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Abstract. This paper considers the numerical solution of boundary integral equa-
tions for an exterior transmission problem in a three-dimensional axisymmetric do-
main. The resulting potential problem is formulated in a meridian plane as the
second kind integral equation for a boundary potential and the first kind integral
equation for a boundary flux. The numerical method is an axisymmetric collocation
with equal order approximations of the boundary unknowns on a polygonal boundary.
The complete elliptic integrals of the kernels are approximated by polynomials. An
asymptotic kernels behavior is analyzed for accurate numerical evaluation of integrals.
A piecewise-constant midpoint collocation and a piecewise-linear nodal collocation on
a circular arc and on its polygonal interpolation are used for test computations on
uniform meshes. We analyze empirically the influence of the polygonal boundary
interpolation to the accuracy and the convergence of the presented method. We have
found that the polygonal boundary interpolation does not change the convergence
behavior on the smooth boundary for the piecewise-constant and the piecewise-linear
collocation.

Keywords: transmission problem, Laplace equation, weakly singular integral equation,

boundary element method, axisymmetric collocation, polygonal boundary.
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1 Introduction

Many problems in electro- and magnetostatics require solution of the Maxwell’s
equations in a domain, comprised by media of different properties. A linear po-
larization and a linear magnetization of the media are widely used assumptions
in electro- and magnetostatics, respectively. For instance, a linear magneti-
zation of ferrofluids in ferrohydrostatics is a reasonable approximation of a
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nonlinear one in weak magnetic fields or in a narrow range of magnetic field
intensities [17]. Field problems for linear materials, formulated in terms of
the potential, result in transmission problems for the Laplace equation. In this
paper we consider an exterior transmission problem for a bounded nonconduct-
ing medium surrounded by another nonconducting medium with a given field
at the infinity. This specific formulation is particularly important for prob-
lems of control and manipulation of ferrofluid droplets by external magnetic
fields, which presents a promising technique for handling samples in biological
and chemical systems [15, 18]. One of the medical application is to target the
magnetic drug to the diseased part by means of the external magnetic force.

An application of boundary element methods for three-dimensional trans-
mission problems in electro- and magnetostatic field problems is discussed e.g
in [2, 6, 14]. Several boundary integral approaches for the reduced potential
are compared with respect to accuracy and computational times in [2]. The
authors show, in particularly, that the Steklov-Poincaré operator formulation
gives the best approximation. In this paper we consider a direct double layer
formulation for the total potential of the magnetostatic field problem with no
current density. Test computations, similar to an example on a sphere in [2],
are performed to compare the accuracy of the axisymmetric method of the
present paper and the three-dimensional methods in [2].

A collocation boundary element method is one of the widely-used numer-
ical methods for solution of boundary integral equations. Beginning in the
mid-1970’s, collocation solutions of integral equations for axisymmetric prob-
lems have been extensively considered in the literature, see e.g. [19, Chapter
6]. However, we did not find in the literature any theoretical result about con-
vergence of collocation methods in the meridian plane. Therefore numerical
results in the paper are compared with the existing theory for two-dimensional
geometry [3, 7, 8, 9, 16].

An axisymmetric collocation boundary element method with the polynomial
approximation of the complete elliptic integrals is a well-known technique for
solution of the potential problems. An accuracy of this technique, applied to
the transmission problem on an approximate polygonal boundary between two
media, is in focus of the research. For that, kernels behavior is analyzed and
test computations on a sphere are performed. Accurate computations of the
boundary unknowns are of high importance for free-surface problems of electro-
and ferrohydrostatics, where an a-priori unknown moving boundary presents
an interface between two media. In this case the boundary element method
is applied over the boundary, which itself is a numerical solution of the free-
surface subproblem at the every iteration step of the solution process, see e.g.
in [11]. The boundary element method, presented in the paper, was extended
to a coupling with a finite element method to treat nonlinearities inside of the
bounded domain in [11]. The boundary element - finite element method for a
magnetostatic subproblem was further coupled with free-surface computations
in [11] to find axisymmetric equilibrium shapes of a ferrofluid drop in a free
space [12] and in a capillary [13].

An accurate collocation solution of the integral equations on polygonal
boundaries in the meridian plane, is in focus of the research. We consider an ex-
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terior transmission problem for the Laplace equation in axisymmetric domains.
Two boundary integral equations are formulated in the way, which allows to
find the unknown boundary potential and the boundary flux separately in two
stages, see Section 2. The second kind integral equation is constructed only for
the potential, the first kind integral equation is used to find the boundary flux
for the computed boundary potential. The reformulation in the meridian plane
leads to weakly singular kernels for both equations, see Section 3. We analyze
an asymptotic behavior of the kernel functions for integration points, tending
to a source point, to perform an accurate numerical evaluation of integrals.
The polygonal boundary allows some simplifications of the kernels, influenc-
ing to the behavior near the symmetry axis, see Section 4. Piecewise-constant
and piecewise-linear equal order approximations for the unknown functions are
applied for test computations, see Section 5. To study an effect of using in-
terpolation to approximate the boundary, we analyze the accuracy and the
convergence of the axisymmetric collocation method on a circular arc and on
the polygonal boundary interpolation. We compare approximate and exact
solutions for the boundary potential and the boundary flux in different norms
(Test 1) and compute the accuracy of the boundary field for different values of
permeabilities (Test 2).

