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As the telecommunications revolution pushes for
denser utilization of the spectrum, there is a need to
develop inexpensive sources and detectors that
operate in the 100 GHz to several THz range. It is
precisely in this range that Josephson junctions pro-
vide an almost ideal solid state, current controllable
source.

Arrays of junctions provide for relatively large power
but due to nonlinearities they can exhibit diverse
complex spatiotemporal patterns. Experiments, simu-
lations and analysis were performed on a broad
range of discrete arrays of Josephson-junction oscil-
lators in order to understand their ability to produce
coherent radiation. Networks ranging from single
square and triangular plaquettes to one- and two-
dimensional arrays are studied. In each array, the
junctions are identical and underdamped, and the
arrays are driven by dc bias currents. Although few
analytical results are known for these systems, we
study the technically interesting solutions which can

be represented as traveling waves. It is in this mode
that the devices can be used as submillimeter wave
sources.

I R

Figure 1. Equivalent circuit for a Josephson
junction in a voltage state and with a single harmonic.
Nonlinearity is captured by IM which is a mixing
current that describes the interaction between the
rotating Josephson phase and its first harmonic.

Using the mathematical technique of harmonic bal-
ance it is possible to create an equivalent linear cir-
cuit of a Josephson network that is operating in a
traveling wave mode. Though the nonlinearity of the
system allows for mixing of all the harmonics, in
underdamped systems we find that the first harmonic
is orders of magnitude stronger than the rest. In gen-
eral any variable can be decomposed in terms of its
dc and ac spectrum. If we further restrict the ac com-
ponent to a single frequency as suggested by our
simulations, then the branch current and voltage
across a junction can be written as:
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I= IC + ic1 e

V = VDC + vace (0
t

Our equivalent circuit then consists of a dc bias cir-
cuit and a mixing circuit that creates the first har-
monic. Figure 1 depicts the equivalent circuit. Here

I c = e
ik

vac e-J
k

j co 2

where k represents the phase difference between the
first harmonic and the rotating part of the Josephson
oscillation, and the mixing current, Im , represents the
nonlinear interaction between them. This equivalent
circuit makes it possible to use powerful circuit theo-
retic tools to understand a Josephson network.

A natural application of the circuit model is the study
of the effect that the boundaries have on the traveling
wave. Figure 2 shows the spatial distribution of first
harmonic amplitudes in a parallel Josephson array of
54 junctions. Graph (a) shows the array with open
boundaries. In general the shape will depend on the
array parameters, but at this value of applied field the
spatial part of the solution is symmetric. The reflec-
tion of the traveling wave is clearly evident on both
the entry and exit sides of the array. Using the above
circuit model, it is possible to determine a load
impedance that will minimize the reflection. Graph (b)
shows the result when the impedance matching load
is applied to junction one. The reflection at the left
hand boundary is reduced substantially.

We plan to use the linear circuit model to understand
how to optimize a Josephson oscillator design so that
a minimum of linewidth is obtained while providing a
maximum of power and frequency tunability.
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Figure 2. Amplitudes of first harmonics of vertical
junctions in a parallel array. Graph (a) is an array
with open boundaries while (b) shows the same array
with a matching load at junction one.

3.2 Triangular Arrays of Josephson
Junctions
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Triangular arrays of Josephson junctions operating in
an applied magnetic field have been proposed as a
way of obtaining useful power levels of mm and sub-
mm wave radiation generated by the AC Josephson
effect. A triangular one-dimensional (1D) array con-
sists of a single row of parallel biased triangular cells
which have a Josephson junction in each branch
(Figure 3). The bias current is uniformly applied
through resistors at each point indicated by arrows in
the sketch, and the array voltage response is read
across the row. In order to characterize high fre-
quency properties, the horizontal junctions of the
array (x-direction) are integrated in an insulating SiO2
layer of a superconducting microstripline ending with
a finline antenna. The antenna transforms the array
impedance into the waveguide impedance through
two exponentially tapered Nb fins.

