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Abstract. In order to find approximate solutions of Volterra and Fredholm integro-
differential equations by collocation methods it is necessary to compute certain in-
tegrals that determine the required algebraic systems. Those integrals usually can
not be computed exactly and if the kernels of the integral operators are not smooth,
simple quadrature formula approximations of the integrals do not preserve the con-
vergence rate of the collocation method. In the present paper fully discrete analogs of
collocation methods where non-smooth integrals are replaced by appropriate quadra-
ture formulas approximations, are considered and corresponding error estimates are
derived. Presented numerical examples display that theoretical results are in a good
accordance with the actual convergence rates of the proposed algorithms.
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1 Introduction

In the present paper we study the convergence behaviour of fully discrete
analogs of collocation methods for the numerical solution of initial or boundary
value problems of the form

u(n)(t) =

n−1
∑

i=0

ai(t)u
(i)(t) +

n
∑

i=0

∫ b

0

Ki(t, s)u
(i)(s) ds+ f(t), 0 ≤ t ≤ b, (1.1)

n
∑

j=1

[

αiju
(j−1)(0) + βiju

(j−1)(b)
]

= 0, i = 1, . . . , n, (1.2)
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where n ∈ N = {1, 2, . . .}, αij , βij ∈ R = (−∞,∞) (i, j = 1, . . . , n) and
ai, f : [0, b] → R (i = 0, 1, . . . , n − 1) are some continuous functions. The
kernels Ki (i = 0, . . . , n) are assumed to be m times continuously differentiable
with respect to s on the set

∆ = {(t, s) : 0 ≤ t ≤ b, 0 ≤ s ≤ b, t 6= s} (1.3)

and they satisfy on this set for j = 0, 1, . . . ,m the estimates

∣

∣

∣

∣

∂jKi(t, s)

∂sj

∣

∣

∣

∣

≤ c















1 if j < −ν ,

1 +
∣

∣ log |t− s|
∣

∣ if j = −ν ,

|t− s|−ν−j if j > −ν ,

(1.4)

where c is a positive constant, −∞ < ν < 1 and m ∈ N. For example, the
kernels in the form

Ki(t, s) = Ki,1(t, s)|t− s|−αi +Ki,2(t, s), i = 0, . . . , n,

satisfy this conditions if αi ≤ ν and Ki,p (i = 0, . . . , n, p = 1, 2) are some
m times continuously differentiable with respect to s functions on the square
[0, b] × [0, b]. If all kernels are identically equal to 0 above the diagonal t = s
(i.e. Ki(t, s) ≡ 0 for s > t and for all i ∈ {0, 1, . . . , n}), then we have a Volterra
integro-differential equation, otherwise we have a Fredholm integro-differential
equation. In case of a Volterra integro-differential equation it is sufficient to
require that the functions Ki,p (i = 0, . . . , n, p = 1, 2) are m times continuously
differentiable with respect to s on the triangle {(t, s) : 0 ≤ s ≤ t ≤ b}. The
problems of the form (1.1), (1.2) arise in many applications (see, e.g., [1, 3] and
references therein).

We use a reformulation of the problem (1.1), (1.2) and introduce a new
unknown function v = u(n). We assume that from all solutions of the linear
homogeneous differential equation u(n) = 0 only u = 0 satisfies the conditions
(1.2), which is equivalent to the invertibility of the matrix Z with the elements

zij = (j − 1)!αij +

j
∑

k=1

(j − 1)!

(j − k)!
bj−kβik, i, j = 1, . . . , n.

Then the nonhomogeneous equation

u(n)(t) = v(t), t ∈ [0, b], v ∈ L∞(0, b),

with boundary conditions (1.2), has a unique solution u(t) = (Jv)(t), t ∈ [0, b],
where the operator J has a representation

(Jv)(t) =

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds+

n
∑

i=1

cit
i−1.

Here the vector c = (c1, . . . , cn)
′ is defined by c = −Z−1Ψd, where Ψ = (βi,j)

and the components of the vector d = (d1, . . . , dn)
′ are given by

dj =

∫ b

0

(b − s)n−j

(n− j)!
v(s) ds, j = 1, . . . , n.
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We also define the following operators:

(Jiv)(t) = (Jv)(i)(t), t ∈ [0, b], i = 0, . . . , n . (1.5)

We see that Jnv = v and Ji (i = 0, . . . , n − 1) are bounded linear operators
from L∞(0, b) into C[0, b] and that for piecewise polynomial functions v the
functions Jiv can be computed exactly.

