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A. OPTICAL COMMUNICATION IN THE ATMOSPHERE AT JSEP

MIDDLE ULTRAVIOLET WAVELENGTHS

Joint Services Electronics Program (Contract DAAB07-75-C-1346)

Robert S. Kennedy, Horace P. Yuen

An experimental and theoretical investigation of atmospheric optical communication

at wavelengths in the 0. 22-0. 29 [am region was initiated last fall. It is motivated by the

absence of background noise in this region and by the availability of low-noise detectors

at these wavelengths.

These factors are very important in the realization of improved all-weather perfor-

mance for they allow the realization of quantum-limited operation, even in the presence

of severe scattering. Thus the performance is limited primarily by the total energy in

the receiver field of view and by the coherence bandwidth (or time dispersion) of this

energy. To the extent that these are not severely affected by the presence of multiple

scattering, a communication system operating at these wavelengths will not be severely

affected by low visibility (scattering) conditions.

The initial effort has been to set up a propagation experiment that can monitor the

received energy levels. The system terminals are now complete and have just been

put into operation. The transmitter is a low-pressure mercury vapor discharge gen-

erating approximately 1 W CW at 0. 2537 -m in an uncollimated pattern. For ease of

detection, it is square-wave modulated at 60 Hz. The receiver employs an RCA 4522

PMT operated with a gain of 107. It is preceded by chemical and dielectric filters and

followed by an up-down photoelectron counter. The collecting area of the receiver is
-2 2

10 m and its field of view can be as large as 27 sr (full hemisphere). During the

period of initial adjustment, the system has been operated over a 600 m path. That

distance may be increased subsequently to magnify the effects of multiple scattering.

To complement the experimental program, a theoretical study of propagation in

scattering atmospheres has also been initiated. Since the fields are expected to be JSEP

PR No. 118 189



(XI. OPTICAL PROPAGATION AND COMMUNICATION)

JSEP quite incoherent, a photon scattering formulation of the transport equation is being

S employed. The quantities to be determined are the received energy level and coherence

bandwidth as functions of the receiver field of view for various atmospheric conditions

JSEP and operating ranges.

B. EXACT SOLUTION OF ULTRASHORT PULSE PROPAGATION

IN A TWO-PHOTON MEDIUM

National Aeronautics and Space Administration (Grant NGL 22-009-013)

Horace P. Yuen, Flora Y. F. Chu

A novel pulse-shortening behavior in traveling-wave two-photon amplification has

been exhibited recently for long pulses. In this report we show that for this same

simple model of a resonant two-photon medium in either the amplifier or the attenuator

configuration, unlimited pulse sharpening occurs for ultrashort pulse propagation, in
2,3

direct contrast with the one-photon case.2, 3 The results are derived from the exact

global solution of the propagation equations for an arbitrary initial pulse shape. This

exact solution describes the complete behavior of the pulse propagation in a simple ana-

lytic manner, also in contrast with the one-photon case where only asymptotic results

are generally available.2-6

Consider a homogeneously broadened two-photon medium of identical two-level atoms

with energy separation 2i so that each atomic transition gives rise to the absorption or

emission of two photons at the same frequency o.7 The equations governing the propa-

gation of plane-wave ultrashort pulses in the usual slowly varying envelope approxima-

tion are

(1)
az 2c c

Sip52D (2)

@D "-:2 :"C 2aT - i ( 2 (3)

where T = t - z/c so that (z, T) are the coordinates moving with velocity c. The vari-

ables 6 and .A are the complex envelopes for the electric field and atomic polarization,

D is the population difference between the upper and the lower levels, L is a real

positive two-photon coupling coefficient with [12 proportional to the two-photon absorp-

tion coefficient -A , and I/y is the photon lifetime in the medium. Equations 1-3 follow
1

from the model of Yuen, which gives more precise definitions of the variables. (The
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units of the variables in the present traveling-wave case are on a per unit volume basis,

with 0A in units of cm -s and j. in units of cm3/s.)

We restrict ourselves, for simplicity, to the "constant phase"
i 2e

and ' = - M 1I be real so that Eqs. 1-3 with P E become

case and let 6 = E

- P - -PM
8z c c

aM = -2[iPD

aD = 2pPM.

