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Abstract. In the present paper, reflection and transmission phenomena of water
waves due to undulating permeable bottom in a two-layer fluid system are investigated
using two-dimensional linearized theory. The effect of surface tension on the free
surface is included in this work. In two-layer fluid system, there exist waves with
two different wave numbers (modes). When a wave of a particular wave number
encounters the undulating bottom, reflection and transmission phenomena occur in
both the layers. The reflection and transmission coefficients in both layers due to
incident waves of both modes are analyzed with the aid of perturbation analysis along
with Fourier transform technique. It is found that these coefficients are obtained in
terms of integrals which depend on the shape function of the undulating bottom. Two
different kinds of undulating bottoms are considered to determine these coefficients.
For a particular undulating bottom, namely sinusoidal bottom undulation the effect
of various physical parameters such as number of ripples, surface tension and porous
effect parameters are demonstrated graphically. The study further elaborates the
energy balance relations associated with the reflection and transmission coefficients
to ascertain the correctness of all the computed results.

Keywords: two-layer fluid, porosity, surface tension, linear theory, wave scattering.

AMS Subject Classification: 35Q35; 76B15.

1 Introduction

In recent times, many researchers have shown their interest in the field of
scattering of water waves in a multi-layered fluid system instead of a single
layer fluid system. The growing interest is mainly due to the following facts:
(i) a single layer approximation becomes insufficient as the fluid is continuously
stratified; and (ii) the possibility of transformation of water wave energy from
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one mode to another mode. The propagation of waves in a two-layer fluid
without the presence of any obstacle was first investigated by Stokes. For such
a two-layer fluid system, there exist two possible linear wave systems [15] at a
given frequency each with a different wave number (mode): waves with lower
wave number propagate in the upper layer while those with higher wave number
propagate in the lower layer. When a wave train of a particular mode interacts
with an obstacle, it may happen that the incident wave is partially reflected and
also partially transmitted into waves of both modes. Thus, there is a possibility
that some of the incident wave energy may transfer from one mode to another.
In this context, Linton and McIver [15] studied the problem involving scattering
of water waves in the presence of a long horizontal cylinder present in either
of the two layers in a two-layer fluid. Based on multipole expansion, they have
obtained the reflection and transmission coefficients for both wave numbers
due to incident wave of two modes. Subsequently, Linton and Cadby [14] have
extended the problem of Linton and McIver [15] to the scattering of oblique
waves. They have also studied the reflection and transmission phenomena
with the help of multipole expansion method. Afterwards, Chamberlain and
Porter [8] have studied the problem involving scattering of water waves in a
two-layer fluid of varying depth. It should be noted that, these kind of problems
arise while modelling an underwater pipe bridge across one of the Norwegian
fjords which consists of a layer of fresh water on top of a deep layer of salt
water.

The scattering of water waves in a two-layer fluid over an obstacle or a
geometrical disturbance at the bottom has been considered for its possible
applications in the areas of coastal and marine engineering. The problem in-
volving reflection and transmission of waves by patches of bottom undulation
has received an increasing attention in recent time since its mechanism is im-
portant in the development of shore parallel bars or pipes. The problem involv-
ing scattering of water waves in single layer fluid was studied by Davies [10],
Davies and Heathershaw [11], Martha et al. [4] and many others by employing
various mathematical techniques. In case of two-layer fluid, the scattering of
water waves by small bottom undulation was studied by Maiti and Mandal [16],
Panda [21], Mohapatra and Bora [19]– [20] and references therein. They have
employed different mathematical techniques to solve the respective problems.
In all the above studies, the wave motion in the water region is investigated
excluding the effect of surface tension and porosity of the bottom. In real-
ity, the porosity of the bottom becomes an exceedingly important aspect of
coastal engineering as reported in the literature. Recently, the wave scattering
by porous bottom has gained considerable interest. The effect of porosity of
bottom in a single layer fluid system is well documented in literature [2] and
references therein.

All the above works were focused only on the solutions of the water wave
interaction problems by excluding the effect of surface tension. The study in-
volving water waves in the presence of surface tension in a single layer fluid has
been made by many researchers. Rhodes-Robinson [24] developed an effective
reduction technique to study the effect of surface tension on the progressive
waves due to vertical wave makers. Chakrabarti and Sahoo [7] studied the
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effect of surface tension in a single layer fluid using mixed-type Fourier trans-
form in the case of infinite depth and the method of eigenfunction expansion in
the case of finite depth. Using Fourier transform technique, Panda et al. [25]
studied the scattering of water waves in a single layer fluid over a permeable
bottom by considering the effect of surface tension. Harter et al. [1] analyzed
the effect of surface tension on trapped modes. They pointed out that the ex-
clusion of surface tension during the formulation of the problem is not always
justifiable, as its inclusion changes the qualitative nature of the streamline pat-
tern. They also mentioned that the surface tension does not always play a
qualitatively irrelevant role in the linear water-wave problem. Therefore, they
advise to consider surface tension in any future works, as its inclusion could
bring about unexpected results.

To the authors’ knowledge, the effect of surface tension at the free surface in
a two-layer fluid is yet to be known. In present paper, scattering of water waves
by undulating permeable bottom in a two-layer fluid system in the presence of
surface tension at the free surface is studied. It is assumed that the fluid in each
layer is incompressible and inviscid; and the flow is irrotational. In two-layer
fluid system, the time-harmonic waves of a particular mode can propagate with
two-different wave numbers: waves with lower wave number propagate in the
upper layer and the waves with higher wave number propagate in the lower
layer. Using linear theory, the problem under consideration is formulated as
a coupled boundary value problem (BVP) for two velocity potential functions
describing the fluid motion in each layer. Employing perturbation analysis, the
velocity potentials and the reflection as well as transmission coefficients appear-
ing in the coupled BVP can be expanded as a power series of the parameter
ε representing smallness of the undulation. After equating the coefficients of
the identical powers of ε from both sides of all equations of the coupled BVP,
a number of BVPs can be obtained. However, the BVPs up to first order are
considered here for their solutions as the BVPs of higher order can be solved
in this principle successively. The solution of the first order BVP is derived
using Fourier transform technique. This solution is utilized to determine the
first order reflection and transmission coefficients which are obtained in terms
of integrals involving the shape function of the undulating bottom. Two dif-
ferent kinds of undulating bottoms are considered to evaluate the reflection
and transmission coefficients (physical quantities of interest) due to incident
waves of both modes. In addition, the energy balance relations known as the
energy identities involving reflection and transmission coefficients are derived
in detail using modified Green’s integral theorem to ascertain the correctness
of all computed results.