Using u(n) = v and (1.5), the problem (1.1), (1.2) may be rewritten as a
linear operator equation of the second kind with respect to v:

v = Tv + f,

where

T = A+
n
∑

i=0

BiJi , (1.6)

(Av)(t)=
n−1
∑

i=0

ai(t)(Jiv)(t), (Biw)(t)=

∫ b

0

Ki(t, s)w(s) ds, t ∈ [0, b]. (1.7)

A popular class of methods for solution of weakly singular integro-differential
equations is the class of piecewise polynomial collocation methods using nonuni-
form grids (see, e.g., [1, 2, 3, 7, 8, 12]). In order to apply these methods it is
necessary to compute certain integrals that determine the linear systems to be
solved. Unfortunately those integrals usually cannot be computed exactly and
even when analytic formulas exist, their straightforward application may be
numerically unstable in the case of highly nonuniform grids (see [5]). There-
fore it is of great practical and theoretical interest to consider methods (so
called fully discrete methods), where the integrals are computed by quadrature
formulas. If the kernels of the integral operators are not smooth, then it is
not easy to define a quadrature approximation to the system integrals so that
the order of convergence of the original collocation method is preserved. One
way of coping with this difficulty is to use for approximating the integral op-
erators additional graded grids that take into account the singularities of the
kernels. Such methods for solution of weakly singular integral equations are
proposed and investigated in [4, 6, 11]. In the present paper we propose fully
discrete analogs of collocation methods to solve integro-differential equations
with weakly singular kernels. Here we use results from [6].

In Section 2 of the present paper we introduce an algorithm of a colloca-
tion method for solving (1.1), (1.2). In Section 3 we construct a fully discrete
analog of this algorithm and in Section 4 derive estimates for the difference
of approximations obtained by the exact collocation method and by the fully
discrete collocation method (Theorem 1). Theorem 1 together with the con-
vergence rate estimates for the exact collocation methods enable us to estimate
the errors of the approximations computed by the fully discrete collocation
method. In the last section the obtained theoretical results are verified by
some numerical experiments.

Math. Model. Anal., 15(1):69–82, 2010.
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2 Collocation Method

For a given N ∈ N let ΠN = {t0, . . . , tN : 0 = t0 < t1 < . . . < tN = b} be a
partition (a grid) of the interval [0, b] (for the ease of notation we suppress the

index N of tj = t
(N)
j indicating the dependence of grid points on N).

For given integers m ≥ 0 and −1 ≤ d ≤ m − 1, let S
(d)
m (ΠN ) be the spline

space of piecewise polynomial functions on the grid ΠN :

S(d)
m (ΠN ) =

{

v ∈ Cd[0, b] : v
∣

∣

[tj−1,tj]
∈ πm, j = 1, . . . , N

}

, 0 ≤ d ≤ m− 1,

S(−1)
m (ΠN ) =

{

v : v
∣

∣

(tj−1,tj)
∈ πm, j = 1, . . . , N

}

.

Here πm denotes the set of polynomials of degree not exceeding m and v
∣

∣

(tj−1,tj)

is the restriction of v : [0, b] → R onto the subinterval (tj−1, tj). Note that the

elements of S
(−1)
m (ΠN ) may have jump discontinuities at the interior points

t1, . . . , tN−1 of the grid ΠN .

We define m ≥ 1 collocation points in every subinterval [tj−1, tj ] (j =
1, . . . , N) by

tjk = tj−1 + ηk(tj − tj−1) , k = 1, . . . ,m, (2.1)

where η1 . . . , ηm are some fixed parameters which do not depend on j and N
and satisfy 0 ≤ η1 < η2 < . . . < ηm ≤ 1 .

We look for an approximate solution uN of the problem (1.1), (1.2) in the

form uN(t) = (J0vN )(t), where vN ∈ S
(−1)
m−1(ΠN ) (m,N ∈ N) is determined by

the following collocation conditions:

vN (tjk) = (TvN )(tjk) + f(tjk), k = 1, . . . ,m, j = 1, . . . , N. (2.2)

Here J0 and T are defined by (1.5) and (1.6), respectively. If η1 = 0, then
by vN (tj1) we denote the right limit limt→tj−1, t>tj−1

vN (t), if ηm = 1, then
vN (tjm) denotes the left limit limt→tj , t<tj vN (t). The convergence of such
collocation method for solving (1.1), (1.2) is investigated in [8]. In order to
obtain a high-order convergence a special graded grid reflecting the possible
singular behavior of the solution is used.

