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Abstract. We describe the search for explicit general linear methods in Nordsieck
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1 Introduction

We describe the search for some class of explicit general linear methods (GLMs)
of high order for the numerical solution of ordinary differential equations
(ODEs). The construction of such methods is a highly nontrivial task and
powerful minimization software is required to obtain methods of high accuracy
with desirable stability properties. In [5] we constructed diagonally implicit
multistage integration methods (DIMSIMs) up to order p = 4 using sym-
bolic manipulations packages such as Mathematica and Maple and subroutines
based on continuation methods from PITCON [26, 27], ALCON [1, 2], and
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HOMPACK [29]. In [8] we have used the subroutines lmdif.f and lmder.f

from MINPACK which minimize the sum of squares by a modification of the
Levenberg–Marquardt algorithm [24] to construct the class of diagonally im-
plicit multistage integration methods (DIMSIMs) of order p and stage order
q = p for p = 5 and p = 6. In the papers [10] and [20] we have used more
efficient optimization algorithms based on variable-model trust-region least-
squares algorithms implemented in the improved version of NL2SOL [16, 17]
to construct explicit and implicit DIMSIMs of order p = 7 and p = 8. In [14]
and [23] we have constructed two-step Runge–Kutta (TSRK) methods of low
and moderate orders with large regions of absolute stability using fminsearch

from Matlab [18]. These methods were introduced in [21, 22, 28]. The implicit
TSRK methods of order up to p = 6 were constructed in [3] and up to order
p = 8 in a recent paper [15]. In [13] we have described a search for a class
of Nordsieck methods with s internal stages, r = s external stages of order
p = s − 1 and stage order q = p and obtained methods with large regions of
absolute stability up to order p = 4. In this search we have used the approach
based on minimizing the sum of squares of the difference between the coeffi-
cients of the stability function of the method and the coefficients of a given
quadratic polynomial with a large area of stability. In this search we utilized
fminsearch from Matlab. The obtained accuracy was sufficient only up to
the order p = 3 and had to be improved for methods of order p = 4 by solv-
ing the system of nonlinear equations for the desired coefficients of stability
function using fsolve from Matlab. For higher orders (p ≥ 5) the approach
based on using fminsearch and fsolve failed to give sufficient accuracy and
more powerful minimization software is required. In this paper we describe
the construction of Nordsieck methods of order p = 5, p = 6 and p = 7 using
state-of-the-art optimization software.

The organization of this paper is as follows. In Section 2 we introduce
the class of Nordsieck methods we are interested in and formulate order and
stage order conditions. We also review representation formulas for some coef-
ficients matrices of these methods. In Section 3 we describe the construction
of quadratic polynomials of high order and large regions of stability. This con-
struction is based on maximizing the area of the intersection of the region of
absolute stability with the negative half plane. We also present examples of
such optimal polynomials corresponding to p = s − 1 = 5, p = s − 1 = 6,
and p = s − 1 = 7. In Section 4 we describe the search for Nordsieck meth-
ods with quadratic stability. This search is based on minimizing the objective
function for the sum of squares of the difference between the coefficients of
the stability function of the method and coefficients of the optimal quadratic
polynomials constructed in Section 3. In Section 5 we present examples of
methods of order p = 5, p = 6 and p = 7 computed using the approach de-
scribed in Section 4 and compare their stability regions with the corresponding
stability regions of approximation of the same order to the exponential function
exp(z) and of the Nordsieck methods of the same order with so-called inherent
Runge–Kutta stability (IRKS) constructed in [9]. Finally, in Section 6 some
concluding remarks are given and plans for future research in this area are
briefly outlined.
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2 Nordsieck Methods

For the numerical solution of initial value problem for ODEs{
y′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0,
(2.1)

f : Rm → R
m, we consider the class of Nordsieck methods defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y

