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Abstract. A branch and bound algorithm for global optimization is proposed,
where the maximum of an upper bounding function based on Lipschitz condition
and the first norm over a simplex is used as the upper bound of function. In this
case the graph of bounding function is intersection of n-dimensional pyramids and its
maximum point is found solving a system of linear equations. The efficiency of the
proposed global optimization algorithm is evaluated experimentally.
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1 Introduction

Our aim is to find at least one globally optimal solution to the problem

f∗ = max
x∈D

f (x) , (1.1)

where an objective function f(x), f : R
n → R, is a real-valued Lipschitz func-

tion, D ⊆ R
n is a feasible region, n is the number of variables. A function

f : D → R, D ⊆ R
n, is said to be Lipschitz if it satisfies the condition

|f (x) − f (y)| ≤ L ‖x − y‖ , ∀x, y ∈ D, (1.2)

where L > 0 is a constant called Lipschitz constant, D is a compact set and ‖·‖
denotes the norm. The Euclidean norm is used most often, but other norms
could also be considered. In [15] we showed that for Lipschitz function f(x)

|f(x) − f(y)| ≤ Lp‖x − y‖q,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/442138361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3846/1392-6292.2008.13.553-563
mailto:r.paulavicius@vpu.lt; julius.zilinskas@ktl.mii.lt


554 R. Paulavičius and J. Žilinskas

where Lp = sup{‖▽f(x)‖p : x ∈ D} is Lipschitz constant, the gradient of the
function f(x) is denoted by ▽f(x) = ( ∂f

∂x1

, . . . , ∂f
∂xn

), and 1/p + 1/q = 1, 1 ≤
p, q ≤ ∞.

The most often studied case of problem (1.1) is the univariate one (n = 1),
for which many algorithms have been proposed, compared and theoretically
investigated. In the presented paper, we are interested in the multivariate case
(n ≥ 2).

In Lipschitz optimization the upper bound of the optimal value f∗ is evalu-
ated exploiting Lipschitz condition. It follows from (1.2) that, for all x, y ∈ D

f (x) ≤ f (y) + L ‖x − y‖ .

If y ∈ D is fixed, then the concave function F (x) = f (y)+L ‖x − y‖ estimates
f (x) on D.

Almost all methods for solving the multivariate problem fall into two main
classes. The first class contains the direct extensions of Piyavskii’s method
[19] to the multivariate case and various modifications with different norms or
approximations [7, 11, 12, 13, 14, 21]. Note that when the Euclidean norm is
used in the multivariate case, the upper bounding functions are envelopes of
circular cones with parallel symmetry axes. A problem of finding maximum
of such a bounding function becomes a difficult global optimization problem
involving systems of quadratic and linear equations. Most of these algorithms
can be improved by interpreting them as branch and bound methods [5, 7, 8].

The second class contains many simplicial and rectangular branch and
bound techniques [4, 6, 17, 18, 20]. They differ in the ways how branching
is performed and bounds are computed. Simplicial partitions are preferable
when the values of an objective function at the vertices of partitions are used
to compute bounds [22, 27]. Another advantage of simplicial partitions is that
they may be used to vertex triangulate feasible regions of non rectangular
shape defined by linear inequality constraints [27], what allows reduction of
search space of problems with symmetric objective functions [26].

In general, bounds belong to the following two simple families µ1 (P ) and
µ2 (P ). Let

δ (P ) = max {‖x − y‖ : x, y ∈ P}

denotes the diameter of P . For example, if P = {x ∈ R
n : a ≤ x ≤ b} is n-

rectangle, then δ (P ) = ‖b − a‖ and if P is an n-simplex then diameter δ (P ) is
the length of its longest edge. Then simpler upper bound can be derived:

µ1 (P ) = min
y∈T

f (y) + Lδ (P ) , (1.3)

here T ⊂ P is finite sample of points in P where the function values of f have
been evaluated. When P is a rectangle or a simplex the set T often coincides
with the vertex set V (P ). The more tight but computationally more expensive
than (1.3) is the estimate

µ2 (P ) = min
y∈T

{

f (y) + L max
z∈V (P )

‖y − z‖
}

. (1.4)
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Performance of optimization algorithms depends on tightness of bounds [23].
For D ⊆ P , the sharpest upper bound given the knowledge of the function
values f (y) , y ∈ T , and of the Lipschitz constant L, is provided by

max
x∈D

min
y∈T

{f (y) + L ‖x − y‖}. (1.5)

Although it may by more natural to formulate this problem as min-max prob-
lem, we keep formulation used in [5, 13, 14]. Anyway (1.5) is a difficult opti-
mization problem when the space has dimension n ≥ 2.

