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When electrons are confined to a small particle of
metal or a small region of semiconductor, both the
energy and charge of the system are quantized. In
this way such nanometer-sized systems behave like
artif!~ial atoms.4 ,The quantization of energy is
!amlhar: The solutl~ns of the Schrodinger equation
In an Isolated region have discrete energies. In
some ways, however, the quantization of charge is
more mysterious. We are quite comfortable with
the idea that the charge of a collection of electrons
is discrete. However, the charge in any small
volume of a large sample of conductor is not dis­
crete because the electronic wavefunctions are
extended over the entire sample. Only when the
states are localized is the charge quantized.

Artificial ~toms have been constructed using metals
an~ semiconductors, ,and they have been given a
vanety of names: single-electron-tunneling (SET)

transistor, quantum dot, single-electron transistor
and zero-dimensional electron gas. The physics of
all these devices is the same, although the limits in
which they operate may be quite different. The
goal of our research is to better understand the
physics of these devices in order to optimize their
performance so that circuit design may commence.

The k.ind of artificial atom studied by our group is
the Single-electron transistor, illustrated in figure
1b.5 It consists of an inverted heterostructure: a
degenerately doped substrate on which is grown a
layer of AIGaAs and a layer of undoped GaAs.
With source and drain contacts, this corresponds to
a standard insulated-gate field-effect transistor.
The strong electric field at the AIGaAs/GaAs inter­
face caused by a voltage V9 on the lower gate con­
fines electrons to the lowest quantum level for
motion perpendicular to the surface at low temper­
ature T, forming a two-dimensional electron gas
(2DEG). The confinement is completed by a set of
upper gate electrodes like those illustrated in the
figure. In this case the tunnel barriers are intro­
duced by constrictions in the electron channel
defined by protrusions of the electrodes. With a
lower-gate voltage applied, a droplet of electrons is
confined in the potential well between the con­
strictions.
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2.2 Quantization of Energy and Charge

Figure 1a shows the conductance as a function of
gate voltage for the single-electron transistor. The
conductance is measured by reducing the drain­
source voltage to less than kT/e, so that the
response is Ohmic. We typically use VdS -- 2J1V,
corresponding to -- 25 mK, near the base temper­
ature of our dilution refrigerator. Of course, this
means that the currents we measure are very
small. The noise level seen in figure 1 corresponds
to -- 10- 15 amp. The conductance consists of sharp
peaks that are roughly periodic in gate voltage. A
calculation of the capacitance between the droplet
of electrons and the gate6 shows that the voltage

between adjacent peaks or valleys is that neces­
sary to add one electron to the droplet. At the low
temperature of the experiment (electron temper­
ature of -- 50 mK) the peaks are very sharp so the
peak-to-valley conductance ratio is larger than -- 103

at low gate voltage.

One can understand the periodicity of the
conductance peaks using the semiclassical
Coulomb blockade model.7 The classical electro­
static energy stored in placing charge Q on the
droplet is
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Figure 1. (a) Left: Conductance versus Vg showing broadening of levels with increasing Vg• Data was taken at mag­
netic field B = 2.53 T. The alternation of peak heights arises from the two spin states in the lowest Landau level.
Bottom: Two of the peaks from the upper panel expanded to better illustrate their shapes. The lower Vg peak is well
described by equation (4) and the higher Vg peak displays the Lorentzian tails as predicted by equation (4). (b) Sche­
matic of device structure.

6 U. Meirav, M.A. Kastner, and S.J. Wind, "Single-Electron Charging and Periodic Conductance Resonances in GaAs Nanostructures,"
Phys. Rev. Lett. 63: 1893 (1990).

7 D.V. Averin and K.K. Likharev, "Single Electronic Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small
Tunnel Junctions," in Mesoscopic Phenomena in Solids, eds. B.L. Altshuler, P.A. Lee, and R.A. Webb (Amsterdam: North-Holland,
1991). This is a comprehensive review of single-electron tunneling in metals.
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The first term is the attractive interaction between
the droplet and nearby conductors, and the second
term is the repulsive interaction among the ele­
ments of charge on the droplet. C is the total capa­
citance of the droplet. If all electrode potentials
except that of the gate are held constant, we can
write V = (Cg/C)Vg plus a constant. Equation (1)
then shows that the energy as a function of 0 is a
parabola with minimum at 0 0 = - CgVg (apart from
a constant).

