that enable this change.

5.1 Overview
Figure 5 presents high level pseudocode for our autotun-
ing algorithm. The autotuner follows a genetic algorithm
approach to search through the available choice and accu-
racy space. It maintains a population of candidate algorithms
which it continually expands using a set of mutators (de-
scribed in Section 5.4) and prunes in order to allow the
population to evolve more optimal algorithms. The input
sizes used for testing during this process grow exponentially,
which naturally exploits any optimal substructure inherent to
most programs.

5.2 Choice Configuration Files
The PetaBricks compiler and autotuner represents different
possible candidate algorithms through configuration files
representing an assignment of decisions to all available
choices. Broadly, one can divide the choices contained in
the configuration file into the following categories.

• Decision trees to decide which algorithm to use for each
choice site, accuracy, and input size.

• Cutoffs values. For example, switching points from a
parallel work stealing scheduler to sequential code or the
blocking sizes for data parallel operations.

• Switches. For example, the type of storage for interme-
diate data.

• Accuracy Variables. For example, how many iterations
in a for enough loop.

• User defined parameters.

5.3 Training Information File
The training information file (formatted in XML) contains
static analysis information extracted from each PetaBricks
program. It is primarily used by the autotuner to construct
the pool of mutators (Section 5.4). It assists in this process
by containing high level descriptions of all the logical con-
structs in the configuration file. It also contains dependency
information in the form of call graphs, encodes accuracy

7 2010/7/27



requirements for variable accuracy algorithms, and stores
other meta-information.

5.4 Mutator Functions
Abstractly, a mutator function creates a new algorithm con-
figuration by changing an existing configuration, its signa-
ture is:

Configuration×N → Configuration

where N is the current input size used in training, and each
Configuration is a algorithm configuration file described in
Section 5.2.

The set of mutator functions is different for each program,
and is generated fully automatically with the static analysis
information contained in the training information file.

The created mutators can be divided into four categories:

• Decision tree manipulation mutators either add, re-
move, or change levels to a specific decision tree repre-
sented in the configuration file. When adding new levels,
the cutoff point is initially set to 3N

4 . This leaves the be-
havior for smaller inputs the same, while changing the
behavior for the current set of inputs being tested. This
cutoff point can later be changed, as a log-normal ran-
dom scaling mutator is introduced for each active cutoff
value in the decision tree.
Initially decision trees are very simple, set to use just a
single algorithm. At this point, the only mutators that can
be applied simply change this single algorithm or add a
level to the decision tree. As the decision tree becomes
more complex, more and more mutators can legally be
applied and the search space grows.

• Log-normal random scaling mutators scale a config-
uration value by a random number taken from a log-
normal distribution with scale of 1. This type of muta-
tor is used to change cutoff values that are compared to
data sizes. For example, blocking sizes, cutoffs in deci-
sion trees, and cutoffs to switch between sequential and
parallel code.
The intuition for why a log-normal distribution is used
comes from the observation that small changes have
larger effects on small values than large values. For ex-
ample, most readers would expect changing a blocking
size from 5 to 6 to have a much larger impact that chang-
ing a blocking size from 105 to 106. This observation
is a general trend that applies to most configuration val-
ues dealing with sizes. We have confirmed this intuition
experimentally by observing much faster convergence
times with this type of scaling.

• Uniform random mutators replace an existing configu-
ration value with a new value taken from a discrete uni-
form random distribution containing all legal values for
the configuration. This type of mutator is used for choices
where there are a relatively small number of possibilities.

An example of this is deciding the scheduling strategy for
a specific block of code or algorithmic choices.

• Meta mutators multiply or reverse the effects of other
mutators. The two types of mutators that fall into this cat-
egory either randomly apply a number of other mutators
(allowing larger jumps to be taken in the configuration
space) or undo the effects of a previously applied muta-
tor.

The log-normal random scaling and uniform random
mutators both affect program accuracy directly when they
are applied to accuracy variables. The decision tree ma-
nipulation mutators affect accuracy by making algorithmic
changes that can result in different accuracies. Meta muta-
tors affect accuracy only indirectly as the call or undo the
other types of mutators. That autotuner conservatively as-
sumes all mutators affect accuracy when training and thus
accuracy is retested after each mutation.

Mutators also perform two other tasks as an optimiza-
tion. First, in cases where the behavior of the algorithm is
unchanged either below or above a threshold (for example,
when a new level is added to a decision tree, with the bottom
of the tree unchanged) the mutator copies unaffected results
gathered on the input candidate algorithm to the output can-
didate algorithm. This reduces the need for future testing.
Secondly, mutators can enable or disable other mutators for
a given candidate. For example, when levels are added to a
decision tree, the mutators to manipulate this higher level are
enabled by the mutator creating the level.