2 Mathematical formulation of the problem

We have considered a two-layer fluid system as shown in Figure 1 in which
the upper layer is free to the atmosphere and the bottom of the lower layer
has a small undulation. In this study, we have also considered the effect of
surface tension at the free surface and the porosity in the undulating bottom,
which is an endeavour to take the problem to another step forward towards a
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Figure 1. Schematic diagram

real and practical situation occurring in the water wave scattering problem. It
is assumed that the motion to be irrotational and simple harmonic; and the
fluid in each layer is inviscid, incompressible and immiscible having constant
but different densities. The motion of the fluid inside the porous bed is not
analyzed in this study. To formulate the problem mathematically, x axis is
taken along the undisturbed interface between the two fluids and the y axis
is taken vertically downward from the undisturbed interface. The fluid in the
upper layer occupies the region −h ≤ y ≤ 0, where h is the mean position
of the free surface. The fluid in the lower layer occupies the region 0 ≤ y ≤
H + εc(x), where y = H + εc(x) represents the undulating permeable bottom,
c(x) (bounded and continuous function) describing shape of the undulation, ε is
a small parameter giving a measure of the undulation, H is uniform finite depth
far to either side of the undulation so that c(x)→ 0 as |x| → ∞. The density
of the fluid in the upper layer is denoted by ρ1 whereas the density of the lower
layer fluid is denoted by ρ2(> ρ1). Under the assumptions as mentioned above,
velocity potentials in the upper and lower layer can respectively be written as

Φ1

(
x, y, t̃

)
= Re[φ1(x, y)e−iσt̃], Φ2

(
x, y, t̃

)
= Re[φ2(x, y)e−iσt̃],

where σ is the angular frequency of the incoming waves and t̃ is the time. In
each layer, the equation of continuity yields the Laplace equation ( [15]):

∇2φ1 = 0, ∞ < x <∞, − h ≤ y ≤ 0, (2.1)

∇2φ2 = 0, ∞ < x <∞, 0 ≤ y ≤ H + εc(x), (2.2)

where ∇2 is the two-dimensional Laplace operator.
The linearized condition at the free surface with the effect of surface tension

can be written as ( [24]) mentioned below

(φ1)y +Kφ1 +M(φ1)yyy = 0, on y = −h, (2.3)

where K = σ2

g with g being acceleration due to gravity and M = S
ρ1g

with S is
the coefficient of surface tension. Here it should be noted that the dimension
of K is (length)−1 and the dimension of M is (length)2.
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The linearized interface conditions ( [20]) are

(φ1)y = (φ2)y, on y = 0, (2.4)

ρ [(φ1)y +Kφ1] = (φ2)y +Kφ2, on y = 0, (2.5)

where ρ = ρ1
ρ2

(< 1). The boundary condition (2.4) is due to the continuity of

normal velocity whereas the condition (2.5) is due to the continuity of pressure
at the interface.

Based on the assumption made by Darcy, the condition at the porous bot-
tom can be written as ( [3, 4, 9])

∂φ2
∂n
−Gφ2 = 0, on y = H + εc(x), (2.6)

where ∂/∂n denotes the normal derivative at a point (x, y) on the bottom and
G is the porous effect parameter ( [4, 9, 17]) with dimension of G is length−1

corresponding to the undulating bottom under consideration. Here we assume
that the ocean bed is composed of specific types of porous materials with very
fine pores. Therefore, the boundary condition given in relation (2.6) is valid
throughout the study. It should be noted that the porous boundary condition
(2.6) is an ad hoc boundary condition which takes up the rigid boundary con-
dition when the porous parameter G tends to zero. The value of the porous
parameter G is chosen as real throughout the study. The value of G can be
choosen to be real due to the percolation at the fluid-porous interface in which
only flow resistance is considered. It is worth mentioning that the progressive
waves exist for real value of G only. However, if the value of G is complex,
there does not exist any progressive waves. The condition (2.6) is due to the
porous beds, like a sand bed or any other non-rigid bed through which water
can pass through. Such an assumption of non-rigid and porous bed induces
boundary condition of the impedance type involving a linear combination of
the potential function and its normal derivative on the boundary for the case
of irrotational flow as it has been used in this study.

The bottom boundary condition (2.6) can be approximated as

(φ2)y−ε
∂

∂x
[c(x)(φ2)x]−G [φ2 + εc(x)(φ2)y]+O

(
ε2
)

= 0, on y = H. (2.7)

In addition to the relations (2.1)–(2.7), there are additional boundary condi-
tions, namely the far-field conditions at x→ ±∞. These boundary conditions
depend on the forms of the progressive waves. The forms of the progressive
waves in the two-layer fluid associated with the given problem are derived by
solving Laplace equations (2.1) and (2.2) along with the boundary conditions
(2.3)–(2.5) and the flat bed condition ∂φ2/∂y − Gφ2 = 0, on y = H, using
the method of separation of variables. The final expression of the progressive
waves are obtained as follows:

φ10(x, y) = f1(k, y)e±ikx, −∞ < x <∞,−h ≤ y ≤ 0, (2.8)

φ20(x, y) = f2(k, y)e±ikx, −∞ < x <∞, 0 ≤ y ≤ H, (2.9)
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where

f1(k, y) =
[sinh kH−Gk sinh kH][(1+Mk2)k cosh k(h+y)−K sinh k(h+y)]

K cosh kh− (1 +Mk2)k sinh kh
(2.10)

and

f2(k, y) =
[

cosh k(H − y)− G

k
sinh k(H − y)

]
(2.11)

with k satisfying the relation

∆(k) = 0, (2.12)

where

∆(k) = k2(1− ρ)(1 +Mk2)− K2G

k
(coth kh+ ρ coth kH)

+K2(ρ+ coth kh coth kH) +GK[(1 +Mk2)(1 + ρ coth kh coth kH)

+ (1− ρ) coth kh coth kH]− (1 +Mk2)kG(1− ρ) coth kH

−Kk[(1 +Mk2)(ρ coth kh+ coth kH) + (1− ρ) coth kh].

The eigenfunctions f1(k, y) and f2(k, y) defined in relations (2.10)–(2.11)
are integrable in (−h < y < 0) ∪ (0 < y < H) having a single discontinuity
at y = 0 and are orthogonal with respect to the inner product as defined (by
applying similar analysis of [13]) by

< φ,ψ >= ρ

∫ 0

−h
φ(y)ψ(y)dy +

∫ H

0

φ(y)ψ(y)dy.

Here it is worthy to mention that the functions f1(k, y) and f2(k, y) are the
eigenfunctions associated with the self-adjoint operator

LΘ ≡ d2Θ

dy2
= λ2Θ, y ∈ (−h, 0) ∪ (0, H),

corresponding to the eigenvalues λ = λ1, λ2 satisfying the end conditions

Θ′(−h) +KΘ(−h) +MΘ′′′(−h) = 0 and Θ′(H)−GΘ(H) = 0

and the interface condition

Θ′(0−) = Θ′(0+) and ρ1[Θ′(0−) +KΘ(0−)] = ρ2[Θ′(0+) +KΘ(0+)],

where ′ denotes the first order derivative.
The relation (2.12) is called as dispersion relation in the theory of water

wave. It can be shown (discussed later in Section 6) that the dispersion relation
(2.12) has two positive real roots (say, λ1 and λ2 with λ1 < λ2) which indi-
cate that there exist incident (progressive) waves of two different modes (wave
numbers) λ1 and λ2. Let us first consider the wave of mode λ1 is incident from
the direction x = −∞ to the bottom undulation then it is partially reflected
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and partially transmitted into waves in both layers. Therefore, the far-field
conditions can be expressed as

φ1(x, y)→
{
f1(λ1, y)(eiλ1x + re−iλ1x) +Rf1(λ2, y)e−iλ2x, x→ −∞,
tf1(λ1, y)eiλ1x + Tf1(λ2, y)eiλ2x, x→∞, (2.13)

and

φ2(x, y)→
{
f2(λ1, y)(eiλ1x + re−iλ1x) +Rf2(λ2, y)e−iλ2x, x→ −∞,
tf2(λ1, y)eiλ1x + Tf2(λ2, y)eiλ2x, x→∞, (2.14)

where r,R are respectively the reflection coefficients associated with reflected
waves of modes λ1 and λ2, due to incident wave of mode λ1. Similarly, t and
T denote the transmission coefficients associated with transmitted waves of
modes λ1 and λ2 respectively, due to incident wave of mode λ1. These unknown
reflection and transmission coefficients (r, R, t and T ) can be determined by
solving the BVP given by relations (2.1)–(2.5), (2.7), (2.13) and (2.14).

