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1 Introduction

The Fučík equation
x′′ = −µx+ + λx− (1.1)

is a simple formally nonlinear equation with piece-wise linear right hand side.
It was intensively investigated together with various boundary conditions ([6,
7, 10]), for instance, with the Dirichlet boundary conditions

x(0) = 0, x(1) = 0. (1.2)

A set of (µ, λ) such that the problem has nontrivial solutions is called the
Fučík spectrum. The problem (1.1), (1.2) generalizes classical spectral problems
with one parameter and reduces to the classical problem if µ = λ. The Fučík
spectrum is a two-dimensional set which may have interesting properties. The
Fučík spectrum for the problem (1.1), (1.2) is well known and consists of infinite
set of curves (branches) which can be obtained analytically and graphically.
The Fučík spectra for the Dirichlet and Neumann problems are similar, but the
spectrum in the case of one (or two) of boundary conditions being in integral
form differs essentially. It was studied in the work of the author ([11]) and
both analytical and graphical description was given in the case of boundary
conditions

x(0) = 0,

1
∫

0

x(s) ds = 0. (1.3)
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In this work we study more complicated case

x(0) = 0, x(1) = γ

1
∫

0

x(s)ds, γ ∈ R. (1.4)

which includes both the conditions (1.2) and (1.3). We give description of the
spectrum for various γ and discover new properties of the spectrum.

The paper is organized as follows. In Section 2 we give results on the
spectrum for the well known Fučík problem (1.1), (1.2). We give the basic
notations also. In Section 3 we present the results on the spectrum for the Fučík
type problem (1.1), (1.4). Our goal is to study the spectrum of the problem
(1.1), (1.4). The properties of the spectrum for different values of γ are given
in Section 4. In Section 5 we consider more general problem and describe some
properties of the spectrum. This study is based on some previous works. The
first one is the author’s work [11], where the spectrum of the equation (1.1)
together with the integral condition (1.3) was considered and some properties of
the spectrum were presented. Some branches of the spectrum for the problem
(1.1), (1.4) consist of several components similarly to the spectrum for the
problem (1.1), (1.3). We also use papers [3, 8, 9], where the eigenvalue problem
for one-dimentional differential operator

x′′ + λx = 0, (1.5)

together with integral conditions (1.4) was considered. Notice that the prob-
lem (1.1), (1.4) generalizes classical spectral problems with one parameter and
reduces to the problem (1.5) if µ = λ. We note that nonlocal boundary condi-
tions (including integral conditions) are formulated for many applied problems,
see e.g. [1, 2], where also numerical algorithms for solution of such problems
are proposed and investigated.

2 The Basic Statements

Consider the classical Fučík problem (1.1), (1.2). First, we describe the decom-
position of the spectrum into branches F+

i and F−
i (i = 0, 1, 2, . . .).

Proposition 1. The Fučík spectrum consists of the set of the curves F+

i =
{(µ, λ)| x′(0) > 0}, the nontrivial solution of the problem (1.1), (1.2) x(t) has
exactly i zeroes in (0, 1); F−

i = {(µ, λ)| x′(0) < 0}, the nontrivial solution of
the problem (1.1), (1.2) x(t) has exactly i zeroes in (0, 1).

Theorem 1. [5] The Fučík spectrum for the problem (1.1), (1.2) consists of the
branches given by

F+

0 =
{

(π2, λ)
}

, F−
0 =

{

(µ, π2)
}

,

F+

2i−1
=

{

(µ, λ)
∣

∣

∣
i
π√
µ
+ i

π√
λ
= 1

}

, F+

2i =
{

(µ, λ)
∣

∣

∣
(i + 1)

π√
µ
+ i

π√
λ
= 1

}

,

F−
i =

{

(µ, λ)
∣

∣

∣
(λ, µ) ∈ F+

i

}

, i = 1, 2, . . . .
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The first five pairs of branches of the spectrum to the problem (1.1), (1.2) are
depicted in Figure 1.

F
0

+

F0

-

F
1

+

F1

-

F
2

+

F2

-

F
3

+

F3

-

F
4

+

F4

-

-100 100 200 300 400
Μ

-100

100

200

300

400

Λ

Figure 1. The spectrum for the problem (1.1), (1.2).

