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Abstract. The torsional dynamics of carbon nanotubes embedded in viscoelastic
medium are presented by using the nonlocal elasticity theory. The medium is con-
sidered as a foundation model which characterized by the linear Winkler’s modulus,
Pasternak’s (shear) foundation modulus and the damping coefficient. The governing
torsional equation is obtained and solved for nanotubes subjected to various bound-
ary conditions and stated under different loads. The effects of some parameters like
nonlocal parameter, nanotube length, Winkler’s modulus, and damping coefficient
on the angular displacement of the nanotube are investigated in detail. The angu-
lar displacements are very sensitive to all parameters, especially the inclusion of the
viscous damping foundation. Present results can be useful in design of future nano
composites, nano electromechanical systems like nano position sensors and linear ser-
vomotors. Sample angular displacements are tabulated and plotted for sensing the
effect of all used parameters and to investigate the visco-Pasternak’s parameters for
future comparisons.

Keywords: nonlocal elasticity theory, nanotube, angular displacement, visco-Pasternak’s

medium.
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1 Introduction

In 1991, Iijima [16] has discovered some types of very thin and may be long
cylinders made of carbon which are said to be carbon nanotubes (CNTs).
Carbon nanotubes have extraordinary physical properties like high mechanical
strength, good electrical conductivity, and wide range of possible uses [1, 23].
They are the ideal reinforcement for high performance composites due to their
small size, low density, high stiffness and high strength; and therefore, they are
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considered as new generation of reinforcing phase in fabricating nano-composite
materials. With these superior properties, CNTs are used by scientists in
several areas like sensor technologies, composites and electromechanical sys-
tems. Most types of the CNTs are cylindrical macromolecules composed of
a highly ordered sheet of carbon atoms in a periodic hexagonal arrangement
rolled into a tube. For the modeling of and treating with the CNTs we have
used two models (the molecular dynamic [2,21,30] and the continuum mechan-
ics [7,11,12,13,17,19]) as well as the experimental methods. We can deal with
the molecular dynamic simulation if the structures have small scale like the
CNTs and the process is made in a short time interval. The continuum model
can also be used as an alternative, although it is not size-dependent.

In most applications, we have noticed that the CNTs are embedded in an
elastic foundation medium. The first type of elastic foundation is presented
by Winkler as a one-parameter elastic foundation. It is used in a lot of bend-
ing, vibration, and torsional buckling of CNTs problems [14,15,22,25,28]. For
instance, Han and Lu [14] have examined the torsional buckling of a double-
walled CNT embedded in an elastic medium. The effects of surrounding elastic
medium and van der Waals forces between the inner and outer nanotubes are
taken into consideration. Sun and Liu [25] have investigated the combined
torsional buckling of multi-walled CNTs under combined torque, axial load-
ing and radial pressures based on the continuum mechanics model taking into
account the effect of the van der Waals interaction between adjacent tubes.
Natsuki et al. [22] have studied the influences of the aspect ratio, the buck-
ling modes, and the surrounding elastic medium on the torsional instability of
double-walled CNTs. Hao et al. [15] have presented the small scale effect on
torsional buckling of multi-walled CNTs.

Winkler’s model cannot be taken into account as an exact approximation
of the elastic foundation since it considers only the parameter representing the
normal pressure. So, Pasternak has presented the second type of elastic foun-
dation since he has considered both normal pressure and transverse shear stress
to be a more generalized depiction of the elastic foundation. A limited num-
ber of studies have used the two-parameter Pasternak’s model for depicting
the mechanical characteristics of the elastic foundation. Murmu and Pard-
han [20] have presented the two-parameter Winkler-Pasternak model as well as
the nonlocal elasticity theory for the buckling analysis of single-walled CNTs.
Mohammadimehr et al. [18] have investigated the effects of the two-parameter
surrounding elastic foundation for the torsional buckling of a double-walled
CNT. Arani et al. [5] have studied the thermal effect on the buckling analy-
sis of a double-walled CNT embedded in an elastic medium and modeled the
interaction between matrix and the outer tube as a Pasternak’s foundation.
Extensive studies have been conducted on the mechanical properties of CNTs
embedded in elastic foundation such as static bending [27], free vibration and
dynamic response [29], and buckling [26].