In the presence of a field, two resonances appear on
the IV curve, corresponding to L,C and LjC reso-
nances. These steps are characteristics of single
cells, and their voltage does not change with the
number of cells in the array. At the LC resonance, tri-
angular arrays produce large-amplitude single-har-
monic oscillations in the horizontal junctions. High-
frequency measurements of a 12-cell triangular array
reveal the presence of radiation emitted from the
transverse junctions. Figure 4 shows the radiated
power Prad at 75 GHz, detected at the LC step. The
radiation frequency is proportional to the step volt-
age. Measurements of longer rows will be taken to
test the scaling of power with the number of horizon-
tal junctions.
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Figure 3. Schematic top view of a six-cell triangular
array with the finline antenna which couples the array
signal to the 80-120 GHz rectangular waveguide (a)
and a cross view of the horizontal junctions of the
array inserted in the microstripline ending into the
antenna (b).
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Figure 4. Measurement of radiation emission from
a 12 cell array. The IV curve is shown together with
the detected radiation power at a frequency v = 75
GHz. The detector bandwidth is Av = 0.9 GHz.

3.3 Nonlinear Dynamics Of Discrete
Josephson Arrays
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Discrete arrays of nonlinear Josephson oscillators
can exhibit diverse spatiotemporal patterns.
Although such oscillator arrays are difficult to analyze
completely, one can often use the symmetries of the
system to construct simple patterns composed of
spatially repeated "unit cells." Experiments, simula-
tions, and analysis on a broad class of discrete
arrays of Josephson-junction oscillators indicate
novel phase-locked states that, due to their special
symmetry, reduce the governing equations of the full
array to a much smaller set of equations of a unit cell.
Networks ranging from single square and triangular
plaquettes to one- and two-dimensional arrays have
been studied.
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Figure 5 shows the measured IV curves (I is the cur-
rent per vertical junction normalized by Ic , and V is
the voltage per row) for three different array geome-
tries when fully frustrated. The signature of all these
IVs is the appearance of jumps at two resonant volt-
ages, V+ and V.. The upper step, which ends at V+ ,
is independent of temperature, suggesting that local
geometrical properties determine the voltage. In this
state, all the rows of the array act coherently and
phase-lock at a voltage that depends on the geomet-
ric loop inductance and junction capacitance. The
lower voltage V, on the other hand, is temperature-
dependent, suggesting a dependence on the
Josephson inductance and the geometric loop induc-
tance. By taking advantage of the symmetry of the
network, it is possible to describe the solution as a
dynamical checkerboard state and mathematically
analyze its resonant behavior in a reduced system of
governing equations. However, the conditions for the
stability and the temporal periodicity of the checker-
board state, and the dynamics associated with other
possible states, are challenging problems for future
investigation.

We have also studied the spatiotemporal dynamics
of circular one-dimensional arrays of underdamped
Josephson junctions connected in parallel. In these
Josephson rings, a traveling wave solution consisting
of a single kink can be trapped and studied experi-
mentally without the complications caused by reflec-
tions off boundaries. We find that a propagating kink
can become phase-locked to linear waves excited in
its wake. In the IV curve, resonant steps are
observed indicative of this phase-locking. Resonant
steps also occur in the IV curves for higher voltages
in the return path of the subgap region. These reso-
nant steps have a completely different origin and
occur at voltages where the periodic whirling solution
undergoes an instability parametrically amplified by
the linear modes in the system.

3.4 Coupled Rings of Josephson
Junctions: Interactions of
Topological Kinks
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. LA We explore a system of two discrete rings of under-
SA damped oscillators, using inductively coupled
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0.2 Josephson junctions as an experimental realization.
This Josephson system is a model system for study-

o.0 ing spatiotemporal dynamics of coupled oscillators,
o.0 0.1 0.2 0.3 0.4 0.5 and more specifically for exploring kink interactions

Voltage (mV) in discrete lattices, a topic that is also important in,
e.g., the dynamics of dislocations and ferromagnetic

Figure 5. Experimental IV curves for three arrays: domain walls.
triangular array (1 X 9 plaquettes) with f3= 8 and =
0.64; square array (1 X 7) with 3c = 11 and X = 0.76;
and a square array (7 X 7) with f3=20 and k = 0.92.
Dashed line, IV from harmonic balance for the
square (1 X 7) array with the same Pc and an
effective keff = 0.61 which accounts for mutual
inductance effects. V+ and V are indicated.
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Figure 6. Schematic of inductively coupled ring
system. A uniform current lb is fed into each node, as
indicated by arrows and is extracted from the center
island. In experi-ments, we measure the dc voltages
Vinner and Vouter. Q v is the mutual inductance between
two adjacent cells of the inner and outer rings.

