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19.1 Peripheral Vision

Gad Geiger, Jerome Y. Lettvin

We have performed a set of experiments to show that the tachistoscopic presentation of a form

at the point of fixation makes an identical form salient where it occurs in the peripheral visual field

during the same flash. We call demasking the induced saliency of forms that are laterally masked

within a horizontal string of forms that lie away from the fixation point. We call eccentric

enhancement the induced saliency of eccentric forms that are presented alone on a blank field.

In contrast, eccentric enhancement operates in all directions from the direction of gaze.

Demasking, however, is contingent on the following conditions: a) the forms (one at the fixation

point and an identical one at the periphery) should have the same orientation; b) the forms should

have complex shapes, like an E or 0, not just a single bar; c) the identical forms should be parts of

two distinct aggregates of forms.

In addition, preliminary experiments show that dyslexics, and persons who had prolonged

dyslexic episodes, have an extended central vision (for resolution of form) which is wider than

central vision of readers. As a consequence, lateral masking is not as effective as with readers.

Moreover, present detailed investigations show remarkable patterns of interactions between

lateral masking and demasking.

These experiments raise the question of whether lateral masking and compromise in clarity that

so characterize peripheral vision is intrinsic to the visual system or is a learned way of visually

attending. In addition, it questions the existence of multi-state visual attention. Our data

regarding dyslexics also supports these notions. We argue that dyslexics merely fail to learn how

to narrow their visual attention at a critical period as readers do.
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19.2 Electrophysiology as an Anatomical Technique

Arthur Grant, Jerome Y. Lettvin

We have continued electrophysiological probing of frog optic tectum with the following

question in mind: from what kind of element is one recording in the superficial tectum? There is a

marked paucity of tectal cell bodies and their axons in this region, certainly not enough to

account for the typical vivacious and dense activity. The shortage of cells, together with the

observation that signals in tectum resemble qualitatively those in the optic nerve and are usually

triphasic, was persuasive evidence at first that such signals were recorded from the retinal

ganglion cell (RGC) terminal arbors (Lettvin et al., 1959). George and Marks (1974) subsequently

examined other electrophysiological properties of these fibers and confirmed the earlier claim.

Nevertheless, there remain inconsistencies. For instance, many optic fibers sweep across a

great distance of tectum before they arborize, yet one can record from them only in the restricted

area of arborization. The precise retinotopic map (Gaze, 1958; Lettvin et al., 1959) would not exist

if one could record fibers in passage, for then the mapping of the visual field onto the tectum

would appear relatively disordered and diffuse. The traditional explanation of this phenomenon is

that since the RGC terminal arbors are quite branched, only there is the extracellular current

magnified enough to raise the signal above the noise level.

Now, however, the electrophysiology, in particular that from the binocular region of tectum,

suggests a new model for the recording site and synaptic configuration of frog optic tectum and

by analogy, of central nervous system neuropil in general.

The indirect, ipsilateral retinotectal pathway maps the binocular region of each eye onto the

ipsilateral tectum, in register with the direct input from the contralateral eye (Gaze and Jacobsen,

1962). In fact, when recording just below the tectal surface one often encounters small (<50 ) and

distinct overlapping receptive fields (RF) from both eyes (Gaze and Keating, 1970; Gruberg and

Lettvin, 1980; Finch and Collett, 1983). Much of the intertectal communication is through the

nucleus isthmi, a small, paired nucleus of 8000 cells in the dorsal tegmentum just caudal to the

colliculi (Gruberg and Udin, 1978; Gruberg and Lettvin, 1980). Each nucleus receives signals

from only the ipsilateral tectum, but projects back bilaterally to both tecta. To account for these

overlapping RF's, and maintain that recording is from terminal arbors, means supposing that

fibers of both retinal and isthmic origin, corresponding in their receptive fields, regularly arborize

in such close proximity that one can record simultaneously from both. Additionally, with both

eyes uncovered, one would then expect to record simply the sum of the independent activities

from the two eyes. But that is not observed. Consequently, Finch and Collet (1983) remarked,

"The upper layers of the tectum contain few cell bodies and we suspect that we have been

recording from dendritic processes." However, a triphasic dendritic spike would endow dendritic
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membrane with a regenerative property for which there is little support.