3 The Spectrum of the Problem

Now consider the problem (1.1), (1.4). The expressions for the branches of the
spectrum for this problem are given in the next theorem. The meaning of the
notation of the spectrum branches is the same as earlier.

Theorem 2. The spectrum
∑

γ =
+∞
⋃

i=0

F±
i for the problem (1.1), (1.4) consists

of the branches (if these branches exist for corresponding value of γ) given by
(where i = 1, 2, . . .)

F+

0 =
{

(µ, λ)
∣

∣

∣
sinh

√−µ =
cosh

√−µ− 1√−µ
γ, µ < 0;

µ = 0; sin
√
µ =

1− cos
√
µ

√
µ

γ, 0 < µ ≤ π2

}

,

F+

1 =F+

1+

⋃

F+

1,0

⋃

F+

1−,

F+

1+ =
{

(µ, λ)
∣

∣

∣

2

µ
γ − 1

λ
γ + γ

cos(
√
λ−

√

λ
µ
π)

λ
+

sin(
√
λ−

√

λ
µ
π)

√
λ

= 0,

µ > π2,
π√
µ
+

π√
λ
≥ 1

}

,
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F+

1,0 =
{

(µ, λ)
∣

∣

∣
(γ − 2)µ+ 2(π − πγ)

√
µ+ π2γ − 4γ = 0,

µ > π2, λ = 0
}

,

F+

1− =
{

(µ, λ)
∣

∣

∣

2

µ
γ− 1

λ
γ+γ

cosh(
√
−λ−

√

−λ
µ
π)

λ
+
sinh(

√
−λ−

√

−λ
µ
π)

√
−λ

= 0,

µ > π2, λ < 0
}

,

F+

2i =
{

(µ, λ)
∣

∣

∣

2i+ 1

µ
γ − 2i

λ
γ − γ

cos(
√
µ−

√

µ

λ
πi + πi)

µ

− sin(
√
µ−

√

µ
λ
πi+ πi)

√
µ

= 0, i
π√
µ
+i

π√
λ
< 1, (i+1)

π√
µ
+i

π√
λ
≥ 1

}

,

F+

2i+1
=

{

(µ, λ)
∣

∣

∣

2i+ 2

µ
γ − 2i+ 1

λ
γ − γ

cos(
√
λ−

√

λ
µ
π(i+ 1) + π(i+ 1))

λ

−
sin(

√
λ−

√

λ
µ
π(i + 1) + π(i + 1))
√
λ

= 0, (i+ 1)
π√
µ
+ i

π√
λ
< 1,

(i+ 1)
π√
µ
+ (i+ 1)

π√
λ
≥ 1

}

,

F−
i =

{

(µ, λ)
∣

∣

∣
(λ, µ) ∈ F+

i

}

.

Proof. The proof of this theorem is similar to the proof given in the work
[11] for the case of (µ, λ) being in the first quadrant. We will restrict to some
comments. First of all, we obtain the expressions for F+

0 . Let’s suppose that
the solution without zeroes in the interval (0, 1) exists and x′(0) > 0. In this
case we obtain that problem (1.1), (1.4) reduces to the eigenvalue problem. The
solution of the problem must satisfy the condition (1.4), thus the expression
for F+

0 for positive µ values is obtained. Analogously we do analysis for non-
positive µ values.

The idea of the proof for other branches is similar. We consider the eigen-
value problems in the intervals between two consecutive zeroes of the solution
and use the conditions of the solutions for these problems. For example we
will prove this theorem for µ > π2, λ < 0 (this means that (µ, λ) are in the
fourth quadrant). Suppose that (µ, λ) ∈ F+

1− and let x(t) be the corresponding
nontrivial solution of the problem (1.1), (1.4). The solution has only one zero
in (0, 1) and x′(0) > 0. Let this zero be denoted by τ . Consider a solution
of the problem (1.1), (1.4) first in the interval (0, τ) and then in the interval
(τ, 1). We obtain that the problem (1.1), (1.4) in these intervals reduces to
the linear eigenvalue problems. So in the interval (0, τ) we have the problem
x′′ = −µx with boundary conditions x(0) = x(τ) = 0. In the interval (τ, 1) we
have the problem x′′ = −λx (λ < 0) with boundary condition x(τ) = 0, notice
that x′(τ) < 0. Let the value of −λ be denoted by δ.
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In view of (1.4) a solution of the problem (1.1), (1.4) x(t) must satisfy the
condition

x(1) = γ
(

∫ τ

0

x(s) ds+

∫ 1

τ

x(s) ds
)

.

