Nuclear Decommissioning, Waste Management, and Environmental Site Remediation

Dr C. R. BAYLISS CEng FIEE & Dr K. F. LANGLEY CChem MRSC

Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo

Contents

About the authors xiii Contributors xv Preface xvii Foreword xix

Fundamentals

Chapter 1 Setting the Scene 1

- 1-1 Introduction 1
- 1-2 The Evolution of the Current Organisational Arrangements in the UK 1
- 1-3 A European Perspective on Nuclear Power Generation 4
- 1-4 An International Perspective on Radioactive Waste Management 4
 - 1-4-1 Introduction 4
 - 1-4-2 General Nuclear Waste Classifications 6
 - 1-4-3 Nuclear Waste Disposal Concepts 7
 - 1-4-4 Management and Funding Arrangements 8
 - 1-4-5 Multinational Radioactive Waste Facilities 9
- International Regulation and Collaboration 9
 1-5-1 The International Atomic Energy Agency
 - (IAEA) 9 1-5-2 International Commission on Radiological
 - Protection (ICRP) 12
 - 1-5-3 The OECD Nuclear Energy Agency (OECD NEA) 12
 - 1-5-4 The European Commission 12
- 1-6 The Kyoto Protocol and OSPAR
 - (Oslo Paris Convention) 13
 - 1-6-1 The Kyoto Protocol 13

- 1-6-2 OSPAR (Oslo/Paris) Convention 14
- 1-7 Waste Production 16
- 1-8 Acronyms and Abbreviations 16
- 1-9 References 21

Chapter 2 Ionising Radiation and its Control 23

- 2-1 Introduction 23
- 2-2 The Properties of Radiation 23
- 2-3 Basic Concepts and Units 24
- 2-4 The Measurement of Radiation 25
- 2-5 The Biological Effects of Radiation 25
- 2-6 Radiological Protection Principles 27
 - 2-6-1 Introduction 27
 - 2-6-2 Justification 27
 - 2-6-3 Dose Limits for Protective Action 28
 - 2-6-4 Practices and Intervention 28
 - 2-6-5 Optimisation of Protection 29
 - 2-6-6 The Control of Occupational Exposure 29
 - 2-6-7 The Control of Medical Exposure 29
 - 2-6-8 The Control of Public Exposure 29
 - 2-6-9 Potential Exposures 29
- 2-7 Practical Advice on Radiation Protection Implementation 29
- 2-8 The Role of NRPB 30
- 2-9 Practical Advice on Principles for Solid Radioactive Waste Disposal 30
- 2-10 Exemption of Sources from Regulatory Controls 32
- 2-11 Chronic Exposures 32
- 2-12 Methods of Radiation Detection 32
- 2-13 Choosing Detection Equipment 34
- 2-14 Practical Aspects of Radiation Protection 35 2-14-1 Introduction 35

- 2-14-2 The Designation of Controlled and Supervised Areas 36
- 2-14-3 The Categorisation of Controlled Areas 37
- 2-14-4 Personal Protective Equipment 38
- 2-15 Summary 38
- 2-16 References 40

Decommissioning Chapter 3 Decommissioning — Introduction and Overview 41

- 3-1 Definition and Scope 41
- 3-2 Stages of Decommissioning 41
- 3-3 Drivers Determining Decommissioning Plans and Programs 42
- 3-4 Risk Versus Hazard 43
- 3-5 Contrasting Reactor Decommissioning With Other Facilities 43
- 3-6 Availability of Guidance and Reference Information 44
- 3-7 References 46

Chapter 4 Typical Government Policy on Decommissioning 47

- 4-1 Introduction 47
- 4-2 How and Why is Government Involved? 474-2-1 Historical 47
 - 4-2-2 Safety 47
 - 4-2-3 Regulatory Policy 47
 - 4-2-4 Security 47
 - 4-2-5 Decommissioning and Waste Management 48
 - 4-2-6 National Economic Benefits 48
 - 4-2-7 The Consequences of Failure 48
- 4-3 Some of the Key Drivers for Government 48
 - 4-3-1 The Costs Involved 48
 - 4-3-2 National and International Responsibilities 49
 - 4-3-3 Business Potential 49
- 4-4 Current Developments 50
 - 4-4-1 Structural Issues 50
 - 4-4-2 Skills Issues 50
 - 4-4-3 Regulatory Issues 50
 - 4-4-4 Waste Issues 50
- 4-5 Decommissioning Research Framework Programs of the European Community 51