We propose a different scheme which is consistent with both the anatomy and the

electrophysiology. Specifically, we imagine that in superficial tectal neuropil the extracellular

electrode is responding only to current generated in small "sub-synaptic" regions. Here the RGC

and isthmic terminal arbors make connections with the bead-like dendritic appendages of tectal

cell dendrites. Furthermore, the dendritic membrane is presynaptic as well as postsynaptic

(Szekely and Lazar, 1976) and we suspect that the signal is positively fed back to the input. With

an electrode adjacent to such a synaptic arrangement one need not resort to an electrically active

dendrite to account for a triphasic spike. After all, the activation of Na + channels by a transmitter

produces much the same local sink of current as does electrical invasion.

To test this hypothesis, we looked for and found that precisely the same spike can be recorded

in superficial tectum from independent stimulation of either eye. The probability that two adjacent

fibers anywhere in the central nervous system have identical spikes is essentially zero. Therefore,

if an electrode held at one spot in the tectum records the same spike from stimulation of either

eye, the spike must be generated at only one location and by one generator. Skarf and Jacobsen

(1974) used the same reasoning to identify binocularly driven cells in the deep tectal layers. We

have been able to find, without great difficulty, examples of this phenomenon in several frogs.

Our latest achievement was to obtain the same spike activated at either eye at five separate

locations in the same frog tectum. Since the number of isthmic cells connecting one tectum to

the other is only 2000, five examples found in one frog implies that many isthmo-tectal

connections are of this type. We imagine that a retinal fiber and an isthmic fiber form neighboring

synapses on the dendritic appendages. Szekely and Lazar (1976) frequently found serial

dendritic synapses and commented that this arrangement produced positive feedback to the

incoming signal. A simpler synaptic arrangement, such as the reciprocal synapse (as occurs

between amacrine cells and bipolars in the frog retina), could also produce positive feedback.

The other consequence of this view is that inhibitory synapses should be relatively silent, since

it is not a Na + conductance that is increased, so giving a large transient current flow, but rather a

K+ conductance which only provides a shunt at about membrane potential. Evidence for this has

been had inadvertently by Gruberg and Lettvin (1980) who, on stimulating n. isthmi, were unable

to record pulses in the tectum from the massive ipsilateral isthmo-tectal connections. These

connections, for other reasons, are presumed inhibitory.

In our next set of experiments we will stimulate electrically in the nucleus isthmi, and look for

evoked activity in the optic tectum. In this way we will test further our theories of isthmotectal

interaction and the mode of extracellular recording in neuropil. Although a great many

isthmotectal fibers will be stimulated, we expect to find no evoked potentials in the ipsilateral

tectum since we propose that: 1) these fibers are exclusively inhibitory, and 2) it is possible to

record only at the "sub-synaptic" region, where inhibitory fibers do not produce a spike. This
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experiment will make explicit that only "excitatory" signals are recorded extracellularly in

neuropil. We suspect that isthmi fibers which project to the contralateral tectum are excitatory,

and therefore spikes should be found only just below the tectal surface where these fibers

terminate.
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19.3 Generation of Coding that Resembles That of Nerve

Gill Pratt, Jerome Y. Lettvin

The neuron, despite our incomplete understanding of its characteristics and function, remains a

seductive device. Utilizing only its active cell membrane for the multiple purposes of generation,

propagation, and distribution of pulse sequences, it is certainly the most fundamental of

information processing elements.