When the wave of mode λ2 is incident then the far-field conditions are as
follows:

φ1(x, y)→

{
f1(λ2, y)(eiλ2x + R̂e−iλ2x) + r̂f1(λ1, y)e−iλ1x, x→ −∞,
T̂ f1(λ2, y)eiλ2x + t̂f1(λ1, y)eiλ1x, x→∞,

(2.15)

and

φ2(x, y)→

{
f2(λ2, y)(eiλ2x + R̂e−iλ2x) + r̂f2(λ1, y)e−iλ1x, x→ −∞,
T̂ f2(λ2, y)eiλ2x + t̂f2(λ1, y)eiλ1x, x→∞,

(2.16)

where r̂, t̂ are respectively the reflection and transmission coefficients associated
with reflected and transmitted waves of modes λ1; R̂ and T̂ are respectively
the reflection and transmission coefficients associated with reflected and trans-
mitted wave of mode λ2 due to incident wave of mode λ2. The unknown coef-
ficients r̂, R̂, t̂ and T̂ can be obtained by solving the BVP given by relations
(2.1)–(2.5), (2.7), (2.15) and (2.16). The aim of the present work is the deter-

mination (analytically) of all these unknown coefficients r, R, t, T, r̂, R̂, t̂

and T̂ including the effects of various physical parameters on these coefficients.

3 Solution of the problem

This section is devoted to determine the velocity potential functions, reflection
and transmission coefficients due to incident wave of both the modes. Let us
consider the incident wave of mode λ1 for which the physical quantities such
as r, R, t, T have to be determined. In a similar fashion, all the coefficients
due to incident wave of mode λ2 can also be determined.

The incident wave train will propagate without any hindrance if there is
no undulation at the bottom. Hence, there will be transmission only. In view
of this fact along with the approximated form of bottom condition (2.7), the

Math. Model. Anal., 22(6):827–851, 2017.
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velocity potentials φ1, φ2 and the quantities t, T, r, R can be expressed in
terms of the small parameter ε as follows:

φ1(x, y) = φ10(x, y) + εφ11(x, y) + O
(
ε2
)
,

φ2(x, y) = φ20(x, y) + εφ21(x, y) + O
(
ε2
)
,

t = 1 + εt1 + O
(
ε2
)
, T = εT1 + O

(
ε2
)
,

r = εr1 + O
(
ε2
)
, R = εR1 + O

(
ε2
)
,

 (3.1)

where φ10(x, y) and φ20(x, y) are given in relations (2.8) and (2.9) respectively
and φj1 (j = 1, 2) denote the first order corrections of velocity potentials φj .
The reflection and transmission coefficients r, R, t, T can be evaluated from the
relation (3.1) once the first order coefficients r1, R1, t1, T1 are known. Hence, all
these first order reflection and transmission coefficients are determined in this
paper. It must be noted that such a perturbation analysis ceases to be valid
at Bragg resonance when the reflection coefficient becomes much larger than
the undulation parameter ε, as pointed out by Mei [18]. Since the reflection
coefficient, considered in the present study, is not large as compared to the
undulation parameter, therefore, the perturbation expansions as given in the
relation (3.1) is valid throughout this paper.

Substituting the relation (3.1) in relations (2.1)–(2.5), (2.7), (2.13), (2.14)
and then comparing the first order terms of ε on the both sides of all equations,
we have the coupled BVP:

∇2φ11 = 0, − h ≤ y ≤ 0,(3.2a)

∇2φ21 = 0, 0 ≤ y ≤ H, (3.2b)

(φ11)y +Kφ11 +M (φ11)yyy = 0, on y = −h, (3.2c)

(φ11)y = (φ21)y , on y = 0, (3.2d)

ρ
[
(φ11)y +Kφ11

]
= (φ21)y +Kφ21, on y = 0, (3.2e)

(φ21)y −Gφ21 = q(x), on y = H, (3.2f)

where

q(x) = iλ1
d

dx

[
c(x)eiλ1x

]
+G2c(x),

along with the first order far-field conditions

φ11(x, y)→
{
r1f1(λ1, y)e−iλ1x +R1f1(λ2, y)e−iλ2x, x→ −∞,
t1f1(λ1, y)eiλ1x + T1f1(λ2, y)eiλ2x, x→∞ , (3.3)

φ21(x, y)→
{
r1f2(λ1, y)e−iλ1x +R1f2(λ2, y)e−iλ2x, x→ −∞,
t1f2(λ1, y)eiλ1x + T1f2(λ2, y)eiλ2x, x→∞. (3.4)

In order to solve the coupled BVP described by relations (3.2a)–(3.2f) for
the potentials φ11(x, y) and φ21(x, y), the BVP has been decoupled by

(φ11)y = p(x) and (φ21)y = p(x), on y = 0,

where p(x) is an unknown function. Now the decoupled BVP is solved here
using Fourier transform technique. The main advantage of using Fourier trans-
form technique is that it is much easier and simpler than the other method (for
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example, Green function technique) utilized to study the problem involving
scattering of water waves by Maiti and Mandal [16]. The Fourier transforms
φ̄11(k, y) and φ̄21(k, y) of φ11(x, y) and φ21(x, y) respectively, defined as follows:

φ̄11(k, y) =

∫ ∞
−∞

φ11(x, y)e−ikxdx; φ̄21(k, y) =

∫ ∞
−∞

φ21(x, y)e−ikxdx

with inverses

φ11(x, y) =
1

2π

∫ ∞
−∞

φ̄11(k, y)eikxdk; φ21(x, y) =
1

2π

∫ ∞
−∞

φ̄21(k, y)eikxdk.

Using Fourier transform and inverse Fourier transform as defined above, the
solution of the BVP is obtained as

φ11(x, y) =
K

2π

∫ ∞
0

{K sinh k(h+ y)− (1 +Mk2)k cosh k(h+ y)}
k sinh kh sinh kH∆(k)

×
[
q(k)eikx + q(−k)e−ikx

]
dk (3.5)

and

φ21(x, y) =
1

2π

∫ ∞
0

1

k(sinh kH − G
k cosh kH)

[
cosh ky

−
K[K coth kh− k(1 +Mk2)]

[
cosh k(H − y)− G

k sinh k(H − y)
]

sinh kH∆(k)

]
×
[
q(k)eikx + q(−k)e−ikx

]
dk, (3.6)

where p(k) and q(k) are the Fourier transform of p(x) and q(x) respectively.
In order to determine the first order transmission coefficients t1 and T1

due to incident wave of mode λ1, we have taken x → ∞ in relation (3.5) and
then compared the resultant integral with relation (3.3). The transmission
coefficients t1 and T1 are obtained as follows:

t1 = Q(λ1)×
(
G2 − λ21

)
×
∫ ∞
−∞

c(x)dx, (3.7)

T1 = Q(λ2)×
(
G2 − λ1λ2

)
×
∫ ∞
−∞

c(x)e−i(λ2−λ1)xdx, (3.8)

where Q(k) =
iK{(1 +Mk2)k sinh kh−K cosh kh}

sinh kh sinh kH
(
k sinh kH −G cosh kH

)
∆′(k)

, k = λ1, λ2.

