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Abstract. We investigate the existence of solutions for boundary value problems of
the third-order q-difference equations and inclusions. Our results are based on some
standard fixed point theorems. In case of inclusion problem, the existence results are
obtained for convex as well as nonconvex multi-valued maps. We also discuss the
existence of extremal solutions for the inclusion problem.
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1 Introduction

The subject of q-difference equations, initiated in the beginning of the 20th
century [4, 16, 32, 39], has evolved into a multidisciplinary subject, for example,
see [21, 22, 23, 24, 25, 26, 27, 34] and references therein. For some recent work
on q-difference equations, we refer the reader to the papers [3, 6, 7, 8, 11, 15,
19, 20, 31]. However, the theory of boundary value problems for nonlinear q-
difference equations is still in the initial stages and many aspects of this theory
need to be explored.

Differential inclusions appear in the mathematical modelling of certain prob-
lems in economics, optimal control, stochastic analysis, etc., and have recently
been studied by many authors, for instance, see [12, 13, 29, 30, 36, 37, 41]
and the references therein. Recently, Ahmad and Ntouyas [9] investigated a
boundary value problem of the second-order q-difference inclusions with non-
separated boundary conditions. For some q-fractional differential equations,
see [1, 2, 33], and for some recent work in q-difference equations with delay we
refer to [10].
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We study the existence of solutions for boundary value problems of third-
order q-difference equations given by

D3
qu(t) = f

(
t, u(t)

)
, t ∈ J, (1.1)

and inclusions of the form

D3
qu(t) ∈ F

(
t, u(t)

)
, t ∈ J (1.2)

with the boundary conditions

u(0) = 0, Dqu(0) = 0, u(1) = 0. (1.3)

Here f : J × R→ R is a given continuous function, J = {qn : n ∈ N} ∪ {0, 1} ,
q ∈ (0, 1) is a fixed constant, and F : J ×R→ P(R) is a multi-valued function,
with P(R) being the family of all nonempty subsets of R.

We recall that some existence results for the problem (1.1), (1.3), based
on Leray–Schauder degree theory and contraction mapping principle, were ob-
tained in [4]. Here, we discuss the existence of solutions for the problem (1.1)–
(1.3) when the nonlinear function f(t, u(t)) is of Carathéodory type and satisfies
a generalized variant of Lipschitz condition. However, in this paper, our main
aim is to establish some existence results for the inclusion problem (1.2), (1.3)
by applying the concept of lower and upper solutions.

2 Preliminaries

Let us recall some basic concepts of q-calculus [27, 34].

For 0 < q < 1, we define the q-derivative of a real-valued function f as

Dqf(t) =
f(t)− f(qt)

(1− q)t
, t ∈ J − {0}, Dqf(0) = lim

t→0
Dqf(t).

Note that for f differentiable at t we have

lim
q→1−

Dqf(t) = f ′(t).

The higher order q-derivatives are defined inductively as

D0
qf(t) = f(t), Dn

q f(t) = DqD
n−1
q f(t), n ∈ N.

For example, Dq(t
k) = [k]qt

k−1, where k is a positive integer and the q-bracket
[k]q = (qk − 1)/(q − 1). In particular, Dq(t

2) = (1 + q)t.

For y ≥ 0, let us set Jy = {yqn : n ∈ N ∪ {0}} ∪ {0} and define the definite
q-integral of a function f : Jy → R by

Iqf (y) =

∫ y

0

f(s) dqs =

∞∑
n=0

y(1− q)qnf
(
yqn
)

Math. Model. Anal., 18(1):122–135, 2013.



124 B. Ahmad and J.J. Nieto

provided that the series converges. For b1, b2 ∈ Jy (b1 = yqn1 , b2 = yqn2 for
some n1, n2 ∈ N), we define∫ b2

b1

f(s) dqs = Iqf(b2)− Iqf(b1) = (1− q)
∞∑
n=0

qn
[
b2f
(
b2q

n
)
− b1f

(
b1q

n
)]
.

Similarly, we have

I0q f(t) = f(t), Inq f(t) = IqI
n−1
q f(t), n ∈ N.

Observe that DqIqf(x) = f(x), and if f is continuous at x = 0, then

IqDqf(x) = f(x)− f(0).