- 4-6 The Challenges Ahead 52
- 4-7 References 52

Chapter 5 The Transition from Operations to Decommissioning 53

- 5-1 Introduction 53
- 5-2 Preparing for the Transition 53
- 5-3 Human Resource Issues 54
- 5-4 Information Requirements 54
- 5-5 Implementation Issues 55
- 5-6 Costs of Transition Activities 55

Chapter 6 Reactor Decommissioning — The Safestore Concept 57

- 6-1 Introduction 57
- 6-2 Decommissioning and Radioactivity 57
 6-2-1 Decommissioning Strategy and Option Selection 57
 - 6-2-2 Activation Inventory 57
 - 6-2-3 Worker Dose Modeling 57
 - 6-2-4 Radioactive Waste Minimisation Modeling 60
 - 6-2-5 Arguments Against Deferral 60
- 6-3 Decommissioning Activities 61
- 6-4 Paying for Decommissioning 62
- 6-5 References 67

Chapter 7 Decommissioning PIE and Other Facilities 69

- 7-1 Introduction 69
- 7-2 Key Issues to be Considered 69
- 7-3 Alpha and Gamma Radiation Working 69
- 7-4 Decommissioning Examples 71

Chapter 8 Preparation of Documentation for Decommissioning 77

- 8-1 Introduction 77
- 8-2 Decommissioning Plan and Program 77

- 8-3 Decommissioning Safety Case 77
- 8-4 Conventional Safety Documentation Requirements 78
- 8-5 Management Procedures and Quality Assurance 79
- 8-6 Examples of Typical Safety Documentation 80
 8-6-1 Materials Test Reactors to Stage 2
 Decommissioning 80
 - 8-6-2 Jason (Royal Naval College) Reactor to Stage 3 Decommissioning 81
 - 8-6-3 Site Environmental Remediation to Unrestricted Use 81

Chapter 9 Radiological Characterisation 83

- 9-1 Introduction 83
- 9-2 General Approach 83
- 9-3 Characterisation Plan 84
- 9-4 In Situ Measurements 84
- 9-5 Sampling and Analysis 85
- 9-6 Quality Assurance Requirements 87
- 9-7 Characterisation Report 88
- 9-8 Reference 88

Chapter 10 Decontamination Techniques 89

- 10-1 Introduction 89
- 10-2 Objectives and Constraints for Decontamination 89
- 10-3 Characteristics of Decontamination Techniques 90
 - 10-3-1 Nonattritive Cleaning 90

90

- 10-3-2 Chemical Decontamination
 - 10-3-3 Physical Attrition 91
- 10-4 Waste Minimisation and Treatment 92
- 10-5 Selecting a Decontamination Technique 94
- 10-6 Positive and Negative Experiences from Completed Projects 95
- 10-7 References 95

Chapter 11 Dismantling Techniques 99

- 11-1 Introduction 99
- 11-2 Cutting Techniques 99
 - 11-2-1 Mechanical Cutting 99

- 11-2-2 Thermal Cutting 102
 - 11-2-3 Other Methods 103
- 11-3 Remote Handling Techniques 104
- 11-4 Radiological Protection During Dismantling 105
 11-4-1 Contamination Containment 105
 11-4-2 Personal Protective Equipment 106
- 11-5 Case Study: WAGR Decommissioning 107
 - 11-5-1 Introduction 107
 - 11-5-2 Decommissioning Plan 107
 - 11-5-3 The Dismantling Campaigns 109
 - 11-5-4 Future Strategy 111

Project and Program Management

Chapter 12 Site Environmental Restoration Program Management 113

- 12-1 Introduction 113
- 12-2 The Framework for Environmental Restoration Program Management 113
- 12-3 The Strategic Plan 113
 - 12-3-1 Introduction 113
 - 12-3-2 A Strategic Planning System 114
 - 12-3-3 Managing the Care and Maintenance Process 115
 - 12-3-4 Program Risk Management 116
 - 12-3-5 Program and Project Prioritisation 118
- 12-4 The Integrated Site Restoration Plan 118
- 12-5 Making the Case for a Project to Proceed 119
- 12-6The Project Sanction Process11912-6-1Introduction11912-6-2Typical Sanction Paper Structure120
- 12-7 Principles for Carrying out Financial Appraisals 123
- 12-8 References 125