And yet, although first order models now exist for the membrane itself, very little is known about

the neuron's function. Theories of spatial organization have been popular until now, due, in part,

to their straightforward nature, the relative ease of gathering histological evidence, and, in cases

of gross destruction, to correlations between loss of function and affected brain area. But it is as

if after examining the physical architecture of a modern computer, noting the effect of snipping a

few wires, and perhaps experimenting with a signal generator and oscilloscope, we were to

declare an understanding not only of each component's function, but of the programs processed
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within. This attitude is clearly ridiculous in the context of our relatively simple creation5 , yet it

prevails in neurophysiology where design complexity knows no human bounds. As a result, the

neuron has naively been reduced to an op-amp, adding and subtracting, as it were, its excitatory

and inhibitory inputs, using a sort of noisy frequency modulation to relay the resultant value down

the axon, and then simply fanning this signal out to other neurons. "What" the neuron says is

thus determined solely by its spatial instantiation, whereas "how much" is quantified by the

frequency of its signaling.

Our research centers about the study of axonal interval sequences. In 1970, Chung et al.1

uncovered the multiplexing of messages in the frequency domain within a single dimming fiber of

the frog's optic nerve. Clearly a code, if only the simple mixing of long and short intervals, was

being used. Using modern computer instrumentation, I have since verified their discoveries.

Lettvin has demonstrated the use of two channel frequency multiplexing along the single fiber

controlling the large claw of the lobster. Raymond, in his 1969 Ph.D. thesis2 and subsequent

papers, proposed a function for the bifurcations of the axonal arbor, namely, that of a parser of

time encoded messages arriving from the parent axon.

It is with this background that I presume a finer structure to axonal messages than is described

by average impulse frequency. My research is progressing along four avenues:

1. Development of a theory of blocking logic.

2. Gathering and analysis of further experimental evidence.

3. Event driven simulation of dendritic and axonal arbor models.

4. Construction of a programmable "neural network" sensitive to single

impulses.

19.3.1 Theory

The excitable membrane can be thought of as a nonlinear, regenerative, blocking, pulse

amplifier. Made spatially continuous (as in an axon), we have a digital pulse transmission line of

finite bandwidth. The variable of electrical interest on any particular patch of membrane is the

voltage threshold above which an incoming impulse will be regenerated. Due to the blocking

nature of the membrane, this threshold becomes very large immediately after an impulse is

regenerated and gradually decreases (with some variation, dependent, in part, on past history) to

its resting value. Along a stretch of membrane, and particularly at "regions of low conduction

safety" such as are found at bifurcations of the axon, the time constant of the blocking function is

found to vary. Without question, the fine twigs of the terminal arbor (whose thin diameter give

them a very long recovery time) cannot sustain the pulse frequencies found in their parent axon.
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19.3.2 Axonal Arborization

One is thus lead to the captivating idea that the very same mechanism which transmits pulse

intervals may also be used to discriminate among them. If one were to hypothesize a logic

discipline where "events," distinguished only in their time of arrival, were propagated rather than

the logic values of conventional digital circuits, how could one use this most basic construct of a

finite bandwidth channel to perform useful transformations?

In the conventional digital electronics realm, a blocking pulse amplifier (although simpler than

any of the following components) would be described in terms of a timer, an arbiter, and a gate.

After every successful regeneration, the timer would be reset. When a second pulse arrived, the

arbiter would sample the timer's value to determine whether a sufficient blocking interval had

passed. If so, the new pulse would be regenerated; otherwise, ignored. Two fundamental

problems arise when arbitrations such as these are done on continuous variables (in the digital

example, time, in the actual nerve, voltage). As the values to be compared approach each other,

not only does the result become more indeterminate, but the time required for the comparison

becomes unbound. Raymond noted the effect of cross coupling from other neurons on the

blocking function's arbitration point. The increased propagation delay associated with "barely

triggering" a membrane is well known.

If time encoded messages are to be reliably parsed without indeterminate, continuous variation

of the newly created intervals, incoming messages must endeavor to stay away from the

arbitration points of the axonal tree. Thus, if messages are parsed as Raymond believes, there

must be a continuous set of forbidden messages that leave noise and arbitration margins around

the parser's arbitration points.