3 A Fully Discrete Collocation Method

For determining vN from (2.2) it is necessary to compute integrals which usually
cannot be computed exactly. In order to discretize the integrals in (2.2) we
introduce a set of points ΣM = {sj : j = −M, . . . ,M} where

sj = b

(

j

M

)r1

, j = 0, 1, . . . ,M , sj = −s−j , j = −M, . . . ,−1 , (3.1)

M > 1 is a natural number and r1 ≥ 1 is a real number that determines the
nonuniformity of ΣM at zero. Basically, this grid, shifted to be centered at the
current value of t, is the grid on which we can approximate our integrals with
nonsmooth kernels well. But since our integrands may have discontinuities at
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the points in ΠN , we refine the integration grid with respect to those points.
More precisely, for given t ∈ [0, b] we divide the interval [0, b] into subintervals
with the points

Xt =
(

ΠN ∪ (t+ΣM )
)

∩ [0, b],

where t + ΣM = {t + s : s ∈ ΣM}. Let us number the points in Xt in the
increasing order, i.e., Xt = {xp : p = 0, 1, . . . , p1}, where

0 = x0 < x1 < · · · < xp1
= b.

Additionally, we choose a quadrature formula

1
∫

0

g(x) dx ≈
m1
∑

q=1

ωq g(ξq) (3.2)

with knots 0 ≤ ξ1 < · · · < ξm1
≤ 1 and weights ω1, . . . , ωm1

. We denote

xpq = xp−1 + ξq(xp − xp−1), q = 1, . . . ,m1 , p = 1, . . . , p1,

and approximate the integrals (Biw)(t) (see (1.7)) for t ∈ [0, b] by

(B̃iw)(t) =











p1
∑

p=1
(B̃ipw)(t) if ν < 0 ,

∑

p:0<xp≤t−s1

(B̃ipw)(t) +
∑

p:t+s1<xp≤b

(B̃ipw)(t) if ν ≥ 0,
(3.3)

where ν < 1 as (1.4) and

(B̃ipw)(t)=(xp − xp−1)

m1
∑

q=1

ωq Ki(t, xpq)w(xpq), p=1, . . . , p1, i=0, . . . , n.

(3.4)
Our fully discrete collocation method is as follows: we look for an approximate

solution ũN of (1.1), (1.2) in the form ũN = J0ṽN where ṽN ∈ S
(−1)
m−1(ΠN ) is

determined by the conditions

ṽN (tjk)=(AṽN )(tjk)+
n
∑

i=0

(B̃iJiṽN )(tjk)+f(tjk), k=1, . . . ,m, j=1, . . . , N.

(3.5)
Here Ji, A, B̃i and tjk are defined by (1.5), (1.7), (3.4) and (2.1), respectively.
Recall that for piecewise polynomial functions vN the values of the functions
JivN can be computed exactly.

4 Convergence of the Fully Discrete Collocation Method

We obtain the following estimates for the errors of the quadrature approxima-
tions B̃i of the integral operators Bi.

Math. Model. Anal., 15(1):69–82, 2010.
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Lemma 1. Assume that for some k ∈ N and for a fixed t ∈ [0, b] we have

w ∈ S
(−1)
k−1 (Xt) =

{

w : w
∣

∣

[xp−1,xp]
∈ πk−1, p = 1, . . . , p1

}

, t ∈ [0, b].

Assume also that the quadrature formula (3.2) is exact for all polynomials of

degree µ where µ ≥ k − 1 and that the kernels Ki, (i = 0, . . . , n) are µ− k + 2
times continuously differentiable with respect to s on the set ∆ (see (1.3)) and

satisfy on this set for j = 0, . . . , µ− k + 2 the estimates (1.4) with ν < 1.
Then, for r1 ≥ 1 as (3.1) and for i = 0, . . . , n, we have

|(Biw)(t) − (B̃iw)(t)| ≤ c ‖w‖∞ΩM (µ− k + 2, ν, r1), t ∈ [0, b], (4.1)

where c does not depend on t, M , N and the form of ΠN , the function ΩM is

defined by

ΩM (β, ν, r) =























M−r(1−ν) if 1 ≤ r < β
1−ν , −ν 6∈ N0,

M−r(1−ν)(1 + logM) if r < β
1−ν , −ν ∈ N0,

M−β(1 + logM) if r = β
1−ν ,

M−β if r > β
1−ν ,

(4.2)

N0 = N ∪ {0} and Bi and B̃i are defined by (1.7) and (3.3), respectively.

