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The spectrum of resonance fluorescence emitted by a carefully prepared two-level

atomic system has been measured. The data were in good agreement with the theoret-
ically predicted spectrum.1, 2

The 3 2S1/2 (F=2)-3 P 3 / 2 (F' = 3) transition in atomic sodium was prepared as a

two-level system by optical pumping of the degenerate magnetic sublevels with resonant

circularly polarized laser light. In this way we were able to excite the mF = 2-m = 3
F F'

transition selectively, thereby avoiding the complication caused by unequal matrix ele-

ments that connect other pairs of sublevels.

In our experimental arrangement a single-frequency cw dye laser is split into paral-

lel "pump" and "signal" beams, which are separated by 1.2 cm and intersect an atomic
beam of sodium at right angles. The pump beam prepares the F = 2 ground-state atoms
in the mF = 2 sublevel before they interact with the intense signal beam. A weak mag-
netic field (0.7 G) parallel to the laser beams is required to prevent redistribution of

the sublevel populations by stray fields in the region between laser beams. The floures-
cence induced by the signal beam is collimated and analyzed by a Fabry-Perot interfer-
ometer with a 2-MHz instrument width.

Figure V-le shows the on-resonance spectrum for -+ polarization taken with an inten-

sity of 640 mW/cm 2 and Fig. V-ld and V-if are off-resonance spectra taken at the same

intensity for detunings of -50 MHz and +50 MHz, respectively. Figure V-la, Ib, Ic are

corresponding theoretical plots using the measured Rabi frequency of 78 MHz taken from

Fig. V-le. The vertical lines in Fig. V-la and V-lc represent the elastic scattering

delta function, whose area is 0.46 times the total area of the spectrum. The elastic JSEP
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Fig. V-1. Theoretical and measured spectra for on- and off-resonance
excitation.

scattering in the on-resonance spectrum is negligible at this field strength. To record

the on-resonance spectrum, the pump and signal beams are locked to the F = 2-F' = 3

transition. For off-resonance spectra, an acousto-optic shifter is placed in the pump

beam, and the laser is stabilized so that the shifted pump beam frequency is resonant

with the F = 2-F' = 3 transition, and thus the signal beam is held at an accurately known

detuning from resonance.

For a comparison of theory with experiment, we computed the convolution of the the-

oretical spectra of Fig. V-la, lb, lc with the 9. 5 MHz wide instrumental line shape of

our arrangement. The instrumental line shape, which includes Doppler and Fabry-Perot

broadening, was determined by observing the weak field (elastic scattering) spectrum,

which ideally is a delta function. The convolved spectra are plotted as the smooth curves

in Fig. V-id, le, If; the vertical scale was chosen to make the central peak heights of

the on-resonance experimental and convolved spectra equal.
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A previous investigation '1 2 of the temporal and spectral character of infrared laser

radiation from the transversely excited, atmospheric (TEA) pressure CO 2 laser revealed

severe frequency variations, during individual pulses, in the form of chirping of the

order of 100 MHz/ps. Since typical pulses from the laser have peak powers in tens of

kilowatts and 1-4 Ls durations, the most significant chirp mechanism is hypothesized

to be a change in the resonant electric susceptibility of the laser gain medium as its

population inversion depletes rapidly during pulse formation.

This is a report of research3 in support of this hypothesis that demonstrates

improved frequency stability of the TEA CO 2 laser. The resonant electric suscepti-

bility of a gain medium becomes increasingly insensitive to the degree of population

inversion as the frequency of the field approaches the center frequency of the gain line.

In fact, the resonant electric susceptibility is a constant, zero, for incident radiation

that is precisely at the center frequency. If the hypothesis is accurate, then it is neces-

sary to tune the frequency of the laser field, which is determined for the most part by

the laser cavity resonance, to the center frequency of the gain spectrum of the medium,

in order to effect a reduction in chirping.