This implies that if Dqf(t) = σ(t), then f(t) = Iqσ(t) + c, where c is an
arbitrary constant.

In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) = Dqg(t)h(t) + g(qt)Dqh(t),∫ x

0

f(t)Dqg(t) dqt =
[
f(t)g(t)

]x
0
−
∫ x

0

Dqf(t)g(qt) dqt.

In the limit q → 1−, the above results correspond to their counterparts in
standard calculus.

3 q-Difference Equations

This section deals with the existence of solutions for the problem (1.1)–(1.3).
A mapping % : J × R→ R is said to be Carathéodory if

(i) t 7→ %(t, u) is measurable for each u ∈ R,

(ii) u 7→ %(t, u) is continuous for t ∈ J .

A Carathéodory function % is called L1(J,R)-Carathéodory if there exists
a function hr ∈ L1(J,R) for each r > 0 such that |%(t, u)| ≤ hr(t), t ∈ J for all
u ∈ R with |u| ≤ r.

A Carathéodory function % is called L1
X(J,R)-Carathéodory if there exists

a function h ∈ L1(J,R) such that |%(t, u)| ≤ h(t) t ∈ J for all u ∈ R, where h
is called the bounding function of %.

Using the ideas of [4], we know that the solutions of the problem (1.1)–(1.3)
are given by the solutions of the equation

u(t) =

∫ 1

0

G(t, s; q)f
(
s, u(s)

)
dqs, (3.1)

where G(t, s; q) is the Green’s function given by

G(t, s; q) =
1

(1 + q)

{
qs(1− t)[q2s(1 + t)− (1 + q)t], 0 ≤ s < t ≤ 1,

t2(1− qs)(q2s− 1), 0 ≤ t ≤ s ≤ 1.
(3.2)
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We define ‖u‖ = sup{|u(t)| : t ∈ J} and set

G1 = max
t,s∈[0,1]

∣∣G(t, s; q)
∣∣.

Let L1([0, 1],R) be the Banach space of measurable functions u : [0, 1] → R
which are Lebesgue integrable and normed by ‖u‖L1 =

∫ 1

0
|u(t)|dt.

Theorem 1. Let us assume that

(H1) the function f is L1
X-Carathéodory with bounding function h ∈ L1(J,R+),

that is, |f(t, u)| ≤ h(t) a.e. t ∈ J for all u ∈ R such that

‖h‖L1 =

∫ 1

0

∣∣h(t)
∣∣ dt <∞.

Then the boundary value problem (1.1)–(1.3) has at least one solution on J .

Proof. In view of the solution representation (3.1), we define an operator P
by

(Pu)(t) =

∫ 1

0

G(t, s; q)f
(
s, u(s)

)
dqs. (3.3)

For m > 0 we consider the closed ball Bm = {u ∈ C(J,R) : ‖u‖ ≤ m} in
C(J,R).

Taking m = G1‖h‖L1 , and using the assumption (H1), for u ∈ R, we have∣∣(Pu)(t)
∣∣ ≤ ∫ 1

0

∣∣G(t, s; q)
∣∣∣∣f(s, u(s))

∣∣ dqs
≤
∫ 1

0

∣∣G(t, s; q)
∣∣∣∣h(s)

∣∣ dqs ≤ G1‖h‖L1 = m.

Hence ‖Pu‖ ≤ m, which means that P maps Bm into itself. In fact, P maps the
convex hull of P (Bm) into itself. Since f is bounded on Bm, therefore, P (Bm)
is equicontinuous. Thus, by the Schauder fixed point theorem, it follows that
the operator P has at least one fixed point u ∈ C(J,R) such that Pu = u,
which implies that the problem (1.1)–(1.3) has at least one solution on J . This
completes the proof. ut

Theorem 2. Assume that

(H2) there exists a function `(t) ∈ L1(J,R+) such that for each u, v ∈ C[J,R],
we have ∣∣f(t, u)− f(t, v)

∣∣ ≤ `(t)∣∣u(t)− v(t)
∣∣.

Then the problem (1.1)–(1.3) has a unique solution on J if ‖`‖L1G1 < 1.

