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Abstract. This paper investigates fractional order Barbalat’s lemma and its appli-
cations for the stability of fractional order nonlinear systems with Caputo fractional
derivative at first. Then, based on the relationship between Caputo fractional deriva-
tive and Riemann-Liouville fractional derivative, fractional order Barbalat’s lemma
with Riemann-Liouville derivative is derived. Furthermore, according to these results,
a set of new formulations of Lyapunov-like lemmas for fractional order nonlinear sys-
tems are established. Finally, an example is presented to verify the theoretical results
in this paper.
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1 Introduction

Asymptotic stability analysis of non-autonomous systems is generally much
harder than that of autonomous systems, since it is usually very difficult to
build a Lyapunov function with a negative definite derivative. The well-known
Barbalat’s Lemma is a purely mathematical result concerning the asymptotic
properties of functions and their derivatives, which has been a powerful tool
to asymptotic analysis of the dynamic systems especially time-varying nonlin-
ear systems [22]. Many publications generalized the integer order Barbalat’s
Lemma. By the generalised Barbalat’s lemma, the uncertain complex dynami-
cal network is proved to be locally or globally asymptotically synchronised [9].
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Based on a set of new versions of Barbalat’s lemma, Lyapunov-like lemma are
established in [7]. Wu considered the extensions of Barbalat’s lemma to the
stochastic case to analyze stochastic stability [25]. More results about stability
analysis for systems via Barbalat’s Lemma can be seen in [1, 12, 15] and their
references. Fractional order systems have attracted many attentions due to
their advantages in some fields such as electrochemistry [11], diffusion [20],
viscoelastic materials [21], control [2, 19], biological systems [10, 17, 18] and so
on. Stability has been widely investigated as an important performance index of
control systems. Lots of results can be found about stability for the fractional
order systems [8, 14, 16]. There are also some papers which dealt with the
stability problem of fractional system via the integer order Barbalat’s lemma.
Li and Chen developed a novel adaptive fractional-order feedback controller
to synchronize almost all familiar fractional-order chaotic systems [13]. In
[27], adaptive sliding mode approach was applied to synchronize two different
fractional-order chaotic systems, which the integer order Barbalat’s Lemma
was also used. Noting that the Barbalat’s Lemma adopted in [13] and [27]
is described by integer derivative and integral. More recently, based on some
conditions upon its fractional integral, Barbalat-like lemmas for fractional order
integrals have been used to conclude the convergence of a function to zero in [6].
There were also some results about boundedness and convergence on fractional
order systems have been published in [5].

Inspired by the above-mentioned discussions, it’s natural for us to ask a
question: can the classical integer order Barbalat’s lemma be generalized to
the fractional order? [6] only partially answer this question. In which, the
convergence of a function just related to its fractional integral, and the function
has been studied in which must be bounded. In this paper, the relationship
between uniform continuity of a function and the boundedness of its fractional
derivative will be built, then a fractional order Barbalat’s Lemma described by
fractional derivative will be proposed. Both Caputo operator and Riemann-
Liouville operator will be discussed. According to above results, a set of new
formulations of Lyapunov-like stability lemmas for fractional order nonlinear
systems are established.

2 Preliminaries

In this section, some basic notions and properties for fractional calculus
and fractional differential equations are recalled. For further details, one can
refer to [2].

Definition 1. The fractional integral of order α for a function x(t) is defined
as

D−αt0,tx(t) =
1

Γ (α)

∫ t

t0

(t− τ)α−1x(τ)dτ,

where Γ (·) is the Gamma function, t > t0 and α > 0.

There are different definitions for fractional-order derivatives. Among which
Caputo derivative and Riemann-Liouville derivative are the most frequently
concerned in research. The formula of them are defined as follow:
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Definition 2. The Caputo fractional derivative of function x(t) is defined as

CDα
t0,tx(t) =

1

Γ (m− α)

∫ t

t0

(t− τ)m−α−1x(m)(τ)dτ,

where m− 1 < α < m, m ∈ Z+.

Definition 3. The Riemann-Liouville derivative of fractional order α of func-
tion x(t) is defined as

RLDα
t0,tx(t) =

dm

dtm
[D
−(m−α)
t0,t x(t)] =

1

Γ (m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1x(τ)dτ,

in which m− 1 < α < m, m ∈ Z+.

