Introduction	Inclusive searches of E_T^{miss} signatures	Exclusive measurements	Long-lived heavy particles	Conclusions
00	00000	000	00	

Prospects for SUSY Discovery and Measurements with the ATLAS Detector at the LHC

Michele Consonni, on behalf of the ATLAS Collaboration

Radboud University Nijmegen/Nikhef

PANIC08 - Eilat, Israel - 11 November 2008

Introduction	Inclusive searches of E_T^{miss} signatures	Exclusive measurements	Long-lived heavy particles	Conclusions
Outline				

- 2 Inclusive searches of E_T^{miss} signatures
- 3 Exclusive measurements
- 4 Long-lived heavy particles

ntroduction ●○	Inclusive searches of <i>E</i> ^{miss} signatures	Exclusive measurements	Long-lived heavy particles	Conclusions
C				

Supersymmetry

- Symmetry: bosons \longleftrightarrow fermions
- Consider minimal extension of SM
- At LHC: production of strongly interacting SUSY particles
- Cross-section mostly dependent on particle masses
- Decay chains model dependent

Topics covered:

- *R*-parity conserving scenarios only
- E_T^{miss} signatures
- Long-lived heavy particles

Benchmark models:

- mSUGRA
- NUHM
- GMSB

Introduction O	Inclusive searches of E_T^{miss} signatures	Exclusive measurements	Long-lived heavy particles	Conclusions
<u></u>				

SUSY signatures

- Emission of hard jets and leptons
- If the lightest SUSY particle is neutral and weakly interacting
- \Rightarrow Missing energy in the detector

Main backgrounds:

- Z/W + jets
- tī
- QCD events

- $E_T^{\text{miss}} > 100 \text{ GeV} + 4 \text{ jets} + 0 \text{ (left) or } 1 \text{ (right) lepton}$
- Effective Mass = $\sum_{\mathsf{jets},\ell} p_T + E_T^{\mathsf{miss}}$
- Lepton requirement to bring background down to manageable levels

- Broad spectrum of E_T^{miss} signatures (not covered here):
 - $\bullet~\mbox{Two}$ and three leptons $+~\mbox{jets}$
 - τ -jets + jets
 - *b*-jets + jets
 - Multi leptons (No requirements on the number of jets)

 \implies Direct production of $\tilde{\chi}^{\rm 0}$ and $\tilde{\chi}^{\pm}$

• Photons + jets

$$\implies \tilde{\chi}_1^0 \rightarrow \tilde{G}\gamma$$

 All signals and backgrounds studied with fully detailed Geant 4 simulations

Background estimation from data

- Precise estimate of background relies on both MC and data
- Control samples needed for data driven estimates

Example: reverse one selection cutSignal region $M_T \equiv \vec{p}_{T,\ell} \cdot \vec{E}_T^{\text{miss}} > 100 \text{ GeV}$ Control region $M_T \equiv \vec{p}_{T,\ell} \cdot \vec{E}_T^{\text{miss}} < 100 \text{ GeV}$

- Background shape from control sample
- Normalize to number of events in signal sample in a region where SUSY contribution is small (E_T^{miss} < 200 GeV)

- Detector response challenges
 - Lepton identification efficiency
 - Jet energy scale and jet response tails
 - Missing E_T shape
- Theoretical uncertainties
 - Parton Density Functions
 - Normalization of background
 - EW and QCD corrections at NLO
- SUSY contamination in control samples

Introduction	Inclusive searches of E_T^{miss} signatures	Exclusive measurements	Long-lived heavy particles	Conclusions
00	00000	000	00	

Discovery reach

- mSUGRA and GMSB scan
- 1 fb^{-1} \sim 1 year of LHC operation
- Reach up to gluino and squark masses $\sim {\it O}(1~{
 m TeV})$
- Stat. and syst. uncertainty on background included

• Mass spectrum informations from cascade kinematic

$$ilde q_L o ilde \chi_2^0 q o (ilde \ell^\pm \ell^\pm q) o ilde \chi_1^0 \ell^- \ell^+ q$$

• Endpoints in invariant mass distributions

•
$$\ell^{+} + \ell^{-}$$

• $\ell^{+} + \ell^{-} + q$
• $\ell^{\pm} + q$

• For instance

$$M^{\rm edge}_{\ell\ell} = m_{\tilde{\chi}^0_2} \sqrt{1 - \frac{m^2_{\tilde{\ell}}}{m^2_{\tilde{\chi}^0_2}}} \sqrt{1 - \frac{m^2_{\tilde{\chi}^0_1}}{m^2_{\tilde{\ell}}}}$$

Leptonic signatures

• Background significantly reduced by subtracting $e^{\pm}\mu^{\mp}$

- $M_{\ell\ell}^{
 m edge} = 52.7 \pm 2.4 \; (
 m stat) \pm 0.2 \; (
 m syst) \;
 m GeV$
- Consistent with true value 53.6 GeV

Exclusive measurements

Long-lived heavy particles Conclusions

Other signatures

$\tau^+\tau^-$ invariant mass

- L R mixing may enhance $\tau^+ \tau^-$ with respect to $\ell^+ \ell^-$
- No sharp edge because of neutrino presence

Higgs to $b\bar{b}$ in SUSY events

- E_T^{miss} requirement suppresses QCD background
- Competitive with SM channels

- Long-lived heavy particles: trigger issues
 - Assume the lightest SUSY particle is charged or strongly interacting
 - Penetrating charged track \(\low) "heavy slow muons"
 - For $\beta \sim$ 0.8 \Rightarrow Time of flight 15 ns longer than muons
 - ATLAS muon system provides excellent time of flight resolution (0.7 ns)
 - \Rightarrow Precise mass reconstruction and muon rejection
 - But very high LHC bunch-crossing rate (25 ns)
 - Particle could be assigned to the wrong bunch crossing and not read out
 - Appropriate triggering scheme is critical

Inclusive searches of E_T^{miss} signatures

Exclusive measurements

Long-lived heavy particles Conclusions

Long-lived heavy particles: discovery reach

Stable sleptons

- Example: 100 GeV slepton
- Discovery largely independent of the model characteristics

R-hadrons

Sample	$Events/fb^{-1}$
300 GeV gluino	$6.4 imes10^3$
1 TeV gluino	10.7
1.6 TeV gluino	0.1
300 GeV stop	70.0
600 GeV stop	3.9
1 TeV stop	0.1
QCD events	$\lesssim 1$
$Z ightarrow \mu \mu$	$\lesssim 1$

- Characteristic "heavy slow muon" signature
- May also undergo charge flipping in the calorimeter

- New physics expected to appear at the TeV scale
- R-parity conserving SUSY scenarios are well motivated
- Extensive studies of signatures:
 - With E_T^{miss}
 - With long-lived heavy particles
- \Rightarrow Reach up to gluino and squark masses $\sim O(1 \text{ TeV})$ for 1 fb⁻¹
 - Discovery relies on good knowledge of backgrounds
 - Interplay between MC and data-driven estimations