2 Exterior transmission problem in 3D

We consider a magnetostatic problem for a bounded simply connected domain
Ω with a smooth or piecewise-smooth boundary S of a linearly-magnetizable
medium, B1 = µ1H1 in Ω, surrounded by another medium, B2 = µ2H2 in
R3\Ω. Here Bi denotes the magnetic induction, Hi – the magnetic field vector,
µi – the constant permeability. Both media are nonconducting, i.e. ∇×Hi = 0.
Far from the domain Ω we have a fixed region containing a source of a static
magnetic field Hext – such as a current-carrying coil, permanent magnets or
other materials. The external field Hext is defined at the infinity for the model
under study, see Figure 1.

y

x

z
✻Hext

S

Ω

R3 \ Ω

Figure 1. The problem setting.

The mathematical model in terms of the magnetostatic potentials u1 and
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u2, see [17], consists of the Laplace equations

∇ · (∇u1) = 0 in Ω, ∇ · (∇u2) = 0 in R3 \Ω (2.1)

transmission conditions on the interface S

u1 = u2, µ
∂u1
∂n

=
∂u2
∂n

on S, (2.2)

and a radiation condition

lim
|ξ|→∞

∇u2 = Hext. (2.3)

Here Hi = ∇ui, µ = µ1/µ2 denotes the relative permeability and ξ = (x, y, z).
We can express the external field in terms of the potential uext as Hext =
∇uext. The potential uext satisfies the Laplace equation, because the Maxwell’s
equation ∇ ×H = 0 is valid for nonconducting media [10, 17]. A particular
situation Hext = (0, 0, H0) with the potential uext = H0z is a widely-used
example of the external field. Solution of the problem (2.1)–(2.3) is defined up
to a constant. To fix the constant, we redefine condition (2.3) as

lim
|ξ|→∞

u2 = uext. (2.4)

The same mathematical model is valid for linearly-polarizable dielectric media
in an external electric field [10].

The potential u1 satisfies the Green’s representation formula

u1(ξ0) +

∫
S

(
∂u∗

∂n
(ξ0, ξ)u1(ξ)− u∗(ξ0, ξ)∂u1

∂n
(ξ)

)
dS = 0, ξ0 ∈ Ω (2.5)

for the integration with respect to the field point ξ. Here u∗(ξ0, ξ) = 1/(4π|ξ−
ξ0|) is the fundamental solution of the Laplace equation and n = n(ξ) is the
unit outward normal to Ω. A potential function with the radiation conditions

u(ξ) = O(|ξ|−1), ∇u(ξ) = O(|ξ|−2) for |ξ| → ∞

satisfies the following representation formula in the unbounded domain

u(ξ0)−
∫
S

(
∂u∗

∂n
(ξ0, ξ)u(ξ)− u∗(ξ0, ξ)∂u

∂n
(ξ)

)
dS = 0 for ξ0 ∈ R3 \Ω, (2.6)

written for the same normal vector as equation (2.5). According to condition
(2.4), equation (2.6) is valid for u = u2 − uext

u2(ξ0)−uext(ξ0)−
∫
S

(
∂u∗

∂n
u2 − u∗

∂u2
∂n

)
dS = −

∫
S

(
∂u∗

∂n
uext − u∗

∂uext
∂n

)
dS

(2.7)

Math. Model. Anal., 21(1):16–34, 2016.
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for ξ0 ∈ R3 \ Ω. Integral equations (2.5) and (2.7) for ξ0 → S, when the
boundary S is smooth, take the form

1

2
u1(ξ0) +

∫
S

(
∂u∗

∂n
(ξ0, ξ)u1(ξ)− u∗(ξ0, ξ)∂u1

∂n
(ξ)

)
dS = 0, (2.8)

1

2

(
u2(ξ0)− uext(ξ0)

)
−
∫
S

(
∂u∗

∂n
(ξ0, ξ)u2(ξ)− u∗(ξ0, ξ)∂u2

∂n
(ξ)

)
dS

= −
∫
S

(
∂u∗

∂n
(ξ0, ξ)uext(ξ)− u∗(ξ0, ξ)

∂uext
∂n

(ξ)

)
dS =

uext(ξ
0)

2
(2.9)

for ξ0 ∈ S. The last equality of equation (2.9) is due to an application of
equation (2.8) to the harmonic function u1(ξ) = uext(ξ). Let us introduce
new notations for the boundary potential u := u1 and the boundary flux q :=
∂u1/∂n. We reformulate equations (2.8) and (2.9) in new notations, using
transmission conditions (2.2)

1

2
u(ξ0) +

∫
S

(
∂u∗

∂n
(ξ0, ξ)u(ξ)− u∗(ξ0, ξ)q(ξ)

)
dS = 0, (2.10)

1

2
u(ξ0)−

∫
S

(
∂u∗

∂n
(ξ0, ξ)u(ξ)− µu∗(ξ0, ξ)q(ξ)

)
dS = uext(ξ

0) (2.11)

for ξ0 ∈ S. Some manipulations with equations (2.10) and (2.11) result in the
second kind boundary integral equation only for the boundary potential and
the first kind boundary integral equation for the boundary flux

u(ξ0) + 2
µ− 1

µ+ 1

∫
S

∂u∗

∂n
(ξ0, ξ)u(ξ)dS =

2

µ+ 1
uext(ξ

0), (2.12)∫
S

u∗(ξ0, ξ)q(ξ)dS =
1

µ− 1

(
uext(ξ

0)− u(ξ0)
)

(2.13)

for ξ0 ∈ S. These equations can be solved successively to find boundary un-
knowns.