The Euclidean norm is used most often, but other norms could be also
considered. In [15, 16] we investigated how different norms and corresponding
Lipschitz constants influence speed of algorithms for global optimization when
(1.4) is used on vertices of simplex:

UB (I) = min
v∈V (I)

{

f (v) + L max
x∈I

‖x − v‖
}

, (1.6)

where v is a vertex of the simplex I and values of the function at all vertices of
this simplex V (I) are used. Experiments have shown that better results may
be achieved when non Euclidean norms are used. Therefore for better upper
bound we proposed the combination of two extreme (infinite and first) and the
Euclidean norms:

UB1,2,∞(I)= min
v∈V (I)

(f(v)

+ min{L1 max
x∈I

‖x−v‖∞, L2 max
x∈I

‖x−v‖2, L∞ max
x∈I

‖x−v‖1}). (1.7)

where the first norm is defined as ‖x‖1 =
∑n

i=1 |xi|.

In this paper we investigate improved bounds with the first norm. For
finding upper bound we exploit (1.5) formula:

F (I) = max
x∈I

(

min
v∈V (I)

{f (v) + L∞ ‖x − v‖1}
)

. (1.8)

In this case the graph of F is the intersection of n-dimensional pyramids and the
maximum point is found solving system of linear equations. Branch and bound
algorithm with simplicial partitions and face to face vertex triangulation [27]
is used to find the global maximum.

2 Improved Upper Bound

Let us formulate two propositions, which are used for solving global optimiza-
tion problem (1.1) with (1.8) for evaluation of improved upper bound.

Proposition 1. If two n-pyramids Fv1
(x) = f (v1)+L∞ ‖x − v1‖1 and Fv2

(x) =
f (v2) + L∞ ‖x − v2‖1 are defined and f (v1) ≥ f (v2) then the intersection of
pyramids is contained in manifold of dimensionality n − 1 defined by

n
∑

i=1

d (v1i, v2i) −
f (v2) − f (v1)

L∞

= 0, (2.1)
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where

d (v1i, v2i) =







2xi − v1i − v2i,
−2xi + v1i + v2i,

0,

when v1i < v2i,
when v1i > v2i,
when v1i = v2i

and all points x in the intersection are closer to the vertex v1 than to v2, i.e.

||x − v1||1 ≤ ||x − v2||1. (2.2)

Proof. From equality Fv1
(x) = Fv2

(x) we get

n
∑

i=1

(|xi − v1i| − |xi − v2i|) =
f (v2) − f (v1)

L∞

. (2.3)

For each of difference |xi − v1i
| − |xi − v2i

| , i = 1, . . . , n one case from the
following three possibilities is true:







2xi − v1i − v2i,
−2xi + v1i + v2i,

0,

when v1i < v2i,
when v1i > v2i,
when v1i = v2i.

Therefore from (2.3) we get (2.1).
Because f(v1) > f(v2), from equality Fv1

(x) = Fv2
(x) we get

||x − v1||1 − ||x − v2||1 =
f (v2) − f (v1)

L∞

≤ 0,

therefore (2.2) is true:
||x − v1||1 ≤ ||x − v2||1.

Proposition 1. The maximum point of F can be found solving a system of n
linear equations.