5.5 Autotuning Phases
5.5.1 Population Testing
The dominant time requirement of our autotuner is testing
candidate algorithms by running them on training inputs.
This testing measures both the time required and the result-
ing accuracy of each candidate algorithm. Accuracy is mea-
sured by running the accuracy metric defined by the user
after each testing run. We represent both time and accuracy
by using least squares to fit a normal distribution to the ob-
served data. This fitting allows us to give statistical bounds
(for example with a 95% confidence) for accuracy. When
the programmer elects to use statistical accuracy guarantees,
this alone is sufficient to guarantee accuracy. When the pro-
grammer elects to have runtime verification of accuracy, this
runtime verification is disabled during autotuning to allow
exploration of the choice space. When the programmer has
provided fixed (hand proven) accuracies the accuracy met-
rics will return a constant value for each candidate algorithm
and the normal distributions will become singular points.

An important decision that must be made is how many
times to test each candidate algorithm. With too few tests,
random deviations may cause non-optimal decisions to be
made, while with too many tests, autotuning will take an
unacceptably long time.
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A simple solution would be to use some fixed number
of tests for all candidate algorithms, however this is non-
optimal. The number of tests needed depends both on what
one is comparing an algorithm against (larger differences
can be verified with fewer tests than smaller differences) and
on the variance of results.

There is a configurable upper and lower limit for the
number of tests to run. Reasonable values for this upper and
lower limit are 3 and 25, however these values can be set
by the user based on their needs. In the testing phase of the
tuner (line 4 in Figure 5), we run the minimum number of
tests for each candidate algorithm in the population. Then,
during the subsequent phases of autotuning we dynamically
run more tests as needed.

We use the following heuristic to decide when to run
additional tests. When comparing two candidate algorithms,
C1 and C2, we perform the following steps:

1. Use statistical hypothesis testing (a t-test [18]) to estimate
the probability P(observed results | C1 = C2). If this
results in a p-value less than 0.05, we consider C1 and
C2 different and stop.1

2. Use least squares to fit a normal distribution to the per-
centage difference in the mean performance or accuracy
of the two algorithms. If this distribution estimates there
is a 95% probability of less than a 1% difference, con-
sider the two algorithms the same and stop.1

3. If both candidate algorithms have reached the maximum
number of tests, consider the two algorithms the same
and stop.

4. Run one additional test on either C1 or C2. Decide which
candidate to test based on the highest expected reduction
in standard error and availability of tests without exceed-
ing the maximum.

5. Go to step 1.

This heuristic results in a good balance, where additional
tests are run only where they are needed. It also gives our
autotuner the ability to adapt to variance in the environment.
As an interesting anecdotal experiment, if one begins to
rapidly move the mouse during autotuning, the increased
variance from this I/O activity causes the average number of
trials to approximately triple for our Sort benchmark (from
approximately 5 to 15 for a specific run and configuration).

5.5.2 Random Mutation
The random mutation phase of autotuning (line 6 in Fig-
ure 5), attempts to add new members to the population us-
ing the mutators described in Section 5.4. Repeatedly (for a
configurable number of attempts), it picks a random candi-
date algorithm (the parent) from the population and a ran-
dom mutator from the mutator pool and uses that mutator

1 The constants shown here are configurable, and can be changed based on
the needs of the user. We present a typical value for clarity.

to create a new candidate algorithm (the child). Parent algo-
rithms remain in the population, and are only removed by
the pruning phase.

Upon creation, a child algorithm is first tested the mini-
mum number of times. It is then compared against its parent
using the process described in Section 5.5.1. This process
may result in both the parent and the child being tested ad-
ditional times. If the child is better than the parent either in
time or in accuracy it is added to the population.

Child algorithms may provide different accuracies than
the parent when the mutator applied makes changes that
affect accuracy. This difference in accuracy is accounted
for during pruning as the autotuner attempts to maintain
a variety of algorithms that are optimal for each level of
accuracy.

5.5.3 Guided Mutation
Infrequently, the random mutation process may not produce
any candidate algorithms that meet the accuracy require-
ments given by the user. This most commonly happens with
the initial population, after only 1 round of random mutation.
In this case we use a guided mutation process process to at-
tempt to create a candidate algorithm that meets the user’s
requirements.

This guided mutation process is possible because the
training information file contains hints as to which config-
uration values affect accuracy. These accuracy variables are
things such as the iteration counts in for enoughs loop. The
guided mutation simply does hill climbing on this accuracy
variables. If the required accuracy cannot be attained (the
guided mutation process fails), an error is reported to the
user.