Chapter 13 Project Investment Appraisal and Contract Strategy 127

- 13-1 Introduction 127
- 13-2 Capital Investment 127
- 13-3 Project Identification 129
- 13-4 Appraisal Methods 129
 - 13-4-1 Rate of Return 129
 - 13-4-2 Payback 130
 - 13-4-3 Time Value of Money 130
 - 13-4-4 Discounted Cash Flow 131

- 13-5 Project Investment Examples 131
 - 13-5-1 NPV Example 131
 - 13-5-2 IRR Example 131
 - 13-5-3 NPV vs. IRR 132
 - 13-5-4 Project X, Other Problems, and Discussion 133
- 13-6 Modern Contract Strategy in the Nuclear Industry 134
 - 13-6-1 Introduction 134
 - 13-6-2 Modern Contract Selection Appropriate to Nuclear Decommissioning 135
 - 13-6-3 Types of Contract 136
- 13-7 Alternative Sources of Funds 138
 - 13-7-1 Introduction 138
 - 13-7-2 What is PFI? 138
 - 13-7-3 Fixed Price/Risk Premium and Value for Money 139
 - 13-7-4 Technical Viability and PFI Project Set-Up Costs 140
 - 13-7-5 The Staged Approach to PFI 140
- 13-8 References 140

Chapter 14 Hazard Reduction and Project Prioritisation 141

- 14-1 Introduction 141
- 14-2 Understanding Risk and Dose 141
- 14-3 Hazard Reduction 143
 - 14-3-1 Why is Hazard Reduction Important? 143
 - 14-3-2 How are Hazards Reduced? 143
 - 14-3-3 What Methods May be Used to Gauge Hazard Reduction? 143
- 14-4 Project Prioritisation 144
 - 14-4-1 Why Does One Need to Prioritise Projects? 144
 - 14-4-2 A Prioritisation Methodology 146
 - 14-4-3 The Model 146
- 14-5 Case Studies 146
 - 14-5-1 Hazard Reduction Over Time on Site X 146
 - 14-5-2 "My Project Is More Important Than Yours" : A Case for Project Prioritisation 150
- 14-6 References 150

Chapter 15 Decommissioning Cost Estimating 153

15-1 Introduction 153

- 15-2 Conventional Cost Estimating 153
- 15-3 Standardised Cost Listings 155
- 15-4 Parametric Cost Estimating 157
- 15-5 Reference 159

Waste Management

Chapter 16 Waste Management — Introduction and Overview 161

- 16-1 Requirements to Manage Radioactive Wastes 161
- 16-2 Characterisation and Segregation 162
- 16-3 Passive Safety 163
- 16-4 Classification of Wastes 163
 - 16-4-1 Introduction 163
 - 16-4-2 Exempt Materials 164
 - 16-4-3 Clean Materials Free Release 164
 - 16-4-4 Very Low Level Waste (VLLW) 164
 - 16-4-5 Low Level Waste (LLW) 165
 - 16-4-6 Intermediate Level Waste (ILW) 165
 - 16-4-7 High Level Waste (HLW) 165
- 16-5 Summary 165
- 16-6 Reference 166

Chapter 17 Waste Management Strategy 167

- 17-1 Introduction 167
- 17-2 Waste Management Strategy Requirements 167
 - 17-2-1 Regulations 167
 - 17-2-2 Consultation 167
 - 17-2-3 Completeness 167
 - 17-2-4 NII Requirements 167
 - 17-2-5 Environment Agencies' Requirements 168
 - 17-2-6 ILW Disposal Company (Nirex) Requirements 168
 - 17-2-7 LLW Disposal Company (BNFL, Drigg) Requirements 168
 - 17-2-8 Integration of the Strategy 168
 - 17-2-9 Costs 168
- 17-3 Elements of a Waste Management Strategy 169
 - 17-3-1 Waste Generation 169
 - 17-3-2 Interim Storage 169
 - 17-3-3 Retrieval 169
 - 17-3-4 Treatment 170
 - 17-3-5 Conditioning 170
 - 17-3-6 Storage 171
 - 17-3-7 Disposal 171

- 17-4 Strategic Planning 171

 17-4-1 Waste Inventory 171
 17-4-2 Evaluation of Treatment/Processing Options 171
 17-4-3 Reference Strategy 171

 17-5 Integration and Costing 171
 17-6 Review and Updating 172
 17-7 Fundamentals of Licensees' Strategies 172