Proof. By the assumption (H2) together with (3.3), we have∣∣(Pu)(t)− (Pv)(t)
∣∣ ≤ ∫ 1

0

∣∣G(t, s; q)
∣∣∣∣f(s, u(s))− f(s, v(s))

∣∣ dqs
≤ ‖u− v‖

∫ 1

0

∣∣G(t, s; q)
∣∣`(s) dqs ≤ ‖`‖L1G1‖u− v‖,

Math. Model. Anal., 18(1):122–135, 2013.
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which implies that P is a contraction mapping as ‖`‖L1G1 < 1. Thus, by
Banach fixed point theorem, there exists a unique solution for the problem
(1.1)–(1.3). This completes the proof. ut

4 q-Difference Inclusions

We begin this section with some basic concepts of multi-valued maps [12, 13,
29, 30, 41].

For a normed space (X, ‖.‖), let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact},
Pcl,c(X) = {Y ∈ P(X) : Y is closed and convex}, Pcl,b(X) = {Y ∈ P(X) :
Y is closed and bounded}, and

Pcp,c(X) =
{
Y ∈ P(X) : Y is compact and convex

}
.

A multi-valued map G : X → P(X) is convex (closed) valued if G(x) is
convex (closed) for all x ∈ X. The map G is bounded on bounded sets if
G(B) =

⋃
x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈

G(x)}} <∞). G is called upper semi-continuous (u.s.c) on X if for each x0 ∈ X,
the set G(x0) is nonempty closed subset of X and if for each open set N of
X containing G(x0), there exists an open neighbourhood N0 of x0 such that
G(N0) ⊆ N . In other words G is u.s.c if the set G−1(A) = {x ∈ X : Gx ⊂ A} is
open in X for every open set A in X. G is called lower semi-continuous (l.s.c.)
on X if A is any open subset of X then {x ∈ X : Gx ∩ A 6= ∅} is open in X.
G is called continuous if it is lower as well as upper semi-continuous on X. G is
called compact if for every M bounded subset of X, G(M) is relatively com-
pact. Finally G is called completely continuous if it is upper semi-continuous
and compact on X.

A multivalued map G : [0; 1]→ Pcl(R) is said to be measurable if for every
y ∈ R, the function

t 7−→ d
(
y,G(t)

)
= inf

{
|y − z| : z ∈ G(t)

}
is measurable.

Let C([0, 1]) denote a Banach space of continuous functions from [0, 1] into
R with the norm defined by ‖u‖ = sup{|u(t)| : t ∈ J} for each u ∈ C([0, 1]).

Definition 1. A multivalued map F : J × R→ P(R) is said to be Carathéo-
dory if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;

(ii) x 7−→ F (t, x) is upper semicontinuous for t ∈ J ;

Further a Carathéodory function F is called L1-Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, T ],R+) such that∥∥F (t, x)
∥∥ = sup

{
|v| : v ∈ F (t, x)

}
≤ ϕα(t)

for all ‖x‖ ≤ α and for t ∈ J.
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Definition 2. A multivalued function F : J × R → P(R) is called L1
X -

Carathéodory if there exists a function h ∈ L1(J,R) such that∥∥F (t, u)
∥∥ = sup

{
|f | : f ∈ F (t, u)

}
≤ h(t), a.e. t ∈ J

for all x ∈ R, and the function h is called a bounding function of F on J × R.

Let A,B ∈ Pcl(X), let a ∈ A and let

D(a,B) = inf
{
‖a− b‖ : b ∈ B

}
and D1(A,B) = sup

{
D(a,B) : a ∈ A

}
.

The function H : Pcl(X)× Pcl,b(X)→ [0,+∞) defined by

H(A,B) = max
{
D1(A,B), D1(B,A)

}
is a metric and is called Hausdorff metric on X. Notice that (Pcl,b(X), H) is a
metric space, (Pcl(X), H) is a complete metric space [35] and

H(∅, C) = sup
{
‖c‖ : c ∈ C

}
, C ∈ Pb(X).

Definition 3. A multi-valued function F : R→ Pcl(R) is called

(i) γ-Lipschitz if there exists γ > 0 (Lipschitz constant) such that

H
(
F (x), F (y)

)
≤ γ‖x− y‖, for each x, y ∈ X;

(ii) a contraction if it is γ-Lipschitz with γ < 1.