When the boundary S is piecewise-smooth, then equations (2.8)–(2.13) are
valid only on smooth parts of the surface. Integral equations (2.5) and (2.7)
for ξ0 tending to the corner point of S take the form

c(ξ0)u1(ξ0) +

∫
S

(
∂u∗

∂n
u1 − u∗

∂u1
∂n

)
dS = 0, (2.14)

(
1− c(ξ0)

) (
u2(ξ0)− uext(ξ0)

)
−
∫
S

(
∂u∗

∂n
u2 − u∗

∂u2
∂n

)
dS = c(ξ0)uext(ξ

0)

(2.15)

for ξ0 ∈ S. Here the quantity c(ξ0) is the interior solid angle of S at ξ0 ∈ S and
(1− c(ξ0)) is the outer solid angle at the same point. Both angles are divided
by 4π. Analogous manipulations with boundary integral equations (2.14) and
(2.15), as in the case of the smooth boundary, result in the boundary integral
equation only for the boundary potential and the boundary integral equation
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for the boundary flux

u(ξ0)− 2
µ− 1

µ+ 1

(
1

2
− c(ξ0)

)
u(ξ0) + 2

µ− 1

µ+ 1

×
∫
S

∂u∗

∂n
(ξ0, ξ)u(ξ)dS =

2

µ+ 1
uext(ξ

0), (2.16)∫
S

u∗(ξ0, ξ)q(ξ)dS =
1

µ− 1

(
uext(ξ

0)− u(ξ0)
)

(2.17)

for ξ0 ∈ S and S is piecewise-smooth. The only difference between the formu-
lation (2.12) and (2.13) on the smooth surface and the formulation (2.16) and
(2.17) on the piecewise-smooth surface is in the presence of an additional term
with the solid angle in equation (2.16) for the boundary potential. The solid
angle equals 1/2 at every point of the smooth surface, the additional term of
equation (2.16) vanishes in this case and we get equation (2.12) as a result.

The integral formulation, analogous to (2.16) and (2.17), is derived in [14].

Remark. Equations (2.13) and (2.17) are valid for µ 6= 1. The case µ = 1
or µ1 = µ2 corresponds to an obvious solution u1(ξ) = u2(ξ) = uext(ξ) of the
considered problem (2.1), (2.2), (2.4).

3 Problem reformulation in a meridian plane

An assumption about an axial symmetry of the domain Ω and of the external
field Hext allows us to reformulate boundary integral equations (2.12) and
(2.13) on a meridian line Γ of the smooth surface S in cylindrical coordinates
(r, z). Let the boundary Γ be described by a parametrization

Γ = {ξ = (r, z) | ξ = ψ(t) := (r(t), z(t)), t ∈ [0, L]} ,

such that |ψ′(t)| =
√

(r′)2 + (z′)2 > 0 for any t ∈ [0, L].
Then boundary integral equations (2.12) and (2.13) take form

u(t0) + 2
µ− 1

µ+ 1

∫ L

0

a(t, t0)u(t)dt =
2

µ+ 1
uext(t

0),∫ L

0

b(t, t0)q(t)dt =
1

µ− 1

(
uext(t

0)− u(t0)
)

for t0 ∈ [0, L] with kernel functions

a(t, t0) =

(
∂u∗ax
∂n
◦ ψ
)

(t, t0)r(t)|ψ′(t)|, b(t, t0) = (u∗ax ◦ ψ) (t, t0)r(t)|ψ′(t)|.

Here ξ = (r, z), ξ0 = (r0, z0), n = (nr, nz) = (−z′, r′)/|ψ′(t)| the unit outward
normal on Γ for the clock-wise change of the parameter t. An axisymmetric
fundamental solution u∗ax is defined in terms of the complete elliptic integral of
the first kind K(m), see e.g. [19],

u∗ax(ξ0, ξ) =
K(m)

π
√

(r + r0)2 + (z − z0)2
,

Math. Model. Anal., 21(1):16–34, 2016.



22 O. Lavrova and V. Polevikov

K(m) =

∫ π/2

0

dθ√
1−m sin2 θ

, m =
4rr0

(r + r0)2 + (z − z0)2
.

A calculation of ∂u∗ax/∂n, with the use of the relation for K ′(m) in terms of
the complete elliptic integral of the second kind E(m), gives

∂u∗ax
∂n

=
1

π
√

(r + r0)2 + (z − z0)2

×
(
nr
2r

(E(m)−K(m))− nr(r − r0) + nz(z − z0)

(r − r0)2 + (z − z0)2
E(m)

)
,

E(m) =

∫ π/2

0

√
1−m2 sin2 θdθ.

One of the used practice for axisymmetric boundary element methods is to
use polynomial approximation of the complete elliptic integrals

K(m) ≈ K̃(m) =

4∑
i=0

ai(1−m)i − ln (1−m)

4∑
i=0

bi(1−m)i, (3.1)

E(m) ≈ Ẽ(m) = 1 +

4∑
i=1

ci(1−m)i − ln (1−m)

4∑
i=1

di(1−m)i (3.2)

for the given coefficients, see [1, page 591]. The error in these expansions is less
than 2 · 10−8. Approximations (3.1)–(3.2) are valid for 0 ≤ m < 1. The range
of variation of the parameter m for the considered problem is 0 ≤ m ≤ 1 and
we get m = 1 for ξ = ξ0. To define the value of K̃(1), we use the relation

lim
m→1

[
K(m)− 1

2
ln

16

1−m

]
= 0, (3.3)

see [1, page 591], the value of Ẽ(1) is defined by the fact that E(1) = 1.
Let us denote by ã(t, t0) and b̃(t, t0) approximations of the kernels a(t, t0)

and b(t, t0), due to the handling of elliptic integrals. The numerical solution of
the following boundary integral equations

u(t0) + 2
µ− 1

µ+ 1

∫ L

0

ã(t, t0)u(t)dt =
2

µ+ 1
uext(t

0), (3.4)∫ L

0

b̃(t, t0)q(t)dt =
1

µ− 1

(
uext(t

0)− u(t0)
)