[n]
i = h

s∑
j=1

aijf
(
Y

[n]
j

)
+

r∑
j=1

uijz
[n−1]
j , i = 1, 2 . . . , s,

z
[n]
i = h

s∑
j=1

bijf
(
Y

[n]
j

)
+

r∑
j=1

vijz
[n−1]
j , i = 1, 2 . . . , r,

(2.2)

n = 1, 2, . . . , N , tn = t0 + nh, n = 0, 1, . . . , N , Nh = T − t0. Here, Y
[n]
i is

approximation of stage order q to y(tn+cih) and z
[n]
i is approximation of order

p to the component hi−1y(i−1)(tn) of the Nordsieck vector z(t, h) defined by

z(t, h) =
[
y(t)T hy′(t)T · · · hr−1y(r−1)(t)T

]T
,

and y(t) is the solution to the problem (2.1). These methods are characterized
by the abscissa vector c = [c1, . . . , cs]

T and four coefficient matrices A ∈ R
s×s,

U ∈ R
s×r, B ∈ R

r×s, and V ∈ R
r×r. It will be assumed throughout the paper

that r = s and p = q = s − 1. It is known [4, 6, 7, 19] that the method (2.2)
has order p and stage order q = p if and only if

ecz = zAecz +Uφ(z) +O
(
zp+1

)
, (2.3)

ezφ(z) = zBecz +Vφ(z) +O
(
zp+1

)
, (2.4)

where φ(z) =
[
1 z · · · zs−1

]T
. Put

K =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , F = exp(K) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2! · · · 1

p!

0 1 1 · · · 1
(p−1)!

0 0 1 · · · 1
(p−2)!

...
...

...
. . .

...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then it follows from stage order and order conditions (2.3) and (2.4) that the
coefficient matrices A and U and B and V are related by

U = C−ACK, V = F−BCK.

To search for methods with large regions of absolute stability it is more conve-
nient to reformulate the relation between V and B in a different form. Put

F =
[
f1 f2 · · · fs

]
, B =

[
B̃ bs

]
, V =

[
v1 v2 · · · vs

]
,
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where fi, vi ∈ R
s, i = 1, 2, . . . , s, B̃ ∈ R

s×(s−1), and bs ∈ R
s. Let

C =

[
e c

c2

2!
· · · cp

p!

]
∈ R

s×s,

and partition the matrix CK as follows

CK =

[
0 C̃
0 c̃

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 c1 · · · cp−1
1

(p−1)!

0 1 c2 · · · cp−1
2

(p−1)!

...
...

...
. . .

...

0 1 cs−1 · · · cp−1
s−1

(p−1)!

0 1 cs · · · cp−1
s

(p−1)!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then it was proved in [13] that the matrix B̃ has the representation

B̃ =
([
f2 · · · fs

]− [
v2 · · · vs

]− bs c̃
)
C̃−1. (2.5)

We next define the error constant E of (2.2). Let the matrices B and V be
partitioned as follows

B =

[
bT

B

]
, V =

[
1 vT

0 V

]
,

where b ∈ R
s, B ∈ R

(s−1)×s, v ∈ R
s−1, and V ∈ R

(s−1)×(s−1). Then it was
demonstrated in [11, 19] that if

z
[n−1]
1 = y(tn−1), z

[n−1]
i = hi−1y(i−1)(tn−1) +O

(
hp+1

)
, i = 2, 3, . . . , s,

then
z
[n]
1 = y(tn)− hp+1Ey(p+1)(tn) +O

(
hp+2

)
,

where the error constant E is given by

E =
1

(p+ 1)!
− bT cp

p!
+ vTα. (2.6)

Here,

α = (I − V )−1

(
tp − Bcp

p!

)
and tp =

[
1

p!

1

(p− 1)!
· · · 1

]T
∈ R

s−1.

In this paper we are interested in explicit Nordsieck methods, i.e., methods for
which the coefficient matrix A is strictly lower triangular. We will also assume
that the matrix V appearing in V is strictly upper triangular. This implies
that the method (2.2) is automatically zero-stable, i.e., the matrix V is power
bounded.
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Applying the method (2.2) to the test equation y′ = ξy, t ≥ 0, ξ ∈ C,
we obtain z[n] = M(z)z[n−1], z = hξ, n = 1, 2, . . ., where the stability matrix
M(z) is defined by

M(z) = V + zB(I− zA)−1U.

