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Abstract. The paper examines a radiometric calibration method used at the Finnish Geodetic Institute 
(FGI). The brightness calibration targets and calibration scheme of airborne laser scanner intensity data is obser-
ved. For calibrating laser scanner intensity data, FGI has developed a system that contains portable brightness tar-
gets (tarps) with nominal reflectance from 5% to 70%. Also commercially available gravels and sands were tested 
for the use of calibration. A laboratory system was set up to measure intensity values under controlled conditions. 
The paper introduces a concept of calibrating ALS intensity data developed at FGI.
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1. Introduction

ALS is a remote sensing system that uses an active sensor 
with monochromatic laser. This technique is commonly 
used for measuring surface topography and characterizes 
different 3D objects (Kraus and Pfeifer 1998; Wehr and 
Lohr 1999; Haala and Brenner 1999; Wever and Linden-
berger 1999; Hyypä et al. 2001; Rivas et al. 2006). It is ba-
sed on laser (LIDAR) range measurements between the 
aircraft and the observed object. Precise orientation is 
achieved combining GPS (Global Positioning System) and 
IMU (Inertial Measurement Unit). The final product is a 
point cloud (x, y and z) representing the coordinates of 
the reflecting object. Also intensity (I) value is collected 
for each point. Even though intensity values are recorded, 
they are rarely used, e.g. as predictor in object classifica-
tion (i.e. tree species (Holmgren and Persson 2004) or 
for matching laser scanner data with aerial images. There 
has been no systematic calibration method developed or 
presented. However, the usage of laser scanner intensi-
ty values have recently become a topic of interest (Lutz 
et al. 2003; Moffiet et al. 2005; Kaasalainen et al. 2005) 
and calibration methods are currently being called for. 

There are a number of applications where brigh-
tness values with topographic information would subs-
tantially increase information about the target. In some 
cases, brightness values could be the major or the only 
information source from the observed area. Measure-
ments may also be difficult to obtain (e.g. in glaciers) or 
the resolution of satellite imagery may not be sufficient. 

Also active remote sensing system brightness measure-
ments are less dependent on weather conditions.

This paper presents a method for ALS intensity data 
calibration developed by FGI. Using laboratory measu-
rements and brightness targets laid out during the flight 
campaign, intensity values can be corrected and used for 
processing laser data.

2. Physics of ALS Calibration

The recorded intensity is related to the received power 
that can be given in form (Wagner et al. 2006 ):
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where Pr and Pt are received and transmitted power, 
respectively. Dr is the receiver aperture size, R is the ran-
ge, βt is beam divergence, Ω corresponds to the bidirec-
tional properties of scattering, ρ is the reflectivity of the 
target surface and As is the receiving area of the scatterer. 
The recorded intensity is proportional to R2 for homo-
genous targets filling the full footprint, to R3 for linear 
objects (e.g. wire) and to R4 for individual large scatterers 
(Ahokas et al. 2006). 

Atmospheric conditions also affect intensity values. 
Then, the real received power would be (Ahokas et al. 
2006):
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where T is atmospheric transmittance. For T value, FGI 
has used the program called MODTRAN4. For simula-
tion, correct wavelength, atmospheric model, flying alti-
tude, visibility and path length should be selected. The 
content of different gases and moisture mainly affect in-
tensity values. Moist air particles are bigger and diffuse 
laser light which means that the received power of the 
single shot reduces which has an effect on the range and 
intensity values. 

The laser beam does not hit the ground only at the 
nadir point. The angle between airplane normal and la-
ser beam is called the incidence angle. The greater is the 
incidence angle, the larger effect it has on the range and 
intensity values. For the effect of the incidence angle,  
intensity values were multiplied by 1/cos α, where α is 
the incidence angle. 

3. Laboratory Measurements
To get exact backscattering properties for tarps and com-
mercially available gravels and sand, laboratory measure-
ments were carried out. The picture of laboratory setup is 
shown in Fig. 1. 