(3.5)

for t0 ∈ [0, L] with kernel functions

ã(t, t0) =
r|ψ′(t)|

π
√

(r + r0)2 + (z − z0)2
(3.6)

×
(
nr
2r

(Ẽ(m)− K̃(m))− nr(r − r0) + nz(z − z0)

(r − r0)2 + (z − z0)2
Ẽ(m)

)
,
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b̃(t, t0) =
r|ψ′(t)|

π
√

(r + r0)2 + (z − z0)2
K̃(m) (3.7)

for the unknown boundary potential u and the boundary flux q is in a focus
of the present research. We find u as a solution of (3.4) at the first stage, and
then q as a solution of (3.5) for the computed function u, at the second stage.

Remark. The kernels (3.6) and (3.7) are not specific for electro- and magneto-
static potential problems. Any axisymmetric potential problem in cylindrical
coordinates can contain the same kernels in its integral formulation.

3.1 Asymptotic kernels behavior

To perform accurate integration in equations (3.4) and (3.5), we analyze an
asymptotic behavior of kernel functions (3.6) and (3.7) for an integration point
t tending to a source point t0.

Let us assume that only the end points of the boundary Γ lie at the sym-
metry axis, i.e.

r(t) = 0 for t ∈ {0, L}, r(t) 6= 0 for t ∈ (0, L).

The notation t ∈ {0, L} means that t takes values 0 or L. We distinguish
two cases: the Case 1, when the source point does not lie at the symmetry
axis (t → t0, t0 /∈ {0, L}), and the Case 2, when the source point lies at the
symmetry axis (t→ t0, t0 ∈ {0, L}).

3.1.1 Case 1. Source point is not at the symmetry axis

We have that m = 4rr0/
(
(r + r0)2 + (z − z0)2

)
→ 1 in the Case 1. Kernel

functions (3.6) and (3.7) contain the term K̃(m) at their formulations. Ac-
cording to the limit value (3.3), K̃(m) has a logarithmic singularity at m = 1,
hence the integrals in (3.4) and (3.5) are logarithmically singular in the Case 1.

3.1.2 Case 2. Source point is at the symmetry axis

We have that m = 0 for t0 ∈ {0, L} and t 6= t0. It allows us to redefine
the kernel functions (3.6) and (3.7) for t0 ∈ {0, L} by setting m = 0 for all
integration points t

ã(t, t0) :=
r|ψ′(t)|

π
√

(r + r0)2 + (z − z0)2

×
(
nr
2r

(Ẽ(0)− K̃(0))− nr(r − r0) + nz(z − z0)

(r − r0)2 + (z − z0)2
Ẽ(0)

)
, (3.8)

b̃(t, t0) :=
r|ψ′(t)|

π
√

(r + r0)2 + (z − z0)2
K̃(0), t0 ∈ {0, L}. (3.9)

Math. Model. Anal., 21(1):16–34, 2016.
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For a further simplification of the kernels, we use the exact values of the elliptic
integrals at m = 0, namely, K(0) = π/2 and E(0) = π/2, instead of their
approximations K̃(0) and Ẽ(0). It gives that

ã(t, t0) = − r|ψ′(t)|
2
√

(r + r0)2 + (z − z0)2
nr(r − r0) + nz(z − z0)

(r − r0)2 + (z − z0)2
, (3.10)

b̃(t, t0) =
r|ψ′(t)|

2
√

(r + r0)2 + (z − z0)2
, t0 ∈ {0, L}. (3.11)

We get in the limit that

lim
Case 2

r√
(r + r0)2 + (z − z0)2

=
1

2
,

hence

lim
Case 2

ã(t, t0) = −1

4
lim

Case 2

−z′(r − r0) + r′(z − z0)

(r − r0)2 + (z − z0)2
,

lim
Case 2

b̃(t, t0) =
1

4
|ψ′(t0)|

for nr = −z′(t)/|ψ′(t)| and nz = r′(t)/|ψ′(t)|. Let us distinguish two situations,
when nr = 0 at the symmetry axis and nr 6= 0. If nr = 0, then the kernel (3.10)
in the limit is the indeterminate form 0/0. We apply L’Hopital’s rule to evaluate
the limit and get convergence. If nr 6= 0, the kernel (3.10) diverges to infinity
in the Case 2, i.e. has an algebraic singularity.

We summarize that kernels (3.6) and (3.7) are logarithmically singular in the
Case 1. Kernel (3.6), modified by (3.10) for the source point at the symmetry
axis, has an algebraic singularity in the Case 2, when nr 6= 0 at the symmetry
axis, otherwise, it is a smooth function. Kernel (3.7), modified by (3.11) for
the source point at the symmetry axis, is smooth in the Case 2.

3.2 Kernels on a circular arc

We consider a particular case of the meridian line Γ as a circular arc of the
angle 180◦ and the radius 1, which rotation around z-axis produces a sphere
centered at the origin

Γ0 = {(r, z) | r(t) = sin t, z(t) = cos t, t ∈ [0, π]} .

The corresponding outward unit normal vector is

n = (−z′, r′)/
√

(r′)2 + (z′)2 = (sin t, cos t).