Proof. Let us define numeration of vertices vi so that f(v1) ≥ f(v2) ≥ . . . ≥
f(vn+1). Intersection of pyramids Fv1

(x) = f (v1)+L∞ ‖x − v1‖1 and Fvi
(x) =

f (vi)+L∞ ‖x − vi‖1, i = 2, . . . , n+1, is (n− 1)-manifold defined by (2.1) (see
Proposition 1). Taking into account (2.2), it is possible to consider only part
of the manifold, which is defined by linear equation and constraints. There-
fore it is possible to form a system of n linear equations defining intersections
Fv1

(x) = Fvi
(x). If the solution of this system satisfies the constraints (see

Example 1) then the upper bounding function is maximal at the solution point.
If the solution of this system does not satisfy the constraints, then the maxi-
mum of the upper bounding function is the minimum of the function value at
the intersections (see Example 2).

3 Algorithm

Branch and bound is a technique for implementation of covering global opti-
mization methods [27] as well as combinatorial optimization algorithms. An
iteration of a classical branch and bound algorithm processes a node in the
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search tree representing a not yet explored subspace of the solution space. The
iteration has three main components: selection of the node to process, branch-
ing of the search tree and bound calculation. Bound may be estimated using
interval arithmetic [24, 25, 28, 29] as well as Lipschitz condition. Subspaces
which cannot contain a global minimum are discarded from further search prun-
ing the branches of the search tree. Although covering, selection, branching and
bounding rules differ in different branch and bound algorithms, the structure
of the algorithm remains the same, what enables implementation of branch and
bound algorithms using prepared templates [1, 2, 3].

In the proposed algorithm simplicial partitions, face to face vertex triangu-
lation for initial covering, subdivision through the middle of the longest edge
of simplex, the breadth first selection strategy and improved bounds (1.8) with
first norm are used. The proposed algorithm is shown in Algorithm 1.

Algorithm 1 Branch and bound algorithm with simplicial partitions.
1: An n-dimensional hyper-rectangle D is face-to-face vertex triangulated into

set of n-dimensional simplices I = {Ik|D ⊆ ∪Ik, k = 1, . . . , n! }.
2: LB(D) = −∞.
3: while (I is not empty: I 6= Ø) do

4: Choose and exclude Ik ∈ I from the set of non-solved simplices I.
5: LB(D) = max{LB(D), maxv∈V (Ik) f(v)}
6: UB(Ik) = maxx∈Ik

(minv∈V (Ik){f(v) + L∞‖x − v‖1})
7: if (UB(Ik) − LB(D) > ε) then

8: Branch Ik into 2 simplices: Ik1
, Ik2

.
9: I = {I, Ik1

, Ik2
}

10: end if

11: end while

4 Numerical Example

Example 1. Suppose that the test objective function is f (x1, x2) = sin (2x1 + 1)+
2 sin (3x2 + 2) and feasible region [0, 1] × [0, 1] is covered by two right-angled
equilateral simplices I1 (v1, v2, v3) and I2 (v1, v3, v4) (see Fig. 1a).

Let us consider the first simplex I1 (v1, v2, v3). Because f (v1) = f (0, 0) =
2. 660 1 > f (v2) = f (1, 0) = 1. 959 7 > f (v3) = f (1, 1) = −1. 776 7, the
intersection point is closer to vertex v1 and it is enough to find intersection of
pyramids Fv1

= Fv2
and Fv1

= Fv3
.

Intersection of pyramids Fv1
= Fv2

gives the following equation

|x1 − 0| − |x1 − 1| + |x2 − 0| − |x2 − 0| =
f (1, 0)− f (0, 0)

6
.

However as 0 ≤ x1 ≤ 1, this equation can be simplified and solved:

x1 + x1 − 1 =
f (1, 0)− f (0, 0)

6
⇒ x1 = 0.44164. (4.1)

Math. Model. Anal., 13(4):553–563, 2008.
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a) b)

Figure 1. a) Projection of intersection lines; b) Visualization of upper bounding functions.

Analogously intersection of pyramids Fv1
= Fv3

may be found:

|x1 − 0| − |x1 − 1| + |x2 − 0| − |x2 − 1| =
f (1, 1) − f (0, 0)

6
,

or (taking into account that
f (1, 1) − f (0, 0)

12
= 0.63027)











x1 + x2 = 0.63027,

x2 = 0.63027,

x1 = 0.63027,

when 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,
when x1 ≤ 0,
when x2 ≤ 0.