By varying Vg, we can choose any value of 0 0•

However, because the charge is quantized, only
discrete values of the energy E are possible. When
0 0 =- Ne, for which an integer number N of elec­
trons minimizes E, the Coulomb interaction results
in the same energy difference e2/2C for increasing
or decreasing N by one. In other words, there is a
gap of size e2/2C for tunneling onto the artificial
atom. For all values of 0 0 except 0 0 = - (N +1/2)e,
the energies for adding or subtracting an electron
are not equal, but both are ~ O. The gap is the
same size but is shifted relative to the Fermi energy
of the leads. Under these circumstances, no
current can flow at zero temperature. However, if
0 0 = - (N + 1/2)e the state with 0 = - Ne and that
with 0 = - (N + 1)e are degenerate; the charge
fluctuates between the two values even at zero
temperature. Consequently, the energy gap in the
tunneling spectrum disappears and current can
flow. The peaks in conductance are, therefore,
periodic, occurring whenever the average charge on
the artificial atom is 0 0 = - (N + 1/2)e, spaced in
gate voltage by e/Cg.

2.3 Spectroscopy of Artificial Atoms:
The Three Energy Scales

The Coulomb blockade model accounts for charge
quantization but ignores the quantization of energy
resulting from the small size of the artificial atom.
The confinement makes the energy spacing of
levels in the atom relatively large especially at low
energies. One can think of this spacing as roughly
~E = (dN/dE)-1 where dN/dE is the density of states
in the confined region. Because dN/dE increases
with energy, ~E decreases. If there are many elec-
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trons in the atom, they fill up many levels, and the
level spacing at the Fermi energy becomes small.
The SET transistor has so many electrons that the
level spectrum is usually thought of as continuous.
However, the underlying discreteness of the level
spectrum is essential for the observation of all
single-electron phenomena, even those in the SET
transistor.

The energy level spectrum can be measured
directly by observing the tunneling current at fixed
Vg as a function of the voltage (VdS) between drain
and source. Suppose we adjust Vg so that
0 0 = - Ne and then begin to increase Vds• The
Fermi level in the source rises in proportion to Vds

relative to the drain, so it also rises relative to the
energy levels of the artificial atom. Current begins
to flow when the Fermi energy of the source is
raised just above the first quantized energy level of
the atom. As the Fermi energy is raised further,
higher energy levels in the atom fall below the
Fermi energy, and more current flows because
there are additional channels for the electron to use
for tunneling onto the artificial atom. Only one elec­
tron at a time can enter the atom, but the rate
increases because there is more than one channel
for the electron to use in tunneling onto the atom.
Interestingly, if a level falls below EF that has a
large matrix element for tunneling into the atom but
a small one for tunneling out, the current will
decrease with increasing Vds giving a negative dif­
ferential conductance.8 We measure the energies of
the levels by measuring the voltage at which the
current increases (or decreases), or, equivalently,
the voltage at which there is a peak (or valley) in
the derivative of the current dl/dVds• Many beautiful
tunneling spectra of this kind have been measured
for quantum dots. We show one for our device in
figure 2a. Similar level spectra have been reported
by several groups.9

Increasing the gate voltage lowers all the energy
levels in the atom by - eVg, so that the entire
tunneling spectrum shifts with Vg. This effect can
be observed by plotting the values of Vds at which
peaks appear in dl/dVds, as is in figure 2b. One
can see the gap in the tunneling spectrum shift
lower with increasing V9 and then disappear at the
charge-degeneracy point, just as predicted by the

8 J. Weis, R.J. Haug, K. von Klitzing, and K. Ploog, "Magnetotransport Investigations of a Quantum Dot with a Small Number of
Electrons," Physica B 189: 111 (1993).

9 J. Weis, R.J. Haug, K. von Klitzing, and K. Ploog, "Magnetotransport Investigations of a Quantum Dot with a Small Number of
Electrons," Physica B 189: 111 (1993); J. Weis, R.J. Haug, K. von Klitzing and K. Ploog, "Competing Channels in Single-Electron
Tunneling through a Quantum Dot," Phys. Rev. Lett. 71: 4019 (1993); E.B. Foxman, P.L McEuen, U. Meirav, N.S. Wingreen, Y. Meir,
P.A. Belk, and S.J. Wind, "Effects of Quantum Levels on Transport Through a Coulomb Island," Phys. Rev. B 47: 10020 (1993); A.T.
Johnson, L.P. Kouwenhoven, W. de Jong, N.C. van der Vaart, C.J.P.M. Harmans, and C.T. Foxon, "Zero-Dimensional States and
Single-Electron Charging in Quantum Dots," Phys. Rev. Lett. 69: 1592 (1992).
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Coulomb blockade model. One can also see the
discrete energy levels of the artificial atom. For the
range of Vds shown in figure 2b, the voltage is only
large enough to permit one extra electron to tunnel
onto the atom. The discrete levels are the excited
states of the atom with one extra electron or one
extra hole. At still higher voltages (see figure 2c)
we observe levels for adding two electrons and so
forth. That is, a Coulomb staircase is seen with
small steps superposed, corresponding to excited
states of the artificial atom. The charge­
degeneracy points are the values of V9 for which
one of the energy levels of the artificial atom is
degenerate with the Fermi energy in the leads
when Vds = 0, because only then can the charge of
the atom fluctuate.