We also define the stability function p(w, z) by

p(w, z) = det
(
wI−M(z)

)
.

It is a big challenge to construct methods (2.2) which achieve a good balance
between accuracy, i.e., the order p, stage order q, and the size of the error
constant E, and stability as measured by the size of the region of absolute
stability. In [12, 30, 31] the concept of IRKS was introduced which guarantees
that for explicit Nordsieck methods the stability function assumed the form

p(w, z) = ws−1
(
w −R(z, η)

)
(2.7)

with R(z, η) given by

R(z, η) = 1 + z +
z2

2
+ · · ·+ zs−1

(s− 1)!
+ η

zs

s!
, (2.8)

where η is a free parameter. In [9, 19] this parameter was used to construct
explicit Nordsieck methods (2.2) with small error constants E and large regions
of absolute stability. In [13] the concept of IRKS was relaxed to the concept
of so-called inherent quadratic stability (IQS). These are some algebraic condi-
tions imposed on the coefficient matrices of the method which guarantee that
the stability function of (2.2) assumes the form

p(w, z) = ws−2
(
w2 − ps−1(z)w + ps−2(z)

)
, (2.9)

with

ps−1(z) = 1 + ps−1,1z + ps−1,2z
2 + · · ·+ ps−1,sz

s,

ps−2(z) = ps−2,1z + ps−2,2z
2 + · · ·+ ps−2,sz

s. (2.10)

This approach leads to additional free parameters which can be used to con-
struct methods with larger regions of absolute stability than those correspond-
ing to methods with IRKS of the same order. In [13] we investigated also meth-
ods with quadratic stability (QS), i.e., methods for which stability polynomial
p(w, z) assumes the form (2.9)–(2.10) but which do not necessarily satisfy IQS
conditions. Examples of methods with IQS and QS up to order p = 4 are pre-
sented in [13] and their regions compare favorably with methods which have
IRKS.

In this paper we continue the search for high order (p ≥ 5) Nordsieck
methods with QS. In this search we first find optimal quadratic polynomials
qopt(w, z) with large regions of absolute stability and then solve a minimiza-
tion problem to find methods for which the stability function takes the form
p(w, z) = ws−2qopt(w, z). The construction of optimal quadratic polynomials

Math. Model. Anal., 17(3):293–308, 2012.
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which is based on maximizing the area of absolute stability of these polyno-
mials is described in Section 3. This can be accomplished using fminsearch

from Matlab. The construction of methods whose stability properties are deter-
mined by these optimal quadratic polynomials is described in Section 4. This
construction utilizes the Levenberg–Marquardt method.

3 Construction of Quadratic Polynomials with Large Re-
gions of Stability

In this section we describe the construction of quadratic polynomials corre-
sponding to Nordsieck methods with s = r and p = q = s−1. Such polynomials
have the form

q(w, z) = w2 − qs−1(z)w + qs−2(z),

with

qs−1(z) = 1 + qs−1,1z + qs−1,2z
2 + · · ·+ qs−1,sz

s,

qs−2(z) = qs−2,1z + qs−2,2z
2 + · · ·+ qs−2,sz

s,

which satisfy the order conditions

q(ez, z) = e2z − qs−1(z)e
z + qs−2(z) = O

(
zs
)
. (3.1)

These order conditions (3.1) lead to the system of s − 1 linear equations for
the coefficients of the polynomials qs−1(z) and qs−2(z). The resulting system
of linear equations is then solved with respect to

qs−1,1, . . . , qs−1,(s−1)/2, qs−2,1, . . . , qs−2,(s−1)/2

if s is odd, and with respect to qs−1,1, . . . , qs−1,s/2, qs−2,1, . . . , qs−2,s/2−1 if s is
even, and the remaining free parameters

qpar =
[
qs−1,(s−1)/2+1 · · · qs−2,s qs−2,(s−1)/2+1 · · · qs−2,s

]T
if s is odd or

qpar =
[
qs−1,s/2+1 · · · qs−1,s qs−2,s/2 · · · qs−2,s

]T
if s is even, are computed by maximizing the area of the intersection of the
region of the absolute stability of the polynomial q(w, z) with the negative
half plane. This area function area(qpar ) is computed by numerical integra-
tion in polar coordinates as explained in [14, 23]. This leads to the following
minimization problem