Equations 5 and 6 imply the conservation law

D2 + M 2 = constant.

The medium at z > 0 is excited by a pulse P (t) starting from t = to,
O O

D(z, t ) = Do ,0 O 0
M(z, t ) = 0,

o
P(0, 7) = P (T).

o

From (7) and (8),

D(z, T) = Do cos Q,0 M(z, 7) = -Do sin 4j.0

We define

1
P(z, 7)- 211. a7 2 P(z, t) dt,

and Eq. 4 gives

aza-r - + g sin-) a-.

The sign of the gain parameter g _ 21 Do/c depends on D o ,

g < 0 for D < 0

g>0 for D >0

(attenuator)

(amplifier).

Equation 11, after integration with respect to -, yields
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- -= + g(l -cos ), (13)

from which an "area theorem" follows immediately:

d - e + g(1 -cos 0), e(z) - j(z, cc). (14)
dz c

Equation 13 can be solved exactly for y = 0:

(z,T-) = 2 cot cot 2 gz (15)

P(z,T) = P (T) A(z, 7) (16)

A(z, 7) = A(z, o )

0 o 0 2 2 0 Zil-1

1 - 2gz sin cos + g z sin 1 (17)

1 0¢o
with ( T ) - (0,T) and P (T) We shall restrict ourselves to this lossless

case for which the complete pulse propagation behavior can be determined from the

modulating function A(z, T).

The function A(z, 7) is plotted in Fig. XI-1 as a function of 0o for a fixed z. It is

periodic in 0o with period 27r and contains a single maximum, as well as a single mini-

mum, in each period. In the first period for g < 0 the minimum occurs at

7- -1 gzj
m = + tan 2 g < 0 (18)

with corresponding minimum value Am for A(z, o )

2 2 -1

Am = + 1 + 1+ (19)
g z)

The maximum occurs at

-1 2
M = 2r - tan , g < 0 (20)

Sgz

with maximum value
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An~ 1~ 2 z g -12 2AM = + 2  1 - 1 + (21)

For g > 0, the maximum is at

+ -1 2
= tan , g > 0 (22)

M gz

with value A M and the minimum at

+ -1 2
= r + tan- g > 0 (23)

m gz

with value A . The function A(z,o ) for the amplifier case (Fig. XI-lb) is indeed just
m o

a displacement of the attenuator case (Fig. XI-la) by 2 m,
For small z, the difference between the values A M and Am is small. But as z

increases A M also increases monotonically while Am decreases monotonically. For

large z, Am eventually becomes vanishingly small, whereas A I becomes arbitrarily

Am

Am - i I

o i 7 2 Ir 27 3r 47r

(a)

AM g>O

Am

Oi 2q - + 27 3w 4r o

(b)

Fig. XI-1. (a) Behavior of the periodic A(z, o ) in a two-photon absorbing

medium. Maximum and minimum parameters M' m' AM and

A are given by Eqs. 18-21. (b) Behavior of A(z, o ) for a two-
mphoton amplifier with m given by Eqs.

photon amplifier with 4 M' m given by Eqs. 22 and 23.
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+
large. In the first period the corresponding yi\M moves to 2r7 and m oves to 0. Thus

a large pulse occupying several periods will break up into small pulses at large z. This

is particularly easy to see from Fig. XI-1 for a square pulse where 4 cc T. The physical

mechanism of the sharpening is also clear. From Fig. XI-la we see that energy is con-

tinuously extracted from the pulse front and fed back to the end of a 2Zr pulse.

The area under the A(z,0o) curve in each period is equal to an input energy (0) =
2 7T and, from (14), is a constant independent of z.

P(z, T) dr = P (r) dr = A(z, o) d ° = 27r. (24)
o O

From (24) and (17) it can be shown that as z - co, the function A(z, 7) converges asymp-

totically to a sequence of 8-functions at - n determined by

o (- n) = 2nT; n = 1, 2, ... , g < 0, (25)

from (17) or (20). An additional 6-function occurs at the pulse front o (-ro) = 0 for the

amplifier case g > 0. Note that o is a positive monotone function of 7 so that for any

given 6(0) = I (cO), there is at most one Tn satisfying (25) for any n.