In the SET transistor the energies for adding elec­
trons are equally spaced, by e2/C, because the
average electron-electron interaction completely
determines the energy. For the quantum dot of
Ashoori 10 the energy spacings are large at low
voltage, for which there are very few electrons in
the artificial atom, but the spacings decrease with
increasing number until they become approximately
equally spaced. This happens because there is a
large quantum mechanical confinement contribution
to the energy for adding an electron at low number
N of electrons, but the charging energy dominates
the addition energy at high N.
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Figure 2. (a) Differential conductance at fixed Vg• The
peaks and valleys correspond to VdS at which the Fermi
level in the leads is degenerate with the energy levels of
the droplet of electrons. (b) Values of Vds at which peaks
and valleys are observed as a function of Vg• (c) Current
as a function of VdS found from integrating the data in
figure 2a.

10 R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, "Single-Electron Capacitance
Spectroscopy of Discrete Quantum Levels," Phys. Rev. Lett. 68: 3088 (1992); R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer,
S.J. Pearton, K.W. Baldwin, and K.W. West, "N-Electron Ground State Energies of a Quantum Dot in Magnetic Field," Phys. Rev.
Lett. 71: 613 (1993).
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In addition to the Coulomb interaction and the con­
finement energy, there is a third energy scale that
is very important in understanding the behavior of
artificial atoms. This is the width f of the energy
levels resulting from tunneling between the artificial
atom and the leads. Beenakker11 suggested that
the conductance near the charge degeneracy point
should be given by that for resonant tunneling of
non-interacting particles even though Coulomb
interactions are obviously important. At zero tem­
perature this single level conductance is

(2)

Here f Land f R are the tunneling rates (multiplied
by h) through the left and right barriers, respec­
tively, f = (fL+ f R)/2, P is the level degeneracy, E is
the energy at which the tunneling occurs, and Eo is
the energy of the resonant level. At finite temper­
ature the conductance is given by the convolution
of Gs(E) in equation (2) with the negative derivative
of the Fermi-Dirac distribution function so the
conductance is given by

(3)

where J1 is the chemical potential of the leads.
Since the Lorentzian becomes a () function in the
limit f - 0, Gsfor narrow resonances is proportional
to the derivative of the Fermi-Dirac function
(1 /kT)sech2[ (E-p)/2kT].

In our experiments, the electrochemical potential
difference varies in proportion to the voltage V9 on
the lower gate. In the limit f« kT, equation (2)
reduces to
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where we have used p = exeVg, and ex = U/eAVg is
measured from the T dependence of the peak
widths.12 Meirav et al.13 showed that equation (4) is
in excellent agreement with experimental shapes of
conductance peaks at low Vg. An illustration of this
is shown in the lower left panel of figure 1a. For
higher Vg, the tails of the Lorentzian become
apparent. However, over the entire range of Vg,

equation (3) describes the conductance peaks very
well. (See lower right panel of figure 1a.)

It is clear from this discussion that the tunneling
measurements provide a spectroscopy of the
energy levels of artificial atoms just as
photoelectron spectroscopy provides a spectros­
copy of the levels of natural atoms. In the case of
tunneling the resolution of the spectroscopy is kT.
When kT < f, one can probe the line shape of the
levels. When kT < AE, one can measure the level
spacings. However, when AE < kT < U, one can
only measure the charging energy. The SET
devices made of metals are always in the latter
regime because AE and f are so small, whereas
semiconductor devices may operate in any of the
three regimes.

2.4 Criterion for Single-Electron Effects

It is well known that the condition for observation
single-electron phenomena is that the conductance
of the tunnel barriers must be less than the
quantum of conductance e2th. However, it is not
often made clear what this means on a microscopic
level. It is usually argued that this criterion comes
from the requirement that the charging time through
the tunnel junction RrC be greater than the uncer­
tainty time given by h/U. With U =e2/C this gives
the correct criterion. However, it gives no insight
into the underlying physics. To develop this insight,
we must realize that the fundamental criterion for
single-electron phenomena is that AE > r. This is
obviously the condition under which the energy of
the droplet can be considered discrete. However,
Thouless14 pointed out that it is also the condition
for localization of charge on the droplet. Only when
the charge is localized can there be a Coulomb gap
in the tunneling spectrum. Thus single-electron

11 C.W.J. Beenakker, "Theory of Coulomb-Blockade Oscillations in the Conductance of a Quantum," Phys. Rev. B 44: 1646 (1991).