The first order reflection coefficients r1 and R1 are obtained after evaluating the
integrals given in relations (3.5) or (3.6) for x→ −∞, and then comparing the
behaviour of φ11(x, y) or φ21(x, y) with relation (3.3) or (3.4). The expressions
of the first order reflection coefficients are

r1 = −Q (λ1)×
(
G2 − λ21

) ∫ ∞
−∞

c(x)e2iλ1xdx, (3.9)

R1 = −Q(λ2)×
(
G2 − λ1λ2

) ∫ ∞
−∞

c(x)ei(λ2+λ1)xdx. (3.10)

Math. Model. Anal., 22(6):827–851, 2017.
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When the incident wave is of mode λ2, the first order reflection and trans-
mission coefficients r̂1, R̂1, t̂1 and T̂1 can be determined by solving the BVP
consisting of Laplace equations (2.1) and (2.2) along with boundary conditions
(2.3)–(2.5), (2.7), (2.15) and (2.16) by using the same mathematical procedure

as described above for the case of mode λ1. The coefficients r̂1, R̂1, t̂1 and T̂1
are obtained as follows:

t̂1 = Q(λ1)× (G2 − λ1λ2)×
∫ ∞
−∞

c(x)ei(λ2−λ1)xdx, (3.11)

T̂1 = Q(λ2)× (G2 − λ22)×
∫ ∞
−∞

c(x)dx, (3.12)

r̂1 = −Q(λ1)× (G2 − λ1λ2)×
∫ ∞
−∞

c(x)ei(λ2+λ1)xdx, (3.13)

R̂1 = −Q(λ2)× (G2 − λ22)×
∫ ∞
−∞

c(x)e2iλ2xdx. (3.14)

It can be noticed from relations (3.7), (3.8), and (3.9)–(3.14) that all the

coefficients r1, R1, t1, T1, r̂1, R̂1, t̂1 and T̂1 depend on the shape function
c(x) of the undulating bottom. Hence, two different kinds of bottom profiles
are considered in Section 5 to evaluate all the integrals in relations (3.7), (3.8),
and (3.9)–(3.14). Further, it is also noticed that the reflection and transmis-
sion coefficients also depend on the porous effect parameter G and the surface
tension effect parameter M .

Figure 2. |R1| for ρ1 = ρ2,m = n = 2, a/(h+H) = 0.32,M/h2 = 0, Gh = 0.

4 Validation of the results

To validate the model under consideration, the present results are compared
with the existing results available in the literature. To validate the present
results we derive the results by considering G = 0 (impermeable bottom) and
M = 0 (effect of surface tension is neglected) in relations (3.7), (3.8), and
(3.9)–(3.14), the reflection and transmission coefficients are obtained. We have
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noticed that the derived results exactly match with the results of Mohapatra
and Bora [19] (when θ = 0 in the absence of ice-sheet), Panda and Martha [23]
(when G = 0 and θ = 0), Panda and Martha [22] (when G = 0 in the absence
of ice-sheet).

In Figure 2, a comparison is made between the present results and the
experimental as well theoretical results made by Davies and Heathershaw [11].
They performed the experiment on the problem involving scattering of water
wave by irregular impermeable bottom having small undulation in a single
layer. Therefore, we have derived the reflection coefficient, which is plotted
in Figure 2 by considering ρ1 = ρ2 and non-dimensional parameters Gh =
0, M/h2 = 0 in the present results. From Figure 2, it is clear that the results
of the present study for ρ1 = ρ2 are in good agreement with the theoretical as
well as the experimental results of Davies and Heathershaw [11].

5 Examples of undulating bottom profiles

In this section we have considered different kinds of bottom profiles to demon-
strate the influence of natural variation of bottom topography on the behaviour
of reflection and transmission. The bottom profiles considered in the following
section resemble with certain hump which are found in practical situations.

Example 1. Consider the following shape function c(x) which corresponds to
an exponentially damped undulating bottom,

c(x) = be−a0|x| (a0 > 0), −∞ < x <∞. (5.1)

Substituting relation (5.1) into relations (3.7), (3.8), (3.9), (3.10) and (3.11)–
(3.14), the first order reflection and transmission coefficients are obtained as

r1 = −Q(λ1)× (G2 − λ21)× 2ba0/(a
2
0 + 4λ21),

R1 = −Q(λ2)× (G2 − λ1λ2)× 2ba0/(a
2
0 + (λ2 + λ1)2),

t1 = Q(λ1)× (G2 − λ21)× 2b/a0,

T1 = Q(λ2)× (G2 − λ1λ2)× 2ba0
a20 + (λ2 − λ1)2

,

T̂1 = Q(λ2)× (G2 − λ22)× 2b/a0,

t̂1 = Q(λ1)× (G2 − λ1λ2)× 2ba0
a20 + (λ2 − λ1)2

,

r̂1 = −Q(λ1)× (G2 − λ1λ2)× 2ba0
a20 + (λ2 + λ1)2

,

R̂1 = −Q(λ2)× (G2 − λ22)× 2ba0/(a
2
0 + 4λ22).

Example 2. Let us consider the shape function c(x) in the form of a patch of
sinusoidal ripples as the bottom undulation,

c(x) =

{
a sin γx, L1 ≤ x ≤ L2,
0, otherwise,

(5.2)
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with L1 = −nπ/γ and L2 = mπ/γ, where m,n are positive integers. This
represents a patch of sinusoidal ripples on an otherwise flat bottom. This
patch consists total (m + n)/2 ripples having the same wave number γ and
amplitude a. For this undulating bottom, all the reflection and transmission
coefficients are derived as

r1 =
aγ(G2 − λ21)Q(λ1)

γ2 − 4λ21

[
(−1)me2iλ1L2 − (−1)ne2iλ1L1

]
, (5.3)

R1 =
aγ
(
G2 − λ1λ2

)
Q(λ2)

γ2 − (λ1 + λ2)2

[
(−1)mei(λ1+λ2)L2 − (−1)nei(λ1+λ2)L1

]
, (5.4)

T1 =
aγ(G2 − λ1λ2)Q(λ2)

γ2 − (λ2 − λ1)2

[
(−1)nei(λ1−λ2)L1 − (−1)mei(λ1−λ2)L2

]
, (5.5)

t1 = Q(λ1)× (G2 − λ21)× a

γ

[
(−1)n − (−1)m

]
, (5.6)

T̂1 = Q(λ2)× (G2 − λ22)× a

γ

[
(−1)n − (−1)m

]
, (5.7)

t̂1 =
aγ(G2 − λ1λ2)Q(λ1)

γ2 − (λ2 − λ1)2

[
(−1)nei(λ2−λ1)L1 − (−1)mei(λ2−λ1)L2

]
, (5.8)

r̂1 =
aγ(G2 − λ1λ2)Q(λ1)

γ2 − (λ2 + λ1)2

[
(−1)mei(λ2+λ1)L2 − (−1)nei(λ2+λ1)L1

]
, (5.9)

R̂1 =
aγ(G2 − λ22)Q(λ2)

γ2 − 4λ22

[
(−1)ne2iλ2L1 − (−1)me2iλ2L2

]
. (5.10)

6 Results and discussion

This section contains a discussion on the roots of the dispersion relation (2.12),
the effect of various dimensionless system parameters on the reflection and
transmission coefficients. This section also illustrate the nature of the free sur-
face elevation as well as the interface elevation. Further, “energy identities”,
an important feature of the study involving scattering of water waves in a two-
layer fluid are derived here by using modified Green’s integral theorem. Out
of two different kinds of bottom profiles considered in Section 5 to evaluate
the reflection and transmission coefficients, the undulating bottom involving a
patch of sinusoidal ripples (Example-2) is considered here to demonstrate the
numerical results. The relevance of such consideration is mainly due to the
following associated significance: (a) the sinusoidal bottom has the ability to
reflect the incident wave energy which is important in coastal protection [10],
and (b) the sinusoidal bottom undulation closely resembles some naturally oc-
curring obstacle formed at the bottom due to sedimentation and ripple growth
of sands. Hence, we fix our attention to compute the numerical results of the
coefficients given by relations (5.3)–(5.10).