Fig. 1. Setup of laboratory measurements  
(Kaasalainen et al. 2008a)

The intensities of the collected samples were me-
asured employing a laboratory instrument and a refe-
rence plate calibrated with 99% Spectralon (Labsphere 
Inc.). Similar measurement geometry to the laser scan-
ner was accomplished using a beam splitter (see Fig. 1). 
The backscattered laser beam was observed through the 
beam splitter by a charge-coupled device (CCD) came-
ra and intensities can be acquired from the CCD image. 
A usual wavelength of ALS measurements is 1064 nm. 
Thus, a 1064 nm continuous-wave neodymium-yttrium 
aluminum garnet (Nd:YAG) laser of 10 mW output po-
wer was used. Because the laser scanner mostly measu-
res with non-polarized lasers, the linear polarization of 
Nd:YAG was scrambled with a quarter-wave plate placed 
in front of the source (Kaasalainen et al. 2008).

The sample was placed on a rotating plate to smooth 
out laser speckle effect and also to cover a larger sample 
area when the laser spot moved along the rotating surfa-
ce. Speckle effect was also reduced by averaging over se-
veral exposures: five exposures are taken, 10 seconds for 
every exposure (Kaasalainen et al. 2005).

4. Brightness Calibration

4.1. Brightness Tarps
The demand for targets large enough for airborne me-
asurements have become evident after small-size tar-
gets were tested in aerial camera imaging. The material 
for such targets should be strong enough to endure hard 
field conditions over several years of occasional use. The 
brightness targets that are used in FGI were manufac-
tured by Suojasauma Oy in 2000. The size of one target 
is 5×5 m. They are portable and can be arranged in a 
straight line on a test field (see Fig. 2 for more detail).

Fig. 2. Brightness targets in Espoonlahti, Dec 2006 
(Kaasalainen et al. 2007)

Eight targets, for which reflectance was optimized at 
a wavelength range of 400-800 nm, were manufactured 
(5%, 10%, 20%, 25%, 30%, 45%, 50% and 70%). Becau-
se reflectance values given by the manufacturer were ap-
proximate, laboratory calibration was crucial. The targets 
are made of polyester 1100 dtex with polyvinyl chloride 
(pvc) coating. They were coated with titanium dioxide 
and carbon black paint mixing pigment. A delustrant 
agent was added to the paint to get the mat surface and 
to decrease non-Lambertian reflectance effect. Moreover, 
the dirt attaches to the mat surface more easily and the 
tarps have to be cleaned before every campaign (Kaasa-
lainen et al. 2008a).

There has been a study in FGI on how the tarps can 
be used in ALS intensity data calibration. Test flights in 
Sjökulla were carried out using Optech ALTM 3100 laser 
scanner. Flying heights were 200 m, 1000 m and 3000 m 
above the ground level. During these flights, the above 
mentioned tarps were used (eight targets with nominal 
reflectance from 5% to 70%). Radiometric calibration 
was carried out according to the following scheme: (i) 
intensities from various altitudes were assumed to follow 
(range) R2 relationship; (ii) if incidence angle is > 20°, it 
has a significant effect on intensity values and has to be 
corrected (Kukko et al. 2008); (iii) the transmitted power 
was assumed to be changed according to Chasmer et al. 
(2006); (iv) the effect of atmospheric attenuation was ne-
glected in the preprocessing phase.
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Scaled intensity values with selected reference 
height were calculated (Ahokas et al. 2006):
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where j is strip number, Ij is intensity in strip j, Rref is re-
ference distance, Rj is distance in strip j, ETref is the trans-
mitted reference pulse energy and ETj is the transmitted 
pulse energy for strip j (Ahokas et al. 2006).

Following the made corrections, intensity values 
were directly relative to target reflectance from all altitu-
des. An effect on fading in intensity corresponds to the 
typical variation of about 10% with the applied reference 
targets from 200 m altitude. Flying heights of 200 m and 
1000 m are suitable for intensity calibration using artifi-
cial or natural test targets due to the size of the calibra-
tor. 0.3 mrad beam divergence gives a footprint of 90 cm 
which is large for practical calibration. 3000 m flight alti-
tude had no signals recorded with the reflectance of less 
or equal to 10% (Ahokas et al. 2006).

The study showed that intensity values needed to be 
corrected for: (i) range; (ii) incidence angle (>20°); (iii) 
atmospheric transmittance; (iv) atmospheric attenuation 
using dark object addition and (v) transmitted power.