The layout of a discrete coupled ring system with N
junctions per ring is shown in Figure 6 for N=4. The
Nb-AlOx-Nb junctions are 3x3 tpm2, and the radius of
the outer ring is 28 ptm. When the system is cooled in
the presence of a perpendicular magnetic field to
below the superconducting transition, the total flux
bounded by the continuous superconducting rings
becomes trapped in units of 0o = h/2e. A single unit
of quantized flux is called a vortex if the flux is along
the applied field and an anti-vortex if it is opposite. A
vortex and anti-vortex correspond to a kink and anti-
kink. If there are m,n and m.o.t kinks in the two rings,
and man and maot anti-kinks, then the net, conserved
phase winding in each ring is Min= m.,n - ma. in and Mout
= mvout- ma out.

In Figure 6, we show a simulated IV characteristic for
the case of M, = 1 and Mout = 0. There are N = 51
junctions in each ring. For a range of bias currents (lb
< 0.57, I), kink/anti-kink pairs are excited in the outer
ring. In the figure, we use an open circle to represent
kinks and a cross to represent the anti-kink. The
inset shows the relative motions of the kinks and the
anti-kink when one pair is excited in the outer ring. As
the bias current is applied, the kinks and anti-kink
begin to rotate, producing a dc voltage across each
ring.
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Figure 7. Simulated IV characteristic. The nearly
constant voltage steps correspond to the motion of
the kinks (represented by open circles) and anti-
kinks (represented by crosses) at their maximum
speeds. The inset shows the relative motion of the
kinks and the anti-kink for one excited pair in the
outer ring.

In Figure 7, we plot the average dc voltage for each
ring versus bias current. As the current is increased,
the kinks move faster, and the dc voltage increases.
The kinks and anti-kinks phase-lock with linear
waves, and, at certain speeds, further increases in
the bias current tend to increase the amplitudes of
the excited linear waves rather than the speed of a
kink. As a result, a step of almost constant voltage
appears in the IV. These special speeds are given by
the dispersion relation for linear waves in the coupled
system, which is split into two branches. We refer to
the inner ring step at 0.0151, IlRn as an Eck step,
since the single trapped kink is near its maximum
speed and no additional pairs are excited. When
pairs are excited, their contributions simply add up
(to lowest order), resulting in voltage steps at much
larger voltages. We refer to these as high-voltage
(HV) steps, since they are similar to states that can
exist on the return path of an isolated ring. A study of
the particular dynamics on these steps reveals that
the coupling between the rings gives rise to phase-
locking between kinks of the same sign in different

11 Delft University of Technology, The Netherlands.
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rings. The kinks in both rings travel together at the
same speeds. The anti-kinks travel in an opposite
direction and can even have speeds which are differ-
ent from the kinks.

In experiments of N=4 and N=8 systems, we discov-
ered another interaction effect. For every distinct
combination of Min #MO, we observe a parameter
regime where pairs are excited only in the outer ring,
another parameter regime where pairs are excited
only in the inner ring, and a transition region in tem-
perature from one state to the other. In addition, in
several experiments, we observe a very narrow
range of temperature where there is a time-depen-
dent competition between the two states. Based on
the time scales of the fluctuations, the dynamics are
likely to be influenced by weak noise in the input
parameters. However, the sudden vulnerability of the
system at this particular point also implies the pres-
ence of an instability and the possibility of a novel
dynamical state. Future experiments will address the
role of noise in this two-state competition.

3.5 Meissner-like States in Josephson
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One of the most striking features of superconducting
materials is their ability to expel an applied flux. This
perfect diamagnetism is direct expression of macro-
scopic quantum mechanical effects and is usually
called the Meissner effect. A Meissner state occurs
when the induced flux caused by persistent currents
in the superconducting material almost perfectly can-
cels the applied flux.

In order to study this effect in Josephson networks,
we designed several ladder arrays with different
number of rows. The arrays consist of square loops
with junctions on both vertical and horizontal edges.
As we increase the applied current from zero, the
array is superconducting and therefore has zero out-
put voltage. At some critical current, the array devel-
ops a finite voltage, and the zero-voltage state is
destroyed. It is in this zero-voltage state that the
Meissner state can exist.