Definition 4. A multi-valued function F : J × R→ Pcl(R) is called

(i) γ(t)-Lipschitz if there exists γ ∈ L1(J,R+) such that

H
(
F (t, x), F (t, y)

)
≤ γ(t)‖x− y‖, for each x, y ∈ X,

(ii) a contraction if it is γ(t)-Lipschitz with ‖γ‖ < 1.

For the forthcoming analysis, we need the following lemmas.

Lemma 1. [14] Let M ⊂ X. If F : M → P(X) is closed and F (M) is relatively
compact then F is u.s.c. on M . Moreover, if F : X → P(X) is closed valued
and compact function, then F is u.s.c.on X.

Lemma 2. [38] Let T : X → Pcp,c(X) be a completely continuous multi-valued
function. If

E = {u ∈ X : λu ∈ Tu, for some λ > 1}

is a bounded set, then T has a fixed point.

Lemma 3. [18] Let (X, d) be a complete metric space. If G : X → Pcl(X) is a
contraction in the sense of Definition 4(ii), then G has a fixed point.

Math. Model. Anal., 18(1):122–135, 2013.
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Now we are in a position to discuss the existence of solutions for the problem
(1.2)–(1.3) when the right hand side is convex as well as non-convex valued.

Let us define the set of selections of F as

SF (u) =
{
f ∈ L1(J,R) : f(t) ∈ F

(
t, u(t)

)
a.e. t ∈ J

}
.

Theorem 3. Let us assume that

(H3) the multi-valued function F : J × R→ Pcl,c(R) is L1
X-Carathéodory with

a growth function h ∈ L1(J,R+), that is, ‖F (t, u)‖ ≤ h(t) a.e. t ∈ J for
all u ∈ R such that ‖h‖L1 <∞.

If F is lower semi-continuous (l.s.c.), then the problem (1.2)–(1.3) has at least
one solution on J .

Proof. Note that the inclusion problem (1.2)–(1.3) is equivalent to the integral
inclusion

u(t) ∈
∫ 1

0

G(t, s; q)F
(
s, u(s)

)
dqs, t ∈ J, (4.1)

where G(t, s; q) is given by (3.2). For each u in R, the set SF (u) is nonempty
as F has a non-empty measurable selection by (H3) [17]. Thus there exists a
function f ∈ F such that f is a L1

X -Carathéodory function with a bounded
function h ∈ L1(J,R+) and ‖f(t, u)‖ ≤ ‖h(t)‖ a.e. t ∈ J for all u ∈ R. Hence
the assumption of Theorem 1 is satisfied and consequently the inclusion (4.1)
has a solution, which implies that here exists at least one solution for (1.2)–
(1.3). This completes the proof. ut

Let Wn,1(J,R) denotes the Sobolev class of functions u : J → R for which
u(n−1) are absolutely continuous and u(n) ∈ L1(J,R). We define the partial
ordering ≤ in Wn,1(J,R) as follows: for u, v ∈Wn,1(J,R), we define

u ≤ v ⇔ u(t) ≤ v(t), for all t ∈ J.

If a, b ∈ Wn,1(J,R) with a ≤ b, then an ordered interval [a, b] ∈ Wn,1(J,R) is
defined by

[a, b] :=
{
u ∈Wn,1(J,R) : a ≤ u ≤ b

}
.

Definition 5. A function σ is called a lower solution of (1.2)–(1.3) if there
exists an L1(J,R) function f1(t) in F (t, σ(t)) a.e. t ∈ J such that

D3
qσ(t) ≤ f1(t), a.e. t ∈ J, σ(0) ≤ 0, Dqσ(0) ≤ 0, σ(1) ≤ 0.

Similarly a function ρ is called an upper solution of the problem (1.2)–(1.3) if
there exists an L1(J,R) function f2(t) in F (t, ρ(t)), a.e. t ∈ J such that

D3
qρ(t) ≥ f2(t), a.e. t ∈ J, ρ(0) ≥ 0, Dqρ(0) ≥ 0, ρ(1) ≥ 0.

Theorem 4 [Convex case]. Let the assumption (H3) and the following con-
dition hold:
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(H4) the problem (1.2)–(1.3) has a

lower solution σ and an upper solution ρ such that σ ≤ ρ on J.

Then the problem (1.2)–(1.3) has at least one solution u(t) such that

σ(t) ≤ u(t) ≤ ρ(t), for all t ∈ J.