Relations (5.3)–(5.5) and (5.8)–(5.10) illustrate that the first order reflection
and transmission coefficients due to incident wave of both modes, are oscilla-
tory in nature and assume zero values for several values of Kh. In addition, it
can also be realized from relations (5.3)–(5.5) and (5.8)–(5.10), at the critical
conditions (γ = 2λ1, γ = λ2 + λ1, γ = λ2 − λ1 and γ = 2λ2), a resonant
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interaction takes place between the undulating bottom and the incident wave.
When m = n in relation (5.2), i.e. the patch consists total n ripples, then the

transmission coefficients t1 and T̂1 (refer Eqs. (5.6) and (5.7)) vanish because
c(x) becomes an odd function. Several computations are performed and, in
particular, some special results are tabulated and presented in graphical forms
in the following section. These graphical forms for the reflection and trans-
mission coefficients illustrate the role of various system parameters (number of
ripples of the undulating bed, porosity, surface tension) on the transformation
of wave energy between the waves of two modes.

All parameters are made dimensionless by using h as length scale and there-
fore, the parameters Kh, Gh, M/h2, a/h, H/h and γh are all now become di-
mensionless quantities. For computational results shown in the present study,
the values of various dimensionless physical parameters are kept fixed as depth
ratio H/h = 2, time t̃ = 0, amplitude of the sinusoidal ripples a/h = 0.1,
ripple wave number γh = 1, number of the ripples n = 3,m = 5, porous effect
parameter Gh = 0.05 and surface tension parameter M/h2 = 0.2, unless it is
mentioned. Value of the density ratio ρ is chosen ρ = 0.5 as considered in [14].

6.1 Roots of the dispersion relation

The real positive roots of the dispersion relation (2.12) are calculated using
Newton-Raphson method and are shown in Table 1 for different combinations
of surface tension parameter (M/h2), Kh, density ratio (ρ) and porous effect
parameter (Gh).

Table 1. Roots (k) of the dispersion relation (2.12) for different values of various parameters

Values of the parameters Roots: (two-layer fluid) Root: (single layer fluid)

Kh = 0.2, Gh = 0.04,M/h2 = 0.2
0.31895

0.30244
0.81245

Kh = 0.6, Gh = 0.04,M/h2 = 0.2
0.61542

0.59692
1.84733

Kh = 0.2, Gh = 0.06,M/h2 = 0.2
0.32839

0.31174
0.81348

Kh = 0.2, Gh = 0.04,M/h2 = 0.5
0.31534

0.29849
0.80338

ρ = 1,Kh = 1, Gh = 0,M/h2 = 0
1.00482

1.00482
1.00482

From Table 1, it is clear that the dispersion relation (2.12) has two non-zero
real positive roots which ensures the remark reported in Section 2. In order
to illustrate the behaviors of the roots of the dispersion relation (2.12), the
contour plot of the relation (2.12) is depicted in Figure 3.

The contour plot shown in Figure 3 demonstrates the existence of two pos-
itive real roots (λ1 and λ2) corresponding to two wave modes in the k-plane.
Here, it should be noted that the roots λ−1 and λ−2 shown in Figure 3 refer to
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Figure 3. Contour plot of roots of the dispersion relation (2.12).

the wave numbers associated with waves propagating in the negative direction
with wave numbers λ1 and λ2. The existence of positive real roots indicate
the existence of propagating waves of two different modes. Here, it should be
noted that when ρ → 1 (i.e. ρ1 → ρ2), the problem involving scattering of
waves in two-layer reduces to the problem in single layer. We have also cal-
culated the positive real root of the relation (2.12) by taking ρ1 = ρ2 and is
shown in Table 1 (refer last column). In this case, i.e. when ρ1 = ρ2, we have
accomplished one positive real root which affirms the well known fact that the
dispersion relation arises in the problem involving scattering of water waves
in single layer fluid has one positive real root. In the particular case, when
ρ = 1, Kh = 1, Gh = 0 and M/h2 = 0 (refer last row of Table 1), we have
successfully obtained one positive real root which is similar to the observation
made by Bora and Martha [5]. The present study further suggests that the
value of both real roots increases as the value of Kh increases. Similar kind
of observation is also noticed from Table 1 when the porosity of the bottom
increases. In addition, from Table 1, it can also be seen that the values of both
real roots decrease as the effect of the surface tension increases. The study
reveals that the real positive roots of the dispersion relation which affect the
nature of the incident wave, are sensitive to the porosity as well as the surface
tension.

6.2 Effect of various physical parameters

Figures 4(a)–(c) depict the first order reflection and transmission coefficients
due to incident wave of mode λ1 for depth ratio H/h = 2, amplitude of the
sinusoidal ripple a/h = 0.1, wave number of the ripples γh = 1, density ratio
ρ = 0.5, surface tension parameter M/h2 = 0.2, porosity Gh = 0.05 and
for different number of ripples (different values of m and n). Similarly, in
Figures 5(a)–(c) the first order reflection and transmission coefficients due to
incident wave of mode λ2 are shown for different number of ripples present in the
undulating bottom. One common feature to all these figures (Figures 4(a)–(c)
and 5(a)–(c)) is that they are oscillatory in nature and assume zero values for
several values of Kh which validates the theoretical observation as described
in the beginning of Section 6. Another feature which is also common to all
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Figure 4. Coefficients due to incident wave of mode λ1 in (a) |r1|; (b) |R1|; (c) |T1| for
H/h = 2, a/h = 0.1, γh = 1, ρ = 0.5, M/h2 = 0.2, Gh = 0.05.

of these Figures is that both the oscillatory nature and the number of zero
values increase as the number of ripple increases. The reason of the oscillatory
nature is mainly due to the multiple interactions of the incident wave with the
sinusoidal undulation, the interface and the free surface. Further, it is also
noticed from Figure 4(a) that the peak value of |r1| is 0.1281 which attains
when Kh = 0.44, correspondingly to λ1 = 0.501. This confirms the theoretical
observation (i.e. wave number of undulating bottom becomes approximately
twice the wave number of the surface wave) described in the beginning of
Section 6. It can be seen from Figure 4(b) that the highest peak value of |R1|
is achieved at Kh = 0.16 when λ1 = 0.2918 and λ2 = 0.7105. In Figure 4(c),
the highest peak value of |T1| is achieved at Kh = 0.475 when λ1 = 0.5267 and
λ2 = 1.5281. These affirm that the peak values of |R1| and |T1| occur when
γ = (λ2 + λ1) and γ = (λ2 − λ1), respectively.

For the incident wave of mode λ2, a similar phenomenon is also observed
from Figures 5(a)–(c). It is further noticed from Figures 4(a)–(c) and 5(a)–
(c) that the peak values of the reflection and transmission coefficients increase
as the number of ripples increases. In certain cases, if the number of ripples
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increases indefinitely, the first order coefficients become unbounded for certain
values of Kh and this is known as Bragg resonance [18]. In addition, the values

of the coefficients |t1| and
∣∣∣T̂1∣∣∣ vanish when both m and n are either even or

odd as it can be realized from relations (5.6) and (5.7), respectively. Therefore,
these two coefficients are not shown in the figure.
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Figure 5. Coefficients due to incident wave of mode λ2 in (a) |r̂1|; (b)
∣∣∣R̂1

∣∣∣; (c)
∣∣t̂1∣∣ for

H/h = 2, a/h = 0.1, γh = 1, ρ = 0.5, M/h2 = 0.2, Gh = 0.05.