For an input pulse with a bounded support (i. e. , a pulse that is only nonvanishing

over a finite interval) these results imply the following general behavior of P(z, T). For

an arbitrary input area 6(0), the area theorem (14) for y = 0 shows that at large z 8(0)

will be reduced to the nearest 2pr in an absorbing medium and amplified to the nearest

2(p+l)7r in an inverted medium for an integer p. In the limit, the pulse goes over to a

6-function pulse train given by

p
2 1pP(o, T) = 27r Z 6 (T-7 ), g < 0 ( 2 6 a)

n=1

p
21P(o, -) = 27T I 6 (T-T n), g > 0 (26b)n:0n=0

where Tn are determined by (25). From the area theorem (14) the equilibrium values

0(0) = 2pm are unstable against a loss of 27r for g < 0 and unstable against a gain of 27T

for g > 0, as illustrated in Fig. XI-2.

The pulse propagation behavior of a 4 7r sech input pulse of bounded support centered

at 7 = 0 is plotted in Fig. XI-3 for a two-photon absorption medium. The breakup and

sharpening of the pulse arise as expected from these results.

We shall not discuss the propagation of pulses with unbounded support. These pulses

are unphysical as has been discussed for the one-photon case.9 It might be mentioned,

however, that even when these pulses are included the only solitary wave in two-photon

absorption media is a 27 Lorentzian pulse that is unstable against loss, as shown

in Fig. XI-2.
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g(z) g 10

-- g > O
g <0

6

47r

3

2w7

0 01
z -1.5 -1 -0.5 0 0.5 1 1.5 /To

Fig. XI-2. Fig. XI-3.

Behavior of the area 6(z), 6(z) = Formation of two sharp pulses at T = 0
-1 6(0) for two- and 7 = T for a 4 7r input 2pP o(7) =

2 cot 2 -gz , for two- 2
L sech'T/ -

photon attenuators and amplifiers 2p , T T 7 - , with 7=
from Eq. 14 with y = 0. Tp tanh 7o/ 7p  o O p

T . Equations 16 and 17 are used for ao
two-photon absorption medium.

The present two-photon problem can be compared with the one-photon case as fol-

lows. Mathematically, only asymptotic solutions of the propagation equations that are

sufficient for a long medium are generally available for one-photon ultrashort propaga-
2-6 3-6

tion. A series of solitons of finite width is obtained in the self-induced transpar-
2

ency problem. On the other hand, our two-photon results apply to all lengths of the

medium and exhibit the analytic behavior of the pulse breakup and continuous pulse

sharpening. Ultrashort pulse propagation in one-photon amplifiers is unstable mathe-

matically, which is also expected on physical grounds from the onset of stimulated emis-

sion or self-oscillation, while the pulse-sharpening characteristic in a two-photon

amplifier is not altered by perturbation, as can be shown by the exact solution (16). This

behavior may prevail in an actual physical situation because the two-photon medium is

stable against spontaneous oscillation, and one-photon emission between the two levels is

forbidden by parity. Obviously, the slowly varying envelope approximation and even the

optical medium model with or without loss break down when the pulse becomes too short.

These results suggest that short pulses of AT - 10 s duration may be gener-

ated by passing a ps pulse through a two-photon absorption medium. A great many
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useful two-photon adsorption media have been reported in recent works on two-

photon absorption.1 0 We expect to give a detailed discussion of material systems

suitable for two-photon pulse shortening in a future report. The effects of loss,

inhomogeneous broadening, and self-focusing in two-photon ultrashort propagation are

being investigated at present, as well as the mathematical solution of the original
4-6

coupled Maxwell and material equations by the inverse method and the existence of

the two-photon equivalent of breathers. 5

The authors wish to thank Professor H. A. Haus and Professor R. S. Kennedy for

helpful discussions. Professor Chu's research is supported by funds from the

Dugald C. Jackson Professorship of the Department of Electrical Engineering and Com-

puter Science.
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C. LOWER BOUND TO THE ERROR PROBABILITY FOR QUANTUM
DETECTION OF M PURE STATES

National Aeronautics and Space Administration (Grant NGL 22-009-013)

Nam-Soo iMlyung

In RLE Progress Report No. 117 (pp. 267-271), we determined a lower bound to the
average error probability for detecting M quantum signals in which each signal state
occurs with probability pi and has density operator pi. The lower bound is given by

Pe + ( -Pi) k(i) (1)
i=l \ k: k(i)<O0

where z k(i) represents the sum of the negative eigenvalues of the operator
k: k(i)<O

M p.