Proof. We shall show that the assumptions of Lemma 2 are satisfied in a
suitable Banach space. For that, let us consider the problem

D3
qu(t) ∈ F

(
t, Au(t)

)
, t ∈ J, u(0) = 0, Dqu(0) = 0, u(1) = 0,

where A : C(J,R)→ C(J,R) is the truncation operator defined by

(Au)(t) =


σ(t) if u(t) < σ(t);

u(t) if σ(t) ≤ u(t) ≤ ρ(t);

ρ(t) if ρ(t) < u(t).

Thus, the problem for proving the existence of a solution for (1.2)–(1.3) trans-
forms to finding a solution to the integral inclusion

u(t) ∈
∫ 1

0

G(t, s; q)F
(
s,Au(s)

)
dqs, t ∈ J. (4.2)

We will study (4.2) in the space of continuous real-valued functions on J en-
dowed with a supremum norm. Let us define an operator T : C(J,R) →
P(C(J,R)) by

T u =
{
u ∈ C(J,R) : u(t) ∈

∫ 1

0

G
(
t, s; q

)
f(s) dqs, f ∈ SF (Au)

}
(4.3)

where

SF (Au)=
{
f ∈ SF (Au) : f(t) ≥ σ(t) a.e. t ∈ A1 and f(t) ≤ ρ(t) a.e. t ∈ A2

}
,

A1 =
{
t ∈ J : u(t) < σ(t) ≤ ρ(t)

}
, A2 =

{
t ∈ J : σ(t) ≤ ρ(t) < u(t)

}
.

By (H3), F is measurable and has a nonempty closed selection set SF (u)
of SF (u) [17]. Now we show that the operator T satisfies the conditions of
Lemma 2. The proof consists of several steps.

Step I. T (u) is a convex subset of C(J,R). Let u1, u2 ∈ T (u). Then there
exist f1, f2 ∈ SF (u) such that

ui(t) =

∫ 1

0

G(t, s; q)fi(s) dqs, i = 1, 2.

Since F (t, u) has convex values, therefore, for 0 ≤ θ ≤ 1, we obtain[
θu1 + (1− θ)u2

]
(t) = θ

∫ 1

0

G(t, s; q)f1(s) dqs+ (1− θ)
∫ 1

0

G(t, s; q)f2(s) dqs

=

∫ 1

0

G(t, s; q)
[
θf1 + (1− θ)f2

]
(s) dqs.

Math. Model. Anal., 18(1):122–135, 2013.
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Hence, θu1+(1−θ)u2] ∈ T u and consequently T has a convex values in C(J,R).

Step II. T maps bounded sets into bounded sets in C(J,R). Let B be a
bounded set in C(J,R). Then there exists a real number m > 0 such that
‖u‖ ≤ m, for all u ∈ B. Now for each u ∈ T , there exists f ∈ SF (u) such that

u(t) =

∫ 1

0

G(t, s; q)f(s) dqs,

and , for each t ∈ J , we have∣∣u(t)
∣∣ ≤ ∫ 1

0

∣∣G(t, s; q)
∣∣∣∣f(s)

∣∣ dqs ≤ G1

∫ 1

0

∣∣h(s)
∣∣ dqs = G1‖h‖L1 .

This implies that T (B) is bounded with ‖u‖ ≤ G1‖h‖L1 = m.

Step III. T maps bounded sets into equicontinuous sets in C(J,R). For any
t1, t2 ∈ J with |t1 − t2| ≤ δ, δ > 0, we have∣∣u(t1)− u(t2)

∣∣ ≤ ∫ 1

0

∣∣G(t2, s; q)−G(t1, s; q)
∣∣∣∣f(s)

∣∣ dqs
≤
∫ 1

0

∣∣G(t2, s; q)−G(t1, s; q)
∣∣∣∣h(s)

∣∣ dqs
which is independent of u in a bounded set and the right hand side tends to
zero as t2 − t1 → 0. So T (B) is a equicontinuous set.

Step IV. T is u.s.c. By the Arzela-Ascoli theorem, the set T (B) is relatively
compact. Therefore, T is a compact operator. So, by Lemma 1, we have that
T is u.s.c.

Step V. Now we show that the following set is bounded

E =
{
u ∈ C(J,R) : λu ∈ T u for some λ > 1

}
.