f(qpar ) = −area(qpar ) −→ min, (3.2)

which is then solved using fminsearch from Matlab. For p = s − 1 = 5 this
polynomial in Matlab rational format (format rat) takes the form

qs−1(z) = 1 +
1013

1332
z +

391

862
z2 +

105

523
z3 +

183

4187
z4 +

81

18 349
z5 +

5

29 738
z6,

qs−2(z) = − 319

1332
z − 685

2396
z2 − 295

2234
z3 − 481

17 829
z4 − 81

31 859
z5 − 37

406 296
z6,
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and its area of the region of absolute stability is 45.96. For p = s− 1 = 6 this
polynomial takes the form

qs−1(z) = 1 +
851

810
z +

550

1229
z2 +

353

2200
z3 +

415

8802
z4 +

89

10 370
z5

+
146

180 747
z6 +

3

99 656
z7,

qs−2(z) =
250

4939
z − 138

74 027
z2 − 408

12 221
z3 − 207

11 168
z4 − 50

12 459
z5

− 72

183 931
z6 − 2

138 485
z7,

and its area of the region of absolute stability is 50.90. For p = s− 1 = 7 this
polynomial in Matlab rational format takes the form

qs−1(z) = 1 +
1705

1751
z +

729

1421
z2 +

699

4205
z3 +

537

13 301
z4 +

111

12 851
z5 +

41

28 217
z6

+
19

130 733
z7 +

2

330 385
z8,

qs−2(z) = − 77

2931
z − 89

6716
z2 − 22

39 821
z3 +

25

62 304
z4 − 6

45 311
z5 − 1

36 037
z6

+
1

750 761
z7 +

1

3 461 764
z8,

and its area of the region of absolute stability is 47.29.
We would like to add here that for p ≥ 5, it was hard to find quadratic

polynomials with large stability areas, and we needed to choose a suitable
starting guess for the fminsearch Matlab function. In particular, for p =
s− 1 = 5 we have used as starting point

q(0)par =

[
0 0 0 0

1

4!

1

5!

1

6!
0

]T
,

which corresponds to the approximation of the same order to the exponential
function exp(z). For p = s−1 = 6 and p = s−1 = 7, we have used the starting
point

q(0)par =

[
0 0 0 0 0

1

5!

1

6!

1

7!

η

8!

]T
,

with η = 0.62 and η = 0.61 respectively, which corresponds to the stability
polynomial of the IRKS of the same order with maximum area.

4 Search for Nordsieck Methods with Quadratic Stability

In this section we describe the construction of Nordsieck methods (2.2) whose
stability function p(w, z) assumes the form

p(w, z) = ws−2qopt(w, z), (4.1)

Math. Model. Anal., 17(3):293–308, 2012.
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where qopt(w, z) are optimal quadratic polynomials which are computed by
solving minimization problem (3.2). It can be verified that the stability function
p(w, z) of the method (2.2) with r = s and p = q = s− 1 assumes the form

p(w, z) = ws−ps−1(z)w
s−1+ps−2(z)w

s−2+ · · ·+(−1)s−1p1(z)w+(−1)sp0(z),

where the polynomials ps−1(z), ps−2(z), . . . , p0(z) are given by

ps−1(z) = 1 + ps−1,1z + ps−1,2z
2 + · · ·+ ps−1,sz

s,

ps−2(z) = ps−2,1z + ps−2,2z
2 + · · ·+ ps−2,sz

s,

. . .

p1(z) = p1,1z + p1,2z
2 + · · ·+ p1,sz

s,

p0(z) = p0,1z + p0,2z
2 + · · ·+ p0,sz

s.