S-pi P j - Pi Pi (2)

j=l

In the first part of this report, we shall simplify this bound, and then (1) can be deter-
mined relatively easily for the pure state problem. In the second part, we shall present
some physical interpretations of the lower bound by comparing it with the classical
detection problem.

1. Linearly Independent Pure State Problem

When every signal state is a pure state

Pi= si) ( il (3)

and the eigenvalue problems associated with (1) are relatively simple. The problem
reduces to that of finding the negative eigenvalues and eigenvectors for

p 
p.

1 -p . J) s - si) ( si (i)) = (i) (i)) for i = 1,...,M . (4)

Our first step will show that for every i there is only one negative eigenvalue of (4);
hence, we need only investigate i = 1. In attacking this problem, we assume that the

si) are linearly independent, and base the problem on the M-dimensional Hilbert space
that they span. For i = 1, Eq. 4 is equivalent to
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p Z s i ) ( s - I S s1 I p)

(j= 2

simplicity, we have used

yields

in (5) instead of (1). Multiplying both sides of (5) by

p ( sks ) sj si
j=z2

- l ( s k s l ) ( s l I = ( 1 -Pl) ( s k ' for k = 1, ... M, (6)

or in matrix form

s1

pM\1 sM

Ks, )i

Ksil)

Let U be the MI X M matrix whose elements are (s i s.). The matrix U is a Hermi-

tian matrix that always has real eigenvalues. Thus the determinant of U, which is the

product of eigenvalues, is also real. Every diagonal element of U is equal to 1 because

every si) is a unit vector. The matrices formed by the inner products of a set of vec-
1

tors, like U, are called Gram matrices. If the set of vectors is linearly independent,

the Gram matrix has a positive determinant. This implies that U is positive-definite,

since any Gram matrix of a subset of a set of linearly independent vectors also has a

positive determinant. Furthermore, the determinant of a Gram matrix of a smaller

subset of vectors has a determinant greater than or equal to that of a larger subset of

vectors. Let U 1 be a (M-1) X(M-1) matrix whose elements are ( si s) for i,j=2, ... , M.

Then

0 < (det U)/(det U1 ) < 1

-i
is true. Since U is positive-definite, U-1 always exists and is also positive-definite.

If we denote U-i by i, j elements of U , then (for further details see Gantmacher I )

i, j

-1
U, 1 = (det U 1)/(det U).1, 1

Now let us turn to the problem of finding the number of negative eigenvalues. For

simplicity, let
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P 1 = -P 1

Equation 7 can be written

P d = XU-d,

where d is a column vector whose elements are (s i .), and N = (1-p 1 ) . This is called
2 -1

the generalized eigenvalue equation. Since U is a positive-definite matrix, there

always exist M real positive eigenvalues k l ,... I. Without loss of generality, let

N. < N 2 & ... 4 kM. (12)

Consider another generalized eigenvalue equation given by

~ ~ ~ -1~
Pld = U d, (13)

where P1 is the M X M diagonal real matrix

1
0 P 2

0
.0 pM

The matrix equation (13) also has 'NI real eigenvalues that can be ordered so that

1 2(14)

The difference between P 1 and P1 is that the first diagonal element of P 1 is replaced

by zero. Thus P1 - P1 is nonnegative-definite and has rank one. This implies that the

eigenvalues k and N are interlaced as follows. 2

N.1 2N N 2 < 2 < ...... I < N. (15)

The minimum eigenvalue, Nl, of (13), can be determined from

d Pd
S=min - 0. (16)

dO dU-1 d
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Consequently the minimum eigenvalue of AI is nonpositive and other eigenvalues are

nonnegative. Moreover,

d'P d-1
N. = min

d# dtU- d

(17)

Therefore, for the pure state problem, the lower bound to the average error probability

is given by

M
P > 1 + (-pi) '

i= 1

where i is the only negative eigenvalue of

(18)

p.1-
1 p-- s.) Ksj

(19)
P

i s.) ss,
1-pi 1 1

and is given by (17) with Xi = (l-Pi) i .
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