5.5.4 Population Pruning
The pruning phase of autotuning (line 9 in Figure 5), re-
moves unfit candidates from the population. For each accu-
racy bin required by the user, the pruning keeps the fastest
K algorithms that meet the accuracy requirement, where K
is a configurable parameter of the autotuner. Any algorithms
not included in these sets are removed from the population.

When considering the pruning process, one could imag-
ine an optimal frontier of algorithms. This optimal frontier
can be thought of as a curve on a 2D plane where one axis
is time and the other is accuracy. For each possible accu-
racy, there exists a single algorithm that provides at least that
accuracy in the lowest possible time. Conversely, for each
maximum execution time, there exists a single algorithm that
provides the highest accuracy possible in that time. Collec-
tively these algorithms make up a, possibly infinite in size,
optimal frontier of algorithms that one may want to use. The
multiple accuracy bins in our autotuner store a discretized
version of this optimal frontier of algorithms. The bins are
selected such that the fastest algorithms for the accuracies
actually used are maintained.
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Since comparisons between candidates can result in ad-
ditional trials (see Section 5.5.1), determining the fastest K
algorithms in each accuracy bin can be expensive. To reduce
the number of comparisons we use the following procedure:

1. Roughly sort the candidate list by mean performance
without running any additional trials.

2. Split the list at the Kth element into a KEEP list and a
DISCARD list.

3. Fully sort the KEEP list, running additional trials as
needed to gain the needed confidence.

4. Compare each element in theDISCARD list to theKth
element in the KEEP list (running additional trials as
needed). If any of these elements are faster, move them
to the KEEP list.

5. Fully sort the KEEP list again, running additional trials
as needed to gain the needed confidence.

6. Return the first K elements of the KEEP list.

This technique avoids fully sorting the elements of the
population that will be discarded. This causes more test-
ing time to be invested in the candidate that will be kept in
the population. It also exploits the fact that comparing algo-
rithms with larger differences in performance is cheaper than
comparing algorithms with similar performance.

6. Experimental Results
In this section, we present experimental results for a suite
of new variable accuracy PetaBricks benchmarks. We first
describe each of the benchmarks in detail. Next, we present
the performance improvements that can be attained by vary-
ing the desired accuracy of the benchmarks. Subsequently,
we describe some interesting compositional outcomes gen-
erated by our autotuner. These results illustrate the complex-
ity of the choice space for variable accuracy algorithms. We
believe that these results help motivate the need for auto-
matic search and for abstractions that isolate the user from
these complex choices. Finally, we discuss our experiences
with programming with and without our new language ex-
tensions.

6.1 Benchmarks
6.1.1 Bin Packing
Bin packing is a classic NP-hard problem where the goal of
the algorithm is to find an assignment of items to unit sized
bins such that the number of bins used is minimized, no bin
is above capacity, and all items are assigned to a bin. It is
an interesting problem because, while finding the optimal
assignment is NP-hard, there are a number of polynomial
time approximation algorithms that each provide different
levels of approximation and performance.

The bin packing benchmark demonstrates the ability of
our system to handle a large number of algorithmic choices.

Variable accuracy is attained primarily through using differ-
ent algorithms. We implemented the following algorithmic
choices in PetaBricks:

• FirstFit – Iterate through the items, placing each in the
first bin that has capacity. This will use no more than
17/10 × OPT bins in the worst case where OPT is the
number of bins used in an optimal packing.

• FirstFitDecreasing – Reverse-sort the items and call
FirstFit. Sorting the items before applying FirstFit re-
duces the worst case bounds to 10/9×OPT .

• ModifiedFirstFitDecreasing – A variant of FirstFitDe-
creasing that classifies items into categories to improve
the provable accuracy bound to 71/60 from optimal [16].

• BestFit – Iterate through the items, placing each in the
most-full bin that has capacity. This has the same worst
case packing performance as FirstFit.

• BestFitDecreasing – Reverse-sort the items and call
BestFit. This has the same worst case packing perfor-
mance as FirstFitDecreasing.

• LastFit – Iterate through the items, placing each in the
last nonempty bin that has capacity.

• LastFitDecreasing – Reverse-sort the items and call
LastFit.

• NextFit – Iterate through the items, placing each in the
last nonempty bin if possible, otherwise start a new bin.
This has been shown to perform 2 × OPT in the worst
case.

• NextFitDecreasing – Reverse-sort the items and call
NextFit.

• WorstFit – Iterate through the items, placing each in the
least-full nonempty bin that has capacity.

• WorstFitDecreasing – Reverse-sort the items and call
WorstFit.

• AlmostWorstFit – A variant of WorstFit, that instead
puts items in the kth-least-full bin. AlmostWorstFit by
definition sets k = 2, but our implementation generalizes
it and supports a variable compiler-set k. This has the
same worst case packing performance as FirstFit.