Physical environments like fluid flow or biological tissue can be modelled
as a viscoelastic medium, which has damping and elastic characteristics, and
the effect to the torsional vibration of CNT is a very interesting topic for re-
searchers. In general, CNTs can be modelled using continuum theories. Unlike
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from classical theory, Eringen’s nonlocal elasticity theory includes size effects.
Eringen [8, 9] stated that: ”The stress at a point is a functional of the strain
field at every point of the continuum”. Especially in nano dimensions, size
dependency gains much importance because of atomic interactions. Zhen et
al. [33] have studied the transverse vibration of fluid-conveying double walled
CNTs embedded in biological soft tissue. Soltani et al. [24] studied the vibra-
tion of a viscous-fluid-conveying double-walled CNT embedded in visco-elastic
medium. Arani and Roudbari [4] have developed the nonlocal longitudinal and
transverse vibrations of coupled boron nitride nanotube system under a mov-
ing nanoparticle using piezoelastic theory and surface stress based on Euler-
Bernoulli beam. Arani et al. [3] have studied the nonlinear free vibration and
instability of fluid-conveying double-walled boron nitride nanotubes embedded
in viscoelastic medium.

The torsional dynamic response problem of a carbon nanotube embedded
in a visco-Pasternak’s medium displays various characters, and the solution
becomes difficult (Zenkour [31,32]). The present paper deals with the dynamic
response of CNTs embedded in three-parameter elastic medium. The govern-
ing torsional equation is obtained and solved for CNTs subjected to various
boundary conditions and stated under different loads. The effects of different
parameters on the angular displacement of the CNT are investigated. Sample
angular displacements are tabulated and plotted for sensing the effect of all
used parameters and to investigate the visco-Pasternak’s parameters for future
comparisons.

2 Basic equation of carbon nanotube (CNT)

Let us consider a single-walled carbon nanotube (SWCNT) of length L, inner
radius R1 and outer radius R2 as shown in Figure 1. The CNT is made of a
homogeneous isotropic and linearly elastic material with usual Lame’s constants
λ and µ and the material density ρ.

CNT

visco-Pasternak’s medium

2

Figure 1. Schematic diagram for clamped-supported carbon nanotube embedded in
visco-Pasternak’s foundations.

The most general form of the constitutive relation in nonlocal elasticity
theory involves an integral over the entire region of interest. The integral
contains a nonlocal kernel function, which describes the relative influence of
the strains at the various locations of the body on the stress at the material
point under consideration. Specifically, the constitutive equation of nonlocal
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elasticity for homogenous and isotropic elastic solids read

σkl(x) =

∫
v

α
(
|x− x

′
|
)
τkl(x

′
)dv(x

′
), (2.1)

where σj is the nonlocal stress tensor, v is the volume occupied by the elastic

body, |x − x
′ | denotes distance in Euclidean space, and the nonlocal kernel

α(|x− x′ |) accounts for the effect of the strain at the point x
′

on the stress at
the point x in the elastic body. The quantity τkl(x

′
) denotes the local stress

tensor for which the standard local constitutive equation is adopted, i.e.

