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Abstract. The propagation of monochromatic electromagnetic waves in metal cir-
cular cylindrical dielectric waveguides filled with inhomogeneous medium is consid-
ered. The physical problem is reduced to solving a transmission eigenvalue problem
for a system of ordinary differential equations. Spectral parameters of the problem
are propagation constants of the waveguide. Numerical results are found with a pro-
jection method. The comparison with known exact solutions (for particular values of
parameters) is made.
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1 Introduction

A large class of vector electromagnetic problem concerns electromagnetic wave
propagation. In radioengineering and electronics the use becomes waveguide
structures of complex cross-sections and with inhomogeneous filling require
the construction of mathematical models of the propagation of electromagnetic
waves in such structures. It becomes necessary to study a new broad class of
problems in electrodynamics, characterized by boundaries with delete, give rise
to complex geometry, surfaces, uneven dielectric filling and the presence of thin
metal ribs (plates) in the structure. The primary goal here is to construct a
numerical method to determine the spectrum of normal electromagnetic waves
that propagate in such structures.

The study of the wave propagation in a waveguide filled with inhomoge-
neous medium are arise a boundary eigenvalue problems for systems of elliptic
equations with discontinuous coefficients. On the surfaces of discontinuity are
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set additional conditions, called transmission conditions. In the simplest for-
mulations the spectral parameter is present only in the equations, and is not
included in the transmission conditions. However, in rather complex models a
spectral parameter is included not only in the equation, but also in the trans-
mission conditions.

This class of problems has been developed for many years [3,7,12]. The main
attention was paid to practical outcomes of the calculation of the characteristics
of the main mode of waves which has a greatest interest from the physical point
of view, as well as several higher modes. Numerical methods for calculating
the parameters of various types of waveguide structures are described in the
monographs and review papers [1,4,6,15]. However, it should be said that most
of the methods applied to homogeneous waveguides, are not common and are
difficult to implement and apply for specific inhomogeneous structures.

In this work the wave propagation in inhomogeneous metal-dielectric cylin-
drical waveguides is studied numerically using the modification of the projection
methods. We consider two types of waveguides: a two-layer dielectric waveg-
uide covered by metal where one of the layers is filled with nonlinear medium
and a perfectly conducting cylinder covered by a nonlinear dielectric layer. The
obtained numerical results are compared with the data available in the linear
theory.

2 Statement of the problem

Consider three-dimensional space R3 with a cylindrical coordinate systemOρϕz
filled with isotropic medium having constant permittivity ε = ε0 (ε0 > 0 is the
permittivity of free space), and constant permeability µ = µ0 ( where µ0 > 0
is the permeability of free space).

A metal dielectric circular cylindrical waveguide Σ filled with inhomoge-
neous medium is placed parallel to the axis Oz.

Figure 1. The perfectly conducting
cylinder covered by the dielectric layer.

Figure 2. The circular hollow metallic
layered waveguide.

In Figure 1 a perfectly conducting cylinder covered by a dielectric layer,
known as Goubau line (GL) is shown. In Figure 2 a circular hollow metallic
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layered waveguide (HW) is shown.
We will consider monochromatic waves

Ee−iωt = e−iωt (Eρ, Eϕ, Ez)
T
, He−iωt = e−iωt (Hρ, Hϕ, Hz)

T
,

where ( · )T denotes the transpose operation. Each component of the field E,
H is a function of three spatial variables. Complex amplitudes of the electro-
magnetic field E,H satisfy the Maxwell equations{

rotH = −iωεE,

rotE = iωµH,
(2.1)

subject to the following boundary conditions. The tangential components of
the electric field vanish on the metal surface ρ = h0; tangential field components
are continuous on the media interface ρ = h; the complex amplitudes obey the
radiation condition at infinity: the electromagnetic field decays as O(|ρ|−1)
when ρ → ∞. The dielectric permittivity inside a ring (segment [h0, h]) is
described by a smooth function ε (ρ).

