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The ability to identify jets containingb-hadrons is important for the high-pT physics program of

a general-purpose experiment at the LHC such as ATLAS. This is in particular useful to select

very pure top samples, to search and/or study Standard Modelor supersymmetric Higgs bosons

which couple preferably to heavy objects or are produced in association with heavy quarks. After

a review of the algorithms used to identifyb-jets, their anticipated performance is discussed as

well as the impact of various critical ingredients such as the residual misalignments in the tracker.

The prospects to measure theb-tagging performance in the first few hundreds pb−1 of data with

di-jet events andtt̄ events are then also discussed.
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1. Introduction

The identification ofb-quark jets (b-jets) is an important task at a multi-purpose experiment
like ATLAS, where many interesting processes giving rise tob-jets in the final state will be pro-
duced in the collision of the 7 TeV energy proton beams delivered by the LHCaccelerator. An
efficient and accurate identification of theb-quark jets will help to differentiate between the inter-
esting physics and the backgrounds, the latter often being dominated byu-, d- ands-quark jets.
Examples of such interesting processes are: the production oftt̄ pairs, Higgs boson decays into a
pair of b-quarks (e.g.pp→ tt̄H with H → bb̄), Higgs associated production in supersymmetric
models (pp→ bbH/A with H,A→ τ+τ−), processes involving charged Higgs bosons (H+

→ tb̄
or t → H+b) and some exotic scenarios, like the decay of a heavy new particle intobb̄. Two
main signatures are available to separateb-jets from jets generated by the fragmentation of lighter
quarks (u,d,s): a spatial signature, relying on the lifetime ofb-hadrons (cτ ≈ 0.5 mm), whose
decay products form a secondary vertex which is typically displaced with respect to the interaction
point by several mm, and a lepton based signature, relying on the semileptonicdecay of ab-hadron
or subsequentc-hadron into a muon or electron.

The spatial signature is exploited by the following two classes of algorithms:Impact Param-
eter based algorithms, relying on the (in)compatibility of the individual tracks in a jetwith the
primary interaction vertex of the event andSecondary vertexbased algorithms, explicitly requir-
ing the determination of ab-hadron decay vertex.

Based on the jet direction, the reconstructed charged particles tracks are associated with the jet
to be tagged if∆R(Track,Jet) < 0.4. The track hit resolution in the innermost pixel layers – in the
barrel region≈ 10µm in rφ and≈ 115µm in z – determines the impact parameter resolution for
high pT tracks. A degradation is expected for lowerpT tracks due to effect of multiple scattering
in the detector material. The primary vertex resolution is≈ 15µm in the transverse plane and
≈ 50µm in the longitudinal plane, depending on the topology of the event [1]. The identification of
the signal vertex in the presence of additional overlaid interactions due to pile-up events is crucial
for b-tagging algorithms.

2. Impact parameter basedB-tagging algorithms

The impact parameter significance of all tracks,Srφ = d0
σ(d0)

(in therφ plane) andSz = z0
σ(z0)

(in
thez-coordinate), are used as input. For each track a sign for the impact parameter is determined,
according to whether the track is compatible with having its origin in a vertex in front or behind
the primary vertex (with respect to the jet direction).

The distribution of signed impact parameters in the transverse plane is shownin Fig. 1 sepa-
rately forb-, c- and light-jets. These distributions define the probability density functions (PDFs)
for single tracks. These are then combined into a single discriminator, thejet weight, using the
likelihood ratio formalism:WIP

JET = ∑trackslog
(

PDFb(Srφ )
PDFlight(Srφ )

)

. To combine the transverse and lon-

gitudinal impact parameters information two-dimentionalPDFs (PDF(Sz,Srφ )) are used, taking at
the same time their correlations correctly into account (the corresponding jetweight is shown in
Fig. 2).
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Figure 1: Signed transverse impact parameter sig-
nificance distribution.
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Figure 2: Jet weight distribution based on both
transverse and longitudinal impact parameters.

Simpler algorithms, not relying on any assumption of the impact parameter significance dis-
tribution in b-jets are also available, such as simply counting the number of tracks with impact
parameter significance above a predefined threshold or evaluating the probability for the tracks in
a jet to originate from a light-jet. These will be particularly important for the commissioning of
b-tagging algorithms during the early data taking phase of ATLAS.

3. Secondary vertex basedB-tagging algorithms

Two strategies to detect a secondary decay vertex inb-jets are implemented in ATLAS: a fully
inclusiveapproach relying on the reconstruction of a single displaced vertex and atopological
approach which attempts to explicitly reconstruct thePV → B→ D decay chain.