After some simplifications the kernel functions take the form

ã0(t, t0) := ã(t, t0)|Γ0 =
sin t

π
√

2− 2 cos (t+ t0)

(
1

2
(Ẽ(m)− K̃(m))− 1

2
Ẽ(m)

)
= −1

2

sin t

π
√

2− 2 cos (t+ t0)
K̃(m),
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b̃0(t, t0) := b̃(t, t0)|Γ0
=

sin t

π
√

2− 2 cos (t+ t0)
K̃(m) = −2ã0(t, t0),

where

m =
2 sin t sin t0

1− cos (t+ t0)
, t, t0 ∈ [0, π].

The redefined kernels (3.10) and (3.11) take the following form

ã0(t, t0) = −1

4

sin t√
2− 2 cos (t+ t0)

, b̃0(t, t0) = −2ã0(t, {0, π}), t0 ∈ {0, π},

lim
Case 2

ã0(t, t0) = −1

8
, lim

Case 2
b̃0(t, t0) =

1

4
.

4 Collocation on polygonal boundaries

Let
Tn = {ti | 0 = t0 < t1 < . . . < tn = L, i = 0, n}

be a partition of the parameter interval [0, L]. Let the parametrization ψ(t) of
Γ be interpolated by piecewise-linear functions ψh(t) = (rh(t), zh(t)), subject
to the partition Tn,

Γh =

{
ξ | ξ = ψh(t) = ξj−1 +

t− tj−1
tj − tj−1

(ξj − ξj−1), t ∈ [tj−1, tj ], j = 1, n

}
.

The kernel functions on Γh are defined from (3.6) and (3.7) as follows

ah(t, t0) =
rh|ψ′h(t)|

π
√

(rh + r0h)2 + (zh − z0h)2
×(

(nh)r
2rh

(Ẽh(mh)− K̃h(mh))− (nh)r(rh − r0h) + (nh)z(zh − z0h)

(rh − r0h)2 + (zh − z0h)2
Ẽh(mh)

)
,

bh(t, t0) =
rh|ψ′h(t)|

π
√

(rh + r0h)2 + (zh − z0h)2
K̃h(mh)

with the modification of the kernels for the collocation at the end points, due
to (3.10) and (3.11),

ah(t, t0)=− rh|ψ′h(t)|
2
√

(rh+r0h)2+(zh−z0h)2
(nh)r(rh − r0h) + (nh)z(zh − z0h)

(rh − r0h)2 + (zh − z0h)2
, (4.1)

bh(t, t0) =
rh|ψ′h(t)|

2
√

(rh + r0h)2 + (zh − z0h)2
, t0 ∈ {0, L}. (4.2)

Here the unit outward normal (for the clock-wise change of the parameter t) is
piecewise-constant at the element

nh =

(
−zj − zj−1
tj − tj−1

,
rj − rj−1
tj − tj−1

)
/

√
(rj − rj−1)2 + (zj − zj−1)2

(tj − tj−1)2
, t ∈ [tj−1, tj ],

Math. Model. Anal., 21(1):16–34, 2016.



26 O. Lavrova and V. Polevikov

and

mh =
4rhr

0
h

(rh + r0h)2 + (zh − z0h)2
, ξ0 = (r0h, z

0
h) = ξj−1 +

t0 − tj−1
tj − tj−1

(ξj − ξj−1).

Let Sk(Tn) denotes the polynomial B-splines spaces of order k, subject to
the partition Tn

Sk(Tn) =

{ {
u ∈ L2(0, L) | u|(tj−1,tj) ∈ P0(tj−1, tj), j = 1, n

}
for k = 0,{

u ∈ Ck−1(0, L) | u|(tj−1,tj) ∈ Pk(tj−1, tj), j = 1, n
}

for k ≥ 1.

We use the notation P0(Tn) = S0(Tn) and P1(Tn) = S1(Tn) for the piecewise-
constant and the piecewise-linear spaces. The collocation points are defined
over the parameter set T 0

n

T 0
n =

{
t0i | t0i = (ti−1 + ti)/2, i = 1, n

}
for k even,

T 0
n = Tn for k odd,

as midpoints for k even and nodal points for k odd, see e.g. [3].
The equal order Sk-collocation of equations (3.4) and (3.5), modified on the

piecewise-smooth surface according to (2.16) and (2.17), is to find (uh, qh) ∈
Sk(Tn)× Sk(Tn) such that for t0 ∈ T 0

n

uh(t0)+2
µ−1

µ+1

((
1

2
−c(t0)

)
uh(t0) +

∫ L

0

ah(t, t0)uh(t)dt

)
=

2

µ+1
uext(t

0),

(4.3)∫ L

0

bh(t, t0)qh(t)dt =
1

µ− 1

(
uext(t

0)− uh(t0)
)
. (4.4)

A simplification of the kernel function ah(t, t0) is possible, when the field
and the collocation points lie at the same boundary element, i.e. t and t0 ∈
[tj−1, tj ]. The factor nr(rh − r0h) + nz(zh − z0h) vanishes in this case and

ah(t, t0) =

√
(r′h)2 + (z′h)2

π
√

(rh + r0h)2 + (zh − z0h)2
nr
2

(Ẽ(mh)− K̃(mh)) (4.5)

for t and t0 ∈ [tj−1, tj ]. The simplification (4.5) changes an asymptotic behav-
ior of the kernel ah(t, t0) in the Case 2, when the collocation point lies at the
symmetry axis (t → t0, t0 ∈ {0, L}). As it was shown in Section 3.1, we have
that the kernel ã(t, t0) has an algebraic singularity in the Case 2, when nr 6= 0
at the symmetry axis. We do have a situation nr 6= 0 at the symmetry axis
for polygonal boundaries, but this singularity is suppressed by vanishing of the
factor nr(rh−r0h)+nz(zh−z0h). Moreover, according to the modification (4.1),
we get that

ah(t, 0) = 0 for t ∈ [t0, t1] and ah(t, L) = 0 for t ∈ [tn−1, tn].