• AlmostWorstFitDecreasing – Reverse-sort the items
and call AlmostWorstFit.

To train this benchmark, we generate training data by di-
viding up full bins into a number of items such that the re-
sulting distribution of item sizes matches that of a distribu-
tion of interest to us. Using this method, we can construct an
accuracy metric that measures the relative performance of
an algorithm to the optimal packing at training time, with-
out the need for an exponential search. In this way, we are
able to efficiently autotune the benchmark for a particular
distribution of item sizes with an effective accuracy metric.
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6.1.2 Clustering
Clustering assigns a set of data into subgroups (clusters)
of similar patterns. Clustering is a common technique for
statistical data analysis in areas including machine learning,
pattern recognition, image segmentation and computational
biology. The k-means clustering algorithm is a common
method of cluster analysis which partitions n data points into
k clusters (k ≤ n) in which each data point is assigned to the
nearest cluster. The k-means problem is NP-hard when k is
fixed. As a result, algorithms that seek fixed points, such as
Lloyd’s algorithm, are used in practice.

The first step of solving the k-means problem is to find
the number of clusters k in the data set. There have been
many studies on choosing k, but the best choice is often not
obvious since it depends on the underlying distribution of
data and desired accuracy. Once the number of clusters is
determined, Lloyd’s algorithm starts with k initial centers
chosen randomly or by some heuristics. Each data point is
assigned to its closest center, measured by some distance
metric. The cluster centers are then updated to be the mean
of all the points assigned to the corresponding clusters. The
steps of partitioning points and recalculating cluster centers
are repeated until no changes occur.

In our PetaBricks transform, the number of clusters, k,
is the accuracy variable to be determined on training. Sev-
eral algorithmic choices are implemented in our version of
k-means clustering: The initial set of k cluster centers are ei-
ther chosen randomly among the n data points, or according
to the k-means++ algorithm [4], which chooses subsequent
centers from the remaining data points with probability pro-
portional to the distance squared to the closest center. Once
the initial cluster centers are computed, the final cluster as-
signments and center positions are determined by iterating,
either until a fixed point is reach or in some cases when the
compiler decides to stop early.

The training data is a randomly generated clustered set
of n points in two dimensions. First,

√
n “center” points

are uniformly generated from the region [−250, 250] ×
[−250, 250]. The remaining n −

√
n data points are dis-

tributed evenly to each of the
√
n centers by adding a random

number generated from a standard normal distribution to the
corresponding center point. The optimal value of k =

√
n

is not known to the autotuner. The accuracy metric used is√
2n∑
D2

i
, where Di is the Euclidean distance between the

i-th data point and its cluster center. The reciprocal is cho-
sen such that a smaller sum of distance squared will give a
higher accuracy.

6.1.3 3D Variable-Coefficient Helmholtz Equation
The variable coefficient 3D Helmholtz equation is a partial
differential equation that describes physical systems that
vary through time and space. Examples of its use are in the
modeling of vibration, combustion, wave propagation, and

climate simulation. It can be expressed as:

α(aφ)− β 5 ·(b5 φ) = f, (1)

where α and β are constants, a, b, and f are scalar valued
functions over the area of interest, and φ is the unknown
quantity we are solving for.

As an accuracy metric, we used the ratio between the
RMS error of the initial guess fed into the algorithm and
the RMS error of the guess afterwards. The values of a and
b were taken from the uniform distribution between 0.5 and
1 to ensure the system is positive-definite.

This benchmark utilizes multiple resolution levels, where
each recursive call works on a problem with half as many
points in each dimension. Since this is a three dimensional
problem, every time a recursive call is made, the amount of
data decreases by a factor of eight, possibly changing key
performance parameters such as iteration strategy. Addition-
ally, there is a lot of state data that needs to be transformed
(either averaged down or interpolated up) between levels of
recursion due to the presence of the variable coefficient ar-
rays a and b. This overhead of making recursive calls influ-
ences the decision of when it is optimal to transition from re-
cursing further to smaller problem sizes or to stop and solve
the problem as best we can on the current problem size using
a direct or iterative method.

6.1.4 Image Compression
In image compression, we can express an m-by-n image
by an m-by-n matrix, where the (i, j) entry represents the
brightness of the pixel at that point. Instead of storing all
mn entries, we can compress the image by storing less data,
which can later be used to reconstruct an image similar to
the original to within a desirable accuracy.