19.3.3 Dendritic Generation

If a code, rather than a simple frequency, is generated on the axon, then some mechanism must

exist in the neuron to generate it. Due to the difficulty of stimulating its various parts, the dendritic

tree is less well characterized than the axonal arbor. It is known that certain (excitatory)

synapses, upon stimulation by presynaptic fibers, increase the postsynaptic neuron's average

firing rate. On the other hand, other (inhibitory) synapses effect an opposite response, lowering

the neuron's mean firing rate.

Professor Lettvin has likened the generation of codes from the dendritic tree to the warbling

tone resulting from a novice's attempt to play the flute. The resulting pattern of frequencies, in

some sense, explores the various modes of the flute's cavity, giving the listener information, albeit

in a very complex form, about the position of each of the player's fingers. In such a fashion,

Lettvin asserts, the axonal code gives information, with increased definition as one continues to

listen, about all of the dendritic tree's synapses. Of course, the activity of the synapses are

changing while one listens, so one can only learn so much.
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This analogy, while plausible, is not specific. A simple model of the dendritic tree which agrees

with observed facts and hints of Lettvin's flute player is to suppose that a synapses' effect on a

neuron is better described by phase modulation than frequency modulation, the difference, of

course, being nothing but a convention as to the relative frequencies of modulating signal and

carrier. If each firing of a pre-synaptic excitatory fiber hastened the generation of the next

impulse, while the firing of a pre-synaptic inhibitory fiber postponed it, a resulting code would

emerge which I feel to be quite in agreement with what one sees in the live animal. The degree

and relative timing of excitation, inhibition, and self-blocking of the axonal cone (where the

impulse starts) would determine the sequence so generated.

19.3.4 Experimental Work

Using sophisticated recording instrumentation, I am taking long, detailed, recordings from the

optic nerve, tectum, and cerebellum of the frog. The cerebellum, in particular, is interesting

because of its great activity even in an immobilized frog, as well as its regular physical structure.

Employing data analysis techniques similar to those used to test the merit of a random number

generator, I am searching for apparent syntax within the recordings. By syntax, I mean structure

both imposed by the arbitrations done in the axonal tree (i.e., forbidden sequences) as well as any

other patterns which seem prevalent.

19.3.5 Simulation

Recent years have seen the fantastic development of efficient tools for simulating very large

digital circuits. These simulators (in particular, those developed by Prof. C.J. Terman) 3 take

advantage of the digital abstraction in voltage to gain huge leaps in efficiency. Thus, instead of

linearizing a circuit's behavior through many small increments of time, the simulator can predict,

based on a relaxation model, when a circuit node will cross a digital threshold. Simulated time

can thus jump in leaps to the next threshold crossing, rather than crawling towards it by

integration (as would be necessary in an analog simulator).

In the realm of purely time domain logic, such as I have described, the simulation task is even

simpler. Relaxation equations are still necessary to represent the state of various blocking

amplifiers, but the time events are pure, having no associated logic value. I am developing an

event-driven simulator for blocking logic, based on the ideas contained in Terman's VLSI

simulators. With it, I hope to flesh out theories of how such logic discipline might be put to use.

19.3.6 Neural Network

After a long hiatus following the Perceptron's demise, there has been a resurgence of interest in

simple network structures for pattern recognition, associative memory, and problem solving.

While the Perceptron did not deserve further investigation, these new "neural networks," whose
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trajectory in state space depends not only on their input, but also their current position, are very

promising. By initializing the set of "axon's" to a particular point in their collective state space, a

tendency is found, with appropriate programming of connective parameters, for the system to

migrate to one of many stable states. Thus, an associative memory can be built, where partial

information is given, and the system migrates to a "near" state, being the associatively requested

piece of data.