We summarize that kernels ah(t, t0) and bh(t, t0) are logarithmically singular
in the Case 1 and smooth in the Case 2.

Remark. Midpoint collocations include only the Case 1 (t → t0, t0 /∈ {0, L}),
whereas nodal collocations contain both the Case 1 and the Case 2 (t→ t0, t0 ∈
{0, L}).
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5 Test computations

5.1 Test 1

We perform test computations to compare the accuracy and the empirical order
of convergence (eoc) of the axisymmetric collocation method (4.3)–(4.4) on the
polygonal interpolation Γh of the circular arc Γ0. We compute the solution of
the collocation problem for equal-order approximations of the boundary poten-
tial uh and the boundary flux qh on uniformly refined meshes. The initial mesh
(level 0) consists of 8 boundary elements, the computations are performed up
to the level 6 with 512 elements. The approximate solutions of the piecewise-
constant midpoint collocation (P0-collocation) and the piecewise-linear nodal
collocation (P1-collocation) on the boundary Γh are compared with an analyt-
ically known solution on Γ0.

The original exterior transmission problem (2.1), (2.2), (2.4) for a uniform
external field Hext = (0, 0, H0) was studied for a dielectric ellipsoid in [10]
and for a magnetic-fluid sphere in [17]. A solution was sought in spherical
coordinates by the method of separation of variables. An exact solution for a
unit sphere is

u1(x, y, z) =
3H0

µ+ 2
z, in Ω,

u2(x, y, z) = H0z +
µ− 1

µ+ 2
H0

z

(x2 + y2 + z2)
3/2

, in R3 \Ω.

The corresponding boundary potential u and the boundary flux q on the merid-
ian line are

u(r, z) =
3H0

µ+ 2
z, q(r, z) =

∂u

∂r
sin t+

∂u

∂z
cos t =

3H0

µ+ 2
z (r, z) ∈ Γ0.

We set the radius of the circular arc equals one, µ = 6 and H0 = 1 for compu-
tations. The computations in this paper were performed by using MapleTM [4].

The solid angle is computed, using the identity

c(ξ0) = −
∫
S

∂u∗

∂n
(ξ0, ξ)dS, ξ0 ∈ S. (5.1)

The approximate value of the solid angle is obtained from the collocation of
equation (4.3) over T 0

n for c(t0) = 1/2. Namely, to get the integral in the
right-hand side of (5.1), we sum the row elements of the corresponding matrix,
subtract one (this coefficient is die to the first term of (4.3)) and divide by the
quantity 2(µ − 1)/(µ + 1). When the solid angle is computed, the diagonal
matrix elements are modified, according to the second term of equation (4.3).
The approximate solid angle is used only for the P1-collocation on the polygonal
boundary, the P0-collocation and the P1-collocation on the smooth boundary
are computed with the angle equals 1/2.

We perform the numerical evaluation of all integrals arising in the method.
Namely, we employ the Gaussian integration with 12 points at the boundary
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element for the numerical approximation of regular integrals and the logarith-
mically weighted Gaussian formula with 8 points for weakly singular integrals.
12 points for regular integrals is an overestimated value, which was specially
taken for computations to exclude an integration error from the complete error
of the collocation solution. The number of integration points for regular inte-
grals depends on the distance between the collocation point and the element
being integrated. We have performed test computations on the circular arc and
on its polygonal approximation at the different mesh levels of the Test 1 to get
the relative error of about 10−10 if to compare with the 12 points Gaussian
integration. The near-weakly-singular integrals require 6 points on the smooth
boundary and 8 points on the polygonal boundary, whereas the regular inte-
grals far from singularities can be computed with 4 points. We have analogous
results for both kernels at the every mesh level. The near-singular integrals for
the collocation at the symmetry axis have appeared to be more sensitive to the
kernel function and the boundary representation. Namely, they require 4 points
on the smooth boundary for both kernels, 8 points on the polygonal boundary
for the kernel ah(t, t0) and 4 points on the polygonal boundary for the kernel
bh(t, t0). We have found that 8 points for the weakly-singular integrals should
be sufficient for numerical integration by the logarithmically weighted Gaus-
sian formula. The relative error, if to compare with the 12 points integration,
is about 10−8 at the near-axis elements for the near-axis collocation and has
the machine precision 10−15 for the remaining cases. The error behavior indi-
cates the nearness of the sharp kernels variation close to the symmetry axis.
We note that a rearrangement of the kernels is required for the application of
the logarithmically weighted Gaussian integration. Some details can be found
in [5] for axisymmetric potential problems.

The observed properties of the integrals for the collocation at the symme-
try axis supports the analytical results of Section 3.1 and Section 4 about the
kernels behavior near the symmetry axis. Strongly singular integrals are ab-
sent in the formulation on smooth boundaries, due to the property nr = 0 at
the symmetry axis, and only 4 integration points are necessary for accurate
integration of the near-singular integrals for the axis collocation. Strongly sin-
gular integrals are present in the formulation on the polygonal boundaries for
the kernel ah(t, t0) but they are suppressed at the symmetry axis, due to the
kernel simplification (4.5). That is why we need 8 points for the near-singular
integrals at the axis collocation of the polygonal boundary.

The notations E(∞, u) and E(2, u) are used for errors in the L∞- and the
L2
r-norms, respectively,

E(∞, u) := max
t0∈T 0

n

|u(t0)− uh(t0)|, E(2, u) := L2
r(u− uh),

L2
r(u) :=

(∫ L

0

|u(t)|2r(t)|ψ′(t)|dt
)1/2

.