Hence, to obtain methods with QS whose stability polynomial p(w, z) takes the
form (4.1) we have to enforce the conditions

pj,k = qj,k, j = s− 1, s− 2, k = 1, 2, . . . , s, (4.2)

where qj,k are coefficients of the polynomials qs−1(z) and qs−2(z) and

pj,k = 0, j = 0, 1, . . . , s− 3, k = 1, 2, . . . , s. (4.3)

This leads to the minimization problem

f(A,V,bs) −→ min, (4.4)

where the objective function f(A,V,bs) is defined by

f(A,V,bs) :=

s−2∑
j=s−1

s∑
k=1

|pj,k − qj,k|2 +
s−3∑
j=0

s∑
k=1

|pjk|2. (4.5)

To compute this objective function we need expressions for the coefficients pj,k.
It was demonstrated in [8, 19] using the approach based on Fourier series that
these coefficients are given by

pjk = (−1)s−j 1

N1N2

N1−1∑
μ=0

N2−1∑
ν=0

w−j
μ z−k

ν p(wμ, zν),

j = 0, 1, . . . , s− 1, k = 0, 1, . . . , s, where

wμ = exp

(
−2πμ i

N1

)
, μ = 0, 1, . . . , N1 − 1,

zν = exp

(
−2πν i

N2

)
, ν = 0, 1, . . . , N2 − 1,

are complex numbers uniformly distributed on the unit circle, and N1 and N2

are sufficiently large integers. The efficient computation of these coefficients by
fast Fourier transform technique is described in [13].
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The minimization problem (4.4) with objective function defined by (4.5)
was solved by applying the Levenberg–Marquardt variant of the Gauss-Newton
method to this least squares problem. To ensure convergence to sufficiently
small residual values a smooth damping strategy was employed as suggested
in [25] and the Jacobian was computed by high-order numerical differentiation.
The standard first order one-sided difference formula was replaced by a sym-
metric interpolation by a fourth degree polynomial. For smooth functions this
provides very accurate derivatives at the cost of six function evaluations. In
light of the complex dependence of the objective on the variables both exact
and automatic differentiation are practically impossible.

Observe that the solutions to the minimization problem (4.4) for which the
objective function f(A,V,bs) is equal to zero are also the solutions to (4.2)
and (4.3).

The examples of methods found using the approach described in this sec-
tion are presented in Section 5. We also present the corresponding regions of
absolute stability of these methods and compare them with stability regions of
approximation to the exponential function exp(z) of the same order and of the
GLMs with IRKS of the same order.

5 Examples of Methods

In this section we present examples of methods with QS obtained using the
minimization algorithm described in Section 4. We also compare their stabil-
ity regions with stability regions of approximation of the same order to the
exponential function exp(z) as well as with Nordsieck method (2.2) of order
p = s − 1 with IRKS. We list only the coefficient matrices A, V and the last
column bs of the matrix B. These coefficients are presented in the Matlab
rational format. In actual implementation of these methods the coefficients
matrix U should be computed to a full precision from the representation for-
mula U = C−ACK, and the first s− 1 columns B̃ of the matrix B should be
computed to a full precision from the representation formula (2.5) discussed in
Section 2.

5.1 s = r = 6, p = q = 5

We have found methods with coefficients A, V and bs for which the objective
function f(A,V,bs) was in the range of 10−7–10−10. For methods for which
f(A,V,bs) was about 10

−7 the stability regions are quite irregular and differ
markedly from stability region of optimal quadratic polynomial qopt(w, z) com-
puted in Section 3. For methods for which f(A,V,bs) was about 10

−8 or less
the stability region of the method could not be distinguished on the computer
screen from stability region of qopt(w, z).

We have plotted in Fig. 1 and in Fig. 2 stability regions of the methods with
f(A,V,bs) equal to 7 · 10−7 and 9 · 10−10, respectively, and stability region of
qopt(w, z) corresponding to p = s − 1 = 5. The coefficients of the method for

Math. Model. Anal., 17(3):293–308, 2012.
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−10 −8 −6 −4 −2 0 2
0

1

2

3

4

Re(z)
Im

(z
)

QS RKIRKS
q

opt

Figure 1. Stability regions of approximation of order p = 5 to exp(z), of GLM with
IRKS corresponding to η = 3/5, and of GLMs of order p = s− 1 = 5 with QS with residual
= 7 · 10−7. Stability region of optimal quadratic polynomial qopt is plotted by dashed line.