To measure the critical current of an array, we first
apply a perpendicular magnetic field, HA. Once the
field is set, the current is swept from zero until the
output voltage reaches a threshold value that is typi-
cally set to 1 IV. Figure 8 shows representative Idep
versus applied field curves for four different arrays:
47x47, 3x47, 2x47, and 1x15. The 47 and 15 refer to
the number cells in the direction normal to current
injection while the smaller number is the number of
rows in the direction of the applied current.

We find generic features for all the measurements
regardless of temperature or array topology. First,
the shape of the Idep curves is periodic with the
applied field. We normalize the applied field so that
f = HA/Hperiodand the curves become periodic with
f= 1. Secondly, the curves are almost symmetric
about f = 0.5. The details of the Idep versus f curves
are sample dependent as shown in Figure 8. For the
47x47 ladder, we find that a large narrow peak is
observed at f=0. As f is increased, the curve quickly
decays to an average level of 0.17. There are smaller
peaks that are evident at f = 1/4, f = 1/3, and f = 1/2.
The 3x47 array has similar features to the fully two-
dimensional system. The peak at f = 0 is now
broader as marked by the arrow. The decay to the
average level is linear but the substructure appears
at different f values. When the array only has two
rows, we see curves typical to the 2x47 ladder. The f
= 0 peak is now very broad, but the decay is still lin-
ear. All the other structure has disappeared except
for the f = 0.5 peak. Finally, when we measure an
array with only one row, the f = 0 peak has expanded
so that even the f = 0.5 substructure has disap-
peared. It is this peak at f = 0 that can be described
as a Meissner-like state.

After performing numerical simulations to character-
ize the Josephson network dynamics, we have
developed a model that reproduces the experimental
characteristics. We find that even if the geometrical
inductances are neglected, the Josephson junctions
that circumvent the network can act as parametric
inductors that support a circulating current. As the
network becomes more two-dimensional it becomes
increasingly difficult to support the large circulating
current and so the Meissner-like state narrows. The
linear decay can be described in terms of Ampere's
law. However, it is still not fully understood how the
state is destroyed nor what the substructure that is
so evident in Figure 8 represents. We will continue
to investigate these and other unsolved problems.

50 RLE Progress Report Number 140



Chapter 3. Superconducting and Quantum-Effect Electronics

47x47

0.6-

0.4-

0.2-

0.61

0.4 -

0.2 -

-0.5

r I

0.5 0.0 0.

47x3

0.0

0.6-

0.4-

0.2-

47x2

-0.5

15xl
1.0

0.5 !._...--- "

0.5 -0.5

frustration

Figure 8. Idep versus frustration for four different arrays: 47x47, 3x47, 2x47, and lx1 5. The 47 and 15 refers to
the number cells in the direction normal to current injection while the smaller number is the number of rows in
the direction of the applied current. Lines with arrows
the array decreases.

3.6 Self-Field Effects on Flux Flow in
Josephson Arrays
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Two-dimensional arrays of Josephson junctions pro-
vide controllable model systems for the study of vor-
tex transport in thin film superconductors. A crucial
parameter that determines the dynamics of these
vortices is the characteristic penetration depth of the
applied field. It is this length that also governs the
effects of self-induced magnetic fields.

Typical current-voltage, IV, characteristics versus
applied magnetic field are shown in Figure 9. The
applied magnetic field B0 is measured in units of the
frustration f = Bop 2/A0. The depinning current Idep indi-
cates the onset of the flux-flow region. There is a

indicate broadening of f=0 peak as the number of rows of

curving transition in the IV from the depinning current
to a linear region. The flux-flow resistance Rf is
defined as the slope of this linear region which is
shown by a straight line for each of the IVs. The inset
shows that the assigned resistance values are linear
in f up to f = 0.3. For larger values of f up to f = 0.5, Rff
is no longer linear with f due to the increased interac-
tion between vortices.