Figure V-2 shows the experimental arrangement. The TEA laser is a gain tube,

1 m long, suspended in a 2 m resonant cavity. The tube contains a flowing gas mixture,

He:CO2:N 2 :: 2. 1:1:.52, at 235 Torr total pressure. This mixture is excited, at a pulse

rate of -. 5 Hz, by discharging a .025 LF capacitor bank across 166 diametrically opposed

electrode pairs (1 in. gap), evenly spaced on the length of the gain tube. The "hot" side

of each electrode pair is a 1 k2 resistor. The capacitor charging voltage is 19 kV. The

resonant cavity is defined by a flat aluminum diffraction grating and an 850%o reflecting,

solid germanium mirror with 4-m radius of curvature. The cavity length can be finely JSEP
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Fig. V-2. Diagram of experiment. A, IR detector; Ge:Au crystal in liquid
nitrogen filled dewar. B, IR detector; Ge:Cu crystal in liquid
helium filled dewar. C, synchronous detector and amplifier
(Princeton Applied Research lock-in amplifier). D, Tektronix
Type 556 dual-beam oscilloscope with Type lAl plug-in units.

tuned by adjusting the voltage applied to a piezoelectric transducer (PZT) upon which

the curved mirror is mounted. The TEA laser is forced by the grating to operate in

the P(18) vibrational-rotational transition of the 10. 6 Jjm laser band.

The reference laser shown in Fig. V-2 is a typical flowing-gas, cw, CO 2 laser with

~2 W output power. Its cavity is also defined by a diffraction grating adjusted to force

laser operation in the same gain transition, P(18), as the TEA laser. Its output mirror

is also mounted on a PZT for fine tuning of the cavity length.

Since the reference laser contains a gain mixture under low pressure (12 Torr), it

has a gain spectrum in the P(18) line that is only ~60 MIHz wide (FWHII). Modulation of

the cavity length at frequency C , by application of a sinusoidal voltage component to

the PZT, causes intensity modulations of frequency, wm to appear in the detected signal

from that laser. An electronic feedback loop, consisting of a synchronous detector and

amplifiers, attempts to minimize this detected modulation by adjusting the PZT bias

voltage. The intensity modulation component at frequency Wm , the fundamental, will

be zero when the laser frequency is at the peak of the gain spectrum. In this manner

the cw laser becomes a reference source that is very nearly at the center of the gain

line of the CO 2 gain medium.

JSEP Likewise, modulation of the TEA laser cavity length when the reference laser is
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incident upon this cavity results in modulation of the transmitted intensity via the Fabry- JSEP
Perot interferometry effect. This effect is maximized by matching the Gaussian beam
parameters of the reference laser beam with those of the fundamental TEA laser cavity
mode at the point of incidence, the diffraction grating. These intensity modulations are
used again as a feedback signal to bring the fundamental TEA laser cavity mode almost
into resonance with the energy transition of the gain medium. The precision of this
tuning is limited by the gain and bandwidth of the electronic feedback loop and the ampli-
tude of noise appearing in the detected signals.

The firing of the TEA laser is synchronized to periods during which the chopper
shown in Fig. V-2 isolates the two laser resonators. Furthermore, the TEA laser sig-
nal is attenuated by CaF to result in an amplitude close to that of the reference laser.
Under the assumption of stability in the cw laser during the period of a TEA laser pulse,
the time-resolved frequency behavior of individual pulses is obtained by mixing the out-
puts of the two lasers and observing the beat frequency between them.

Typical oscillograms of the observed signals are shown in Fig. V-3. In Fig. V-3a,
the upper trace is a typical (attenuated) TEA laser pulse and the lower trace is the same
pulse mixed with the reference. A data set of beat signal phase vs time points was
measured from each of 25 oscillograms showing beat signals. Each point is the time
of occurrence of a relative minimum or maximum in the beat signal oscilloscope trace,
estimated to within 1/120 is. A linear regression on beat signal phase was performed
for each data set. The derivative of each such regression is an estimate of the average
beat frequency that is evident in the associated oscillogram. These 25 average beat

(a) (b)

Fig. V-3. Sample oscilloscope photographs. (a) Upper trace: typical TEA
laser pulse. Lower trace: same pulse mixed with the cw ref-
erence laser signal. (b) Similar pulse except that the pulse in
the upper trace has been subtracted from the mixed signal and
displayed in the lower trace. JSEP
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frequencies are grouped in the neighborhood of 8 MHz. This is an indication of the

typical separation of the two lasers in frequency and also suggests the order of the fre-

quency offset of the TEA laser from resonance with the transition of the gain medium.

To obtain increased accuracy in visually identifying the minima and maxima of beat

signals that are evident in the oscillograms, the pulse envelope was subtracted from the

mixed signal by using the invert and add features of the oscilloscope. A typical oscil-

logram obtained in this manner is shown in Fig. V-3b. The upper trace is the pulse

envelope and the lower is the beat signal after the envelope is subtracted from the mixed

signal. Fourteen oscillograms, including Fig. V-3b, were taken and a data set of beat

signal phase vs time points was measured from each. The results of the analysis of

these 14 data sets, containing an average of 11 points for each, are summarized in

Table V-i.