Since x(t) = A sin
√
µt for A > 0 (this relation holds only for t ∈ (0, τ)) we

obtain that

τ =
π√
µ
, x′(

π√
µ
) = −√

µA,

∫ τ

0

x(s) ds =
2A√
µ
. (3.1)

Now we consider a solution of the equation x′′ = δx in (τ, 1). This solution is
x(t) = C1 exp(

√
δt) + C2 exp(−

√
δt). From x′( π√

µ
) = −A

√
µ, we obtain

x(t) = −A

√

µ

δ
sinh(

√
δt−

√

δ

µ
π), x(1) = −A

√

µ

δ
sinh

(√
δ −

√

δ

µ
π
)

. (3.2)

The integral value is the following

∫ 1

τ

x(s)ds = A

√
µ

δ

(

1− cosh(
√
δ −

√

δ

µ
π)
)

. (3.3)

From (3.1), (3.2), (3.3) we obtain

−A

√

µ

δ
sinh

(√
δ −

√

δ

µ
π
)

= γ
( 2A√

µ
+A

√
µ

δ

(

1− cosh(
√
δ −

√

δ

µ
π)
)

)

.

Multiplying both sides by 1/(A
√
µ) and replacing δ by −λ, we obtain the

expression for F+

1−. ⊓⊔

4 The Properties of the Spectrum

Lemma 1. The branch F±
0 of the spectrum for the problem (1.1), (1.4) exists

only for γ ≥ 0.

Proof. Let us consider γ < 0. It is clear that sign
∫ 1

0
x(s) ds 6= signx′(0) for

these values of γ. Therefore the branches F±
0 do not exist for such γ values.

Now we consider γ = 0. The spectrum for the problem (1.1), (1.4) is the
classical Fučík spectrum with the branches F±

0 . Let’s consider the positive
values of γ and x′(0) > 0. Now we consider the expression for F+

0 for positive
values of µ

sin
√
µ = γ(1− cos

√
µ)/

√
µ. (4.1)

Rewrite the equation (4.1) in the form

√
µ/tan

√
µ

2
= γ. (4.2)

Math. Model. Anal., 15(1):113–126, 2010.
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Consider the left side of the equation (4.2) as a function. The range of values
of this function is the interval [0, 2). Now we consider the expression for F+

0

for negative values of µ and rewrite it in the form

√−µ/tanh

√−µ

2
= γ. (4.3)

The studies of the equation (4.3) show that it is solvable only for γ > 2. For
γ = 2 we obtain that µ = 0 is the branch F+

0 of the spectrum. Therefore the
branch F+

0 exists only for γ ≥ 0. The proof for F−
0 is similar. ⊓⊔

Remark 1. The unique solution of the equation (4.1) where 0 < µ < π2 forms
the straight line parallel to the λ - axis (analogously the solution of the equation
(4.3) for µ < 0). This straight line is the branch F+

0 .

Lemma 2. The spectrum of the problem (1.1), (1.4) is not restricted to the
first quadrant except for the value γ = 2. For this value the spectrum is entirely
in the first quadrant, the axes µ = 0 and λ = 0 included.