The surface waves propagating along the axis Oz of the waveguide Σ have
the form [11]

Eρ = Eρ(ρ)eimϕ+iγz, Hρ = Hρ(ρ)eimϕ+iγz,

Eϕ = Eϕ(ρ)eimϕ+iγz, Hϕ = Hϕ(ρ)eimϕ+iγz,

Ez = Ez(ρ)eimϕ+iγz, Hz = Hz(ρ)eimϕ+iγz,

(2.2)

where γ is the real propagation constant (spectral parameter of the problem)
and m is an angular integer parameter (which assumed to be known). In what
follows we often omit the arguments of functions when it does not lead to
misunderstanding.

3 Differential equations

Substituting E and H with components (2.2) into equations (2.1), we obtain

i
m

ρ
Hz − iγHϕ = −iωεEρ, iγHρ −H ′z = −iωεEϕ,

1

ρ
(ρHϕ)′ − im

ρ
Hρ = −iωεEz, i

m

ρ
Ez − iγEϕ = iωµHρ,

iγEρ − E′z = iωµHϕ,
1

ρ
(ρEϕ)′ − im

ρ
Eρ = iωµHz,

(3.1)

where the prime denotes differentiation w.r.a ρ.
Expressing the functions Eρ,Eϕ, Hρ and Hϕ through Ez and Hz from the

1st, 2nd, 4th and 5th equation of system (3.1), we find

Eρ =
iγρE′z −mωµHz

ρ(ω2µε− γ2)
, Hρ =

mωεEz + iγρH ′z
ρ(ω2µε− γ2)

,

Eϕ = −γmEz + iωµρH ′z
ρ(ω2µε− γ2)

, Hϕ =
iωερE′z − γmHz

ρ(ω2µε− γ2)
.
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Substituting the expressions for Eρ, Eϕ, Hρ and Hϕ into the 3rd and 6th
equations of system (3.1) and introducing the notation uE := iEz(ρ), uM :=
Hz(ρ), we obtain 

LEuE : =
d

dρ

(
pE

duE

dρ

)
− qEuE = fuM,

LMuM : =
d

dρ

(
pM

duM

dρ

)
− qMuM = fuE,

(3.2)

where

pE =
ωερ

k2
, pM =

ωµρ

k2
, qE =

ωε

ρ

(
m2

k2
− ρ2

)
,

qM =
ωµ

ρ

(
m2

k2
− ρ2

)
, f = −γm

k4
ω2µε′, k2 = ω2µε− γ2.

Remark 1. For m = 0 system (3.2) splits into two independent equations, which
corresponds to two independent wave propagation problems: for TE and TM
guided waves. These problems are well studied (analytically and numerically)
e.g. in [8, 9, 10,13,14,16].

Outside the ring, where µ = µ0 and ε = ε0, system (3.2) takes the form of
Bessel’s equations

ρ(ρu′E)′ −
(
ρ2k20 +m2

)
uE = 0,

ρ(ρu′M)′ −
(
ρ2k20 +m2

)
uM = 0

with general solutions

uE = C1Im(k0ρ) + C2Km(k0ρ), uM = C3Im(k0ρ) + C4Km(k0ρ), (3.3)

where k20 = γ2 − ω2µ0ε0, Im is the modified Bessel function and Km is the
Macdonald function [5]. There C1, ..., C4 denote arbitrary constants.

For HW solutions (3.3) takes the form

uE = C1Im(k0ρ), ρ < h, uM = C2Im(k0ρ), ρ < h, (3.4)

where boundedness of the field at zero is taken into account.
For GL solutions (3.3) takes a form

uE = C1Km(k0ρ), ρ > h, uM = C2Km(k0ρ), ρ > h, (3.5)

where the radiation condition at infinity is taken into account.