−10 −8 −6 −4 −2 0 2
0

1

2

3

4

Re(z)

Im
(z

)

QSq
opt IRKS RK

Figure 2. Stability regions of approximation of order p = 5 to exp(z), of GLM with
IRKS corresponding to η = 3/5, and of GLMs of order p = s− 1 = 5 with QS with residual
= 9 · 10−10. Stability region of optimal quadratic polynomial qopt cannot be distinguished

from stability region of GLM with QS.

which f(A,V,bs) = 9 · 10−10 are c =

[
0

1

5

2

5

3

5

4

5
1

]T
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
484
1413 0 0 0 0 0

339
1001

320
1401 0 0 0 0

541
1504 − 241

2590
411
1039 0 0 0

303
719 − 788

1091
1244
1947

675
2351 0 0

557
697

622
3809

243
646

359
1256

1073
4861 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 517
16 821

90
1643

94
6201

104
25 257

20
26 753

0 0 − 115
251 467 − 77

14 673 − 79
9456

48
31 057

0 0 0 − 43
15 540 − 103

8944
58

11 891

0 0 0 0 − 298
3897

89
4543

0 0 0 0 0 1
1 453 706

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

bs =

[
323

3768

268

2157

1040

1249

493

881
−1051

1712

326

1355

]T
.
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The error constant of this method is 0.0023. For comparison, we have also
plotted on the same figure stability region of approximation of the same order
to exp(z) which corresponds to the polynomial R(z, η) given by (2.8) with η = 0
and of GLM with IRKS with stability function given by (2.7) with R(z, η) given
by (2.8) for η = 3/5, with the error constant equal to 1/360. It can be verified
that this value of η maximizes the area of the stability region of IRKS method
of order p = s− 1 = 5.

5.2 s = r = 7, p = q = 6

We have found methods with coefficients A, V and bs for which the objective
function f(A,V,bs) was in the range of 10−7–10−9. Similarly as in the case
p = s − 1 = 6, when the objective function f(A,V,bs) was about 10−8 or
less, the stability region of the resulting method could not be distinguished on
the computer screen from stability region of the optimal quadratic polynomial
qopt(w, z).

−10 −8 −6 −4 −2 0 2
0

1

2

3

4

Re(z)

Im
(z

)

RKIRKSQSq
opt

Figure 3. Stability regions of approximation of order p = 6 to exp(z), of GLM with
IRKS corresponding to η = 0.59, and of GLM with s = 7 and p = 6 with QS with residual
= 4 · 10−9. Stability region of optimal quadratic polynomial qopt cannot be distinguished

from stability region of GLM with QS.

We have plotted in Fig. 3 the stability region of the method corresponding to
f(A,V,bs) equal to 4 ·10−9 and stability region of qopt(w, z) corresponding to
p = s−1 = 6, given in Section 3. For comparison, we have also plotted the sta-
bility region of the approximation of the same order to exp(z). The coefficients

of the method for which res = 4 · 10−9 are c =
[
0 1

6
1
3

1
2

2
3

5
6 1

]T
,

bs =

[
1165

3767

269

2761

68

2029

243

6317
− 61

12 118

689

2804

112

89 787

]T
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
585
4144 0 0 0 0 0 0

1159
12 823

2623
13 184 0 0 0 0 0

206
5273

561
2564

227
1216 0 0 0 0

− 230
6781

240
761

229
2092

549
2546 0 0 0

− 203
2554

353
1220

1025
4081

172
2261

1369
5756 0 0

− 187
4478

799
2778

724
3703 − 174

24 439
27

6128
282
779 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 109
1948

386
7121

87
2026

124
13 351 − 43

44 499 − 43
49 135

0 0 382
3919

456
9871 − 163

3084 − 37
14 932 − 141

27 967

0 0 0 182
2007

1605
6526

323
13 496

41
4098

0 0 0 0 − 647
20 819

97
6504 − 40

30 623

0 0 0 0 0 − 191
18 378 − 49

182 268

0 0 0 0 0 0 − 53
84 355

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The error constant of this method is 3.2287 · 10−4. The GLM with IRKS with
maximum area has stability polynomial (2.7) with R(z, η) given by (2.8) and
η = 0.59, and the error constant is equal to 8.13 · 10−5.