τkl(x
′
) = λεmm(x

′
)δkl + 2µεkl(x

′
),

where εkl(x
′
) is the classical local strain tensor at x

′
. The small strain-

displacement relations are given by the usual relations

εkl(x
′
) =

1

2

(
∂vk(x

′
)

∂x
′
l

+
∂vl(x

′
)

∂x
′
k

)
,

where vl(x
′
) is the displacement vector at a reference point x

′
in the body. For

an appropriate form of the nonlocal kernel [10], it turns out that the nonlocal
internal constitutive relation given by Eq. (2.1) can be inverted to yield the
following pseudo-local constitutive equation of gradient type[

1− (ae0)
2∇2

]
σkl = τkl, (2.2)

where ∇2 is the Laplacian. The parameter a is an internal characteristic length
(e.g., lattice parameter, granular distance), and e0 is a material constant de-
termined by experiment or by matching dispersion curves of plane waves with
those of atomic lattice dynamics. One may see that when the internal charac-
teristic length a is neglected, i.e. the particles of the medium are considered
to be continuously distributed and interacting without long-range forces, ae0
is zero, and Eq. (2.2) reduces to the constitutive equation of classical local
thermoelasticity.

The present CNT is embedded in a homogeneous three-parameter viscoelas-
tic medium. The foundation model is characterized by the linear Winkler’s
modulus K1, the Pasternak’s (shear) foundation modulus K2, and the damp-
ing coefficient ct of the viscoelastic medium. Taking into account the un-
bonded contact between the CNT and medium, the interaction follows the
three-parameter visco-Pasternak-type foundation model as

Rf =

(
K1 −K2L

2 ∂
2

∂x2
+ ct

∂

∂t

)
v(x, t), (2.3)

where v is the angular displacement of CNT and Rf defines the external torque
load and means elastic and damping effect of viscoelastic medium. Here, we
have introduced the CNT length L in Eq. (2.3) for maintaining the dimension
of K1 and K2 to be the same. This model is simply reducing to the visco-
Winkler’s type when K2 = 0. The viscosity term may be omitted by setting
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ct = 0 to get the analysis of the nanotube embedded in elastic medium. If the
Newton’s second law is applied to torsional vibration of the CNT, the governing
equation is obtained as [6]

µIp
∂2v

∂x2
= ρIp

∂2v

∂t2
+Rf − q(x, t), (2.4)

where q(x, t) is the external applied load and Ip is the polar moment of inertia
Ip = π

2

(
R4

2 −R4
1

)
. In view of Eq. (2.2), the relevant nonlocal constitutive

equation for the torsional deformation of the uniform CNT can be written in
a one dimensional form

τ − ξ ∂
2τ

∂t2
= µγ, (2.5)

where ξ = (ae0)2 is the nonlocal parameter, γ is the shear strain and τ is the
shear stress. The stress resultant S due to the shear stress and torque relation
T are expressed as

{S, T} =

∫
A

τ{1, z}dA,

where A is the cross-section of the CNT. Accordingly, the nonlocal stress resul-
tant S and torque relation T , with aid of Eq. (2.5), are given by the expressions

S − ξ ∂
2S

∂x2
= µAγ, T − ξ ∂

2T

∂x2
= µIp

∂v

∂x
.

If the above equation is inserted into Eq. (2.4), with the aid of Eq. (2.3),
one can obtain the governing equation of motion for the CNT embedded in a
visco-Pasternak’s medium as

µIp
∂2v

∂x2
= ρIp

(
∂2v

∂t2
− ξ ∂4v

∂x2∂t2

)
+Rf − q(x, t)− ξ

∂2

∂x2

[
Rf − q(x, t)

]
. (2.6)

3 Solution of the problem

With the harmonic vibration assumption, the angular displacement v(x, t) of
the CNT can be defined as

{v, q}(x, t) = {V (x), Q(x)}eωt, (3.1)

where ω represents the complex angular parameter for the CNT and V (x) is
the amplitude of the torsional displacement.

In what follows we will use the following dimensionless variables,

x
′

=
x

L
, ξ

′
=

x

L2
, Ω = L

√
ρ

µ
ω, {κ1, κ2} =

L2

µIp
{K1,K2}.