4 Transmission conditions and transmission problem

Tangential components of the electromagnetic field are known to be continuous
at the interface. In this case the tangential components are Eϕ, Ez, Hϕ and
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Hz. Thus we obtain the following transmission conditions for uE and uM

uE(h0) = 0, u′M(h0) = 0,

[uE]|ρ=h = 0, [uM]|ρ=h = 0,

γm
[uE

k2

]∣∣∣
ρ=h
− [pMu

′
M]|ρ=h = 0,

γm
[uM

k2

]∣∣∣
ρ=h
− [pEu

′
E]|ρ=h = 0,

(4.1)

where [v]|ρ=s = lim
ρ→s−0

v(ρ)− lim
ρ→s+0

v(ρ) is the jump of the limit values of the

function at the point s.
The main problem (Problem Pm) is to find γ̂ such that for a fixed value

of angular parameter m 6= 0, there exist non-trivial functions uE(ρ; γ̂) and
uM(ρ; γ̂) that satisfy system (3.2), transmission conditions (4.1), and inside the
inhomogeneous layer they have the form (3.4) for HW or outside the layer the
form (3.5) for GL.

5 Variation formulation

Let us give the variational formulation of the problem Pm. Using the first
Green’s formula, we obtain∫ h

h0

vLudρ =

∫ h

h0

v
(

(pu′)
′ − qu

)
dρ

=

∫ h

h0

(pu′v)
′
dρ−

∫ h

h0

pu′v′dρ−
∫ h

h0

quvdρ

= pu′v|hh0
−
∫ h

h0

pu′v′dρ−
∫ h

h0

quvdρ. (5.1)

Taking into account the right-hand side of (3.2), we obtain∫ h

h0

vLudρ =

∫ h

h0

fu∗vdρ, (5.2)

where u∗ denotes a replacement by the rule u∗E = uM.
Let us consider the smooth test functions vE and vM.

Remark 2. We assume that the test functions vE and vM satisfy the following
conditions

vE(h0) = 0, vE(h) = 1,

v′M(h0) = 0, vM(h) = 1,

which coincide with conditions for functions uE and uM at the boundary h0.

Multiplying the left and right sides of equations (3.2) by the test functions
vE and vM, respectively, and applying (5.1) and (5.2), we obtain

pE(h)u′E(h)vE(h)−
∫ h

h0

pEu
′
Ev
′
Edρ−

∫ h

h0

qEuEvEdρ =

∫ h

h0

fuMvEdρ (5.3)

Math. Model. Anal., 22(3):271–282, 2017.
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and

pM(h)u′M(h)vM(h)−
∫ h

h0

pMu
′
Mv
′
Mdρ−

∫ h

h0

qMuMvMdρ =

∫ h

h0

fuEvMdρ. (5.4)

From (4.1) we determine pEu
′
E and pMu

′
M at the point h

pE(h)u′E(h) = γm

(
1

k2(h)
+

1

k20

)
uM(h)− ωh

k20

g′(h)

g(h)
uE(h),

pM(h)u′M(h) = γm

(
1

k2(h)
+

1

k20

)
uE(h)− ωh

k20

g′(h)

g(h)
uM(h),

(5.5)

where function g(ρ) = Im(k0ρ) or g(ρ) = Km(k0ρ) are solutions outside or
inside the ring as appropriate.

Summing up (5.3), (5.4) and substituting (5.5) for pE(h)u′E(h), pM(h)u′M(h),
we obtain the variational equation

γm

(
1

k2(h)
+

1

k20

)
(uM(h)vE(h) + uE(h)vM(h))− ωh

k20

g′(h)

g(h)

(
uE(h)vE(h)

+ uM(h)vM(h)
)
−
∫ h

h0

(pEu
′
Ev
′
E + pMu

′
Mv
′
M) dρ−

∫ h

h0

(qEuEvE + qMuMvM) dρ

−
∫ h

h0

f (uMvE + uEvM) dρ = 0, (5.6)

which hold for any test functions vE and vM. The solution of (5.6) is equivalent
to the original problem Pm.

6 Projection method

Using the projection method [2] let us reduce the variational equation (5.6)
to a system of algebraic equations. Firstly, split an interval [h0, h] into n
subintervals with the length l = |h0 − h|/n. Let us define a set of n subintervals

Φi = [h0 + (i− 1)l, h0 + (i+ 1)l], i = 1, ..., n− 1, Φn = [h0 + (n− 1)l, h]

and set of n+ 1 subintervals

Ψ1 = [h0, h0 + l], Ψj = [h0 + (i− 2)l, h0 + il], j = 2, ..., n,

Ψn+1 = [h0 + (n− 1)l, h].