Proof. It follows from Lemma 1 that for 0 < γ < 2 the branches F±
0

can
be continued in the second and the fourth quadrants analogously as for the
spectrum of the problem (1.1), (1.2) (see [5]), for γ > 2 the branches F±

0 are in
the second, the third and the fourth quadrants, but for γ = 2 the branches F±

0

are the axes µ = 0 and λ = 0. For γ < 0 and γ > 2 the branches F±
1 consist of

three parts and form the continuous curves. These branches are located in the
first, in the second and in the fourth quadrants. Let us consider the expression
for F+

1+

2

µ
γ =

1

λ
γ − γ

cos(
√
λ−

√

λ
µ
π)

λ
−

sin(
√
λ−

√

λ
µ
π)

√
λ

. (4.4)

Consider the right side of equation (4.4). Let λ tends to 0. Using L’Hospital’s
rule, we obtain

lim
λ→0

cos
(
√
λ−

√

λ
µ
π
)

− 1

λ
γ=−γ

2

(

1− π√
µ

)2
lim
λ→0

sin
(
√
λ(1− π√

µ
)
)

√
λ(1−π

µ
)

=−γ

2

(

1− π√
µ

)2
.

Now consider the last part of the equation (4.4). Let λ tends to 0.

lim
λ→0

sin(
√
λ−

√

λ/µπ)√
λ

= 1− π√
µ
.

It follows that for λ tends to 0 the equation (4.4) tends to the next equation

2

µ
γ − γ

2

(

1− π√
µ

)2
+ 1− π√

µ
= 0.

Multiplying the equation (4.4) with (−2µ), we obtain

(γ − 2)µ+ 2(π − πγ)
√
µ+ π2γ − 4γ = 0 (4.5)
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or the expression for F+

1,0. Using similar ideas we obtain the equation (4.5) for

F+

1− if λ → 0. The investigation of (4.5) as quadratic equation for k =
√
µ with

parameter γ shows that solutions of this equation exist for any real γ values,
but these solutions satisfy the condition µ > π2 only for γ < 0 and γ > 2. This
proves the lemma. ⊓⊔

Lemma 3. There are the points of (µ, λ) – plane, which are fixed for any values
of γ. For any values of γ, except γ = 0, the odd–numbered and the even–
numbered branches are separated by the

(

(2iπ)2, (2iπ)2
)

, but the even–numbered
and the odd–numbered branches are separated by the points

F+

2i ∩ F+

2i+1
=

(

(
√

i(i+ 1) + i)2π2; (
√

i(i+ 1) + i+ 1)2π2

)

,

F−
2i ∩ F−

2i+1
=

(

√

i(i+ 1) + i+ 1)2π2, (
√

i(i+ 1) + i)2π2

)

,

where i = 1, 2, . . . .

Proof. It is clear that the odd-numbered branches and the even–numbered
ones (and vice versa also) intersect at the points in which the problem (1.1),
(1.4) reduces to the problem (1.1), (1.3). It follows that these points are the
same as for the problem (1.1), (1.3) (see [11]). ⊓⊔

Remark 2. It was observed in [3, 9] that some points of the spectrum for prob-
lems (1.5), (1.4) are fixed for any value of γ. These points were called constant
eigenvalues points. The similar fixed points exist both on and aside the bisectix
for the problem (1.1), (1.4) (they are depicted by large points in Figures 2, 3,
4).

Lemma 4. The spectrum of the problem (1.1), (1.4) for γ → 0 is similar to the
classical Fučík spectrum, but all pairs of the spectrum branches do not coincide.
The spectrum of the problem (1.1), (1.4) for γ → ±∞ tends to the spectrum of
the problem (1.1), (1.3).

First let γ → 0. Consider the second condition of (1.4). We obtain

x(1) = lim
γ→0

γ

∫ 1

0

x(s) ds = 0

or the conditions (1.2) for the classical Fučík problem.

Proof. Now let us consider γ → ±∞. We rewrite the integral condition of the
problem (1.1), (1.4) in the form

x(1)

γ
=

∫ 1

0

x(s) ds,

we can do it because γ 6= 0. The left side tends to zero and the integral
condition tends to that in (1.3). ⊓⊔

Math. Model. Anal., 15(1):113–126, 2010.
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Figure 2. The spectrum for the problem (1.1), (1.4) for different γ values.

Next two theorems are direct consequences of Lemmas.