(4.2)

From (4.1), (4.2) and (2.2) it follows that


















x1 = 0.44164

x1 + x2 = 0.63027

0 ≤ x1 ≤ 0.5

0 ≤ x2 ≤ 1.0

⇒ intersection point p1 = (0.44164, 0.18863)

and improved upper bound is given by F (I1) = Fvi
(p1) (see, Fig. 1):

Fvi
(p1) = Fv1

(p1) = f (v1) + L∞ ‖p1 − v1‖1

= f (0, 0) + 6 (|0.44164− 0| + |0.18863− 0|) = 6.4417. (4.3)

Let us verify, that this upper bound is better, than (1.6):

UBv1
(x) = f (0, 0) + 6 max

x∈I
‖x − v1‖1 = f (0, 0) + 6 · 2 = 14.66,

UBv2
(x) = f (1, 0) + 6 max

x∈I
‖x − v2‖1 = f (1, 0) + 6 · 1 = 7.9597,

UBv3
(x) = f (1, 1) + 6 max

x∈I
‖x − v3‖1 = f (1, 1) + 6 · 2 = 10.223,

UB (I1) = min {UBv1
, UBv2

, UBv3
} = UBv2

= 7.9597. (4.4)

From (4.3) and (4.4) it follows that F (I1) < UB (I1).
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Example 2. Subdivision of simplices I1 and I2 produces four simplices I3, . . . , I6,
see Fig. 2. Let us consider the simplex I3 (v1, v2, v5). Because f (v1) = 2.
660 1 > f (v2) = 1. 959 7 > f (v5) = 0.207 73, the intersection point is closer
to vertex v1 and it is enough to find intersection of pyramids Fv1

= Fv2
and

Fv1
= Fv5

. Intersection of pyramids Fv1
= Fv2

is found in Example 1:

x1 = 0.44164. (4.5)

Intersection of pyramids Fv1
= Fv5

gives the equation:

|x1 − 0| − |x1 − 0.5| + |x2 − 0| − |x2 − 0.5| =
f (0.5, 0.5)− f (0, 0)

6
,

or (taking into account that (f (0.5, 0.5)− f (0, 0) /12 + 0.5 = 0.29564)










x1 + x2 = 0.29564,

x2 = 0.29564,

x1 = 0.29564,

when 0 ≤ x1 ≤ 1
2 , 0 ≤ x2 ≤ 1

2 ,
when x1 ≤ 0,
when x2 ≤ 0.

(4.6)

a) b)

Figure 2. a) Projection of intersection lines; b) Visualization of upper bounding functions.

From (4.5), (4.6) and (2.2) we get a system



















x1 = 0.44164

x1 + x2 = 0.29564

0 ≤ x1 ≤ 0.5

0 ≤ x2 ≤ 0.5

which defines an empty set of solutions (see Fig. 2). Therefore improved upper
bound is achieved in intersection line belonging to the upper bounding function
(see Fig. 2), i.e.

F (I3) = Fv1
(p1) ,

Math. Model. Anal., 13(4):553–563, 2008.
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where p1 is any point belonging to the line x1 +x2 = 0.29564 and 0 ≤ x1 ≤ 0.5,
0 ≤ x2 ≤ 0.5. Let p1 = (0.29564, 0) ∈ x1 + x2 = 0.29564 and

Fv1
(p1) = f (v1) + L∞ ‖p1 − v1‖1

= f (0, 0) + 6 (|0.29564− 0| + |0 − 0|) = 4.4339. (4.7)

Let us verify that this upper bound is better than (2.1):

UBv1
(x) = f (0, 0) + 6 max

x∈I
‖x − v1‖1 = f (0, 0) + 6 · 1 = 8.66,

UBv2
(x) = f (1, 0) + 6 max

x∈I
‖x − v2‖1 = f (1, 0) + 6 · 1 = 7.9597,

UBv5
(x) = f (0.5, 0.5) + 6 max

x∈I
‖x − v5‖1 = f (0.5, 0.5) + 6 · 1 = 6.20773,

UB (I3) = min {UBv1
, UBv2

, UBv5
} = UBv2

= 6.20773. (4.8)

From (4.7) and (4.8) it follows that

F (I3) < UB (I3) .