Proof. Let us examine the case 0 ≤ ν < 1. Then we have for fixed i ∈
{0, . . . , n} and t ∈ [0, b]

|(Biw)(t) − (B̃iw)(t)| ≤ ∆1(t) +∆2(t) + ‖w‖∞
min{b,t+s1}

∫

max{0,t−s1}

|Ki(t, s)| ds, (4.3)

where

∆1(t) =
∑

p:0<xp≤t−s1

|δp(t)| , ∆2(t) =
∑

p:t+s1<xp≤b

|δp(t)| , (4.4)

δp(t) =

∫ xp

xp−1

Ki(t, s)w(s) ds − B̃ip(t)

and (B̃ip)(t) is defined by (3.4). Since the quadrature formula (3.2) is exact for
all polynomials of degree µ and w is on each interval [xp−1, xp], p = 1, . . . , p1,
a polynomial of degree k− 1, we have for all polynomials φ of degree µ− k+1

δp(t) =

∫ xp

xp−1

[

Ki(t, s)−φ(s)
]

w(s) ds

− (xp − xp−1)

m1
∑

q=1

wq

[

Ki(t, xpq)− φ(xpq)
]

w(xpq) ds, t ∈ [0, b].

Thus for any such polynomial we get an estimate

|δp(t)| ≤ c‖w‖∞(xp − xp−1) sup
s∈(xp−1,xp)

|Ki(t, s)− φ(s)|, t ∈ [0, b], (4.5)
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where c is a positive constant not depending on t and p. For values p such that
t+ s1 < xp ≤ b we use

φ(s) =

µ−k+1
∑

j=0

1

j!

∂jKi(t, s)

∂sj

∣

∣

∣

s=xp

(s− xp)
j , s ∈ [xp−1, xp],

which, together with the well-known estimate for Taylor expansion

|Ki(t, s)− φ(s)| ≤ |s− xp|µ−k+2

(µ− k + 2)!
sup

xp−1<σ<xp

∣

∣

∣

∣

∂µ−k+2Ki(t, s)

∂sµ−k+2

∣

∣

∣

s=σ

∣

∣

∣

∣

and the estimates (4.5) and (1.4) with j = µ− k + 2 ≥ 1 > −ν gives us

|δp(t)| ≤ c1‖w‖∞(xp − xp−1)
µ−k+3 sup

xp−1<σ<xp

|t− σ|−ν−µ+k−2,

where c1 does not depend on p and t ∈ [0, b].
For ∆2(t) defined by (4.4) we obtain for t ∈ [0, b]

∆2(t)=

M−1
∑

j=1

∑

p : t+sj<xp

≤t+sj+1

|δp(t)|≤c1‖w‖∞
M−1
∑

j=1

s−ν−µ+k−2
j (sj+1−sj)

µ−k+3.

Since

sj = b

(

j

M

)r1

, 0 < sj+1 − sj ≤
br1
M

(

j + 1

M

)r1−1

, j = 1, . . . ,M,

we get for t ∈ [0, b]

∆2(t) ≤ c1‖w‖∞
M−1
∑

j=1

[( j

M

)r1]−ν−µ+k−2[br1
M

(j + 1

M

)r1−1]µ−k+3

≤ c2‖w‖∞M−r1(1−ν)
M−1
∑

j=1

jr1(1−ν)−µ+k−3

≤ c3‖w‖∞



























M−r1(1−ν) if r1 <
µ− k + 2

1− ν
,

M−µ+k−2(1 + logM) if r1 =
µ− k + 2

1− ν
,

M−µ+k−2 if r1 >
µ− k + 2

1− ν
,

where c3 does not depend on M and t.
In a similar way we get the same estimates for ∆1(t) (see [6]). Using (3.1)

and (1.4) we obtain (see [6])

min{b,t+s1}
∫

max{0,t−s1}

|Ki(t, s)| ds ≤ c

{

M−r1(1−ν) if 0 < ν < 1,

M−r1(1−ν)(1 + logM) if ν = 0,

Math. Model. Anal., 15(1):69–82, 2010.
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and so from (4.3) the estimates (4.1) for 0 ≤ ν < 1 follow. Repeating the steps
of the corresponding part of the proof of Theorem 1 in [6] we can prove the
estimates (4.1) also for ν < 0. ⊓⊔

We derive sharper estimates for the errors of the approximations B̃iJiv of
the integrals BiJiv for i = 0, . . . , n.