3.1 Inclusive secondary vertex reconstruction

First the displaced tracks to be used in the secondary vertex fit are identified, by considering
all possible displaced two-track vertices. Tracks corresponding to vertices compatible withKs, Λ
decays, conversions or hadronic interactions are removed. The tracks surviving this selection are
used as an input for the vertex fit (as implemented in theVKalVrt package [4]): incompatible tracks
are iteratively removed from the fit. A likelihood function is defined forb- and light-jets, based on
the fraction of jets with a reconstructed secondary vertex, the invariant mass of the charged parti-
cles assigned to the secondary vertex, the fraction of charged particlesenergy in the reconstructed
secondary vertex with respect to all charged particles in the jet and the number of good two-track
vertices. Ajet weightis then defined using the likelihood ratio of theb- and light-jet hypotheses,
WSV

JET = log
(

Lb
Ll

)

. A combined secondary vertex and impact parameter basedb-tagging algorithm

is then easily formed by adding their respective jet weights:WJET = WIP
JET +WSV

JET.
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3.2 Topological reconstruction of thePV → B→ D decay chain

The fragmentation of ab-quark results in a decay chain composed of a secondary vertex from
the weakly decayingb-hadron and typically one or more tertiary vertices fromc-hadron decays.
These vertices are very difficult to separate efficiently. In this algorithm, the assumption is made
that the transverse momentum of thec-hadron with respect to theb-hadron flight direction is neg-
ligible with respect to the overallc-hadron momentum, so that the primary vertex and the decay
vertices of theb- andc-hadrons in the decay chain lie on the same line. A vertexing algorithm
based on this principle (first adopted by SLD in theghost track algorithm[2]), has been imple-
mented inJetFitter[5] using an original extension of the Kalman Filter formalism commonly used
for vertexing [6]: an arbitrary number of vertices with one or more trackscan be fitted efficiently,
constraining them to lie on a commonb-hadron flight axis whose origin is the primary vertex.

A first fit is performed initializing the flight axis with the jet direction and considering all tracks
in the jet to form single-track vertices along this axis. A clustering procedure is then performed,
merging the vertices two by two in decreasing order of probability, until a stable configuration is
reached. Consideringb-jets simulated intt̄ andtt̄ j j Monte Carlo events the topological approach
obtains asingle multi-track vertex in ≈ 50% ofb-jets, asingle multi-track vertex plus an ad-
ditional single-track vertex from a second vertex in≈ 16% of cases,two multi-track vertices in
≈ 5% of cases andtwo single-track verticesin ≈ 5% of cases.

A likelihood function and a jet weight is then defined analogously to the fullyinclusive ap-
proach, but including the additional information about the identified decay chain topology, and
again combined with the impact parameter only based discriminator.

4. B-tagging performance of spatial algorithms

Theb-tagging performance was tested on a sample of fully simulatedtt̄ andtt̄ j j Monte Carlo
events. Theb-tagging efficiency is defined as the fraction of identifiedb-jets, while theb-tagging re-
jections (ru andrc) are defined as the inverse of the fraction of light- or charm-quark jets mistagged
asb-jets. The light-quark rejection as a function of theb-tagging efficiency is shown in Fig. 3
for variousb-tagging algorithms, together with a table showing the light-quark and charm-quark
rejections at a fixedb-tagging efficiency of 50% and 60% for the three most important algorithms.

An ideal geometry and a pixel single hit inefficiency of 5% were assumed in the simulation
used for this study. A degradation of theb-tagging performance is expected due to residual mis-
alignment. Recent studies show that, after a realistic alignment procedure, starting from a randomly
misaligned detector with misalignments of the order of 10−100µm as expected from fabrication
precision and survey measurements, a degradation of less than 25% in the light-quark rejection is
expected. Further studies are ongoing, in particular to control global deformations which are only
weakly constrained by the alignment procedure.

5. Lepton basedb-jet identification

The identification ofb-jets based on a muon or electron from the semileptonic decay of the
b− or c-hadron from theb → c decay chain is limited by the semileptonic branching fraction
(BR(b→ lX)≈ 11% andBR(b→ c→ lX)≈ 10% for bothl =muon or electron). The lepton based
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light-jet rejection

εb = 50% 232±2 456±4 635±7
εb = 60% 67±0 154±1 189±1

c-jet rejection

εb = 50% 10.6±0.0 12.4±0.1 12.3±0.1
εb = 60% 6.5±0.0 7.4±0.0 7.4±0.0

Figure 3: b-tagging performance as a function ofb-tagging efficiency (left) and for fixed values of 50 and
60%b-tagging efficiency (right), for various algorithms:JetProb(based only on the resolution function for
prompt tracks), IP2D (based on transverse impact parameters), IP3D (based on transverse+ longitudinal
impact parameters), IP3D+SV1 (based on one single inclusive secondary vertex, combined with IP3D) and
JetFitter+IP3D (based on the reconstruction of thePV → b→ c decay chain, combined with IP3D).

signature is however nearly uncorrelated with the spatial signature, whichmakes the lepton based
b-tagging algorithms particularly useful to calibrate the spatial algorithms directlyon data. After
a lepton candidate in a jet has been identified as muon or electron, the transverse momentum of
the lepton with respect to the jet flight axis (pT,rel) is used in order to further separate the signal
leptons from fakes or from real leptons in light-quark jets. While the muon signature is very clean,
so that a light-quark rejection of≈ 300 can be reached at ab-tagging efficiency of 10%, it is much
more challenging to identify electrons in a dense jet environment, so that a rejection of≈ 100 can
be reached at ab-tagging efficiency of 7%1.