Theorem 3. The following properties of the spectrum for the problem (1.1),
(1.4) for 0 ≤ γ < 2 hold:

1. The branches F±
0 of the spectrum for the problem (1.1), (1.4) exist.

2. All the branches of the spectrum are in the first quadrant (except F±
0 ,

which are the straight lines and may be continued in the second and fourth
quadrants).

3. The spectrum of the problem (1.1), (1.4) for γ = 0 is the spectrum of the
problem (1.1), (1.2). The odd branches of the spectrum (F+

1 and F−
1 , F+

3

and F−
3 etc.) coincide, the even ones don’t coincide.

4. The spectrum of the problem (1.1), (1.4) is symmetric to the bisectrix of
the first and the third quadrants;
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Figure 3. The spectrum for the problem (1.1), (1.4) for different γ values.

5. The spectrum of the problem (1.1), (1.4) for γ → 0 is similar to the spec-
trum of the problem (1.1), (1.2), but all pairs of branches of the spectrum
do not coincide (in contrast to the case of classical Fučik spectrum).

Several first branches of the spectrum to the problem (1.1), (1.4) for 0 ≤ γ <
2 are depicted in Figure 2, the dashed curves is the spectrum for the problem
(1.1), (1.2), the red ones - F+

i branches, the blue curves - F−
i branches of the

spectrum for the problem (1.1), (1.4).

Theorem 4. The following properties of the spectrum for the problem (1.1),
(1.4) for γ ∈ (−∞, 0) ∪ [2; +∞) hold:

1. The branches F±
0 of the spectrum for the problem (1.1), (1.4) exist only

for γ ∈ [2; +∞).

2. The branch F+

0
of the spectrum for the problem (1.1), (1.4) (for γ ∈

Math. Model. Anal., 15(1):113–126, 2010.
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[2; +∞)) is the asymptote for the branch F−
1 , the branch F−

0 is the asymp-
tote for the branch F+

1 .

3. The union of the positive branches
+∞
⋃

i=1

F+

i and the negative ones
+∞
⋃

i=1

F−
i

form the continuous curves.

4. The branches of the spectrum are located in all the (µ, λ) plane, except
γ = 2. For γ = 2 the spectrum is located in the first quadrant included
the axes.

5. The spectrum of the problem (1.1), (1.4) is symmetric with respect to the
bisectrix;

6. The spectrum of the problem (1.1), (1.4) for γ → ±∞ tends to the spec-
trum of the problem (1.1), (1.3).

Several first branches of the spectrum to the problem (1.1), (1.4) for different
γ ∈ (−∞, 0)∪[2; +∞) are depicted in Figures 3, 4. As earlier the dashed curves
are the spectrum for the problem (1.1), (1.2), the red ones - F+

i branches, the
blue curves - F−

i branches of the spectrum for the problem (1.1), (1.4).

Remark 3. The spectrum of the problem (1.1), (1.4) for γ = 2 is in the first
quadrant and the axes also belong the spectrum. For γ = 20 and γ = 100 the
branches F±

0 exist also, but they are far away from the axes (see Figure 4).

Remark 4. In the work [11] the Fučik equation was considered together with
the conditions

x(0) = 0, (1− α)x(1) + α

∫ 1

0

x(s) ds = 0, α ∈ [0, 1] (4.6)

and some properties of the spectrum were described. The problem (1.1), (4.6)
is a particular case of the problem (1.1), (1.4). Indeed, rewrite the second
condition of the (4.6) (for α 6= 1) in the form

x(1) =
α

α− 1

1
∫

0

x(s) ds.

Denote
α

α− 1
by γ. It follows that γ ∈ (−∞, 0].
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Figure 4. The spectrum for the problem (1.1), (1.4) for different γ values.
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5 More General Problem

Now we consider the Fučík equation

−x′′ = µx+ − λx−, (5.1)

together with nonlocal boundary conditions

x(0) = γ1

∫ 1

0

x(s) ds, x(1) = γ2

∫ 1

0

x(s) ds, γ1, γ2 ∈ R. (5.2)

The analog of this problem for one-dimensional differential operator was con-
sidered in [3, 8, 9].