Then, the governing equation given in Eq. (2.6), after using Eq. (3.1) and the
above dimensionless form become (dropping the dashed for convenience)

d4V

dx4
− ᾱ0

d2V

dx2
+ β2

0V = q̄(x), (3.2)
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where

ᾱ0 = α0 + ξβ2
0 , α0 =

1 + κ2
κ2ξ

,

β2
0 =

Ω2 + ζΩ + κ1
κ2ξ

, q̄(x) =
1

κ2ξµIp

(
Q− ξd2Q

dx2

)
,

in which ζ = L√
ρµIp

ct, Ω is the dimensionless frequency parameter, κ1 is the

dimensionless Winkler’s foundation parameter, and κ2 is the dimensionless
Pasternak’s foundation parameter. The general solution of Eq. (3.2) can be
written as

V (x) = c1eη1x + c2e−η1x + c3eη2x + c4e−η2x + p(x), (3.3)

where cj are undetermined integral constants, p(x) is the particular solution of
the non-homogeneous differential equation, and

η1 =
1√
2

√
ᾱ0 −

√
ᾱ2
0 − 4β2

0 , η2 =
1√
2

√
ᾱ0 +

√
ᾱ2
0 − 4β2

0 .

The function p(x) will be given according to the type of the applied load and
the four constants cj may be determined by the application of the boundary
conditions. The distribution of shear stress in the CNT must satisfy the condi-
tions with respect to the angular displacement at the boundary. For the present
CNT, the solution given in Eq. (3.3) requires that two boundary conditions be
satisfy at each edge. These may be a given angular displacement and slope,
or force and moment, or some other combination. We can now formulate a
variety of commonly encountered situations. The boundary conditions at the
edges x = 0 and x = 1 of the CNT may readily be clamped, fixed, or built-in
edge (C) with V = 0 and dV

dx = 0. For the simply-supported edge (S) of the

CNT we have V = 0 and d2V
dx2 = 0. So, one can discuss the following three cases

of boundary conditions: C-C, S-S and C-S.

4 Frequency equation for different boundary conditions
and external loads

By applying the set of boundary conditions on the general solution given in
Eq. (3.3) we get a set of algebraic equations in terms of the four constants cj .
These equations may be expressed in matrix form according to the boundary
conditions used.

The CNT subjected to C-C boundary conditions:
1 1 1 1

eη1 e−η1 eη2 e−η2

η1 −η1 η2 −η2
η1eη1 −η1e−η1 η2eη2 −η2e−η2



c1
c2
c3
c4

 = −


p(0)

p(1)

p
′
(0)

p
′
(1)

 . (4.1)
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The CNT subjected to S-S boundary conditions:
1 1 1 1

eη1 e−η1 eη2 e−η2

η21 η21 η22 η22
η21eη1 η21e−η1 η22eη2 η22e−η2



c1
c2
c3
c4

 = −


p(0)

p(1)

p
′′
(0)

p
′′
(1)

 .

The CNT subjected to C-S boundary conditions:
1 1 1 1

eη1 e−η1 eη2 e−η2

η1 −η1 η2 −η2
η21eη1 η21e−η1 η22eη2 η22e−η2



c1
c2
c3
c4

 = −


p(0)

p(1)

p
′
(0)

p
′′
(1)

 . (4.2)

In the above equations the prime means differentiation with respect to x. The
different load forms of the external load are given by

Q(x) = f(t) =


q0, for uniform load (UL),

q0x, for linear load (LL),

q0 sin(πx) for sinusoidal load (SL),

where q0 is the amplitude of the load at the center of the CNT. Using the
above forms of the load, we can get the solution of Eqs. (4.1)-(4.2). The
determination of the constants cj completes the full solution to the amplitude
of the torsional displacement.

5 Numerical results and discussions

Let us consider some numerical examples to put into evidence the effect of the
length L, the foundation parameters κ1 and κ2, and the viscous damping coef-
ficient ct on torsional dynamic analysis of the present CNT. The dimensionless
angular displacement parameter for the CNT embedded in a visco-Pasternak’s
medium is given as

v̄(x, t) =
µ

hq0
v(x, t)

and it is carried out for different boundary conditions. The material properties
for the present CNT are accepted as [6]

µ = 460 GPa, ν = 0.19, ρ = 1.3 g/cm
3
.