12 E.B. Foxman, P.L McEuen, U. Meirav, N.S. Wingreen, Y. Meir, P.A. Belk, and S.J. Wind, "Effects of Quantum Levels on Transport
Through a Coulomb Island," Phys. Rev. B 47: 10020 (1993).

~3 U. Melrav, M.A. Kastner, and S.J. Wind, "Single-Electron Charging and Periodic Conductance Resonances in GaAs Nanostructures,"
Phys. Rev. Lett. 63: 1893 (1990).

14 D.J. Thouless, "Maximum Metallic Resistance in Thin Wires," Phys. Rev. Lett. 39: 1167 (1977).
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Figure 3. (a) Conductance versus gate voltage. (b) Full
width at half-maximum of the Lorentzian component in
each peak in (a) found by fitting equation (3). (c)
Coulomb charging energy U determined (triangles) by
fitting each peak with equation (3) using J1 - aeVg and
DC = U/e/1Vg, where /1Vg is the spacing between peaks.
Also shown is U determined (solid circles) by adding up
all capacitances and using U = e2/2C. (d) The reciprocal
of the capacitance between the droplet of electrons and
one of the leads, arbitrarily labeled the right.

(5)

effects can only be seen when ~E > r. Following
Thouless, the current through the droplet is

where t is the time for an electron in a single
quantum state to traverse the droplet, and
(dN/dE)eVds is the number of such current-carrying
channels. Using r = hit and dN/dE = 1/~E, we find
that the condition ~E > r is the same as G < e2/h.

Foxman et al1 2 presented data which demonstrate
that the Coulomb charging energy disappears when
G exceeds e2/h. Their results are shown in figure 3.
Fitting the peaks in the top panel with the form of
equation (3) one extracts U and r for each one. In
addition, using the data of figure 2 and similar data
taken by reversing the source and drain, one can
determine the separate capacitances between the
droplet and each lead, Cr and C/. By varying the
voltages on the top gates, one observes a
sequence of conductance peaks like those in the
top panel of figure 3 from which one determines the
capacitance between the top gates and the droplet,
as well. Adding up all the capacitances, one can
compute e2/2C, where C is the total capacitance,
and this agrees well with U determined from fitting
the peaks with equation (3). One should note that
in all these experiments we actually measure
current not the charge on the droplet, so we are not
actually measuring the capacitances. Instead, we
are measuring the changes with voltage of the
energy of the droplet relative to the leads.

One sees from figure 3 that U goes to zero at a
critical gate voltage Vc. This happens because one
of the tunnel-barrier capacitances (labeled Cr)

diverges as (1-Vg/Vc)-1. As one approaches Vc
from below, r grows exponentially, as demon­
strated in the second panel of figure 3. This is pre­
sumably because the tunnel barrier height is
lowered by the gate voltage, and r is an exponen­
tial function of this height. In the absenc~
magnetic field, one would expect In r .... V(ep - 11)
where ep is the potential energy, but in a strong
magnetic field, In r .... (ep - 11), as observed. 15

Although Foxman et al did not appreciate this at the
time of their experiment, it can all be understood in
a simple way. As the gate voltage is increased,
one of the barriers becomes transparent before the
other because they are not identical and because
their transmission varies exponentially with Vg. The

15 H.A. Fertig and 8.1. Halperin, "Transmission Coefficient of an Electron Through a Saddle-Point Potential in a Magnetic Field," Phys.
Rev. B 36: 7969 (1987).
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where p is the density of levels (Le., 1/L\E) and JJe
is the chemical potential for which there is a charge
degeneracy point for the artificial atom. That is,
pc/cxe is the gate voltage at which the states with N
and N+1 electrons have the same energy, the con-

2.5 Crossover from Single to Multilevel
Transport

At high enough temperatures, which is always the
case for metallic single-electron devices, current is
carried by many adjacent levels because kT> L\E.
In this multilevel regime, the conductance is given
by Kulik and Shekhter: 16

Fermi energy goes to zero. The Coulomb energy
associated with transfer of electrons across this
barrier is ,... e2/A, which goes to zero at the critical
gate voltage at which the localization length
diverges. For the experiment of figure 3, Ve is
about 0.325 V. Extrapolating G to Ve, one sees
that it reaches,... 50 eV at the critical point. This is
just the average spacing between the levels L\E
extracted from the data of figure 2.