Other measurements and numerical studies of the
effects of self-induced magnetic fields on the flux flow
resistance have been performed. It was found that
the flux-flow resistance becomes larger as the pene-
tration depth of the array decreases. A phenomeno-
logical model, which agrees qualitatively with the
experiments and simulations, has been developed to
explain the self-field effects on flux flow. Due to the
smaller spatial extent of supercurrents around a vor-
tex when self-fields are important, both the mass of
the vortex and the array viscosity decrease. The
decreased mass and viscosity lead to an increase in
flux-flow resistance. The effects of spin-wave damp-
ing have also been investigated for underdamped
arrays.
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The flux-flow region appears to be richer in its

dynamics than the presented model can account for.
In particular, treating the effective linear viscosity of

the array as the sum of the Bardeen-Stephen damp-
ing and spin-wave damping is probably an over-sim-
plification. Though these deviations do not diminish
the useful and intuitive results from the phenomeno-
logical model, they do point the way for further
research on the richness of the dynamics in the flux-
flow regime.

V (mV)

Figure 9. Current-voltage characteristics for
various magnetic fields from f = 0.1 to 0.3. The data
was taken at 8.6 K with XL = 1.04 and Pc = 5.1. The
numbers indicate values of f. The solid straight lines
denote the linear region of flux-flow. The inset shows
that the flux-flow resistance Rf is linear in f.

3.7 Quantum Device Simulations
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We carried out numerical simulations of single-elec-
tron transport through a quantum dot with supercon-
ducting leads, based on an experimental system. We
introduce a general phenomenological model of

transport through a quantum dot. In this model, we

assume that the quantum dot is weakly coupled to

the two leads by tunnel barriers. When an appropri-

ate bias voltage V is applied to the leads, an electron

can tunnel across one barrier into the dot and subse-
quently tunnel out through the second barrier.
According to general tunneling theory, the tunneling
rate across a barrier from side "a" to side "b", can be

evaluated using Fermi's Golden Rule,

Fa--+b( 4a, 1b) =

2n-f ITab 2
Na(E - ta)Nb(E - gb)(f(E- pa) [1 - f(E - gb)]dE)

where Tab is the phenomenological tunneling matrix

element, and f(x) = 1/[1 + exp(x/KBT)] is the Fermi

function. Na(E) and Nb(E) are the density of states,

and ga and gb are the chemical potentials, on their

corresponding sides. In our system, to compute the

tunneling rate from one of the leads to the dot, we

take the BCS quasiparticle density of states in the

lead and assume that the dot itself has an evenly
spaced (with spacing -) discrete level spectrum.

In Figure 10, we show a typical low temperature cur-

rent-voltage (I-V) characteristic of the system. Here

the temperature KBT = 0.02 Ec* (Ec*- Ec + e is the

spacing between chemical potential levels, and

Ec - e 2/Cz is the charging energy), the superconduct-

ing energy gap 2A= 0.3 Ec and the quantum energy

level spacing in the dot e = 0.2 Ec*. When the leads

are superconducting (solid curve), the I-V curve con-

sists of a series of sharp peaks spaced F apart. This

is in contrast with the I-V curve of the same dot with

normal metal leads (dashed curve), which has only

gentle steps with the same spacing e. Figure 10 is in

good qualitative agreement with experiment.

In addition to the low temperature transport, our anal-

ysis shows that at higher temperatures thermal exci-
tation of quasiparticles in the leads and thermal
population of the excited quantum levels within the
quantum dot should lead to interesting changes in

the I-V curves. We also predict that when RF radia-
tion is coupled to the system, the photon-assisted
tunneling phenomenon should manifest itself by pro-
ducing extra periodic structures in the I-V curves,
which might be useful in the millimeter wave detec-

tor/mixer applications. Due to the presence of many

different characteristic energy scales, the rich

dynamical properties of this system demand more

exploration.
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Figure 10. Low temperature I-V characteristics of a
quantum dot with superconducting leads (solid
curve) and normal metal leads (dashed curve). The
temperature is KBT = 0.02 Ec' , and the
superconducting energy gap in the leads is 2A = 0.3
Ec*. The quantum level spacing is F = 0.2 Ec*. The
inset is a sketch of the energy spectra in the leads
and the dot. Note the quantum dot energy spectrum
includes the excitation spectrum (with spacing e) and
addition spectrum (with spacing Ec* = e2/C + ).
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