Lemma 2. Assume that the quadrature formula (3.2) is exact for all polynomi-

als of degree µ where µ ≥ m+n−i−1, m ∈ N and i ∈ {0, . . . , n}. Assume also,

that v ∈ S
(−1)
m−1(ΠN ) and the kernel Ki is on the set ∆ (µ−m+ 2) times con-

tinuously differentiable with respect to s and satisfies on this set the estimates

(1.4) with ν < 1 for j = 0, . . . , µ−m+ 2. Then we have

‖BiJiv − B̃iJiv‖∞ ≤ c ‖v‖∞ΩM (µ−m+ 2, ν, r1), (4.6)

where c does not depend on M , N and the form of ΠN and Ji, Bi, B̃i and ΩM

are defined by (1.5), (1.7), (3.3) and (4.2), respectively.

Proof. Note that since ΠN ⊂ Xt and v ∈ S
(−1)
m−1(ΠN ), we have

Jiv ∈ S
(n−i−1)
m+n−i−1(ΠN ) ⊂ S

(−1)
m+n−i−1(Xt)

for any t ∈ [0, b] (see [8]).

If i = n then Jiv = v ∈ S
(−1)
m−1(ΠN ) and the estimate (4.6) follows from

Lemma 1 immediately. Consider the case 0 ≤ i < n. We use the equality

BiJiv − B̃iJiv = (Bi − B̃i)(Jiv − φ) + (Bi − B̃i)φ, (4.7)

where φ ∈ S
(−1)
n−i−1(Xt) is defined by

φ(s) =

n−i−1
∑

j=0

1

j!
(Jiv)

(j)(xp)(s− xp)
j , s ∈ [xp−1, xp], p = 1, . . . , p1.

By the well-known estimate for the error of Taylor expansion, we obtain

|(Jiv)(s)− φ(s)| ≤ |s− xp|n−i

(n− i)!
sup

xp−1<σ<xp

∣

∣(Jiv)
(n−i)(σ)

∣

∣, s ∈ [xp−1, xp].

Since (Jiv)
(n−i) = v and 0 < xp − xp−1 ≤ r1b/M (p = 1, . . . , p1) we get

‖Jiv − φ‖∞ ≤ cM−n+i‖v‖∞. (4.8)

Since Jiv − φ ∈ S
(−1)
m+n−i−1(Xt) we estimate by (4.1) and (4.8)

‖(Bi − B̃i)(Ji − φ)‖∞ ≤ c ‖Jqv − φ‖∞ΩM (µ−m− n+ i+ 2, ν, r1)

≤ c1 ‖v‖∞M−n+iΩM (µ−m− n+ i+ 2, ν, r1)

≤ c1 ‖v‖∞ΩM (µ−m+ 2, ν, r1). (4.9)
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In order to estimate the norm of (Bi − B̃i)φ, we write φ =
n−i−1
∑

j=0

φj , where

φj(s)=
1

j!
(Jiv)

(j)(xp)(s−xp)
j , s ∈ [xp−1, xp], p=1, . . . , p1, j=0, . . . , n− i− 1.

Since φj ∈ S
(−1)
j (Xt) ⊂ S

(−1)
m−1(Xt) for j ≤ m − 1, we have according to (4.1)

the estimate

‖(Bi − B̃i)φj‖∞ ≤ c ‖φj‖∞ΩM (µ−m+ 2, ν, r1), 0 ≤ j ≤ m− 1.

As ‖φj‖∞ ≤ c1 ‖v‖∞M−j , j = 0, . . . , n − j − 1, and in case of n − j > m we
have

‖(Bi − B̃i)φj‖∞ ≤ c ‖φj‖∞ΩM (µ− j + 1, ν, r1)

≤ c2 ‖v‖∞M−jΩM (µ− j + 1, ν, r1)

≤ c2 ‖v‖∞ΩM (µ−m+ 2, ν, r1), j = m, . . . , n− i− 1,

then we obtain

‖(Bi − B̃i)φ‖∞ ≤ c ‖v‖∞ΩM (µ−m+ 2, ν, r1). (4.10)

From (4.7), (4.9) and (4.10) the estimate (4.6) follows. ⊓⊔

Lemma 2 enables us to estimate easily the difference of solutions of the exact
collocation method (2.2) and the fully discrete collocation method (3.5).