One way to perform this approximation is by Singular
Value Decomposition (SVD). For any m × n real matrix
A with m ≥ n, the SVD of A is A = UΣV T , where
the columns ui of U are called the left singular vectors,
the columns vi of V are called the right singular vectors,
and the diagonal values σi of Σ are called the singular
values. The best rank-k approximation of A is given by
Ak =

∑k
i=1 σiuiv

T
i [10]. Only the first k columns of U

and V and the first k singular values σi need to be stored to
reconstruct the image approximately.

In this paper, we consider n×n input matrices, generated
from a uniform distribution on (0, 1). Matrix entries taking
values from 0 to 1 can represent pixels in gray-scale, ranging
from black (0) to white (1). The SVD of a square matrix A
can be computed using the eigenvalues and eigenvectors of
the matrix H = [0 AT ;A 0]. The number of singular values,
k, to be used in the approximation is the accuracy variable to
be determined by the PetaBricks autotuner. Our PetaBricks
transform for matrix approximation consists of a hybrid al-
gorithm for finding all eigenvalues and eigenvectors, which
combines Divide and Conquer, QR Iteration and Bisection
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method and is implemented using LAPACK routines. An-
other algorithmic choice in our PetaBricks transform is Bi-
section method for only k eigenvalues and eigenvectors. The
accuracy metric used is the ratio between the RMS error of
the initial guess (the zero matrix) to the RMS error of the
output compared with the input matrix A, converted to log-
scale.

6.1.5 2D Poisson’s Equation
The 2D Poisson’s equation is an elliptic partial differential
equation that describes heat transfer, electrostatics, fluid dy-
namics, and various other engineering disciplines. The con-
tinuous and discrete versions are

52φ = f and Tx = b, (2)

where T , x, and b are the finite difference discretization of
the Laplace operator, φ, and f , respectively.

To build an autotuned multigrid solver for Poisson’s equa-
tion, we consider the use of three basic algorithmic building
blocks: one direct (band Cholesky factorization through LA-
PACK’s DPBSV routine), one iterative (Red-Black Succes-
sive Over Relaxation), and one recursive (multigrid).

As an accuracy metric, we used the ratio between the
RMS error of the initial guess fed into the algorithm and the
RMS error of the guess afterwards. The right hand side vec-
tor b was taken to be uniform over the interval [−231, 231).

Of these three algorithmic choices, only two of them are
variable accuracy, while the third (direct) solves the problem
to machine-precision (assuming reasonably behaved inputs).
This variable accuracy algorithm is one of the more complex
of our benchmarks due to its ability to tune the number of
iterations at each level of recursion thus making varying
accuracy guarantees during each stage of execution.

For example, we may want to iterate many times at a
lower recursion level to obtain a high-fidelity estimate before
interpolating up to the initial problem size to save on expen-
sive operations at the highest grid resolution. On the other
hand, if our final accuracy requirements are high enough, it
may not pay to do many iterations at a lower recursion level
if we are going to have to do many expensive full resolu-
tion iterations either way. It is this kind of trade-offs that our
variable accuracy auto-tuner excels at exploring.

6.1.6 Preconditioned Iterative Solvers
Solving a linear system of equations Ax = b is a common
problem in both scientific research and real-world applica-
tions such as cost optimization and asset pricing. Iterative
methods are often used to provide approximate solutions as
direct solvers are usually too slow to produce exact solu-
tions. Preconditioning is a technique that speeds up the con-
vergence of an iterative solver.

The convergence of a matrix iteration depends on the
properties of the matrix A, one of which is called the con-
dition number. A preconditioner P of a matrix A is a ma-
trix that if well chosen, the condition number of P−1A is

smaller than that of A. Although the preconditioned system
P−1Ax = P−1b has the same solution as the original sys-
tem, the rate of convergence depends on the condition num-
ber of P−1A. The preconditioner P = A has the optimal
condition number, but evaluating P−1b = A−1b is equiva-
lent to solving the original system. Achieving a faster con-
vergence rate while keeping the operation of P−1 simple to
compute is the key to finding a good preconditioner.

Our preconditioner PetaBricks transform implements
three choices of preconditioners and solves the system. The
first choice is the Jacobi preconditioner coupled with Pre-
conditoned Conjugate Gradient (PCG). The preconditioner
is chosen to be the diagonal of the matrix P = diag(A).
Another choice is to apply the polynomial preconditioner
P−1 = p(A), where p(A) is an approximation of the in-
verse of A by using a few terms of the series expansion
of A−1, and solve the preconditioned system with PCG.
We also implemented the Conjugate Gradient method (CG)
which solves the system without any preconditioning.

For training data, we set A to be the discretized operator
of the Poisson Equation, and use randomly generated entries
for b. The accuracy metric is the ratio between the RMS error
of the initial guess Axin to the RMS error of the output
Axout compared to the right hand side vector b, converted
to log-scale.