The calibration of intensity data makes the usage 
on intensity values more reliable. The values are strongly 
dependant on range as well as on PRF. Variation in PRF 
changes the transmitted values, which also has an influ-
ence on intensity.

4.2. Commercially Available Reference Targets
There have been studies done on how commercially avai-
lable samples would work. Two campaigns have been 
organized where commercial samples have been used. 
They took place in Espoonlahti, Dec. 2006 and Nuuksio, 
Jul. 2007. Fig. 3 shows the setup of gravels in Nuuksio 
and Espoonlahti.

Fig. 3. Gravel setup in Nuuksio, Jul. 2007. Clockwise from 
top left: crushed redbrick (C Brick), sandblasting sand 

(Sand01), black gabbro (Gabbro), crushed LECA (LECA), 
and sandblasting sand (Sand05). Right: gravel samples in 

Espoonlahti, Dec. 2007 campaign, from top downward: Gravel, 
Qartz, Diabase and LECA (Kaasalainen et al. 2008b)

The first set of gravel was measured in Espoon-
lahti with TopEyeII (see Fig. 3 and Table 1). The results 
showed a poor repeatability (except for LECA) between  
measurements. An improved set of gravels was chosen for 
the Nuuksio flight (see Fig. 3 and Table 1). Leica ALS50 
laser scanner was used. The results showed somewhat 
better agreement, especially between 1064 nm Nd:YAG 
and Leica ALS50 results (Kaasalainen et al. 2008b).

The artificial gravel samples were measured with 
FARO (785 nm) terrestrial laser scanner and under la-
boratory conditions with Nd:YAG 1064 nm laser. The re-
sults are summarized in Table. 

Table. Measurements from Espoonlahti and Nuuksio, compared 
with laboratory measurements (FARO TLS and Nd:YAG) 

Sample Campaign ALS FARO Nd:YAG(0°)
LECA Espoonlahti 0.40 0.42 0.52
Gravel Espoonlahti 1.0 1.0 1.0
Diabase Espoonlahti 0.67 0.59 1.45
Quartz Espoonlahti 1.15 1.59 1.36
LECA Nuuksio 0.36 0.47 0.40
Gabbro Nuuksio 0.30 0.38 0.45
C Brick Nuuksio 2.16 1.12 1.91
Sand05 Nuuksio 0.75 1.02 0.70
Sand01 Nuuksio 1.0 1.0 1.0
Bunker Nuuksio 0.93 0.99 0.74

Espoonlahti measurements are relative to (sanding) 
gravel and Nuuksio measurements are relative to Sand01 
sample. The wavelength difference between FARO and 
other measurement has not been corrected, which causes 
differences between FARO and other instruments. 

The samples in Table are as follows: Light Expanded 
Clay Aggregate consisting of the lightweight particles of 
burn clay (LECA); coarse gravel used for sanding roads 
(Gravel); black diabase (Diabase); yellow quartz (Qu-
artz); black gabbro (Gabbro); crushed redbrick (C Brick); 
sandblasting sand with grain size 0.1–0.6 mm (Sand01) 
and grain size with 0.5–1.2 mm (Sand05); bunker sand 
from golf course (Bunker).

The results showed that commercially available 
sands and gravels could be used in laser scanner inten-
sity calibration but control over the target properties is 
essential for laboratory validation to be feasible and me-
aningful. Detailed information on, e.g. target footprint 
size and point density is also important. Besides, the ob-
tained results indicate that the relative calibration met-
hod is possible in comparing reflectance values measured 
during different campaigns. For more detailed informati-
on see (Kaasalainen et al. 2008b).

5. Conclusions

The paper introduced a concept of ALS intensity data ca-
libration developed at FGI. Intensity values need to be 
corrected with range, incidence angle, atmosphere condi-
tions and transmitted power. Reference targets were de-
veloped in FGI and laid out during the flight campaigns. 
The results were promising and intensity values were di-
rectly relative to target reflectance from all altitudes. Also 
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a test with commercially available sands and gravels was 
carried out. They can be used in the calibration process; 
however, there must be control over target properties and 
information about target footprint size and point density is 
also important. 
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