Theorem 1. Assume that the following conditions are fulfilled:

1) problem (1.1), (1.2) is uniquely solvable in Cn[0, b] and of all solutions of

the equation u(n) = 0 only u = 0 satisfies (1.2);
2) quadrature formula (3.2) is exact for all polynomials of degree µ where

µ ≥ m+ n− 1 and m ∈ N;

3) in equation (1.1) f and ai (i = 0, . . . , n − 1) are continuous functions

on [0, b] and the kernels Ki (i = 0, . . . , n) are on the set ∆ (µ −m + 2) times

continuously differentiable with respect to s and satisfy on this set the estimates

(1.4) with ν < 1 for j = 0, . . . , µ−m+ 2;
4) the sequence of grids ΠN , N ∈ N, is such that

max
1≤j≤N

| tj − tj−1| → 0 as N → ∞.

Then there exist integers N0 and M0 such that for all N ≥ N0 and M ≥ M0

both conditions (2.2) and (3.5) uniquely determine vN ∈ S
(−1)
m−1(ΠN ) and ṽN ∈

S
(−1)
m−1(ΠN ), respectively. For their difference the following estimates hold:

‖JivN − JiṽN‖∞ ≤ c ΩM (µ−m+ 2, ν, r1), i = 0, 1, . . . , n, (4.11)

‖v̂N − ˆ̃vN‖∞ ≤ c ΩM (µ−m+ 2, ν, r1), (4.12)

Math. Model. Anal., 15(1):69–82, 2010.
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where c is a constant not depending on M and N and the form of ΠN , −∞ <
ν < 1, r1 ≥ 1,

v̂N = TvN + f, ˆ̃vN =
(

A+

n
∑

i=0

B̃iJi
)

ṽN + f, (4.13)

and Ji, T, A, B̃i and ΩM are defined by (1.5), (1.6), (1.7), (3.3) and (4.2),
respectively.

Proof. Define a piecewise polynomial interpolation operator PN : C[0, b] →
S
(−1)
m−1(ΠN ) ⊂ L∞(0, b) by conditions

(PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . , N,

where tjk (k = 1, . . . ,m, j = 1, . . . , N) are defined by (2.1). Then we can
represent conditions (2.2) and (3.5) as operator equations

vN = PNTvN + PNf (4.14)

ṽN = PN T̃ ṽN + PNf with T̃ = A+

n
∑

i=0

B̃iJi, (4.15)

respectively. It is well known that PN is a sequence of uniformly bounded
operators satisfying

lim
N→∞

‖PNv − v‖∞ = 0 for all v ∈ C[0, b].

In the same way as in the proof of Theorem 4.1 of [8] we obtain that there
exists an integer N0 such that for every N ≥ N0 equation (4.14) possesses a

unique solution vN ∈ S
(−1)
m−1(ΠN ) and

‖(I − PNT )−1‖L(L∞(0,b),L∞(0,b)) ≤ c (4.16)

where c does not depend on N . Let’s denote the space of piecewise polynomial

functions S
(−1)
m−1(ΠN ) equipped with L∞(0, b) norm by EN and consider (4.14)

and (4.15) as equations in EN . It follows from (4.6) that

‖PNT − PN T̃‖L(EN ,EN ) =
∥

∥PN

n
∑

i=0

(Bi − B̃i)Ji
∥

∥

L(EN ,EN)

≤ cΩM (µ−m+ 2, ν, r1) → 0 as M → ∞.

Using equality

I − PN T̃ = (I − PNT )[I − (I − PNT )−1PN(T̃ − T )]

and inequality (4.16) we get that there exists M0 ∈ N such that for every
M ≥ M0 and N ≥ N0 operator (I −PN T̃ ) is invertible in EN , equation (4.15)
possesses a unique solution ṽN ∈ EN and

‖ṽN‖∞ = ‖(I − PN T̃ )−1PNf‖∞ ≤ c, (4.17)
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where c does not depend on M and N . It follows from (4.14) and (4.15) that

(I − PNT )(vN − ṽN ) = PN

n
∑

i=0

(Bi − B̃i)JiṽN .