Thus, theory and experiment are in excellent agree­
ment. The criterion for charge quantization and
energy quantization are the same: the level
spacing must be larger than the level width. This is
true for metallic structures, like the SET transistor,
as well. The condition G < e2/h guarantees that
L\E > f even though both quantities are smaller than
kT, and therefore cannot be determined.

(7)_£ P- fLfR 2[ Pc - exeVg ]
Gm - h 4 f sech 2.5kT

which has the same functional form as equation (4)
for single level transport. However, the temperature
dependencies are different. The peak height for
the single level conductance is proportional to 1fT
whereas for the multilevel conductance, it is tem­
perature independent. The latter comes about
because each level contributes a conductance that
decreases as 1fT, but the number of levels contrib­
uting increases as T. In addition to this difference
in the T dependence of the peak height, the full
width at half maximum of the peak is 3.5 kT for the
single-level case but is 4.35 kT for the multilevel
case.

dition for a conductance peak. To better than one
percent, equation (6) is equivalent to

These effects have been recently seen in our
experiments. 17 Figure 4 shows the temperature
dependence of a single peak. Figure 4a shows the
inverse of its amplitude as a function of T, which is
proportional to T at low T as predicted by the single
level form (equation 4). Above about 0.5 K the
peak conductance becomes independent of temper­
ature as predicted by the multilevel form (equation
6 or 7). The width of the peak also shows this
crossover. The full width at half maximum is
plotted as a function of T in figure 4b. The
shallower line in the lower panel is the single-level
prediction, 3.5 kT, and the steeper line is the multi­
level prediction, 4.35 kT. This is dramatic evidence
for the crossover from single-to-multilevel behavior
and shows that the crossover occurs in a narrow
range of T. The crossover temperature is expected
to be ,... L\E, which gives L\E,... 40 JJeV. This is con­
sistent with the level spacings measured by
Foxman et al1 8 using source-drain tunneling spec­
troscopy (figure 2). As mentioned above, the SET
devices made of metals are always in the multilevel
regime because the level spacings are so small.

(6)[
JJc - cxeVg ]

csch kT

16 1.0. Kulik and R.1. Shekhter, "Kinetic Phenomena and Charge Discreteness Effects in Granulated Media," Zh. Eksp. Tear. Fiz. 68:
308 (1975), Sov. Phys.-JETP 41: 308 (1975).

17 E.B. Foxman, U. Meirav, P.L. McEuen, M.A. Kastner, O. Klein, P.A. Belk, D.M. Abusch, and S.J. Wind, "Crossover from Single-level
to Multilevel Transport in Artificial Atoms," Phys. Rev. B. 50: 14193 (1994).

18 E.B. Foxman, P.L McEuen, U. Meirav, N.S. Wingreen, Y. Meir, P.A. Belk, and S.J. Wind, "Effects of Quantum Levels on Transport
Through a Coulomb Island," Phys. Rev. B 47: 10020 (1993).
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2.6 Ground State of the Artificial Atom
in Strong Magnetic Fields

At zero magnetic field, the energy levels of our
single-electron transistor appear to be approxi­
mately randomly spaced. This is presumably
because the potential in which the electrons are
confined is of sufficiently low symmetry that the
eigenstates are in the regime of quantum chaos.
Predictions have been made for the spacings of
levels and their couplings r to the leads in this
regime. However, we have not been able to test
these properly so far because the temperature
range in which we can probe one level at a time is
very small. We expect this to become a major
focus of our fundamental physics research on artifi­
cial atoms in the next few years when smaller
atoms are constructed, for these will have larger
level spacings, as discussed below.

At high magnetic fields, the level spacings become
more regular. The strong field dominates the
motion of the electrons, and only the parabolic com­
ponent of the confining potential appears to be
important. McEuen et aP9 have tried to interpret
results in this regime using a constant interaction
model: One assumes a constant Coulomb charging
energy, e2/2C, for adding each new electron to the
atom, and one assumes that once added the elec­
trons do not interact with one another. While this
model can explain some of the qualitative features
of the experiments, it fails when quantitative com­
parisons are made.