To compare the present results with the results available in the literature,
the first order coefficients are also computed for Gh = 0 (i.e. impermeable
bottom) as well as M/h2 = 0 (i.e. excluding the effect of surface tension) with
m = 3, n = 3 in Figures 4(a)–(c) and 5(a)–(c). From these figures, it can be
noticed that the reflection and transmission in both layers due to both modes
are less if the effect of the porosity and surface tension is neglected. Hence,
the study reveals that the consideration of porosity as well as the effect of the
surface tension is important to analyze the actual reflection and transmission
phenomena in the water wave theory. Further, the study also discloses that

the values of |R1| and
∣∣∣R̂1

∣∣∣ are quite small as compared to the values of the
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coefficients |r1| and |r̂1| (refer Figures 4(a)–(b), 5(a)–(b)) respectively. This
phenomenon indicates that the occurrence of the reflection (due to incident
waves of both modes) in the upper layer is more than the lower layer.
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Figure 6. Coefficients due to incident wave of mode λ1 in (a) |r1| and |R1|; (b) |T1| for
ρ = 0.5, H/h = 2, Kh = 0.5, γh = 1, a/h = 0.1, m = 5, n = 3.

The effect of the surface tension on the first order reflection and transmission
coefficients due to incident wave of both modes is shown in Figure 6(a)–(b) and
Figure 7(a)–(b).
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Figure 7. Coefficients due to incident wave of mode λ2 in (a) |r̂1| and
∣∣t̂1∣∣; (b)

∣∣∣R̂1

∣∣∣ for

ρ = 0.5, H/h = 2, Kh = 0.5, γh = 1, a/h = 0.1, m = 5, n = 3.

Figure 6(a) demonstrates the first order reflection coefficients |r1| and |R1|
against M/h2 for two different values of porous effect parameter Gh = 0 and
0.1 with ρ = 0.5, H/h = 2,Kh = 0.5, γh = 1, a/h = 0.1,m = 5 and n = 3. In
this figure, the solid blue lines (colour available on-line) with the scale shown
in right hand side axis indicate the values of the first order reflection coefficient
|R1|, whereas the dotted black lines with the scale shown in left hand side of the
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axis indicate the values of the reflection coefficient |r1|. In Figure 6(b), the first
order transmission coefficient |T1| due to incident wave of mode λ1 is depicted
against M/h2. When the incident wave is of mode λ2, the first order reflection
and transmission coefficients |r̂1| and

∣∣t̂1∣∣ are depicted in Figure 7(a) and the

coefficient
∣∣∣R̂1

∣∣∣ is depicted in Figure 7(b). From Figures 7 and 6, it is observed

that the reflection and transmission in both layers due to incident wave of both
modes are higher than those obtained for impermeable bottom (Gh = 0). The
similar phenomenon is also observed for the problem involving scattering of
water waves in a single layer fluid [4]. Further, it is noticed that the peak
values of the reflection and transmission coefficients due to incident wave of
both modes increase up to a certain value of the surface tension parameter and
after that the values start decreasing as it can be seen from Figures 6(a)–(b)
and 7(a). In Figure 7(b), we have noticed that the value of reflection coefficient∣∣∣R̂1

∣∣∣ in the lower layer due to the incident wave of mode λ2 is very small, and

this is due to the effect of surface tension at the free surface of the upper layer.
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Figure 8. Coefficients due to incident wave of mode λ1 in (a) |r1|; (b) |R1|; (c) |T1| for
ρ = 0.5, H/h = 2, M/h2 = 0.2, γh = 1, a/h = 0.1, m = 5, n = 3.

As mentioned above, here also it is observed that the values of |R1| and
∣∣∣R̂1

∣∣∣
are lower as compared to the values of the coefficients |r1| and |r̂1| respectively
(see, Figures 6(a), 7(a) and 7(b)). The above observations reveal that the
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effect of surface tension can be neglected (although the surface tension effects
the transformation of incident wave energy between the waves of two modes)
in practice as the results presented in Figures 7 and 6 are smaller than one
percent.

The outcome of the effect of porosity on the reflection and transmission
coefficients is demonstrated in Figures 8(a)–(c) and 9(a)–(c).
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Figure 9. Coefficients due to incident wave of mode λ2 in (a) |r̂1|; (b)
∣∣∣R̂1

∣∣∣; (c)
∣∣t̂1∣∣ for

ρ = 0.5, H/h = 2, M/h2 = 0.2, γh = 1, a/h = 0.1, m = 5, n = 3.

In Figures 8(a)–(c), the first order reflection and transmission coefficients
due to the incident wave of mode λ1 are demonstrated for three different values
of Gh = 0, 0.05 and 0.1 with ρ = 0.5, H/h = 2,M/h2 = 0.2, γh = 1, a/h =
0.1,m = 5 and n = 3, whereas Figures 9(a)–(c) demonstrate the same due
to the incident wave of mode λ2 for Gh = 0, 0.05 and 0.1. The other two
transmission coefficients t1 and T̂1 are not shown as their values are assumed
to be zero due to the consideration of odd values of m and n. It is noticed
from Figures 8(a)–(c), the values of all coefficients due to the incident wave
of mode λ1 gradually increase as the value of the porosity increase. Similar
kind of nature was also found by Martha et al. [4] who analyzed scattering
of water waves by an undulating permeable bottom in a single layer fluid.
The above phenomenon can also be realized from relations (5.3)–(5.5) as the
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values of the numerators in the expressions of the coefficients increase and the
denominators decrease with increase of the porous effect parameter G. In the
case of incident wave of mode λ2, a similar kind of observation is also noticed
as can be seen from Figures 9(a)–(c). It is worth mentioning that the more
reflection occurs in the upper layer as compared to the lower layer which can
be seen from Figures 8(a) and 8(b). This may be due to the interaction of
water waves between the surface mode and the internal mode in a two-layer
fluid. From Figures 9(a)–(b), it is observed that the reflection coefficients |r̂1|
and

∣∣∣R̂1

∣∣∣ due to the incident wave of mode λ2, demonstrate the similar kind of

nature respectively as noticed above in the case of incident wave of mode λ1.
These observations indicate that the porosity is quite sensitive to the reflection
and transmission coefficients due to incident wave of both modes.

6.3 Free surface elevation and interface elevation
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Figure 10. Variation of free surface elevation η and interface elevation ζ for various
values of depth ratios H/h: (a) waves with surface mode and (b) waves with interface mode.

In this subsection, the behaviours of the free surface elevation (η) and in-
terface elevation (ζ) are discussed (refer Figures 10 and 11). The free surface
elevation η and interface elevation ζ are determined from the linearized free
surface dynamic condition and interface dynamic condition, respectively. In
Figure 10(a)–(b), the variation of the free surface elevation η and interface el-
evation ζ are plotted for various values of depth ratios H/h. It can be noticed
from Figure 10 that, when the incident wave is of surface mode, the distur-
bance at the free surface is larger in amplitude as compared to the disturbance
occurs at the interface. But, when the incident wave of interface mode, the
disturbance occurs at the free surface is not significant. However, the variation
of the interface elevation is significant as can be seen from Figure 10(b). A
similar kind of phenomenon is also observed in [12]. Figure 10 also suggests
that the disturbance (in terms of amplitude) at the free surface as well as at
the interface increases with the depth ratio. Here it is worthy to note that
the increment in the amplitude of the free surface profile due to incident wave
with interface mode is negligible (refer Figure 10(b)). This indicates that the
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free surface profile is not affected too much by the incident wave with interface
mode.
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Figure 11. Variation of free surface elevation η and interface elevation ζ for various
values of surface tension effect parameter M/h2: (a) waves with surface mode and (b)

waves with interface mode.