On the basis of (4.6), (4.16) and (4.17) we obtain from this that for M ≥ M0

and N ≥ N0

‖vN − ṽN‖∞ ≤ c
∥

∥PN

n
∑

i=0

(Bi − B̃i)Ji
∥

∥

L(EN ,EN )
≤ c1 ΩM (µ−m+ 2, ν, r1),

where c and c1 do not depend on M and N . This together with boundedness
of Ji (i = 0, . . . , n) yields the estimate (4.11). The estimate (4.12) follows from
the equalities

v̂N − ˆ̃vN = TvN − T̃ ṽN = T (vN − ṽN ) +

n
∑

i=0

(Bi − B̃i)JiṽN .

⊓⊔

Theorem 1 tells us that for any collocation method we can choose appropriate
M depending on N , an appropriate quadrature formula (3.2) and a suitable
value for the nonuniformity parameter r1 so that the convergence rate of the
fully discrete collocation method is of the same order as the convergence rate
of the collocation method.

Remark 1. If in the integral equation (1.1) the kernels Ki(t, s) ≡ 0 for i =
0, . . . , p where p < n, then the assertions of Theorem 1 are valid when we
replace the assumption 2) with the assumption that quadrature formula (3.2)
is exact for all polynomials of degree µ ≥ m+ n− p− 2.

5 Numerical Experiments

Let us consider the following boundary value problem:

u′′(t) =
√
t u(t) +

∫ 1

0

|t− s|−1/2u(s) ds+ f(t), t ∈ [0, 1], (5.1)

u(0) = u′(1) = 0. (5.2)

The forcing function f is selected such that

u(t) = t5/2 + (1− t)5/2 − 1− 5

2
t

is the exact solution. Actually, this is a problem of the form (1.1), (1.2) where
n = 2, b = 1, a0(t) =

√
t, a1 = 0, K0(t, s) = |t − s|−1/2, K1 = K2 = 0. It

is easy to check that the kernel K0 satisfies the conditions (1.4) with ν = 1/2
and arbitrary j ∈ N0.
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Problem (5.1), (5.2) is solved numerically by collocation method (2.2) and
by fully discrete collocation method (3.5). At that grid points

tj =
1

2

(2j

N

)r

, j = 0, 1, . . . ,
N

2
, tN/2+j = 1− tN/2−j, j = 1, . . . ,

N

2
, (5.3)

with even N , r = 2 and collocation points (2.1) with m = 2 and Gaussian
parameters η1 = (3 −

√
3)/6, η2 = 1 − η1 are used. Then from the results of

[8, 9, 10] we get for sufficiently large N the estimates

‖u− J0vN‖∞ ≤ cN−3, ‖u′ − J1vN‖∞ ≤ cN−3(1 + logN),

‖u′′ − v̂N‖∞ ≤ cN−3,
(5.4)

where vN ∈ S
(−1)
1 (ΠN ) is evaluated by (2.2), v̂N by (4.13) and JivN (i = 0, 1)

are computed by formula (1.5) with b = 1 and

(Jv)(t) = (J0v)(t) =

∫ t

0

(t− s)v(s) ds− t

∫ 1

0

v(s) ds.

In order to evaluate ṽN ∈ S
(−1)
1 (ΠN ) by (3.5) we use in addition to (5.3)

another graded grid (3.1) and quadrature formula (3.2) with two Gaussian
knots ξ1 = (3−

√
3)/6, ξ2 = 1−ξ1 and weights w1 = w2 = 1/2. This formula is

exact for all polynomials of order µ = 3. The differences of the approximations
evaluated by the exact and the fully discrete collocation methods are, according
to Theorem 1, for sufficiently large M and N bounded by

c ΩM (3, 1/2, r1) = c











M−r1/2 if 1 ≤ r1 < 6,

M−3(1 + logM) if r1 = 6,

M−3 if r1 > 6.

(5.5)

In Tab. 5.1 some results for r = 2, r1 = 6 and different values of the

parameters N and M are presented. The quantities ε
(i)
N , ε̃

(i)
N (i = 0, 1), ε

(2)
N

and ε̃
(2)
N are the approximate values of the norms ‖u(i)−JivN‖∞, ‖u(i)−JiṽN‖∞

(i = 0, 1), ‖u′′ − v̂N‖∞ and ‖u′′ − ˆ̃vN‖∞, respectively, calculated as follows:

ε
(i)
N = max

j=1,...,N
max

k=0,...,10
|u(i)(τjk)− (JivN )(τjk)| , i = 0, 1,

ε̃
(i)
N = max

j=1,...,N
max

k=0,...,10
|u(i)(τjk)− (JiṽN )(τjk)| , i = 0, 1,

ε
(2)
N = max

j=1,...,N
max

k=0,...,10
|u′′(τjk)− v̂N (τjk)| ,

ε̃
(2)
N = max

j=1,...,N
max

k=0,...,10
|u′′(τjk)− ˆ̃vN (τjk)| ,

where

τjk = tj−1 +
k

10
(tj − tj−1), k = 0, . . . , 10, j = 1, . . . , N,

with the grid points {tj}, defined by the formula (5.3). In Tab. 5.1 we also
present the ratios