Lemma 5. The branch F±
0 of the spectrum for the problem (5.1), (5.2) exists

only for γ1 + γ2 ≥ 0.

Proof. We consider the solutions of the problem (5.1), (5.2) without zeroes
in the interval (0; 1) ((µ, λ) ∈ F±

0 ). Let’s consider the case x(t) > 0. We
obtain that the problem reduces to the eigenvalue problem. It is clear that
µ ∈ (−∞, π2). The solution of the problem (5.1), (5.2) for µ ∈ (0, π2) is

x(t) = A sin(
√
µt+ ϕ) = A sin(

√
µ(t+ τ)),

where 0 ≤ τ ≤ π√
µ
− 1). It follows from the boundary conditions that







√
µ sin

√
µτ = 2γ1 sin

√
µ

2
sin (

√
µ

2
+

√
µτ),

√
µ sin (

√
µ+

√
µτ) = 2γ2 sin

√
µ

2
sin (

√
µ

2
+
√
µτ).

The last system of equations yields

√
µ/tan

√
µ

2
= γ1 + γ2. (5.3)

Similarly as for the equation (4.1) the equation (5.3) has the solutions only for
0 ≤ γ1 + γ2 < 2.

The solution of the problem (5.1), (5.2) for µ = 0 is x(t) = A + Bt. We
obtain from the boundary conditions that if γ1 + γ2 = 2 then µ = 0 is an
eigenvalue the corresponding eigenvalue problem.

The solution of the problem (5.1), (5.2) for µ < 0 is x(t) = A sinh(
√−µt+

ϕ) = A sinh(
√−µ(t + τ)) (where τ ≥ 0). It follows from the boundary condi-

tions that
√−µ/tanh

√−µ

2
= γ1 + γ2. (5.4)

Similarly as for the equation (4.3) the equation (5.4) has the solutions only for
γ1 + γ2 > 2. ⊓⊔

Lemma 6. The spectrum of the problem (5.1), (5.2) for γ1 → 0 and γ2 → 0
tends to the spectrum of the classical Fučík problem (1.1), (1.2).
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Proof. Consider γ1 → 0 and γ2 → 0. It is clear that the conditions (5.2) tend
to the conditions of the problem (1.1), (1.2). ⊓⊔

Lemma 7. The spectrum of the problem (5.1), (5.2) for γ1 = a (a - fixed
number) and γ2 → ±∞ tends to the spectrum of the problem (1.1), (1.3).

Proof. Consider γ2 → ±∞. Let us write the second integral condition of the

problem (5.1), (5.2) in the form x(1)/γ2 =
∫ 1

0
x(s) ds. It follows that

∫ 1

0

x(s) ds = 0. (5.5)

Therefore the first condition of the problem (5.1), (5.2) reduces to the

x(0) = γ1

∫ 1

0

x(s) ds = 0. (5.6)

It is clear that the conditions (5.6), (5.5) are the conditions of the problem
(1.1), (1.3). ⊓⊔

Lemma 8. The spectrum of the problem (5.1), (5.2) for γ1 → ±∞ and γ2 = b
(b is a fixed number) then the spectrum tends to the spectrum of the problem

− x′′ = µx+ − λx−, (5.7)

x(1) = 0,

∫ 1

0

x(s) ds = 0. (5.8)

The proof is similar to the proof of Lemma (7).

Remark 5. The spectrum of the problem (5.7), (5.8) coincides with the spec-
trum of the problem (1.1), (1.3).

The proof of this fact is clear. Let us change the variable in the problem
(5.7), (5.8) as follows X(τ) = x(1 − t). Then we obtain

X ′ =
dX(τ)

dτ
=

dx(1 − τ)

dτ
= −dx(1− τ)

d(1− τ)
= −dx(t)

dt
= −x′,

X ′′ =
d2X

dτ2
=

d

dτ

dX(τ)

dτ
= − d

dτ

dx(t)

dt
= − d

dt

dx(t)

dt

dt

dτ
=

d2x(t)

dt2
= x′′

or we have

−X ′′ = µX+ − λX−,

X(0) = x(1) = 0,

∫ 1

0

X(s) ds = 0.
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