These subintervals we call base finite elements. Denote by a, b, and c an initial
point, midpoint and endpoint of subintervals, respectively.

In accordance with the scheme of the projection method, it is necessary to
introduce basis functions φi and ψj in order to approximate the solution. The
basis functions are defined on each subinterval Φi and Ψj (φi and ψj vanishes
outside the intervals Φi and Ψj , respectively).
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The basis functions φi defined on Φi, are

φi =


1

b− a
(ρ− a) , ρ < b,

1

b− c
(ρ− c) , ρ > b,

i = 1, n− 1, φn =
1

c− a
(ρ− a) .

The basis functions ψi defined on Φi are

ψ1 = − 1

(c− a)2
(
ρ2 − 2aρ+ a2 − (c− a)2

)
,

ψ2 =


1

(c− a)2
(
ρ2 − 2aρ+ a2

)
, ρ < b,

1

b− c
(ρ− c) , ρ > b,

ψj =


1

b− a
(ρ− a) , ρ < b,

1

b− c
(ρ− c) , ρ > b,

where j = 3, ..., n and ψn+1 = 1
c−a (ρ− a).

Figure 3. The basis functions φi and ψj , defined on [h0, h].

Such defined basis functions takes into account the physical nature of the
problem under consideration (see Remark 2 and Figure 3).

We assume an approximate solution with real coefficients αi and βj such
that

uE =

n∑
i=1

αiφi, uM =

n+1∑
j=1

βjψj . (6.1)

Substituting functions uE and uM with representations (6.1) into the variational
equation (5.6), we obtain a system of linear equations with respect to αi and
βj (for fixed value of γ)

Ax = 0,

Math. Model. Anal., 22(3):271–282, 2017.
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where matrices A and x have the form

A =



A11
EE · · · A1n

EE A11
EM · · · A1,n+1

EM

...
. . .

...
...

. . .
...

An1EE · · · AnnEE An1EM · · · An,n+1
EM

A11
ME · · · A1n

ME A11
MM · · · A1,n+1

MM

...
. . .

...
...

. . .
...

An+1,1
ME · · · An+1,n

ME An+1,1
MM · · · An+1,n+1

MM


, x =



α1

...
αn

β1
...

βn+1


,

with elements

AiiEE = −ωh
k20

g′(h)

g(h)
φ2i (h)−

∫
Φi

(
pE(φ′i)

2 + qEφ
2
i

)
dρ,

where used vE = φi and i = 1, ..., n;

AijEM = γm

(
1

k2(h)
+

1

k20

)
φi(h)ψj(h)−

∫
Φi

fφiψjdρ,

where used vM = ψj and i = 1, ..., n, j = 1, ..., n+ 1;

AjiME = γm

(
1

k2(h)
+

1

k20

)
φi(h)ψj(h)−

∫
Ψj

fφiψjdρ,

where used vE = φi and i = 1, ..., n, j = 1, ..., n+ 1;

AjjMM = −ωh
k20

g′(h)

g(h)
ψ2
j (h)−

∫
Ψj

(
pM(ψ′j)

2 + qMψ
2
j

)
dρ,

where used vM = ψj and j = 1, ..., n+1. Thus A is a (2n+1)× (2n+1) matrix.
Let us denote by ∆ the determinant of A

∆(γ) = detA.

Remark 3. If there exists γ = γ̃ such that ∆(γ̃) = 0, then γ̃ is an approximate
spectral parameter of Problem Pm. In other words, if an interval [γ, γ] is such
that ∆(γ)×∆(γ) < 0, then this means that there exists γ = γ̃ ∈ [γ, γ] which
is an spectral parameter of Problem Pm. This value can be calculated with any
prescribed accuracy.

7 Numerical results

Numerical results are obtained with the help of the shooting method for GL
(see Figure 1). For the inhomogeneity ε(ρ) of the waveguide the following
functions are used to specify the permittivities ε = ε + ρ

20 and ε = εc + ρ−2
2 in

the layer h0 < ρ < h, where εc is a positive real constant.
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The dielectric constant determined by the expression εc+
ρ
20 defines a weakly

inhomogeneous medium, which can be compared with homogeneous. The func-
tion εc + ρ−2

2 defines a filling considerably different from the homogeneous
waveguide.