The L∞-norm is computed at the collocation points. We use the midpoint rule
for the numerical evaluation of the L2

r-norm of the P0-collocation error, because
the computations are performed only at the collocation points in this case. We
use the Gaussian integration with 6 points for the numerical evaluation of the
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L2
r-norm for the P1-collocation error on the smooth boundary and the 2 points

rule on the polygonal boundary. The relative error, if to compare with the 12
points integration, has the machine precision 10−15 at the every mesh level.

Table 1. Errors and orders of convergence of the P0−collocation on the circular arc

n E(∞, u) eoc E(2, u) eoc E(∞, q) eoc E(2, q) eoc

8 .477e-3 .305e-3 .178e-2 .118e-2
16 .155e-3 1.625 .936e-4 1.704 .601e-3 1.568 .357e-3 1.719
32 .432e-4 1.840 .254e-4 1.884 .167e-3 1.851 .964e-4 1.888
64 .113e-4 1.932 .657e-5 1.948 .435e-4 1.939 .250e-4 1.949
128 .289e-5 1.970 .167e-5 1.976 .111e-4 1.966 .635e-5 1.976
256 .729e-6 1.985 .421e-6 1.988 .282e-5 1.979 .160e-5 1.988
512 .183e-6 1.991 .106e-6 1.994 .751e-6 1.910 .402e-6 1.994

Table 2. Errors and orders of convergence of the P0−collocation on the polygonal boundary

n E(∞, u) eoc E(2, u) eoc E(∞, q) eoc E(2, q) eoc

8 .158e-1 .107e-1 .286e-2 .191e-2
16 .414e-2 1.933 .276e-2 1.954 .829e-3 1.784 .494e-3 1.951
32 .105e-2 1.977 .698e-3 1.984 .222e-3 1.901 .125e-3 1.987
64 .265e-3 1.991 .175e-3 1.994 .573e-4 1.953 .312e-4 1.997
128 .663e-4 1.996 .439e-4 1.997 .146e-4 1.977 .782e-5 1.999
256 .166e-4 1.998 .110e-4 1.999 .367e-5 1.989 .195e-5 2.000
512 .415e-5 1.999 .275e-5 1.999 .921e-6 1.994 .489e-6 2.000

Table 1 and Table 2 illustrate the numerical convergence of the axisymmet-
ric P0-collocation method on the circular arc and on its polygonal interpolation,
respectively. The first observation is that the polygonal boundary interpolation
leads to a reduction of the computational accuracy but only for the boundary
potential. In contrast to integral equation (3.5) for the boundary flux, equation
(3.4) contains the normal vector in the kernel function, which is a piecewise-
constant function on the interpolated boundary. It might be a reason for the
reduction of the accuracy in the computations of the boundary potential from
equation (3.4). The second observation is that the boundary interpolation by
the polygonal curve does not change the convergence order of the P0-collocation
method. We get the second order for the boundary potential and the boundary
flux both in the L∞- and the L2

r-norms. We note that the L∞-norm of the error
for the P0-collocation on the smooth and the polygonal surfaces falls to one, if
the norm is computed by the Gaussian integration (the results in Tables 1 and
2 are computed by the midpoint rule).

Table 3 and Table 4 illustrate the numerical convergence of the axisymmet-
ric P1-collocation method on the circular arc and on its polygonal interpola-
tion, respectively. The boundary interpolation by the polygonal curve leads
to a reduction of the computational accuracy at the collocation points both
for the boundary potential and the boundary flux. Another observation is
that the boundary interpolation does not change the convergence order of the
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Table 3. Errors and orders of convergence of the P1−collocation on the circular arc

n E(∞, u) eoc E(2, u) eoc E(∞, q) eoc E(2, q) eoc

8 .147e-2 .380e-2 .711e-2 .128e-2
16 .373e-3 1.982 .957e-3 1.990 .181e-2 1.972 .328e-3 1.968
32 .937e-4 1.993 .240e-3 1.995 .458e-3 1.984 .830e-4 1.981
64 .235e-4 1.997 .602e-4 1.997 .115e-3 1.992 .209e-4 1.989
128 .588e-5 1.998 .151e-4 1.999 .288e-4 1.999 .524e-5 1.994
256 .147e-5 1.999 .377e-5 1.999 .734e-5 1.971 .131e-5 1.997
512 .368e-6 2.000 .942e-6 2.000 .248e-5 1.564 .329e-6 1.998

Table 4. Errors and orders of convergence of the P1−collocation on the polygonal boundary

n E(∞, u) eoc E(2, u) eoc E(∞, q) eoc E(2, q) eoc

8 .544e-2 .290e-2 .137e-1 .376e-2
16 .124e-2 2.130 .693e-3 2.068 .347e-2 1.979 .965e-3 1.962
32 .296e-3 2.067 .168e-3 2.041 .875e-3 1.987 .245e-3 1.976
64 .723e-4 2.034 .414e-4 2.022 .220e-3 1.993 .619e-4 1.987
128 .179e-4 2.017 .103e-4 2.012 .550e-4 1.999 .155e-4 1.993
256 .444e-5 2.009 .256e-5 2.006 .138e-4 1.994 .390e-5 1.997
512 .111e-5 2.004 .638e-6 2.003 .391e-5 1.822 .975e-6 2.001

P1-collocation. We get the second order for the boundary potential and the
boundary flux both in the L∞- and the L2

r-norms. The numerical results in
Table 4 are computed taking into account the approximate solid angle at the
corner collocations. If we define the solid angle equals 1/2 then the computa-
tional accuracy of the boundary potential reduces and the convergence order
falls to one (this results are not presented in Table 4).