5.3 s = r = 8, p = q = 7

−10 −8 −6 −4 −2 0 2
0

1

2

3

4

5

Re(z)

Im
(z

)

q
opt QS IRKS RK

Figure 4. Stability regions of approximation of order p = 7 to exp(z), of GLM with
IRKS corresponding to η = 0.61, of GLM with s = 8 and p = 7 with QS with residual

1.03 · 10−7, and of optimal quadratic polynomial qopt . Observe that the stability region of
qopt is quite close to stability region of GLM with QS.

We have found methods with coefficients A, V and bs for which the ob-
jective function f(A,V,bs) was in the range of 10−6–10−7. When the objec-
tive function f(A,V,bs) was about 10

−7, the stability region of the resulting
method was very close to the stability region of the optimal quadratic polyno-
mial qopt(w, z). We have plotted in Fig. 4 the stability region of the method
corresponding to f(A,V,bs) equal to 1.03 · 10−7 and stability region of op-
timal quadratic polynomial qopt(w, z) corresponding to p = s − 1 = 7 which
is given in Section 3. The coefficients of the method for which 1.03 · 10−7

are

c =

[
0

1

7

2

7

3

7

4

7

5

7

6

7
1

]T
,

bs =
[

865
1206 − 497

4853 − 219
1639 − 332

5473
310
1349

97
11 454 − 358

5297 − 410
3953

]T
,
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
189
1504 0 0 0 0 0 0 0

379
4434

615
3662 0 0 0 0 0 0

181
3915

466
2685

476
2913 0 0 0 0 0

73
5835

283
1614

355
2176

281
1714 0 0 0 0

− 166
19 269

247
1499

157
984

577
3350

849
5285 0 0 0

− 127
26 297

692
5835

1373
8299

408
2213

151
944

335
2086 0 0

229
3234

398
2691 − 137

1184 − 300
1667

516
2129 − 295

2008
129
223 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 578
15 049 − 1336

11 293
297
9862

421
9255

81
4976

73
35 604

10
319 623

0 0 − 149
2635

121
1758

157
10 717

351
9613

74
19 431 − 43

5134

0 0 0 − 136
6805

491
5900 − 116

2741
63

4688
1585
44 308

0 0 0 0 344
3119 − 229

3464
274

19 879
163
2734

0 0 0 0 0 − 103
8734

68
8267

300
10 177

0 0 0 0 0 0 − 387
8605

46
4805

0 0 0 0 0 0 0 − 164
2631

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

The error constant of this method is equal to 3.5 · 10−5. For comparison, we
have also plotted in Fig. 4 the stability region of the approximation of the
same order to exp(z) and of the GLM with IRKS with stability polynomial
(2.7) with R(z, η) given by (2.8) and η = 0.61, with error constant 9.67 · 10−6.
It can be verified that this value of η maximizes the area of stability region of
IRKS method of order p = s− 1 = 7.

6 Concluding remarks

This paper continues search for explicit GLMs in Nordsieck form with large
regions of absolute stability. This search for methods of order up to p = 4
was initiated in [13] and it was based on minimizing the negative are of the
intersection of the region of absolute stability with a negative half plane. This
was accomplished with the aid of subroutines fminsearch and fsolve from
Matlab. For higher orders (p ≥ 5) the approach based on fminsearch and
fsolve does not lead to sufficient accuracy and in this paper we used state-
of-the art optimization software based on Levenberg–Marquardt algorithm to
accomplish this goal for p = 5, p = 6, and p = 7. In our approach we first
construct quadratic polynomials qopt(w, z) with large regions of absolute sta-
bility, and then use optimization software to find methods for which stability
function p(w, z) takes the form p(w, z) = ws−2qopt(w, z).

Future work in this area will be concerned with the construction of highly
stable implicit GLMs in Nordsieck form and with implementation of both ex-
plicit and implicit methods in a variable step variable order software for nonstiff
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and stiff differential systems. The tools to accomplish this are different from
the tools employed in this paper and this work will be reported elsewhere.
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