For u ∈ E , there exists a f ∈ SF (u) such that∣∣u(t)
∣∣ ≤ λ−1 ∫ 1

0

G(t, s; q)
∣∣f(s)

∣∣ dqs ≤ ∫ 1

0

G(t, s; q)h(s) dqs ≤ G1‖h‖L1 .

Hence the set E is bounded. Consequently, Lemma 2 applies and the operator
T has a fixed point which is a solution for the truncation operator A. Next,
we show that u is a solution for the problem (1.2)–(1.3). First we show that
u ∈ [σ, ρ]. If it is not so, then either σ � u or u � ρ on J ⊂ J . If σ � u then
for t1 < t2, we have σ(t) > u(t) for all t in (t1, t2) ∩ J . Since σ is the lower
solution of the problem, therefore, for f ∈ SF (u), we have

u(t) =

∫ 1

0

G(t, s; q)f(s) dqs ≥
∫ 1

0

G(t, s; q)σ(s) dqs = σ(t)

for all t ∈ (t1, t2), which is a contradiction. Similarly, for u � ρ, we obtain a
contradiction. Hence σ(t) ≤ u(t) ≤ ρ(t), for all t ∈ J . In consequence, the
problem (1.2)–(1.3) has a solution u ∈ [σ, ρ]. This completes the proof. ut
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Theorem 5 [Non-convex case]. Assume that

(H5) F : J × R→ Pcl(R), (t, .) 7→ F (t, u) is measurable for each u ∈ R.

(H6) F : J × R → Pcl(R) is `(t)-Lipschitz; that is, H(F (t, u), F (t, v)) ≤
`(t)‖u− v‖.

If G1‖`‖L1 < 1, then the problem (1.2)–(1.3) has at least one solution on J .

Proof. For each u in R, F has a nonempty measurable selection by the condi-
tion (H5). Therefore, the set SF (u) is nonempty [17] and there exists a function
f ∈ F, which is `(t) − Lipschitz by the assumption (H6). Thus, the conclu-
sion of Theorem 2 implies and the problem (1.2)–(1.3) has a solution. This
completes the proof. ut

Theorem 6 [Non-convex case]. Let the assumptions (H4), (H5), (H6) hold.
Then the problem (1.2)–(1.3) has at least one solution u(t) on J such that
σ(t) ≤ u(t) ≤ ρ(t) for all t ∈ J if G1‖`‖L1 < 1.

Proof. First, we show that T (u) ⊂ Pcl(C) for each u ∈ C = C(J,R), where
the operator T is defined by (4.3). Let {um}m≥0 ∈ T (u) such that um → u in
C. Then u ∈ C and there exists fm ∈ SF (u) such that

um(t) =

∫ 1

0

G(t, s; q)fm(s) dqs, t ∈ J.

In view of the fact that F has closed values, we have that fm converges to f
in L1(J,R) and hence f ∈ SF (u). Then, for each t ∈ J ,

um(t)→ u(t) =

∫ 1

0

G(t, s; q)f
(
s, u(s)

)
dqs.

So u ∈ T (u).
Next, we show that there exists γ < 1 such that

H
(
T (u1), T (u2)

)
≤ γ‖u− v‖C for each u1, u2 ∈ C.

For u1, u2 ∈ C, there exists f ∈ F by (H6) such that∣∣f(t, u1)− f(t, u2)
∣∣ ≤ `(t)‖u1 − u2‖C .

Then for hi(t) ∈ T (u), i = 1, 2, we have

h1(t) =

∫ 1

0

G(t, s; q)f
(
s, u1(s)

)
dqs, h2(t) =

∫ 1

0

G(t, s; q)f
(
s, u2(s)

)
dqs.

Thus, ∣∣h1(t)− h2(t)
∣∣ ≤ ∫ 1

0

∣∣G(t, s; q)
∣∣∣∣f(s, u1(s))− f(s, u2(s))

∣∣ dqs
≤ ‖u1 − u2‖C

∫ 1

0

∣∣G(t, s; q)
∣∣‖`‖(s) dqs

≤ G1‖`‖L1‖u− v‖C .