In Figure 11(a)–(b), the variations of free surface elevation and interface
elevation are demonstrated due to incident wave of surface mode and interface
mode, respectively, for various values of surface tension effect parameter M/h2.
It can be observed from this figure that the surface tension parameter effects
the free surface elevation as well as the interface elevation. When the incident
wave is of surface mode, the free surface as well as the interface profiles are
greatly affected. But, when the incident wave is of interface mode, the free
surface profile is not affected too much (refer Figure 11(b)). This is due to
the fact that the free surface, which is situated above the interface, is far away
from the interface. It is also observed (refer Figure 11) that the disturbance
(in term of amplitude of the profile) decreases as the surface tension increases.
This agrees the physical intuition that the increment in the surface tension
decreases the disturbance/variation of the profiles.

6.4 Energy identities

Out of many important results in the study of scattering of water waves, the
special relation known as “energy balance relation or energy identity” plays
a very important role for checking the method of solution of mixed boundary
value problem arises in water wave theory. The energy identity [6] relates
the reflection as well as transmission coefficients associated with the scattering
problem, which supports the theoretical validation of the present problem in the
absence of experimental evidences. In a two-layer fluid system, the presence of
surface tension leads to two distinct energy identities corresponding to incident
waves of both wave numbers.

The energy balance relations is derived using modified Green’s integral the-
orem. When the incident wave is of wave number λ1, we have derived the
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energy balance relation as

|r|2 + |t|2 + J
(
|R|2 + |T |2

)
= 1, (6.1)

where J = Jλ2
/Jλ1

with

Jk = i
[
Mk3 + k

]
×

[
ρ

∫ 0

−h
(f1(k, y))2dy +

∫ H

0

(f2(k, y))
2
dy

]
, k = λ1, λ2.

Similarly, when the incident wave is of wave number λ2, the energy balance
relation can be derived as

1

J

(
|r̂|2 + |t̂|2

)
+
∣∣R̂∣∣2 +

∣∣T̂ ∣∣2 = 1. (6.2)

For ensuring the correctness of the computed numerical results, the en-
ergy balance relations (6.1) and (6.2) associated with the present problem are
checked. For incident wave of mode λ1, we have presented the variation of

|r| , |R| , |t| , |T | and |r|2 + |t|2 +J
(
|R|2 + |T |2

)
(left hand side of the energy

balance relation (6.1)) for various values of Kh in Table 2 along with other
parameters as m = 5, n = 3, ε/h = 0.4, M/h2 = 0.2, Gh = 0.05 and ρ = 0.5.

Table 2. Values of all coefficients for energy identity relation (6.1)

Kh
Values of coefficients |r|2 + |t|2 + J

(
|R|2 + |T |2

)
|r| |R| |t| |T |

0.2 6.2555e-03 4.0775e-03 1.0000 2.6514e-04 1.0002
0.3 4.9253e-03 4.7323e-04 1.0000 1.3875e-03 1.0000
0.4 2.2350e-02 5.6159e-05 1.0000 1.6341e-03 1.0006
0.6 5.5462e-03 1.9753e-05 1.0000 4.9459e-06 1.0000
0.8 1.6625e-03 2.6479e-06 1.0000 7.3963e-06 1.0000
1 8.2468e-04 2.0775e-07 1.0000 6.9394e-07 1.0000

The last column of the Table 2 shows that each value of |r|2 + |t|2 +

J
(
|R|2 + |T |2

)
for each Kh is nearly equal to 1, satisfying the energy balance

relation accurately. Similarly, the variation of |r̂|, |R̂|, |t̂|, |T̂ | and 1
J

(
|r̂|2 +

|t̂|2
)

+ |R̂|2 + |T̂ |2 are shown in Table 3 for different values of Kh along with
the same set of values of the parameters listed for Table 2.

The last column of Table 3 reflects that each value of left hand side of re-
lation (6.2) is nearly equal to 1 for each Kh which fulfill the energy balance

relation (6.2). For more convenient, two plots: (i) |r|2 + |t|2 + J
(
|R|2 + |T |2

)
versus Kh and (ii) 1

J

(
|r̂|2 +

∣∣t̂∣∣2 ) +
∣∣R̂∣∣2 +

∣∣T̂ ∣∣2 versus Kh have been demon-
strated in Figure 12(a)–(b). From the results shown in Figures 12(a)–(b) and
Tables 2 and 3, it can be concluded that the results derived in the present
paper are accurate.
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Table 3. Values of all coefficients for energy identity relation (6.2)

Kh
Values of coefficients 1

J

(
|r̂|2 +

∣∣t̂∣∣2)+
∣∣∣R̂∣∣∣2 +

∣∣∣T̂ ∣∣∣2
|r̂|

∣∣∣R̂∣∣∣ ∣∣t̂∣∣ ∣∣∣T̂ ∣∣∣
0.2 3.5270e-02 1.7289e-03 2.2934e-03 1.0000 1.00005
0.4 1.1818e-03 2.5511e-04 3.5186e-02 1.0000 1.00082
0.6 1.4739e-03 2.4553e-05 3.6904e-04 1.0000 1.00002
0.8 9.0178e-04 3.0326e-06 2.5189e-03 1.0000 1.00003
1 3.6663e-04 4.7978e-08 1.2247e-03 1.0000 1.00000
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Figure 12. (a) |r|2 + |t|2 + J
(
|R|2 + |T |2

)
versus Kh, and (b)

1
J

(
|r̂|2 +

∣∣t̂∣∣2)+
∣∣∣R̂∣∣∣2 +

∣∣∣T̂ ∣∣∣2 versus Kh for ρ = 0.5, H/h = 2, M/h2 = 0.2.

Conclusions

The study analyzes the reflection and transmission phenomena involved in wa-
ter wave scattering by undulating porous bottom in a two-layer fluid system
in the presence of surface tension. Based on the linear water wave theory, the
physical problem is formulated as a coupled boundary value problem. The in-
clusion of surface tension gives rise to a third order boundary condition which
makes the governing boundary value problem more complicated. Perturbation
analysis in conjunction with Fourier transform technique is employed to derive
the velocity potentials, first order reflection and transmission coefficients. The
main advantage of Fourier transform method is that we need to solve relatively
easier ordinary differential equations to find out the velocity potentials. It is
noticed that the reflection and transmission coefficients depend on the shape
as well as the porosity of the undulating bottom. Hence, two different kinds of
undulations are considered to determine the reflection and transmission. From
the practical point of view, the reflection and transmission phenomenon for
sinusoidal bottom topography is presented graphically to demonstrate how the
wave energy is transferred from one mode to another mode. Role of various
system parameters such as number of ripples present in the undulating bottom,
surface tension and porous effect parameters are also discussed. It is observed
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that the reflection and transmission coefficients are oscillatory in nature and
the peak values of these coefficients increases as the number of ripples increases.
The study also reveals that the reflection and transmission in both modes in-
crease when the porosity of the bottom increases. Reflection and transmission
in both layers due to incident wave of both modes are less if the effect of the
porosity and surface tension is neglected. It is also noticed that the more en-
ergy is transferred by the reflected wave of surface mode than the reflected
wave of interface mode. In the present study, the behaviours of the free surface
elevation and interface elevation are discussed.

References

[1] R. Harter, I.D. Abrahams and M.J. Simon. The effect of surface tension on
trapped modes in water-wave problems. Proc. R. Soc. A, 463:3131–3149, 2007.
https://doi.org/10.1098/rspa.2007.0063.