All plots are prepared by using the real value of the dimensionless angu-
lar displacement parameter v̄. The CNT inner radius R1 = 0.68 nm and its
thickness h = R2 − R1 = 0.08 nm. The time is fixed at t = 0.3 s and the
Pasternak’s parameter is κ2 = 0.1 nN. The complex angular frequency is as-
sumed as ω = ω0 + i$ in which ω0 = 1.25 and $ = 0.25. The computations
are carried out (except otherwise stated) for L = 10 nm, κ1 = 0.05 nN, ξ = 0.1
nm2, and ct = 0.5 nN. Other different values are given to the visco-Pasternak’s
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parameters ct, κ1, and κ2 and the length L of the CNT. Here, we will discuss
also the effect of the dimensionless nonlocal parameter ξ.

Benchmark results are presented in Table 1 for future comparisons with
other investigators. The effects of the nonlocal parameter ξ, viscous damping
coefficient ct and Winkler’s parameter κ1 on the angular displacement v̄ of
C-C CNTs under different load with L = 11 nm are discussed. The CNT
under sinusoidal load (SL) gives the highest angular displacement v̄ while the
CNT under linear load (LL) gives the smallest angular displacement v̄. For
a CNT subjected to any of the presented load, e.g., uniform load (UL), the
angular displacement v̄ is increasing with the increase of nonlocal parameter ξ.
However, v̄ is decreasing as the viscous damping coefficient ct and the Winkler’s
parameter κ1 increase.

Table 1. Effect of the nonlocal parameter ξ, the viscous damping coefficient ct and the
Winkler’s parameter κ1 on the angular displacement v̄ of C-C CNTs under different load
(L = 11 nm).

ξ = 0.1 ξ = 0.3 ξ = 0.5

ct κ1 UL LL SL UL LL SL UL LL SL

0.1 0.0 1.519 0.760 2.658 2.683 1.341 9.023 2.465 1.232 12.379
0.1 1.237 0.619 2.179 2.330 1.165 7.847 2.243 1.121 11.271
0.2 1.023 0.511 1.813 2.036 1.018 6.868 2.044 1.022 10.277
0.3 0.857 0.429 1.529 1.789 0.895 6.048 1.865 0.933 9.387

0.3 0.0 0.741 0.370 1.346 1.736 0.868 5.885 1.886 0.943 9.503
0.1 0.637 0.319 1.163 1.531 0.765 5.201 1.717 0.858 8.655
0.2 0.552 0.276 1.013 1.358 0.679 4.625 1.567 0.783 7.907
0.3 0.483 0.241 0.889 1.212 0.606 4.136 1.434 0.717 7.243

0.5 0.0 0.426 0.213 0.800 1.156 0.578 3.960 1.422 0.711 7.193
0.1 0.379 0.190 0.713 1.038 0.519 3.564 1.302 0.651 6.594
0.2 0.339 0.170 0.639 0.936 0.468 3.223 1.196 0.598 6.063
0.3 0.305 0.152 0.575 0.848 0.424 2.927 1.106 0.551 5.592

1.0 0.0 0.163 0.082 0.319 0.503 0.252 1.780 0.737 0.369 3.783
0.1 0.152 0.076 0.296 0.467 0.233 1.654 0.689 0.344 3.537
0.2 0.141 0.071 0.276 0.434 0.217 1.541 0.644 0.322 3.313
0.3 0.132 0.066 0.257 0.404 0.202 1.439 0.604 0.302 3.110