In the following, it is always assumed that 0 < α < 1, then

RLDα
t0,tx(t) =

d

dt
[D
−(1−α)
t0,t x(t)] =

1

Γ (1− α)

d

dt

∫ t

t0

(t− τ)1−α−1x(τ)dτ,

CDα
t0,tx(t) =

1

Γ (1− α)

∫ t

t0

(t− τ)−αx′(τ)dτ.

The relationship between these two definitions is given by:

CDα
t0,tx(t) =RL Dα

t0,tx(t)− x(t0)(t− t0)−α

Γ (1− α)
. (2.1)

Definition 4. A continuous function ω: [0,+∞)→ [0,+∞) is said to belong
to class-K if it is strictly increasing and ω(0) = 0, or simply call it a K-class
function.

3 Main Results

In this section, a fractional order Barbalat’s Lemma will be introduced at
first, then, some Fractional order Lyapunov-like Lemmas will be derived for
fractional order nonlinear systems.

3.1 Fractional Barbalat’s lemma with Caputo operator

Caputo fractional operator plays an important role in the fractional systems,
since the initial conditions for fractional differential equations with Caputo
derivatives take on the same form as for integer-order differential equations,
which have well understood physical meanings. The following Barbalat’s lemma
is based on Caputo fractional operator.

Theorem 1. If
∫ t
t0
w(s)ds has a finite limit as t → +∞, and if CDαw(t) is

bounded, where ω: [0,+∞)→ R, then w(t)→ 0 as t→ +∞, where 0 < α < 1.

Math. Model. Anal., 22(4):503–513, 2017.
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Proof. For proving this theorem, we will prove that w(t) is uniformly con-
tinuous at first. Then, the above Fractional Barbalat’s lemma will be proved
through reductio ad absurdum.

Step 1. For 0 6 T1 < T2, note that

|w(T1)− w(T2)| = 1

Γ (α)

∣∣∣ ∫ T1

0

(T1 − s)α−1(CDαw(s))ds

−
∫ T2

0

(T2 − s)α−1(CDαw(s))ds
∣∣∣ =

1

Γ (α)

∣∣∣ ∫ T1

0

[(T1 − s)α−1

− (T2 − s)α−1](CDαw(s))ds−
∫ T2

T1

(T2 − s)α−1(CDαw(s))ds
∣∣∣

6
1

Γ (α)
[|
∫ T1

0

[(T1 − s)α−1 − (T2 − s)α−1](CDαw(s))ds|

+ |
∫ T2

T1

(T2 − s)α−1(CDαw(s))ds|]

6
M

Γ (α)
[

∫ T1

0

[(T1 − s)α−1 − (T2 − s)α−1]ds+

∫ T2

T1

(T2 − s)α−1ds]

6
M

Γ (α+ 1)
[Tα1 − Tα2 + 2(T2 − T1)α] 6 2

M

Γ (α+ 1)
(T2 − T1)α < ε,

where |T2 − T1| < δ(ε) = ( εΓ (α+1)
2M )1/α. Note that δ is not depend on T1

or T2. According to the definition of uniformly continuous, w(t) is uniformly
continuous.

Step 2. Assume that w(t) does not approach zero as t → +∞. Then
∃ε0 > 0, ∀T > 0, ∃t > T , |w(t)| > ε0. Therefore, we can get an infinite
sequence of ti(i = 1, 2, ..., and ti → +∞ as i → +∞) such that |w(ti)| > ε0.
Since w(t) is uniformly continuous, ∃η > 0, such that for t

′
and t

′′
satisfying

|t′ − t′′ | < η, then |w(t
′
) − w(t

′′
)| < ε0/2, which implies that for any t within

the η−neighborhood of ti, (i.e. such that |t− ti| < η), we have |w(t)| > ε0/2.
Hence, for all ti, denote t0 = 0, noting that w(s) keep a constant sign over

the integration interval, due to the continuity of w and the bounded |w(t)| >
ε0/2 > 0, then,∣∣∣ ∫ ti+η

t0

w(s) ds
∣∣∣ =

∫ ti+η

t0

|w(s)| ds

>
[ ∫ t1−η

t0

+

∫ t1+η

t1−η
+ . . .+

∫ ti+η

ti−η

]
|w(s)| ds > iηε0

2
,

which reveals that

lim
t→+∞

∣∣∣ ∫ t

t0

w(s)ds
∣∣∣ = lim

i→+∞

∣∣∣ ∫ ti+η

t0

w(s)ds
∣∣∣ > lim

i→+∞

iηε0
2
→ +∞,

which contradict the known fact that
∫ t
t0
w(s)ds has a finite limit as t→ +∞.