[2] H. Mase, S.I. Oki and K. Takeba. Wave equation over permeable rippled bed
and analysis of bragg scattering of surface gravity waves. J. Hydraul. Res.,
33(6):789–812, 1995. https://doi.org/10.1080/00221689509498552.

[3] G.S. Beavers and D.D. Joseph. Boundary conditions at a nat-
urally permeable wall. J. Fluid Mech., 30(1):197–207, 1967.
https://doi.org/10.1017/S0022112067001375.

[4] S.C. Martha, S.N. Bora and A. Chakrabarti. Oblique water-wave scattering
by small undulation on a porous sea-bed. Appl. Ocean Res., 29:86–90, 2007.
https://doi.org/10.1016/j.apor.2007.07.001.

[5] S.N. Bora and S.C. Martha. Scattering of surface waves over
an uneven sea-bed. Appl. Math. Lett., 21(10):1082–1089, 2008.
https://doi.org/10.1016/j.aml.2007.12.005.

[6] A. Chakrabarti and S. Mohapatra. Scattering of surface water waves involving
semi-infinite floating elastic plates on water of finite depth. J. Mar. Sci. Appl.,
12(3):325–333, 2013. https://doi.org/10.1007/s11804-013-1204-z.

[7] A. Chakrabarti and T. Sahoo. The effect of surface tension in porous
wave maker problems. J. Austral. Math. Soc. Ser. B, 39(4):539–556, 1998.
https://doi.org/10.1017/S0334270000007797.

[8] P.G. Chamberlain and D. Porter. Wave scattering in a two-
layer fluid of varying depth. J. Fluid Mech., 524:207–228, 2005.
https://doi.org/10.1017/S0022112004002356.

[9] A.T. Chwang. A porous-wavemaker theory. J. Fluid Mech., 132:395–406, 1983.
https://doi.org/10.1017/S0022112083001676.

[10] A.G. Davies. The reflection of wave energy by undulation on the seabed.
Dynam. Atmos. Oceans., 6(4):207–232, 1982. https://doi.org/10.1016/0377-
0265(82)90029-X.

[11] A.G. Davies and A.D. Heathershaw. Surface-wave propagation over si-
nusoidally varying topography. J. Fluid Mech., 144:419–443, 1984.
https://doi.org/10.1017/S0022112084001671.

[12] S.C. Mohapatra, D. Karmakar and T. Sahoo. On capillary gravity-
wave motion in two-layer fluids. J. Eng. Math., 71(3):253–277, 2011.
https://doi.org/10.1007/S10665-011-9451-y.

https://doi.org/10.1098/rspa.2007.0063
https://doi.org/10.1080/00221689509498552
https://doi.org/10.1017/S0022112067001375
https://doi.org/10.1016/j.apor.2007.07.001
https://doi.org/10.1016/j.aml.2007.12.005
https://doi.org/10.1007/s11804-013-1204-z
https://doi.org/10.1017/S0334270000007797
https://doi.org/10.1017/S0022112004002356
https://doi.org/10.1017/S0022112083001676
https://doi.org/10.1016/0377-0265(82)90029-X
https://doi.org/10.1016/0377-0265(82)90029-X
https://doi.org/10.1017/S0022112084001671
https://doi.org/10.1007/S10665-011-9451-y


Water-waves Scattering in the Presence of Surface Tension 851

[13] H. Behera, S. Koley and T. Sahoo. Wave transmission by partial porous
structures in two-layer fluid. Eng. Anal. Bound. Elem., 58:58–78, 2015.
https://doi.org/10.1016/j.enganabound.2015.03.010.

[14] C.M. Linton and J.R. Cadby. Scattering of oblique waves in a two-layer fluid. J.
Fluid Mech., 461:343–364, 2002. https://doi.org/10.1017/S002211200200842X.

[15] C.M. Linton and M. McIver. The interaction of waves with horizon-
tal cylinders in a two-layer fluids. J. Fluid Mech., 304:213–229, 1995.
https://doi.org/10.1017/S002211209500440X.

[16] P. Maiti and B.N. Mandal. Scattering of oblique waves by bottom undu-
lations in a two-layer fluid. J. Appl. Math. Comput., 22(3):21–39, 2006.
https://doi.org/10.1007/BF02832035.

[17] P. Maiti and B.N. Mandal. Water wave scattering by an elastic plate float-
ing in an ocean with a porous bed. Appl. Ocean Res., 47:73–84, 2014.
https://doi.org/10.1016/j.apor.2014.03.006.

[18] C.C. Mei. Resonant reflection of surface waves by periodic sandbars. J. Fluid
Mech., 152:315–335, 1985. https://doi.org/10.1017/S0022112085000714.

[19] S. Mohapatra and S.N. Bora. Propagation of oblique waves over small bottom
undulation in an ice-covered two-layer fluid. Geophys. Astrophys. Fluid Dyn.,
103(5):347–374, 2009. https://doi.org/10.1080/03091920903071077.

[20] S. Mohapatra and S.N. Bora. Reflection and transmission of water waves in a
two-layer fluid flowing through a channel with undulating bed. Z. Angew. Math.
Mech., 91:46–56, 2011. https://doi.org/10.1002/zamm.200800216.

[21] S. Panda. Oblique wave scattering by an undulating porous bottom in
a two-layer ice-covered fluid. China Ocean Eng., 30(3):431–446, 2015.
https://doi.org/10.1007/s13344-016-0067-x.

[22] S. Panda and S.C. Martha. Interaction of water waves with small undulations on
a porous bed in a two-layer ice-covered fluid. J. Mar. Sci. Appl., 12(4):381–392,
2013. https://doi.org/10.1007/s11804-013-1208-8.

[23] S. Panda and S.C. Martha. Oblique wave scattering by undulating porous bottom
in a two-layer fluid: Fourier transform approach. Geophys. Astrophys. Fluid
Dyn., 108(6):587–614, 2014. https://doi.org/10.1080/03091929.2014.953948.

[24] P.F. Rhodes-Robinson. The effect of surface tension on the progressive waves
due to incomplete vertical wave-makers in water of infinite depth. Proc. R. Soc.
Lond. Ser. A, 435:293–319, 1991. https://doi.org/10.1098/rspa.1991.0146.

[25] S. Panda, S.S. Samantaray and S.C. Martha. Wave scattering by small undula-
tion on the porous bottom of an ocean in the presence of surface tension. ISRN
Oceanography, 2013:1–6, 2013. https://doi.org/10.5402/2013/504879.

Math. Model. Anal., 22(6):827–851, 2017.

https://doi.org/10.1016/j.enganabound.2015.03.010
https://doi.org/10.1017/S002211200200842X
https://doi.org/10.1017/S002211209500440X
https://doi.org/10.1007/BF02832035
https://doi.org/10.1016/j.apor.2014.03.006
https://doi.org/10.1017/S0022112085000714
https://doi.org/10.1080/03091920903071077
https://doi.org/10.1002/zamm.200800216
https://doi.org/10.1007/s13344-016-0067-x
https://doi.org/10.1007/s11804-013-1208-8
https://doi.org/10.1080/03091929.2014.953948
https://doi.org/10.1098/rspa.1991.0146
https://doi.org/10.5402/2013/504879

	Introduction
	Mathematical formulation of the problem
	Solution of the problem
	Validation of the results
	Examples of undulating bottom profiles
	Results and discussion
	Roots of the dispersion relation
	Effect of various physical parameters 
	Free surface elevation and interface elevation
	Energy identities

	References