Figures 2-4 show the effect of the nonlocal parameter ξ on the variation of
the angular displacement v̄ along the axial direction of CNTs subjected to var-
ious boundary conditions and under different loads. The angular displacement
v̄ increases as ξ increases for different cases. It is very sensitive to the variation
of the load presented. The angular displacement of a CNT under uniform load
is intermediate those of CNTs under linear and sinusoidal loads. The maxi-
mum angular displacement v̄ occurs at the center of the C-C and S-S CNTs
(x = 0.5) under uniform (Figure 2a and Figure 3a) and sinusoidal (Figure 2c
and Figure 3c) loads. However, the maximum angular displacement v̄ occurs
near the center of the C-S CNT (x ∼= 0.555) under uniform (Figure 4a and
Figure 4c) and sinusoidal loads. This is not the same for CNTs under linear
load and subjected to various boundary conditions (Figure 2b, Figure 3b and
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Figure 4b).
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Figure 2. Effect of nonlocal parameter ξ on the distribution of angular displacement
along the axial direction of a C-C CNT subjected to: (a) UL, (b) LL, and (c) SL.
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Figure 3. Effect of nonlocal parameter ξ on the distribution of angular displacement
along the axial direction of a S-S CNT subjected to: (a) UL, (b) LL, and (c) SL.

Figures 5-7 show the effect of damping parameter ct on the variation of the
angular displacement v̄ along the axial direction of CNTs subjected to various
boundary conditions and under different loads. The angular displacement v̄ de-
creases as ct increases for different cases and it is very sensitive to the variation
of the load presented.
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Figure 4. Effect of nonlocal parameter ξ on the distribution of angular displacement
along the axial direction of a C-S CNT subjected to: (a) UL, (b) LL, and (c) SL.
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Figure 5. Effect of viscous damping parameter ct on the distribution of angular
displacement along the axial direction of a C-C CNT subjected to: (a) UL, (b) LL, and (c)

SL.

The maximum angular displacement v̄ occurs at the center of the C-C and
S-S CNTs under uniform (Figure 5a and Figure 6a) and sinusoidal (Figure 5c
and Figure 6c) loads. However, the maximum angular displacement v̄ occurs
near the center of the C-S CNT under uniform (Figure 7a) and sinusoidal
(Figure 7c) loads. This is not the same for CNTs under linear load and sub-
jected to various boundary conditions (Figure 5b, Figure 6b and Figure 7b).
For example, for a C-C CNT subjected to the linear load (Figure 5b), the
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maximum values v̄max = 1.02608, 0.58585, 0.37654, and 0.16936 which occur at
x = 0.624, 0.668, 0.701, and 0.752 for ct = 0.1, 0.3, 0.5 and 1.0, respectively.
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Figure 6. Effect of viscous damping parameter ct on the distribution of angular
displacement along the axial direction of a S-S CNT subjected to: (a) UL, (b) LL, and (c)

SL.
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Figure 7. Effect of viscous damping parameter ct on the distribution of angular
displacement along the axial direction of a C-S CNT subjected to: (a) UL, (b) LL, and (c)

SL.

Figures 8-10 show the effect of Winkler’s parameter κ1 on the variation of
the angular displacement v̄ along the axial direction of CNTs subjected to var-
ious boundary conditions and under different loads. The angular displacement
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v̄ decreases as κ1 increases for different cases and it is very sensitive to the
variation of the load presented.
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Figure 8. Effect of Winkler’s parameter κ1 on of the distribution of angular displacement
along the axial direction of a C-C CNT subjected to: (a) UL, (b) LL, and (c) SL.
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Figure 9. Effect of Winkler’s parameter κ1 on of the distribution of angular displacement
along the axial direction of a C-S CNT subjected to: (a) UL, (b) LL, and (c) SL.

Once again, the maximum angular displacement v̄ may be occur at the
center of the CNTs under sinusoidal load only (Figure 8c, Figure 9c and Fig-
ure 10c). However, the maximum angular displacement v̄ may be occur along
the interval (0.35 < x < 0.65) of the CNTs under uniform load only (Fig-

Math. Model. Anal., 21(6):852–868, 2016.