6.2 Experimental Setup
We performed all tests on an 8-core (dual-Xeon X5460)
system clocked at 3.16 GHz with 8 GB of RAM. The system
was running Debian GNU/Linux 5.0.3 with kernel version
2.6.26. All benchmarks are automatically parallelized by
the PetaBricks compiler and were run and trained using
8 threads.

6.3 Speedups Compared to Highest Accuracy Level
Figures 6(a)-6(f) show the speedups that are attainable when
a user is in a position to use an accuracy lower than the max-
imum accuracies of our benchmarks. On the largest tested
input size, for benchmarks such as Clustering and Precondi-
tioner speedups range from 1.1 to 9.6x; for benchmarks such
as Helmholtz, Image Compression, and Poisson speedups
range from 1.3 to 34.6x; and for the Bin Packing bench-
mark speedups ranged from 1832 to 13789x. Such dramatic
speedups are a result of algorithmic changes made by our
autotuner that can change the asymptotic performance of the
algorithm (O(n) vs O(n2)) when allowed by a change in
desired accuracy level. Because of this, speedup can become
a function of input size and will grow arbitrarily high for
larger and larger inputs. These speedups demonstrate some
of the performance improvement potentials available to pro-
grammers using our system.

6.4 Impact of Accuracy on Algorithmic Choices
Bin Packing Figure 7 depicts the results of autotuning the
Bin Packing benchmark for various desired accuracy levels
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Figure 6. Speedups for each accuracy level and input size, compared to the highest accuracy level for each benchmark. Run
on an 8-way (2× 4-core Xeon X5460) system.

(average number of bins used over the optimal). For any de-
sired accuracy between 1 and 1.5, the figure indicates the ap-
proximation algorithm that performs fastest on average, for
input data sizes between 8 and 220 generated by our training
data generator. The results show that each of the 13 approx-
imation algorithms used by the benchmark perform fastest
for some areas of the accuracy/data size space. This presents
a major challenge to developers seeking high performance
when using today’s programming languages since there ex-

ists no clear winner among the algorithms. Instead, the best
choice will depend on the desired accuracy and input size.
Thus, when writing a Bin Packing library, today’s high per-
formance programmers have the option of either producing
a brittle special-casing of the algorithmic choices manually
(which would be very tedious given the number of well per-
forming choices), or break the algorithm’s abstraction to let
the user specify which choice to go with. Either of the two
options are undesirable.

13 2010/7/27



256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

In
pu

t D
at
a 
Si
ze

WorstFitDecreasing 

NextFitDecreasing 

NextFit 

WorstFit 

AlmostWorstFitDecreasing 

AlmostWorstFit 

BestFit 

LastFit 

FirstFit 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

Required Accuracy (number of bins as a % of optimal)

In
pu

t D
at
a 
Si
ze

WorstFitDecreasing 

NextFitDecreasing 

NextFit 

WorstFit 

AlmostWorstFitDecreasing 

AlmostWorstFit 

BestFit 

LastFit 

FirstFit 

FirstFitDecreasing 

BestFitDecreasing 

LastFitDecreasing 

ModifiedFirstFitDecreasing 

1.5 1.4 1.3 1.2 1.1 1.0

Figure 7. Best algorithm for each accuracy and input size in the Bin Packing benchmark. By best we mean on the optimal
frontier (there exists no algorithm with better performance and accuracy for a given input size on average). Accuracy is defined
as the number of bins over the optimal number of bins achievable. Lower numbers represents a higher accuracy.

Accuracy k Initial Center Iteration Algorithm
0.10 4 random once
0.20 38 k-means++ 25% stabilize
0.50 43 k-means++ once
0.75 45 k-means++ once
0.95 46 k-means++ 100% stabilize

Table 1. Algorithm selection and initial k value results for
autotuned k-means benchmark for various accuracy levels
with n=2048 and k optimal = 45

It is also interesting to note the relatively poor perfor-
mance of ModifiedFirstFitDecreasing, despite the fact
that it has the best provable accuracy bounds out of the set
algorithms. It is best in only three small areas in the accu-
racy/data size space. Additionally, despite the fact that it is
provably guaranteed to be within 71/60 ( 1.18×) of optimal,
it is never the best performing algorithm when a probabilistic
bound of worse than 1.07× accuracy is desired. This result
highlights the advantages of using a empirical approach to
determining optimal algorithms when probabilistic guaran-
tees on accuracy are permissible.

Clustering Table 1 illustrates the results of autotuning our
k-means benchmark on our sample input of size n = 2048.
The results show interesting algorithmic choices and number
of clusters k chosen by the autotuner. For example, at accura-
cies greater than 0.2, the autotuned algorithm correctly uses

the accuracy metric (based on Euclidean distances between
data points and cluster centers) to construct an algorithm that
picks a k value that is close to 45, which is the number of
clusters generated by our training data (which is not known
to the autotuner).