So w(t)→ 0 as t→ +∞. ut
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Remark 1. In [6], the convergence of a function to zero can be derived under
some conditions upon its fractional integral. Noting that the function in the [6]
must be bounded or has a monotonically convergent fractional order integer.
However, Theorem 1 provides the result for the convergence of a function based
on its fractional derivatives and integration, which is more suitable for the
application in the stability analysis about fractional order systems. It is easy
to find that the classical integer order Barbalat’s Lemma is a special case of
the above result.

Corollary 1. If w(t) has a finite limit as t→ +∞, and if CDαw(t) is uniformly
continuous. Then CDαw(t)→ 0 as t→ +∞, where 0 < α < 1.

Noting that, in the analysis of the Lyapunov stability, K-class functions are
important. The following theorem is related to K-class functions, which also is
a generalization of Theorem 1.

Theorem 2. If
∫ t
t0
ϕ(w(s))ds has a finite limit as t → +∞, and w(t) is uni-

formly continuous, where w(t): [0,+∞)→ [0,+∞) and ϕ(·) belongs to class-K,
then w(t)→ 0 as t→ +∞, where 0 < α < 1.

Proof. For proving this result, we will prove that lim
t→+∞

ϕ(w(t)) = 0 at first.

Then lim
t→+∞

w(t) = 0 can be derived based on the monotonicity of function

ϕ(·). Assume that ϕ(w(t)) does not approach zero as t→ +∞. Then ∃ε0 > 0,
∀T > 0, ∃t > T , ϕ(w(t)) > ε0. Therefore, we can get an infinite sequence
of ti(i = 1, 2, ..., and ti → +∞ as i → +∞) such that ϕ(w(ti)) > ε0, i.e.
w(ti) > ϕ−1(ε0). Since w(t) is assumed to be uniformly continuous, ∃η > 0,
such that for t

′
and t

′′
satisfying |t′ − t′′ | < η, then

|w(t
′
)− w(t

′′
)| < ϕ−1(ε0)/2,

which implies that for any t within the η−neighborhood of ti, (i.e. such that
|t− ti| < η), we have

|w(t)| > ϕ−1(ε0)/2.

Hence, for all ti,∣∣∣ ∫ ti+η

t0

ϕ(w(s))ds
∣∣∣ =

∫ ti+η

t0

|ϕ(w(s))|ds

>
[ ∫ t1−η

t0

+

∫ t1+η

t1−η
+ . . .+

∫ ti+η

ti−η

]
|ϕ(w(s))|ds > iηε0

2
,

which reveals that

lim
t→+∞

∫ t

t0

ϕ(w(s))ds = lim
i→+∞

|
∫ ti+η

t0

ϕ(w(s))ds| > lim
i→+∞

iηε0
2
→ +∞,

which contradict the known fact that
∫ t
t0
ϕ(w(s))ds has a finite limit as t →

+∞. So ϕ(w(t))→ 0 as t→ +∞, which implies w(t)→ 0 as t→ +∞. ut

Math. Model. Anal., 22(4):503–513, 2017.
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Corollary 2. If
∫ t
t0
ϕ(w(s))ds has a finite limit as t → +∞, and CDαw(t) is

bounded, where w(t): [0,+∞) → [0,+∞) and ϕ(·) belongs to class-K, then
w(t)→ 0 as t→ +∞, where 0 < α < 1.

Proof. Due to CDαw(t) is bounded, then w(t) is uniformly continuous, which
completes our proof. ut

3.2 Fractional order Lyapunov-like lemma with Caputo operator

The above fractional order Barbalat’s lemma can be applied for studying stabili-
ty of fractional order non-autonomous systems, some fractional order Lyapunov
- like lemmas can be established as follows.