The next step in modeling the system is to include
the electron-electron interaction in a self-consistent
but semi-classical (SC) way.20 This SC model is
similar to the Thomas-Fermi approximation and is
the kind of modeling usually used for semiconductor
devices. Until recently, we thought this was com­
pletely satisfactory. However, in the past year we
learned how to test the SC model more stringently,
and we found that it is also inadequate. One needs
to include the exchange interaction between elec­
trons in order to describe the energy spectrum
properly. Next, we give a simple physical model
that describes the effects of exchange and reviews
our recent results.
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Figure 4. (a) Top: Height of one conductance peak as a
function of temperature. The T-l dependence indicates
single-level transport. At higher T the conductance
becomes constant indicative of multilevel transport. The
crossover indicates that the level spacing ~E is - 401leV.
(b) The crossover from single-level to multilevel transport
is also indicated by the change in the proportionality
between the width of the peak and T.

19 P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen, and S.J. Wind, "Transport Spectroscopy of a Coulomb
Island in the Quantum Hall Regime," Phys. Rev. Lett. 66: 1926 (1991).

20 P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen, and S.J. Wind, "Self-Consistent Addition Spectrum
of a Coulomb Island in the Quantum Hall Regime," Phys. Rev. 845: 11419 (1992).
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First, consider the constant interaction model.
From calculations21 as well as infrared studies,22 we
know that the confining potential is approximately
parabolic. For non-interacting electrons in a strong
magnetic field and a parabolic potential the allowed
single particle energies are given by

where We = eB/m* is the cyclotron frequency for
effective mass m*,wo is the harmonic oscillator fre­
quency from the parabolic confinement potential, nl

is the Landau level (LL) index for electron number i,
Is is the magnetic length defined below, ml is the
quantum number for the z-component of the orbital
angular momentum, J.1s is the Bohr magneton, and
Sl is the quantum number for the z-component of
the spin angular momentum. The states for a given
nl and Sl can be thought of as orbits with centers at
radii H given by

each with an area containing one flux quantum
cPo == hc/e. The total energy of N electrons is found
by summing up the single particle energies, given
by equation (8) for the ith electron.

The largest term in the energy is hwe, so the ener­
gies of the higher LLs increase rapidly with
increasing magnetic field. At the same time, Is gets
smaller so the confinement (second) term in
equation (8) decreases for fixed mI' As a result,
electrons fall into successively lower LLs until all
electrons are in the lowest LL (n =1). Once this
happens, ignoring the Zeeman (last) term in
equation (8), the lowest energy sate has all angular
momentum states mj < N/2 doubly occupied and all
others empty if N is even. If N is odd, there is one
unpaired spin in the state with ml= N/2 + 1. The
Zeeman term is not really zero so increasing the
field further causes electrons with their spin antipar­
allel to the field (!) to, one at a time, flip their spins
to become parallel to the field (T). The bare g-value
in GaAs is very small (- 0.44), so the total energy
varies very slowly with B for non-interacting elec­
trons once they all are in the lowest LL.
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It turns out that the Coulomb interaction is much
more important than the bare g-value in causing the
spins to flip. As mentioned above, a peak in the
conductance occurs when the electrochemical
potential of the electron droplet J1 + OI.eVg equals
that of the leads. Thus, a measurement of the
value of Vg at which the Nth peak occurs is equiv­
alent to measuring the chemical potential of the
droplet with N electrons. When the magnetic field
is increased, J.1 varies and displays a jump at fields
for which there is a change in the electronic state of
the droplet. Recall that the definition of J1 is that it
is the derivative of the free energy with respect to
particle number. Thus a jump in J1 indicates a
change in slope of E vs. N for the ground state
(GS), that is, a change in the GS.

Our experimenF3 measures very precisely the mag­
netic field Bn at which the nth jump in J1 occurs,
because at Bn there is a sharp minimum in the peak
height. Figure 5 shows the peak position for one
peak as a function of B; a few of the peaks as a
function of gate voltage are plotted in the inset.
The change in behavior near 1.6 T signals the
depopulation of all but the lowest orbital LL. We
focus on the field regime above this, for which only
the lowest orbital LL is occupied. For this region
the values of B at which minima occur in the peak
height are indicated by arrows. These are the
fields at which electrons flip their spins from! to T.

Figure 5. Peak position (multiplied by oce to convert to
energy) as a function of magnetic field. Inset lower right
shows peaks in conductance as a function of Vg.

(9)

21 A. Kumar, "Self-Consistent Calculations on Confined Electrons in Three-Dimensional Geometries," Surf. Sci. 263: 335 (1992).