In the figures below the profiles of dielectric permittivity, the spectral pa-
rameter γ with respect to angular parameter m and to angular frequency ω,
and functions Ez and Hz are shown.

The following values of parameters are used for calculations in Figures 4–13:
ε0 = 1, εc = 4, h0 = 2, and h = 4.

In Figures 4 and 5 are presented the permittivity profiles. The red and blue
curves correspond to inhomogeneous and homogeneous waveguide structures.

Figure 4. The profiles of dielectric
permittivity: εc + ρ

20
(red curve) and εc

(blue curve).

Figure 5. The profiles of dielectric
permittivity: εc + ρ−2

2
(red curve) and

εc (blue curve).

Figure 6. The dependence of spectral
parameter γ with respect to m in case of
ω = 1. Red and blue colours corresponds

to εc + ρ
20

and εc, respectively.

Figure 7. The dependence of spectral
parameter γ with respect to m in case of
ω = 1. Red and blue colours corresponds

to εc + ρ−2
2

and εc, respectively.

Figure 8. The dependence of spectral
parameter γ with respect to frequency ω
(dispersion curves) in case of m = 1. The

permittivity is specified by εc + ρ
20

.

Figure 9. The dependence of spectral
parameter γ with respect to frequency ω
(dispersion curves) in case of m = 3. The

permittivity is specified by εc + ρ−2
2

.

Math. Model. Anal., 22(3):271–282, 2017.
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Figures 6 and 7 are graphs of the spectral parameter depending on the an-
gular parameter. The color of curves for the homogeneous and inhomogeneous
waveguides coincides with the colors for the dielectric permittivity profiles in
Figures 4 and 5. As one would expect the graphs of the homogeneous and
weakly inhomogeneous waveguides differ only slightly.

Only integer values of the angular parameter m are physically meaningful.
But we can investigate this problem numerically for any values of the angular
parameter m (for non-integer, too). When m is equal to 0, the problem splits
into two well-studied problem - propagation of TE and TM polarized waves.
In these, the first and third black dots correspond to the spectral parameters
of the TM waves, where as the second black dot is the spectral parameter of
TE waves. These graphs show the connection between the TE and TM waves
(m = 0) and hybrid waves (m 6= 0).

For the value of the angular parameter m equal to 1 and 3, the dispersion
curves were plotted in Figures 8 and 9. The interior of the dashed region
determines the area of the parameter space where the homogeneous problem
has a solution.

For the value of the frequency ω = 1 the graphs of the tangential compo-
nents Ez and Hz of the electromagnetic field in Figures 10–13 are presented.
Color of curves in Figures 10–13 corresponds to the color of spectral parame-
ter in Figures 8 and 9 (points of intersections of vertical dashed line with the
dispersion curves).

Figure 10. The tangential components
Ez of electric field in case of

m = 1, ω = 1. The permittivity is
specified by εc + ρ

20
.

Figure 11. The tangential components
Hz of electric field in case of

m = 1, ω = 1. The permittivity is
specified by εc + ρ

20
.

Figure 12. The tangential components
Ez of electric field in case of

m = 3, ω = 1. The permittivity is
specified by εc + ρ−2

2
.

Figure 13. The tangential components
Hz of electric field in case of

m = 3, ω = 1. The permittivity is
specified by εc + ρ−2

2
.
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Graphs of the tangential components of the electromagnetic field (Fig-
ures 10–13) consistent with the physical formulation of the problem, namely
the component Ez vanishes on the boundary of the metal, both of components
Ez and Hz are continuous at the interface and decays when ρ→∞.

8 Conclusions

The propagation of monochromatic electromagnetic waves in metal circular
cylindrical dielectric waveguides filled with inhomogeneous medium was con-
sidered. By applying methods of the theory of integral operators, we gave a
rigorous mathematical description of the problem, substantiated and imple-
mented a numerical method for its solution.The method allows us to determine
approximate eigenvalues with any prescribed accuracy. The approach described
in this paper can be applied to other problems, e.g., to multilayered opened
waveguides.
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