̺
(i)
N =

ε
(i)
N/2

ε
(i)
N

, ˜̺
(i)
N =

ε̃
(i)
N/2

ε̃
(i)
N

, i = 0, 1, 2,
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Table 5.1. Results for r = 2, r1 = 6, m = m1 = 2, η1 = ξ1 =
3−

√
3

6
, η2 = ξ2 = 1− η1,

w1 = w2 =
1
2
.

M = N M = 2N M = 4N M = 8N

N ε
(0)
N

̺
(0)
N

ε̃
(0)
N

˜̺
(0)
N

ε̃
(0)
N

˜̺
(0)
N

ε̃
(0)
N

˜̺
(0)
N

ε̃
(0)
N

˜̺
(0)
N

8 1.4E−4 7.2 9.9E−3 5.6 1.6E−3 6.8 3.4E−4 7.4 1.7E−4 7.3
16 1.8E−5 7.7 1.5E−3 6.7 2.2E−4 7.4 4.4E−5 7.7 2.1E−5 8.0
32 2.3E−6 7.9 2.0E−4 7.4 2.8E−5 7.7 4.9E−6 9.0 2.6E−6 7.9
64 2.9E−7 8.0 2.6E−5 7.7 2.9E−6 9.7 6.2E−7 8.0 3.1E−7 8.4

N ε
(1)
N

̺
(1)
N

ε̃
(1)
N

˜̺
(1)
N

ε̃
(1)
N

˜̺
(1)
N

ε̃
(1)
N

˜̺
(1)
N

ε̃
(1)
N

˜̺
(1)
N

8 6.7E−4 7.1 1.6E−2 5.6 2.6E−3 6.6 8.3E−4 6.6 6.9E−4 7.0
16 9.0E−5 7.4 2.3E−3 6.8 3.6E−4 7.4 1.2E−4 7.2 9.2E−5 7.5
32 1.2E−5 7.6 3.1E−4 7.4 4.6E−5 7.7 1.4E−5 8.0 1.2E−5 7.6
64 1.5E−6 7.8 4.0E−5 7.7 5.0E−6 9.2 1.9E−6 7.7 1.5E−6 7.9

N ε
(2)
N

̺
(2)
N

ε̃
(2)
N

˜̺
(2)
N

ε̃
(2)
N

˜̺
(2)
N

ε̃
(2)
N

˜̺
(2)
N

ε̃
(2)
N

˜̺
(2)
N

8 3.2E−4 6.9 2.5E−2 6.4 3.6E−3 6.8 2.7E−4 8.8 2.8E−4 7.0
16 4.2E−5 7.6 3.8E−3 6.6 4.9E−4 7.3 3.2E−5 8.3 3.7E−5 7.5
32 5.3E−6 7.8 5.2E−4 7.3 6.6E−5 7.4 4.3E−6 7.6 4.6E−6 8.2
64 6.7E−7 7.9 7.0E−5 7.4 6.4E−6 10.3 8.1E−7 5.3 7.4E−7 6.2

characterizing the observed convergence rate. From (5.4), (4.11), (4.12) and
(5.5) we obtain for r = 2, r1 = 6 and for sufficiently large N and M = γ N
with a positive constant γ the estimates

ε̃
(i)
N ≤ cN−3(1 + logN), i = 0, 1, 2.

The corresponding ratios should be equal ˆ̺
(i)
N ≈ 8 (i = 0, 1, 2).

The results in Tab. 5.1 are calculated using the second expression of B̃0w
in formula (3.3). Although the kernel K0 in this example satisfies estimates
(1.4) with ν = 1/2 > 0 and it is not bounded at t = s, we can also use the
first expression of B̃0w in (3.3) (since 0 and 1 are not among the knots of the
quadrature formula). This version of the method converges nearly with the
same rate although the absolute values of the errors are somewhat smaller.

The numerical results presented in Tab. 5.1 show that in general the derived
theoretical error estimates express the actual convergence rate of the collocation
method and the fully discrete collocation method well enough. We note, that
a good choice of M is M = 2N .
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