22 U. Merkt, "Far-Infrared Spectroscopy of Quantum Dots," Physica B 189: 165 (1993).

23 O. Klein, C. de C. Chamon, D. Tang, D.M. Abusch-Magder, S.-G. Wen, M.A. Kastner, and S.J. Wind, "Exchange Effects in an
Artificial Atom at High Magnetic Fields," Phys. Rev. Lett., forthcoming.
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Figure 6. (a) Experimental measurement of Xn. (b)
Hartree-Fock calculation of Xn. (c) Semiclassical (circles)
and constant interaction (dashed line) calculations of Xn.
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predicts the divergence at Be quantitatively. Fitting
the data and the HF calculation to a power law
gives the same exponent and the same prefactor,
within the errors. This is dramatic evidence that
exchange is important in determining the GS of the
electron droplet.

To understand why exchange has this effect con­
sider the states that are occupied when there are
NT up spins and Nl down spins. The effect of
exchange is to reduce the Coulomb repulsion
between electrons with parallel spins at small sepa­
rations. This allows the confinement potential to
force the electrons closer together than they would
be with the Hartree (long range Coulomb) inter­
action alone. The result is that all states with
mj < NT are occupied for spin up and all states with
mj < Nl are occupied for spin down. This gives a
very different charge distribution p(r) than the SC
model. The SC charge density p(r) is dome-like
except near those values of r where the charge
density is close to integer filling fractions v = 4>op/B.
In these regions, p is constant for a range of r
because of the incompressibility of the quantum
Hall liquid. Sketches of the charge densities for the
SC and HF calculations are shown in figure 7.

By summing the single particle energies, one finds
that the total confinement energy associated with
the HF density is

Figure 7. Semiclassical (solid line) and Hartree-Fock
(dashed line) calculations of the charge density as a
function of radius in the droplet. The density corre­
sponding to one flux quantum per electron is shown by a
dotted line separating spin down and spin up electrons.
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By taking differences between the Bn, we measure
the increase in field necessary to flip one more
spin. Therefore, the inverse of the field difference
Xn = (Bn + 1- Bn)-1 can be thought of as the spin sus­
ceptibility of the droplet. Figure 6a shows the
results of our measurement of this quantity, plotted
versus Bn• Figure 6c shows the prediction of the
constant interaction model (dashed line) and the SC
model.24 The SC calculation is much superior. The
constant interaction model predicts values at least
ten times too small and values that increase rather
than decrease with B. The SC model predicts
values of the correct magnitude which decrease
with B, as observed. However, the SC model fails
to predict the apparent divergence of Xn at the field
Be. The SC model includes the electron-electron
interaction as well as the Landau quantization, but it
ignores exchange.

As seen in figure 6b, Hartree-Fock (HF), which
includes exchange, provides a much better
description of the data than does the SC model. It

24 P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen, and S.J. Wind, "Self-Consistent Addition Spectrum
of a Coulomb Island in the Quantum Hall Regime," Phys. Rev. B 45: 11419 (1992).
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where S is the total spin of the droplet S =
(Nt - N!)/2. To understand the physics, we treat S
as a continuous variable even though it is actually
discrete.

The confinement obviously favors the singlet state
since Ee is a minimum for S = O. However, the
Coulomb interaction energy among the electrons is
largest for the singlet because it has the largest
density. We can not write a simple expression for
the total Coulomb energy Eo as we can for Ee.
However, we know that it is a maximum for S = 0,
because the singlet state keeps the electrons as
close together as they can be. We also know that
an expansion of the Coulomb energy as a
polynomial in S will have only even powers
because the Coulomb energy must be symmetric if
we exchange up for down spins. Thus, the
Coulomb energy for small S can be written

with the constant c2< O. The prefactor e2/Els is the
obvious scale for Coulomb interactions in a mag­
netic field because IB is the distance between suc­
cessive orbits. Ignoring the Zeeman energy
because g is so small, we see that spins flip
because, with increasing B at fixed S, Eedecreases
as B-1 and Eo increases as B1/2 making the confine­
ment less important than the Coulomb repulsion.
In fact, were it not for the fourth order term in
equation (11), all spins would flip at a single field
Be. By considering the balance of Ec and Eo, one
predicts that below the field Be the sinQlet state ,is
stable, but above Be, the droplet acquires a Spin
which increases as (B-Be)1/2 or, equivalently,
Xn -- (B-Be)- 1/2. The exponent we find from the fit of
a power law to the data in figure 6a or the HF cal­
culation in figure 6b is 0.4 ± 0.1, within error of the
prediction 0.5.