 17-7 Fundamentals of Licensees' Strategies 172
 17-7-1 UKAEA 173
 17-7-2 BNFL 174
 17-7-3 British Energy (BE) 175
 17-7-4 Liabilities Management Authority (LMA) 175

 17-8 Summary 175
- 17-9 References 175

Chapter 18 Policy and Regulatory Aspects of Waste Management 177

- 18-1 Introduction 177
- 18-2 Nuclear Site Operations 177
 18-2-1 Liability and Compensation for Nuclear Damage 177
 18-2-0 Damage 177
 - 18-2-2 Operational Safety 177
- 18-3 Environmental Policy and Regulation 178
 - 18-3-1 Introduction 178
 - 18-3-2 Specific Regulations 178
 - 18-3-3 Assessment Terminology 186
 - 18-3-4 Assessment Criteria 187
- 18-4 Environmental Management System (EMS) 187
- 18-5 Organisational Framework 188
- 18-6 Tolerability of Risk 188
- 18-7 References 192

Chapter 19 Management of Low Level Wastes (LLW) 193

- 19-1 Introduction 193
- 19-2 Sources of LLW 193
 - 19-2-1 Introduction 193
 - 19-2-2 Fuel Manufacture 193
 - 19-2-3 Nuclear Power Generation and Decommissioning 193
 - 19-2-4 Fuel Reprocessing 194
 - 19-2-5 Other Sources 195
- 19-3 LLW Disposal 195
 - 19-3-1 Regulatory Controls 195
 - 19-3-2 Waste Control Systems 196

- 19-4 LLW Disposal Practices 198
- 19-5 LLW Conditioning Facilities 198
- 19-6 Reference 200

Chapter 20 Management of Intermediate Level Wastes (ILW) 201

- 20-1 Introduction 201
- 20-2 Regulatory Requirements for ILW 201
- 20-3 Sources and Processing Requirements 202
- 20-4 Standard Waste Packages and Specifications 203
 20-4-1 Waste Package Specification 203
 20-4-2 Storage 205
 20-4-3 Transport 205
 20-4-4 Disposal 208
 20-5 ILW Conditions for Acceptance for Interim Storage and/or Eventual Disposal 209
- 20-6 Case Study --- Waste Packaging Exercise 211
 - 20-6-1 Introduction 211
 - 20-6-2 Waste Descriptions 212
 - 20-6-3 Solid Waste Packaging Concept 213
 - 20-6-4 Sludge Waste Packaging Concept 213
 - 20-6-5 Questions and Hints to Answers 213
 - 20-6-6 General Case Study Data 216
 - 20-6-7 Suggested Answers to the Case Study Questions 217
- 20-7 References 219

Chapter 21 Management of High Level Wastes (HLW) 221

- 21-1 Introduction 221
- 21-2 Origins and Disposition of HLW 221
- 21-3 Spent Fuel 221
 - 21-3-1 Introduction 221
 - 21-3-2 Storage 222
 - 21-3-3 Security and Safeguards 224
 - 21-3-4 Conditioning for Disposal 224
- 21-4 HLW Characteristics and Inventory Data 224
- 21-5 HLW Current World Disposal Status 227
- 21-6 References 227

Chapter 22 Transport 229

22-1 Introduction 229

- 22-2 Regulatory Requirements for Transport 229 22-2-1 Regulations 229
 - 22-2-2 General Requirements 230
 - 22-2-3 Package-Specific Requirements 231
 - 22-2-4 Mode-Specific Requirements 234
 - 22-2-5 Operational Requirements 234
 - 22-2-6 Special Arrangements 234
- 22-3 Examples of Waste Transport Packages 234
- 22-4 Transport of Large Items of Decommissioning Waste 236
 - 22-4-1 Application of the Regulations to Large Items 236

239

- 22-4-2 General Requirements 236
- 22-4-3 Examples of the Transport of Large Decommissioning Items 237
- 22-5 Regulatory Considerations in the UK 238 22-5-1 DfT (Department for Transport) 238
 - 22-5-2 NII 239
- 22-5-3 Environmental Agencies 22-6 Waste Transport Planning 239
- 22-7 References 239

Site Environmental Remediation

Chapter 23 Site Remediation — Principles and Regulatory Aspects 241

- 23-1 Introduction 241
- 23-2 Delicensing 241
- 23-3 Chemically Contaminated Land 242
- 23-4 Radioactively Contaminated Land 243
- 23-5 Principles for Management of Contaminated Land 243
- 23-6 Best Practicable Environmental Option 244
- 23-7 Summary 245