At accuracy 0.1, the autotuner determines 4 to be the best
choice of k and chooses to start with a random cluster as-
signment with only one level of iteration. While this is a very
rough estimate of k and a very rough cluster assignment pol-
icy, it is sufficient to achieve the desired low level of accu-
racy. To achieve accuracy 0.2, the autotuner uses 38 clusters,
which is slightly less than the predetermined value. Our au-
totuned algorithm determines the initial cluster centers by
k-means++, and iterates until no more than 25% of the clus-
ter assignments change. For accuracy 0.5 and 0.75, the ks
picked by the autotuner algorithm are 43 and 45 respectively,
which are only slightly smaller or equal to the predetermined
k. The initial centers are decided by k-means++ and only one
iteration is used. By successfully finding a number of clus-
ters that is close to the predetermined k and picking good
initial centers, only one iteration is needed on average dur-
ing training to achieve a high level of accuracy. Finally, to
achieve the highest accuracy of 0.95, the algorithm uses k
value of 46. Initial centers are determined by k-means++ and
iterations are performed until a fixed point is reached. It is
interesting to note that on average, the autotuner finds that a
value of k that is one higher than the k used to generate the
data, is best to minimize the user specified accuracy metric,
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3D Variable-Coefficient Helmholtz Equation Figure 8
presents the multigrid cycle shapes chosen by our autotuner
for the Helmholtz algorithm. The shapes depict execution
traces of the algorithm for varying accuracy levels and input
sizes. The results show that compiler is able to do a good job
searching the space of possible cycle shapes despite having
to make difficult time-accuracy trade-offs at every stage of
the recursion.

The asymmetry in some of the figures are due to a prop-
erty of the algorithm that allows for an estimation phase, dur-
ing which work is done to converge towards the solution at
smaller problem sizes before work is expended at the largest
problem size. This is done to provide the Helmholtz solver
with an initial guess closer to the optimal solution, which in
some cases can pay for itself in saved iterations at the most
expensive level.

We found that in most cases with a large enough input,
the accuracy levels used for recursive calls could be well be-
low the desired accuracy of the final output given enough
repetitions of the recursive call. Further, the depth of the V-
cycles can be truncated by substituting the traditional deep
V-cycle shape with a shallow V-cycle with an iterative bot-
tom solve. This performance enhancing substitution is made
possible by the autotuner’s awareness of the different algo-
rithmic choices available to achieve each desired accuracy
level.

Additionally, it is interesting to notice the effect of the
desired accuracy on the shape of the cycles. For the low-
est accuracy requirement, we find that the result of the es-
timate phase (the non-symmetric, leftmost part of the cycle
shape) is sufficiently accurate to meet the accuracy require-
ment. When solving for 3 orders of magnitude of accuracy
improvement, the algorithm begins to rely more on the solve
phase. At 5 and 7 orders of magnitude of accuracy improve-

ment, the algorithm decides not to perform any estimation at
all the majority of the time. This result stands in contrast to
the results at 9 orders of magnitude of accuracy improve-
ment, where for data sizes greater than 64, the algorithm
performs extensive estimation through multiple SOR relax-
ations at different levels of recursion. Additionally, for this
accuracy at input size 8, it is also interesting to see that the
algorithm abandons the use of recursion completely, opting
instead to solve the problem with the ideal direct solver.

6.5 Programmability
While determining the programmer productivity of a new
language can be quite challenging, our anecdotal experi-
ence has shown that our extensions greatly simplify the task
of programming variable accuracy code. We have written
a variable accuracy version of the 2D Poisson’s equation
solver benchmark in the PetaBricks language both before
and after we added our new variable accuracy language con-
structs. We found that our new language features greatly
simplified the benchmark, resulting in a 15.6x reduction in
code size.

In the original PetaBricks language, we were able to
leverage the language’s autotuner to perform the search
through the accuracy performance space. However, unlike
in the new code, much of the heavy lifting during the train-
ing stage had to be performed by code written by the pro-
grammer. For example, the original code contained special-
ized transforms used only during training that predetermined
the levels of accuracy required at each recursive step in the
multigrid algorithm. These transforms stored this informa-
tion in a file which was used during subsequent non-training
runs. Additionally, we were able to eliminate a substantial
amount of code duplication because we were able to rep-
resent variable accuracy directly instead of being forced to
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represent it as algorithmic choices. Finally, we should note
that had the original code been written in a language without
autotuning support, the code would have no doubt been even
more complex if it were to not expose the numerous choices
in the multigrid solver to the user.