6. Measurement ofB-tagging performance on data

A lot of effort has been put into trying to ensure that the ATLAS Monte Carlo simulations
will resemble the behaviour of the ATLAS Detector with real data as closely aspossible. However
the realb-tagging performance will need to be measured on data itself. Two main strategies have
been set up for this. The first is based on the use of two uncorrelatedb-tagging algorithms, relying
one on the lepton, the other on the spatial signature and on the selection of a sample of QCD dijet
events where thebb̄ component is enriched through the online selection of a jet with a contained
muon. The second method relies on the kinematic selection oftt̄ events in order to obtain a very
pureb-jet sample.

6.1 Measuring performance in QCD dijet events

The so calledSystem 8method, first used at the DØ experiment, uses two samples with differ-
ent flavour composition: the first is dijet events with aJet+Muonsignature, the second requires an
additional jet on the opposite side to be identified asb-jet by an impact parameter based algorithm.

1The ATLAS electron based tagging algorithm includes the lepton impact parameter information, while the muon
based one doesn’t.
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Two uncorrelatedb-tagging algorithms are used, corresponding to four possible combinations: no
tag, µ tag, spatialtag and spatial+µ tag. Applying these four combinations to the two samples
already mentioned, a system of eight equations with eight unknowns can beformulated. The so-
lution of the system yields the flavour composition of the two samples and the tagging efficiencies
for the different flavours. An alternative method, based on the determination of the flavour sam-
ple composition of the selected jets in dijet events applying templates ofpT,rel for b-, charm- and
light-jets before and afterspatial b-tagging is applied, has also been studied [3].

Both theSystem 8and thepT,rel methods are expected to be dominated by systematic uncer-
tainties already after 50 pb−1 of collected data with a dedicated trigger. ApT andη dependent
measurement of theb-tagging efficiency with a precision of 6% up to ab-jet transverse momentum
of 80 GeV seems to be feasible, with larger errors up to 150 GeV. Further studies are ongoing to
evaluate the systematic uncertainty on the Monte Carlo based correction whichis needed to account
for the bias introduced by requiring theJet+Muonsignature and extend the method to higher jet
energies with more data.

6.2 Measuring performance intt̄ events

Three methods have been proposed to measure theb-tagging efficiency intt̄ events [3]. The
method based on the topological selection of one leptonic and one hadronic top will be briefly
described here. After a basic preselection, theb-jet stemming from the hadronic top is required
to pass ab-jet identification cut, while the leptonic one is left unbiased. Based on the leptonic
and hadronic top mass, a signal region is defined. The background turns out to be almost purely
combinatorial, originating fromtt̄ itself: a signal free region is defined using the mass sidebands
and requiring theb-jet from the leptonic top not to pass a very looseb-jet identification cut. The
distribution of theb-jet weight (i.e. of the discriminating variable) for theb-jet from the leptonic
top is then obtained after subtracting the background on a statistical basis. The knowledge of the
b-jet weight can be translated directly into ab-tagging efficiency for an arbitrary cut value.

This method permits to obtain a measurement of theb-jet efficiency in bins of jetpT . With
200 pb−1 of data and for jets withpT > 40 GeV, a relative precision of±7.7% (stat.) and±3.2%
(syst.) can be achieved.

7. Outlook

A lot of effort is being spent to further optimize the performance of theb-tagging algorithms.
An area which has lately attracted more attention is the specific optimization of the charm-quark
rejection. Charm-quark jets are more difficult to reject, because they fragment intoc-hadrons,
which also have a detectable lifetime. However, since aPV → B → D decay chain is expected
out of the hadronization of ab-quark and typically only one decay vertex out of ac-quark, using
the topological reconstruction of thePV → B → D decay chain and using dedicatedPDFs for
charm-jets it is possible to enhance the charm-quark rejection, at the cost of a decreased light-
quark rejection. Preliminary results show that at 50%b-tagging efficiency an increase of up to
≈ 60% in charm-quark rejection is achievable, at the cost of a decrease in light-quark rejection of
up to≈ 65%. The optimal working point will clearly depend on the flavour compositionof the
background of the specific physics analysis of interest.
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8. Conclusions

The methods developed to identifyb-jets in ATLAS have been described. In terms of light-
quark rejection, at 60%b-tagging efficiency the performance achievable by various algorithms, in
order of expected commissioning, is≈ 30, relying only on the resolution function of prompt tracks,
then up to≈ 70, using the transverse+ longitudinal impact parameter based algorithm, and finally
≈ 150−190, using the most sophisticated secondary vertex based algorithms. Preliminary studies
show that the residual misalignement of the Inner Detector should degradethese numbers by less
than 25%. Methods have been established to measure theb-tagging efficiency on data to about 6%
accuracy with 100 pb−1 of data. Studies are ongoing to determine the mistagging rate on data, but
around 10% precision is expected from the Tevatron experience.
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