Chapter 24

Characterisation of Contaminated Land 247

- 24-1 Introduction 247
- 24-2 Desk Studies 247
- 24-3 Walk Over Surveys 247
- 24-4 Planning the Characterisation Program 248
- 24-5 Health, Safety, and Logistical Issues 248
- 24-6 Nonintrusive Surveys 249
 24-6-1 Radiological Surveys 249
 24-6-2 Geophysical Surveys 249

- 24-7 Intrusive Surveys 250
- 24-8 Logging, Sampling, and Analysis 250
- 24-9 Interpretation and Modeling 251
- 24-10 Databasing and GIS 251
- 24-11 Guidance on Site Investigation 251
- 24-12 References 252

Chapter 25 Technologies for Remediating Contaminated Land 255

- 25-1 Introduction 255
- 25-2 Waste Minimisation 255
- 25-3 Immobilisation, Stabilisation, and Solidification 259
- 25-4 Containment Systems and Hydraulic Measures 260
- 25-5 Treatment of Contaminated Groundwater 261
- 25-6 Best Practicable Environmental Option 261
- 25-7 References 262

Appendices

Appendix 1 Country Specific Examples of Radioactive Waste Management Programs 263

- A1-1 Belgium 263
- A1-2 Canada 265
- A1-3 Finland 266
- A1-4 France 268 A1-5 Germany 269
- A1-5 Germany 269 A1-6 Japan 270
- A1-7 The Netherlands 272
- A1-8 Spain 274
- A1-9 Sweden 276
- A1-10 Switzerland 277
- A1-11 The United Kingdom 279
- A1-12 The United States of America 280
- A1-13 Central and Eastern European Countries 282

Appendix 2

An Example of a Project Sanction Case — Repacking of Harwell Legacy Intermediate Level Wastes 285

- A2-1 Introduction 285
- A2-2 Objective 286

- A2-3 Recommendation 286
- A2-4 Technical Appraisal of Options 286 A2-4-1 Option 1: Repackage Wastes
 - Immediately in B459 286 A2-4-2 Option 2: Delay Waste
 - Treatment 286 A2-4-3 Option 3: Repackage Wastes Elsewhere and Seek Prompt Decommissioning of B459 287
 - A2-4-4 Summary of Technical Issues 288
 - A2-4-5 Financial Appraisal of Options 288
 - A2-4-6 Sensitivity 288
- A2-5 Implementation 288
 - A2-5-1 Proposal 288
 - A2-5-2 Deliverables 293
 - A2-5-3 Risk Management 293
 - A2-5-4 Contract Strategy 294
 - A2-5-5 Safety Management 294
 - A2-5-6 Waste Management and Environmental 296
 - A2-5-7 Project Management 296
 - A2-5-8 Costs, Fundings, and Resources 296
 - A2-5-9 Priority of Project 296
 - A2-5-10 Control of Contingencies 297
- A2-6 Public Relations 298
- A2-7 Conclusions 298
- A2-8 Description of B459 298
 - A2-8-1 Evaluation of Options 298
 - A2-8-2 Harwell Miscellaneous Wastes Including NDS Wastes 299
 - A2-8-3 FINGAL Vessels 299
 - A2-8-4 High $\beta\gamma$ Sea Disposal Drums 301
 - A2-8-5 Ripple Waste Crates 303
- A2-9 References 306

Appendix 3 An Example of a Site Remediation Project — Dounreay Castle Ground Remediation 307

- A3-1 Background 307
 A3-2 Site Characterisation 307
 A3-3 Option Study 309
 A3-4 Design 310
 A3-4-1 Remediation Design 310
 A3-4-2 Planning Application 311
 A3-4-3 Scheduled Ancient Monument Consent 312
 A3-4-4 Safety Case 312
 A3-4-5 Financial Case 312
 A3-4-6 Contract 312
- A3-5 Implementation 312
- A3-6 Risk Assessment 314
- A3-7 References 315

Appendix 4

- A4-1 Internet Information 317
- A4-2 Book List 318

Appendix 5 Elements and Isotopes 321

- A5-1 Introduction 321
- A5-2 The Nucleus 321
- A5-3 Radioactivity 322
- A5-4 Half-Life 323
- A5-5 Table of Elements 325
- A5-6 Reactor Grade Plutonium Decay 326

Index 327