5 Results of Experiments

Various test functions for global optimization from [5, 9, 10] have been used
in our experiments. Lipschitz constants have been estimated using Theorem 1
from [15]. Test functions with (n = 2 and n = 3) are numbered according
to [5, 10]. For (n ≥ 4) functions names from [9] are used. The speed of global
optimization is measured using the number of function evaluations criterion.
The results are presented in Table 1.

The improved upper bound F calculated by (1.8) gives better results for
Lipschitz optimization than UB calculated by (1.6). When n = 2, the num-
ber of function evaluations on average is 11% smaller when improved upper
bound F is used than when UB is used. When n = 3, the number of function
evaluations on average is 15% smaller. When n ≥ 4, it is on average 17%
smaller.

Results of combination of bounds with different norms [15, 16] are also
given in Table 1. Combination of bounds gives better results when the first
norm is not preferable. However for some functions improved bound with first
norm produces even better results than the combination. The results suggest
to include improved bound with first norm into combination instead of simpler
bound with first norm. It is also promising to develop improved bounds for
other norms.

6 Conclusions

In this paper an improved Lipschitz bound with first norm has been proposed
and applied in multidimensional Lipschitz global optimization. Test functions
of different dimensionality (n = 2, 3, 4, 5, 6) have been used for experimental
investigation of branch and bound algorithm.
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Table 1. Numbers of function evaluations.

Test function Dimension (n) Precision (ε) F (1.8) UB(1.6) UB (1.7)

1. [5] 2 0.355 1085 1174 556
2. [5] 2 0.0446 181 242 158
3. [5] 2 11.9 5259 5673 4168
4. [5] 2 0.0141 30 36 9
5. [5] 2 0.1 59 62 62
6. [5] 2 44.9 1552 1620 1038
7. [5] 2 542.0 15180 17946 10683
8. [5] 2 3.66 287 314 314
9. [5] 2 62900 33871 37184 20672
10. [5] 2 0.691 1209 1321 1285
11. [5] 2 0.335 3290 3557 3085
12. [5] 2 0.804 13555 14929 14929
13. [5] 2 6.92 21672 23727 11724

20. [5] 3 10.6 21186 23626 23626
21. [5] 3 0.369 11190 13677 1142
23. [5] 3 41.65 153461 170081 9009
24. [5] 3 3.36 17750 20355 14015
25. [5] 3 0.0506 9652 11365 5117
26. [5] 3 4.51 6019 6847 6571
Rosenbrock [10] 3 5000.0 29960 33517 25378

Rosenbrock [10] 4 2 · L2 3053 4172 2235
Shekel 5 [9] 4 2 · L2 11798 13485 13485
Shekel 7 [9] 4 2 · L2 11917 13485 13485
Shekel 10 [9] 4 2 · L2 11942 13485 13485
Levy No. 9 [9] 4 2 · L2 12829 16778 14087
Levy No. 15 [9] 4 2 · L2 1760604 > 2000000 86396
Schwefel 1.2 [9] 4 2 · L2 28223 34828 16774
Powell [9] 4 2 · L2 2647 3686 1129

Rosenbrock [10] 5 2 · L2 124440 146346 141446
Levy No. 10 [9] 5 2 · L2 211602 300492 262623
Levy No. 16 [9] 5 2 · L2 > 1000000 > 1000000 39651
Schwefel 3.7 [9] 5 2 · L2 33 33 33

Rosenbrock [10] 6 4 · L2 > 500000 > 500000 41327
Levy No. 10 [9] 6 4 · L2 56870 62946 62892

The improved upper bound gives better results for Lipschitz optimization
than one usually used. Depending on dimensionality of problems, the number
of function evaluations is from 4% to 30% smaller than with simpler bound.
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