Most current neural networks are loosely based on the McCulloch/Pitts 4 neuron model whereby

the firing rate of a neuron is not only averaged over time, but quantized to one bit (high rate/low

rate). Thus, a digital amplifier can be used to represent a particular neuron's state, and the

resulting state space is described by a boolean hypercube. Various methods of dithering the

network so as to achieve interesting state transitions are used, such as the injection of noise intc

the "dendrites" or the use of a random sampling interval.

In collaboration with Chris Musil, I am engaged in the design of two VLSI chips that will allow

experimentation with neural networks much more isomorphic to real nervous systems. In the first,

actual pulses will be routed and mixed rather than voltages representing the frequency of

abstracted pulses. Aside from making the network easier to construct than its voltage-summing

counterpart, we will be able to experiment with high loop gains as are achieved by placing a

phase modulator in the feedback path from dendrite to axon. The configuration of the network

(i.e., which axonal pulses are routed to which dendrite, and with what sign) will be writable by

computer. The excitatory and inhibitory dendritic outputs of the chip will be fed to an external

charge pump, then to the phase modulator or VCO. Thus, the charge pump can be modified so

as to change the speed of network convergence, as well as the nature of the axonal code

generation model.

The second chip is a multiple frequency counter/interval timer with a computer interface which

will allow us to record the axonal pulse frequencies or intervals with high efficiency.
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19.4 Auditory Primal Sketch

Campbell L. Searle, Hugh Secker-Walker

We are searching for the auditory equivalent of Marr's "Primal Sketch," or, more precisely, the

primal sketch for speech and music perception. The mechanical filters in the cochlea, while

clearly the first step in the processing chain, do not appear to provide, by themselves, an invariant

enough representation to act as a primal sketch. Spectral shapes, for example, vary considerably

from speaker to speaker. Hence we are searching for a physiologically plausible neural primal

sketch. Three avenues are being pursued: generalized automatic gain control and more robust

representations derived from either a second set of filters, or linear combinations of the cochlear

filter outputs.

19.4.1 Automatic Gain Control

There is now clear evidence that the gain oi the auditory channels can be reduced by as much

as 50 dB by efferent pulses. 1 Thus, it makes sense to study the possible use of this measured

physiological function in the formation of a robust primal sketch. Computer simulation of the

simplest possible gain control loop around a hyperbolic tangent hair-cell transducer showed that

the simulated hair cell did not saturate (except for the first few cycles) over a range of input

signals in excess of 60 dB. This indicates the potential normalizing power of some very simple

neural structures. We plan to modify our software speech analysis system to include some form

of physiologically realizable AGC. The key research questions are how to arrange the

interconnections, and how to choose the time constants. The benefits of wide-band AGC (as in

an AM radio) are well known, but the benefits of individual channel AGC, or some combination,

must be determined experimentally.

19.4.2 Second Level of Filtering

We are also exploring the possibility that a second level of filter banks, operating on the

temporal outputs of the primary filters, could provide a more robust primal sketch. Tansley's

adaptation work, 2 as well as the more recent depth modulated FM detection thresholds results

from Rees and Kay at Oxford, 3 suggest center frequencies and bandwidths for such filtering. Our

preliminary work has shown that filtering provides additional cues for speech recognition from

visual displays.

The work of McAdams 4 with synthetic musical instruments suggests that a second level of

filtering could also play a role in the identifying and tracking of individual voices in noisy or

multivoice signals. Changes in the spectral information from a single voice are correlated in both

time and frequency; filtering of spectral samples allows the changes occurring in one voice to be

characterized and followed.

RLE P.R. 128129



Physiology

19.4.3 Linear Rotations of Spectral Magnitudes

As a second method of deriving a robust speech representation, we are continuing to examine a

linear rotation of the spectral magnitude information based on principal components analysis.

The mathematics of such rotations is well understood, but the perceptual consequences of

reducing the dimensionality of the new space has not been systematically explored. A computer

program to delete components in the rotated space and to generate the corresponding modified

speech (based on the Ph.D. Thesis of Bustamente, 1986) 5 is now operational.
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