After the droplet is fully polarized at Bil more transi­
tions are observed. These are predicted quali­
tatively but not quantitatively by Hartree-Fock and
probably therefore involve correlations.
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2.7 Development of Process for Si
Single-Electron Transistors

In the past six months, David Abusch-Magder, a
graduate student in Physics, has made great
progress in developing the fabrication process for
single-electron transistors in Si. He has designed a
class of devices using a double-gated MOSFET,
which he will study to further illuminate both the
physical and technological aspects of single elec­
tronics. The lower gate, set at a voltage below
threshold, keeps most of the p-type surface insu­
lating while the top gate inverts a small open
region. The steps in this design were as follows:

Performed a literature search. There have been
a very limited number of single electron tr~nsistors

fabricated in silicon MOS systems. There IS clearly
a lack of knowledge about well controlled single­
electron devices in material systems other than
metals and GaAs.

Performed initial simulations to get an idea of
the sort of device behavior expected. We have
done initial simulations and have found software
that will allow us to do more detailed work as the
need arises. We have, however, decided that
detailed simulations are less important than actually
fabricating devices, and then using simulations as a
tool to understand our measurements.

Designed a silicon process that is simple t,o
carry out and is robust. We have done this
making maximum use of existing technology and
experience. Because of our device requirements
we have chosen to make the device with a Cr lower
metal gate. Since this is non-standard processing it
has required additional process development.

Designed masks. We have attempted to design
our masks to allow for a variety of physical mea­
surements that might be interesting. We have also
designed the masks so that a wide variety of lower
gate metal patterns can be accommodated. This
then allows the exploration of a large device space
within the existing mask set and silicon process.
We have also designed an optical mask level to
pattern the lower metal gate which will allow us to
build test devices to assess the impact of the
process on the device para~eters. Additionally, we
have included redundancy In the mask to give a
certain amount of fault tolerance.

Designed and wrote Scanning Electron Beam
Lithography (SEBl) patterns on dummy
substrates. Since the nanolithography on this
project is very aggressive, it requires significant
development work to obtain high quality patterns.
We have written hundreds of different patterns at
ten different exposure doses to obtain patterns that
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will display interesting SET behavior. We have
been forced to explore not only exposure and
pattern variation, but also surface treatment of
wafers, column charging effects, acceleration
voltage, resist thickness, liftoff procedure and fila­
ment life cycle. Because of this work, we have suc­
cessfully patterned lower gates with dimensions of
50 nm-100 nm. This is our most unique accom­
plishment so far.

Performed initial feasibility studies of our
process. Before processing wafers we tested
some key steps that are unique to our process to
ensure that a process would be possible. Specif­
ically, we investigated the deposition, patterning,
and subsequent processing of our lower gate metal.
We performed initial tests to liftoff
nanolithographically patterned layers of Cr and
trilayers of Cr-W-Cr. We also made sure that low
Temperature Chemical Vapor Deposition (lTCVD)
of the oxide between the two gates and the subse­
quent rapid thermal annealing of these layers did
not destroy the conductivity of the lower gate.

Designed and implemented an alignment
scheme. We require a set of marks that allow both
the optical lithography tool as well as the SEBl tool
to align the wafer. These respective alignment
schemes must be coordinated so all levels of the
process are aligned with respect to each other.
This had to be done taking subsequent processing
into account to ensure that alignment marks do not
get "buried".

Developed detailed process. This included speci­
fying the process exactly, deciding exactly which
machines will be used, and what recipes to follow
for every detailed process step. This information
then had to be entered into the clean room comput­
erized environment. Several dry runs were neces­
sary to work out minor bugs in the process. This
has required significant work by Abusch-Magder in
the clean room, both processing wafers and super­
vising the work of others, to make final decisions
about contact hole etching, premetalization
cleaning, and top gate metalization.

The following steps are in progress:
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Assess process impact on device parameters.
We are attempting to determine how different proc­
esses impact the device parameters. To that end,
we have a lot of wafers all with different combina­
tions of doping density, gate oxide thickness, rapid
thermal anneal temperature cycle, contact hole etch
recipe, and gate metalization. These wafers will
then be tested to see how the device parameters
vary. Among the device parameters we are exam­
ining are oxide charge, high temperature mobility,
low temperature mobility, breakdown voltages of the
insulating barriers that form on the contacts during
processing, and inversion voltage thresholds.

Process wafers with single-electron devices.
There are currently eight wafers with SEBl pat­
terned lower metal gates that will be processed to
completion in the next one to two months.

Bring device wafers to completion. This includes
dicing and bonding devices. Future processing
work includes: Fabricating another round of
devices with different lower metal gate patterns to
answer unresolved physical questions.

Finish process development for SEBl patterned
wafers at 50 kV. Our SEBl has so far been done
at 25 kV because the parameters at this voltage are
known. On the other hand 50 kV gives a smaller
spot size so smaller dimensions are possible. We
have done initial work at 50 V, but have not final­
ized a process.
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