ce

Global Observables for Pb+Pb Collision from the ATLAS Experiment

Adam Trzupek for the ATLAS Collaboration Institute of Nuclear Physics PAN, Kraków, POLAND

The Eighteenth Particle and Nuclei International Conference PANIC 2008, 9-14 November 2008, Eilat ISRAEL

Global Observables for Pb+Pb at LHC Energies

RHIC	LHC
(Au+Au)	(Pb+Pb)
√s _{nn} : <i>200 GeV</i>	5500 GeV

- Measurements of $dN_{ch}/d\eta$, $dE_T/d\eta$, elliptic flow.
 - > Dynamics of hot and dense medium (perfect fluid)
 - Properties of the initial state (energy/gluon density, ...)
 - > Test of model predictions (Color Glass Condensate, hydrodynamics, ...)
- Focus on Day-1 of Pb+Pb physics at LHC
 Minimum bias pp collisions (2009) base line for Pb+Pb

The ATLAS Central Detector

Inner tracking, EM and hadronic calorimeters, muon spectrometers

First beam event in ATLAS (2008-09-10)

Cosmic track in ID (SCT + Pixel):

ATLAS

A. Trzupek

Acceptance of ATLAS

(2π Azimuthal Acceptance)

High potential to study global variables in Pb+Pb collisions

Charged Particle Multiplicity

dN_{ch}/dη in Pb+Pb at LHC energy

N_{part} - number of participating/wounded nucleons in AA collision

Day-one measurement:

constrain model predictions

ATLAS Inner Detector

 $dN_{ch}/d\eta$ - measurements of position of hits in ID

Detector hit occupancies: (Pb+Pb, 5.5 TeV, b < 1 fm): Pixels < 2% SCT < 20%

ATLAS

Multiplicity from Si Hit Counting

ATLAS

A. Trzupek

Charged Multiplicity from Tracklets

Tracklet method provides good estimate of event-by-event multiplicity

Collision Centrality

ATLAS calorimeters:

- electromagnetic (green)
- hadronic(red)
- forward (orange)

$$\mathsf{E}_{\mathsf{Tot}} = \sum_{\mathsf{cells}} \mathsf{E}_{\mathsf{Tot}}$$

$$\begin{split} & \textbf{E}_{tot} \text{ is monotonically} \\ & \textbf{correlated with collision} \\ & \textbf{parameters} \left(\textbf{N}_{coll} \,, \, \textbf{N}_{part} , \, \textbf{b} \right) \end{split}$$

Collision Centrality

HIJING, Pb+Pb, 5.5 TeV, Minimum Bias, 20 x 5% centrality bins

Precise centrality estimation in the ATLAS detector

E_T Measurement in Pb+Pb Collisions

Azimutal Anisotropy of Produced Particles

- Pressure gradients lead to azimuthal anisotropy
- Elliptic flow is the second harmonic in the Fourier expansion of azimuthal particle distribution

 $dN/d(\phi - \Psi_0) = N_0 (1 + 2v_1 \cos(\phi - \Psi_0) + 2v_2 \cos(2(\phi - \Psi_0)) + \dots)$

Elliptic Flow Reconstruction in ATLAS

HIJING simulations with input flow $v_2=0.03/0.05/0.1$

$v_2(\Psi)$ - pixel clusters and cells

$v_2(\Psi)$ - tracks

Summary

- High potential of the ATLAS experiment to study
 global variables for Pb+Pb collisions
 - Large acceptance and fine granularity of tracking and calorimeter systems
- Different methods are tested for measurements:
 - Particles multiplicity
 - Transverse energy distribution
 - Elliptic flow
 - Collision centrality

Global Variables are Day-1 Physics of LHC Pb+Pb Collisions

Thank you!

ATLAS Tracking in Pb+Pb collisions

Challenges for Pb+Pb environment:

- Suppress high fake track rates for $|\eta| > 2$
- Enhance efficiency at low-p_T (< 0.5 GeV/c)