7. Related Work
Seeking approximating program outputs is a common tech-
nique for determining solutions to computationally hard
tasks, such as NP-complete problems. For such problems,
programmers often manually employ soft computing, fuzzy
logic and artificial intelligence techniques to trade preci-
sion s computational tractability [28]. Likewise, in a similar
manner, precision is often sacrificed for performance when
real-time constraints make precise algorithms unfeasible.
However, despite this, few systems exists today to help pro-
grammers develop such programs.

There has been a fair amount of research focusing on ap-
proximating floating-point computations. For example, Hull
et al. developed Numeric Turing [14], a programming lan-
guage for scientific computation that allows developers to
dynamically specify the desired precision of floating-point
values throughout their program. Numeric Turing works in
conjunction with a specialized coprocessor that performs the
variable accuracy arithmetic needed to maintain the desired
precision. While effective, the specialized hardware incurs a
fairly large barrier to entry.

Techniques such as Loop Perforation [19], Code Perfo-
ration [12], and Task Skipping [21, 22] automatically trans-
form existing computations and/or programs. The resulting
new computations may skip subcomputations (for example
loop iterations or tasks) that may not be needed to achieve
a certain level of accuracy. The computation may perform
less computational work and therefore execute more quickly
and/or consume less energy. While this approach can be per-
formed robustly in many cases, it is not sound and there-
fore may require additional programmer time to verify the
correctness of the perforated code (should such verification
be needed or desired). On the other hand, our system pro-
vides a new language and compiler that enables program-
mers to write new programs with variable accuracy in mind
right from the start. In addition to altering loop iterations,
our language allows programmers to specify entirely differ-
ent algorithmic choices and data representations that may be
optimal for different accuracies.

PowerDail [13] is a system that converts static configura-
tion parameters that already exist in a program into dynamic
knobs that can be tuned at runtime. Their system can then
change these knobs at runtime to make the program meet
performance and power usage goals. They use an applica-
tion wide quality of service metric to measure the loss or
gain in accuracy.

Being developed concurrently to our work is the Green
system [5], whose primary goal is to lower the power re-

quirements of programs. Green uses pragma-like annota-
tions to allow multiple versions of a function that have dif-
ferent power requirements and resulting accuracies. Green
uses a global quality of service metric to monitor the im-
pact of running the various approximate versions of the code.
PetaBricks differs from Green in that it supports multiple
accuracy metrics per program, allows the definition of a
much larger class of algorithmic choices, has parallelism in-
tegrated with its choice model, and contains a robust genetic
autotuner.

Finally, there exists a large variety of work related to
PetaBrick’s autotuning approach of optimizing programs.
For example, a number of empirical autotuning frameworks
have been developed for building efficient, portable libraries
in specific domains. PHiPAC [6] is an autotuning system
for dense matrix multiply. ATLAS [24] utilizes empirical
autotuning to produce a cache-contained matrix multiply.
FFTW [11] uses empirical autotuning to combine solvers for
FFTs. Other autotuning systems include SPARSITY [15] for
sparse matrix computations, SPIRAL [20] for digital signal
processing, UHFFT [2] for FFT on multicore systems, and
OSKI [23] for sparse matrix kernels. In addition to these
systems, various performance models and tuning techniques
[7, 17, 25, 27] have been proposed to evaluate and guide
automatic performance tuning.

8. Conclusions
We have presented a new programming model where trade-
offs between time and accuracy are exposed at the language
level to the compiler. To the best of our knowledge, this
is the first programming language that incorporates a com-
prehensive solution for choices relating to algorithmic accu-
racy. We have developed novel techniques to automatically
search the space of algorithms and parameters to construct
an optimized algorithm for each accuracy level required. We
have implemented a suite of 6 benchmarks that are represen-
tative of commonly used algorithms that leverage variable
accuracy. Using these benchmarks, we have provided evi-
dence of the importance of exposing accuracy and algorith-
mic choices to the compiler when autotuning variable accu-
racy programs.

Using our new programming model, library writers are
able to hide the implementation details of their variable ac-
curacy algorithms without limiting the user’s choice of de-
sired accuracy and the resulting performance. Moreover, li-
brary users do not need to burden themselves with learning
the implementation specific parameters that would otherwise
have been exposed. Additionally, our extensions allow vari-
able accuracy algorithms to adapt to new environments not
known to the original programmer. These new environments
include new architectures, where different relative costs of
operations may change the accuracy/performance trade-offs
of the underlying choices. In addition, our system allows
variable accuracy algorithms to adapt to changes in required
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accuracy and accuracy metrics. This ability to adapt extends
the lifetime of programs, since the program can automati-
cally change to meet the needs of future generations of users.
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