Math. Model. Anal., 18(1):122–135, 2013.
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Letting γ := G1‖`‖L1 , it follows that

H
(
T (u), T (v)

)
≤ γ‖u− v‖C , for each u, v ∈ C,

where γ < 1. Hence the operator T is a contraction and has a fixed point by
Lemma 3, which corresponds to a solution of the problem (1.2)–(1.3). As in
the proof of Theorem 4, it can be shown that the problem (1.2)–(1.3) has a
solution u ∈ [σ, ρ]. This completes the proof. ut

5 Extremal Solutions

This section deals with the existence of extremal solutions for problem (1.2)–
(1.3) on an ordered Banach space.

Let us introduce a cone K in C(J,R) as

K =
{
u ∈ C(J,R) : u(t) ≥ 0, ∀t ∈ J

}
.

We define an order relation ≤ in C(J,R) as follows: u ≤ v if and only if
u(t) ≤ v(t) ∀t ∈ J . It is known that K is normal in C(J,R) (see [28]). Let
A,B ∈ P(X). Then, by A ≤ B, we mean a ≤ b for all a ∈ A and b ∈ B. Thus
if A ≤ A then it follows that A is a singleton set.

Definition 6. Let X be an ordered Banach space. A mapping T : X → P(X)
is called isotone increasing if x, y ∈ X with x < y, we have that T (x) ≤ T (y).

Definition 7. A solution uM (t) of (1.2)–(1.3) is called a maximal solution if
for every solution u(t) of (1.1), we have u(t) ≤ uM (t) for all t ∈ J . A solution
um(t) of (1.2)–(1.3) is said to be minimal solution if um(t) ≤ u(t) for all t ∈ J
where u(t) is any solution of (1.2)–(1.3).

We need the following result of [5] for the sequel. It is a multivalued version
of the seminal work of Tarski [42] and the abstract monotone method [40].

Lemma 4. [5] Let [σ, ρ] be an order interval in a Banach space and let T :
[σ, ρ] → P([σ, ρ]) be a completely continuous and isotone increasing multi-
valued map. Further if the cone K in X is normal, then T has a least u∗
and a greatest fixed point v∗ in [σ, ρ]. Moreover, the sequences {un} and {vn}
defined by un+1 ∈ Tun, u0 = σ and vn+1 ∈ Tvn, v0 = ρ, converge to u∗ and
v∗ respectively.

Theorem 7. Let (H4) and the following assumptions hold :

(H7) The multi-valued function F : J × R→ P(R) is Carathéodory.

(H8) F (t, u(t)) is nondecreasing in u a.e. t ∈ J ; that is, if u < v, then F (t, u) ≤
F (t, v) a.e. t ∈ J .

Then (1.2)–(1.3) has a minimal and a maximal solution on J .
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Proof. We define an operator K : C(J,R)→ P(C(J,R)) as

Ku =
{
v ∈ C(J,R) : v(t) =

∫ 1

0

G(t, s; q)f(s) dqs, f ∈ SF (u)
}
,

and show that K satisfies the conditions of Lemma 4. As in the proof of
Theorem 4, it can be shown that K is completely continuous operator on [σ, ρ].
Next, we show that K is isotone increasing on C(J,R). Let u, v ∈ C(J,R) be
such that u < v. Let σ ∈ Ku be arbitrary. Then there is a function f1 ∈ SF (u)
such that

σ(t) =

∫ 1

0

G(t, s; q)f1(s) dqs.

Since F is nondecreasing in u, therefore, SF (u) ≤ SF (v). Consequently, for
any f2 ∈ SF (v), we have

σ(t) ≤
∫ 1

0

G(t, s; q)f2(s) dqs = ρ

for all t ∈ J and ρ ∈ Kv. This shows that the multi-valued operator K is
isotone increasing on C(J,R); in particular in the set [σ, ρ]. Since σ and ρ are
lower and upper solutions of the problem (1.2)–(1.3) on J, we have

σ(t) ≤
∫ 1

0

G(t, s; q)f(s) dqs

for all f ∈ SF (σ) and so σ ≤ Kσ. Similarly, it can be shown that ρ ≥ Kρ.
Hence we have σ ≤ Kσ ≤ Kρ ≤ ρ. As K satisfies all the conditions of Lemma
4, therefore K has the least and greatest fixed point in [σ, ρ]. This implies
that problem (1.2)–(1.3) has a minimal and a maximal solution on J . This
completes the proof. ut
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