In what follows, we consider a general non-autonomous fractional-order
nonlinear system described by Caputo derivative definition:

CDα
t0,tx(t) = f(t, x(t)), (3.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn and 0 < α < 1 denotes the
state vector and fractional order of system (3.1), respectively, f(t, x(t)) =
(f1(t, x1(t)), f2(t, x2(t)), ..., fn(t, xn(t)))T , fi(t, xi(t)), i = 1, 2, ..., n are nonlin-
ear continuous functions.

Theorem 3. If a scalar function V (t, x(t)) is positive semi-definite and the
Caputo fractional derivative of V (t, x(t)) along the solution x(t) of the system
(3.1) satisfies CDα

t0,tV (t, x) 6 −ϕ(‖x(t)‖), where ϕ(·) belongs to class-K, then
x(t)→ 0 as t→ +∞ if xi(t) i = 1, 2, ..., n are uniformly continuous.

Proof. Denoting that Ṽ (t, x(t)) = D
−(1−α)
t0,t V (t, x(t)), then, based the prop-

erty of Caputo’s fractional-order derivative one has

˙̃V (t, x(t)) =C Dα
t0,tV (t, x) 6 −ϕ(‖x(t)‖).

Then, one can integrate the inequality to get Ṽ (t, x(t)) +
∫ t
t0
ϕ(‖x(s)‖)ds 6

Ṽ (t0, x(t0)), which implies that

lim
t→+∞

∫ t

t0

ϕ(‖x(s)‖)ds 6 Ṽ (t0, x(t0)).

Noting that xi(t) i = 1, 2, ..., n are uniformly continuous, then, xi(t) → 0 as
t→ +∞ can be obtained according to Theorem 2. ut

Corollary 3. If a scalar function V (t, x(t)) is is positive semi-definite and the
Caputo fractional derivative of V (t, x(t)) along the solution x(t) of Caputo
system (3.1) satisfies CDα

t0,tV (t, x) is negative semi-definite, then x(t) → 0 as
t→ +∞ if fi(t, x(t)), i = 1, 2, ..., n for the system (3.1) are bounded.

Proof. Since fi(t, x(t)), i = 1, 2, ..., n are bounded, i.e. Dα
t0,txi(t) is bounded.

Then, xi(t), i = 1, 2, ..., n are uniformly continuous. Thus, x(t)→ 0 as t→ +∞
can be gotten from Theorem 3. ut
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We have considered a non-autonomous case in the system (3.1), if the system
(3.1) is an autonomous system, the following result can be derived:

Corollary 4. If a scalar function V (t, x(t)) is lower bounded and the Caputo
fractional derivative of V (x(t)) along the solution x(t) of system (3.1)
CDα

t0,tV (x) is negative semi-definite, then x(t)→ 0 as t→ +∞.

Proof. From the proof of the Theorem 3, it is easy to get ‖x(t)‖ is bounded. As
a result, fi(t, x(t)), i = 1, 2, ..., n are bounded due to fi(t, xi(t)), i = 1, 2, ..., n
are continuous. Thus, x(t) → 0 as t → +∞ can be gotten from the above
Corollary. ut

Remark 2. Recently, there are many results about the asymptotic stability of
fractional order systems. It is easy to know that the analysis of stability in
some papers can be simplified greatly by this result. For example, the proof of
Theorem 1 in [26], the proof of Theorem 1 in [3].

3.3 Fractional order Barbalat’s lemma and Lyapunov-like lemmas
with Riemann-Liouville operator

Riemann-Liouville fractional operator also plays an important role in the sta-
bility analysis of fractional-order systems. According to the (2.1), one has the
following results with Riemann-Liouville fractional operator.

Theorem 4. If
∫ t
t0
ϕ(w(s))ds has a finite limit as t → +∞, and if RLDαw(t)

is bounded, where w(t): [0,+∞)→ [0,+∞), then w(t)→ 0 as t→ +∞, where
0 < α < 1.

Proof. By using the relationship between Riemann-Liouville’s definition and
Caputo’s definition in (2.1) we have

CDα
t0,tw(t) =RL Dα

t0,tw(t)− w(t0)(t− t0)−α

Γ (1− α)
.