Let us compare the numerical results of Tables 1–4 with the existing theory
in 2D for smooth boundaries [3,9,16] and polygonal boundaries [7,8]. The ax-
isymmetric P0-collocation shows a superconvergence with the second order in
the L∞-norm both on the smooth boundary and on its interpolation, see Table 1
and Table 2. The same convergence was predicted in [9, Theorem 4.6.17] for
spline collocations of order 0 on two-dimensional smooth geometries. The ax-
isymmetric P1-collocation on the smooth boundary converges with the second
order in the L∞-norm, see Table 3. The same convergence was predicted in [16]
for spline collocations of odd order on two-dimensional smooth geometries. The
theory for the collocation in 2D on smooth boundaries [3] and on polygonal
boundaries for the first kind boundary integral equations [8] predicts that the
convergence in the L2-norm (the norm is weighted on polygons) equals k+1 for
the collocation method of order k. The axisymmetric boundary unknowns on
the circular arc and on the polygonal interpolation show for the P0-collocation
a one order higher convergence in the L2

r-norm than predicted theoretically
in [3], whereas the convergence of the P1-collocation coincides with the theory.
The second order convergence in the L2

r-norm for the P0-collocation is due to
the use of only collocation points for the error evaluation by the midpoint rule.
If the Gaussian integration is applied then the convergence order falls to one
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and the results coincides with the theoretical predictions in [3]. It is important
to note that the P1-collocation on the polygonal boundary requires to take
into consideration the solid angle at the corner points to get the theoretically
predicted orders in the L∞- and the L2

r-norms. If the solid angle is defined as
in the smooth case c(ξ0) = 1/2, then the convergence order reduces by one.
According to the comparison of the numerical results for the axisymmetric col-
location with theoretical results in [3, 7, 8, 9, 16] for 2D-collocation on smooth
and polygonal boundaries, we have got that the axisymmetric collocation on
the circular arc and on the polygonal interpolation shows the same convergence
as 2D-collocation. The L2

r-error for the P0-collocation, computed only at the
collocation points by the midpoint rule, shows a one order higher convergence
than the theory predicts. The P1-collocation on the polygonal boundary shows
a decrease of the convergence order by one if the solid angle is not included
into the integral formulation.

5.2 Test 2

We perform test computations of the boundary field in a uniform external field
Hext = (0, 0, H0) for the different values of the relative permeability µ. We
consider the axisymmetric P0- and P1-collocation method on the circular arc
Γ0 and its polygonal interpolation Γh. The approximate boundary field

Hh =
∂φh
∂t

t + qhn

is evaluated at the centers of the boundary elements for the P0-collocation
and at the corners for the P1-collocation. The difference approximation is
used to compute the tangential derivative of the potential. We compare the
approximate boundary field Hh with an analytically known solution H =(

0, 3H0

µ+2

)
on Γ0, see Section 5.1. We compute the solution of the collocation

problem on the uniform mesh with n = 12 boundary elements on the circular
arc of radius one. We set H0 = 17 and n = 12 for computations to get numerical
results, comparable with those in the example on a sphere in [2].

Figure 2 presents the dependence of the relative L2
r-error for the bound-

ary field on the relative permeability µ for different variants of the collocation
method. The L2

r-norm is computed with the 6 point Gaussian rule. Figure 2
shows that the error tends to a constant value for increasing µ. The computa-
tions with 30 digits for floating-points numbers are performed up to µ = 1050

without loss in accuracy for increasing µ. However, the error starts increasing
about µ = 108 for the computations with 15 digits. We get that our compu-
tations with 30 digits for floating-points show a better stability in accuracy
than the results with 15 digits. Comparing the accuracy of different variants
of the method, we get that the P0-collocation is slightly more accurate than
the P1-collocation, and the error, due to the boundary approximation, is more
pronounced for the P0-collocation than for the P1-collocation. To some extent,
we can compare the accuracy of the P1-collocation on the polygonal boundary
Γh with three-dimensional computations in [2]. We get the relative error sim-
ilar to the double layer potential formulation with the rewritten evaluation in
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Figure 2. The relative error of the approximate boundary field versus the relative
permeability.

the region of stable accuracy. The loss in accuracy for increasing µ have been
observed in [2], where the stability was improved up to µ = 1019 by a modified
evaluation of the magnetic field.

6 Conclusions

Let us finally conclude the main results and observations.

The exterior transmission problem (2.1), (2.2), (2.4) for the electro- or mag-
netostatic potential allows the reformulation as two integral equations in the
meridian plane for the boundary potential and the boundary flux, which can
be solved successively. The second kind integral equation is formulated only
for the potential. The first kind integral equation for the flux contains the
potential only at the right-hand side. The axisymmetric collocation method
for this problem statement shows numerical convergence and good accuracy.

We suggest to redefine the kernel functions for the source point at the
symmetry axis. It results in a non-singular asymptotic behavior of kernels for
integration points, tending to the symmetry axis. The redefined kernels of
the axisymmetric collocation method on smooth and polygonal boundaries are
weakly singular.

According to the test computations, the polygonal boundary interpolation
does not change the convergence behavior on the smooth boundary for the
piecewise-constant and the piecewise-linear collocation on uniform meshes. The
convergence order of the axisymmetric collocation coincides with the theoreti-
cally predicted results for 2D-collocation. The L2

r-error for the P0-collocation,
computed only at the collocation points by the midpoint rule, shows a one
order higher convergence than the theory predicts. The P1-collocation on the
polygonal boundary shows a decrease of the convergence order by one if the
solid angle is not included into the integral formulation.
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