864 A.M. Zenkour

ure 8a, Figure 9a and Figure 10a). This is not the same for CNTs under linear
load and subjected to various boundary conditions (Figure 8b, Figure 9b and
Figure 10b).
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Figure 10. Effect of Winkler’s parameter κ1 on of the distribution of angular
displacement along the axial direction of a C-S CNT subjected to: (a) UL, (b) LL, and (c)

SL.
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Figure 11. Effect of different loads on the distribution of angular displacement along the
axial direction of a CNT subjected to: (a) C-C, (b) S-S, and (c) C-S boundary conditions.

It is interesting to note that there are two absolute maximum points have
the same value for CNTs under uniform load for small values of ξ, greater
values of ct, and all values of κ1. Let us consider the S-S CNT under uniform
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load as an example. For ξ = 0.1, v̄max = 0.58110 at the two positions x = 0.412
and x = 0.588 (Figure 3a). For ct = 1.0, v̄max = 0.23546 at the two positions
x = 0.271 and x = 0.729 (Figure 6a). For κ1 = 0.3, v̄max = 0.41849 at the two
positions x = 0.385 and x = 0.615 (Figure 9a).

Finally, Figure 11 shows the variation of the angular displacement along the
axial direction of CNTs with L = 11 nm and subjected to various boundary
conditions and different loads. The maximum angular displacement v̄ occurs
at the center of the CNTs under sinusoidal load irrespective of the boundary
condition. As we discussed before, there are two absolute maximum points
have the same value for CNTs under uniform load. If the applied load is
linear, we have different positions for different maximum values of the angular
displacement. For example, v̄max = 0.27359 at x = 0.723 for the C-C CNT
(Figure 11a); v̄max = 0.29798 at x = 0.774 for the S-S CNT (Figure 11b); and
v̄max = 0.29797 at x = 0.774 for the C-S CNT (Figure 11c).

6 Validation

To the best of the author’s knowledge no published literature is available for
comparison the torsional dynamic response of the SWCNTs. In this article, we
restrict our attention to investigate the effects of some parameters like nonlocal
parameter, nanotube length, Winkler’s modulus, Pasternak’s shear foundation,
and damping coefficient on the angular displacement of the nanotube. However,
the present results can be validated by the other published literatures in the
torsional statics and dynamics of SWCNTs just embedded in an elastic medium.
In this regard, the simplified result of this paper is compared with the work
of Arda and Aydogdu [6]. If we neglect the external applied load q(x, y) and
reduce the foundation model to be a Winkler’s one, Eq. (2.6) should be tends
to

µIp
∂2v

∂x2
= ρIp

(
∂2v

∂t2
− ξ ∂4v

∂x2∂t2

)
+K1

(
v − ξ ∂

2v

∂x2

)
, (6.1)

which indicates the governing equation of motion for the CNT embedded in
elastic medium. As can be observed Eq. (6.1) is almost the same as that in
Ref. [6]. In fact, the plots of the non-dimensional angular displacement of CNT
presented in Ref [6] are considered as special cases when compared with the
present results.

7 Conclusions

In this article, a carbon nanotube is embedded in a three-parameter viscoelas-
tic foundation medium. The torsional dynamics analysis is performed due to
the nonlocal elasticity theory. For the sake of completeness and comparisons,
some angular displacements are tabulated here for different viscous damping
coefficient, nonlocal parameter, and Winkler’s elastic foundation. Different
loads and various boundary conditions are taken into consideration. The an-
gular displacement is very sensitive to the variation of the load presented. The
angular displacement of a CNT under uniform load is intermediate those of

Math. Model. Anal., 21(6):852–868, 2016.



866 A.M. Zenkour

CNTs under linear and sinusoidal loads. The maximum angular displacement
v̄ occurs at the center of the C-C and S-S CNTs under uniform and sinusoidal
loads. However, the maximum angular displacement occurs near the center of
the C-S CNT under uniform and sinusoidal loads. This is not the same for
CNTs under linear loads and subjected to various boundary conditions. This
investigation may give a useful help in applications of nanotubes technology,
especially those that embedded in viscoelastic medium.
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