Noting that α ∈ (0, 1) and w(t0) > 0, we obtain that

CDα
t0,tw(t) 6RL Dα

t0,tw(t),

which implies that all conditions holds in Theorem 1. Then, it is similar to
obtain w(t)→ 0 as t→ +∞ from the proof of Theorem 1. ut

Now, let us consider the following general non-autonomous fractional-order
nonlinear system described by Riemann-Liouville’s definition:

RLDα
t0,tx(t) = f(t, x(t)), (3.2)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn and 0 < α < 1 denotes the
state vector and fractional order of system (3.1), respectively, f(t, x(t)) =
(f1(t, x1(t)), f2(t, x2(t)), ..., fn(t, xn(t)))T , fi(t, xi(t)), i = 1, 2, ..., n are nonlin-
ear continuous functions.

Math. Model. Anal., 22(4):503–513, 2017.
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Theorem 5. If a scalar function V (t, x(t)) is positive semi-definite and the
Riemann-Liouville fractional derivative of V (t, x(t)) along the solution x(t) of
system (3.2) RLDα

t0,tV (t, x(t)) 6 −ϕ(‖x(t)‖), where ϕ(·) belongs to class-K,
then x(t)→ 0 as t→ +∞ if xi(t), i = 1, 2, ..., n are uniformly continuous.

Proof. By using the relationship between Riemann-Liouville’s definition and
Caputo’s definition in (2.1) we have

CDα
t0,tV (t, x(t)) =RL Dα

t0,tV (t, x(t))− V (t0, x(t0))(t− t0)−α

Γ (1− α)
.

Noting that α ∈ (0, 1) and V (t0, x(t0)) > 0, we obtain that

CDα
t0,tV (t, x(t)) 6RL Dα

t0,tV (t, x(t)),

which implies that all conditions holds in Theorem 3. Then, x(t) → 0 as
t→ +∞ can be derived easily. ut

Corollary 5. If a scalar function V (t, x(t)) is positive semi-definite and the
Riemann-Liouville fractional derivative of V (t, x(t)) along the solution x(t) of
Riemann-Liouville (3.2) RLDα

t0,tV (t, x(t)) 6 −ϕ(‖x(t)‖), where ϕ(·) belongs to
class-K, then x(t) → 0 as t → +∞ if fi(t, x(t)), i = 1, 2, ..., n for the system
(3.2) are bounded.

The proof is omitted here due to it is similar to the Corollary 4.

Remark 3. There were some results about stability for the fractional order sys-
tems based on Riemann-Liouville operator [13, 23, 24], noting that all of them
have considered autonomous system. Compared with them, this paper has built
a unified analysis method to both autonomous and non-autonomous system,
which could be a improve to them.

4 Applications

To illustrate the result above, let us consider the asymptotic stability analysis
of a simple fractional order control system. Consider the following closed-loop
error dynamics for a fractional order plant with one unknown parameter is
described by:

Dαe(t) = −e(t) + sin(t)θ(t), Dαθ(t) = − sin(t)e(t),

where e(t) is tracking error and θ(t) is parameter error. Let us analyze the
asymptotic properties of this system. Consider the lower bounded function
V (t) = e2(t) + θ2(t), then, based on some exists results [4], one has

DαV (t) ≤ 2e(t)(−e(t) + sin(t)θ(t)) + 2θ(t)(− sin(t)e(t)) = −2e2(t).

Thus, according to Theorem 3 and Theorem 5, then e(t)→ 0 as t→∞. Noting
that just e(t) converges to zero, the system is not asymptotically stable, because
θ(t) is only bounded.
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Remark 4. According to the results in this paper, both Caputo’s fractional or-
der systems and Riemann-Liouville’s fractional order systems could be applied.
The function V (t) is a zero lower bounded instead of positive definite function.
The well-known Lyapunov analysis based on invariant set theorems can not be
worked due to the dynamics is non-autonomous. Of course, the difficulty is
still the choice of scalar function V (t).

5 Conclusions

This paper has generalized the well-known Barbalat’s Lemma to fractional
order case. Both Caputo fractional operator and Riemann-Liouville fractional
operator have been discussed. Then, the results have been applied to the Lya-
punov stability of fractional order nonlinear systems. It’s well worth exploring
the applications of the proposed results to the stability analysis and control the-
ory of delayed fractional order nonlinear system, which should be our future
works.
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