Table V-i. Summary of analysis of results.

Lower Estimated Upper
Goodness-of-Fit Chirp Chirp Chirp

Set to Straight Line Limit Value Limit
(0o) (MHz/ s) (MHz/[s) (MHz/s)

1 99.24 -0.476 0. 781 2. 04

2 99.96 -3. 77 0.888 5. 54

3 99. 04 2.2 2. 345 2. 49

4 99.96 -0. 596 0.47 1. 54

5 99. 88 1.28 1.882 2. 48

6 99. 62 -6. 2 -3.714 -1. 22

7 99. 34 -2. 51 -1. 85 -1. 18

8 99.92 -2. 78 -2. 375 -1. 97

9 99.92 0. 391 1. 542 2. 69

10 99. 92 -3.99 -1.413 1. 17

11 99.98 -0. 812 0. 152 i. 12

12 99.90 0. 751 1. 381 2. 01

13 99. 82 1. 15 2. Z283 3. 42

14 99.96 -0.432 1.03 2. 49

A least-square-error straight line is fitted initially to each data set. The values of

the Goodness-of-Fit 4 between straight lines and the data sets are tabulated. The second

derivative of a beat signal phase vs time regression is an estimate of the average chirp

occurring during the corresponding TEA laser pulse. Hence the very high degree of

correlation to a straight-line fit indicates that the chirp in each data set should be

extremely small.
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A second-order curve is then fitted to each data set and the second derivative of each JSEP

curve, the estimated chirp value, is also listed in Table V-I. There is an uncertainty

in each value that is due to the unavoidable inaccuracy in time measurements, and also

to the length of each data set. This uncertainty is indicated by the minimum and maxi-

mum chirp limits listed in Table V-i for each data set.

The estimated chirp values listed in Table V-1 demonstrate a significant improve-

ment over previous observations.
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2. UNSTABLE RESONATORS IN MEDIA WITH PARABOLIC GAIN

PROFILE

Joint Services Electronics Program (Contract DAABO7-75-C-1346)

Hermann A. Haus

An amplifying medium with a gain that decreases with the square of the distance

from the axis (positive gain profile) supports "guided" modes of Gaussian profile that

maintain the diameter as they propagate along the axis of the medium.1, 2 This effect

has been used to achieve stable cavity modes in a mirror configuration that would other-

wise be "unstable."2 An analysis of an amplifying medium with a gain that increases

with the square of the distance from the axis (negative gain profile) yields "steady-state"

beam solutions that propagate without change of diameter.1, 2 These solutions, however,
3

are unstable. A negative gain profile is produced by gain saturation on the axis of the

optical beam. Because of the unstable character of the "guided" solutions of a negative

gain profile, focusing effects at the end mirrors of a plane-parallel resonator 4 cannot

be attributed to cavity stabilization, but probably are attributable to the refractive

effects of the gain medium coupled with discharge-tube wall reflection.

Two approaches lend themselves to achieving high cw output power with reproducible

good mode quality in spite of the destabilizing effect of gain saturation: we may taper

the transmissivity of the output mirrors,5 or we may intentionally choose an unstable

cavity configuration in which the optical beam profile is critically influenced by the JSEP
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mirror diameters. Even though gain saturation does not produce a parabolic gain pro-

file, it is of interest to study unstable resonator configurations with parabolic gain pro-

files because useful insights can be obtained. In this report, we develop the formalism

of unstable resonators in the presence of a parabolic gain profile and obtain closed-form

solutions in the limit of large Fresnel number.

X '

x

X = -0

Fig. V-4. Unstable resonator (cross section in the y-z plane).

Consider the symmetric unstable resonator shown in Fig. V-4 with rectangular mir-

rors of focal distances f and fy , respectively. The field pattern (2)(x, y) at cross
section (2 is represented7 in terms of the pattern (, y) t cross section () by

section (2) is represented 6 , 7 in terms of the pattern (1)(x, y) at cross section (1) by

jm a b
X= sin mL -a -b

2 2
rm ( x 2 + y2)

dx dy exp -j tan mL
0 0 X tnm

m(xx ) m(x2 +y 2 ) 2 22m(xx o+yyo) o x YonX Y + + +
sin mL tan mL f f

x y

(1)
0 o

The kernel in (1) is the Green's function of the paraxial wave equation with a parabolic

index profile 6

Smr 
= 0,

8kaz

where m2 is a measure of this parabolic index profile. The kernel in (2) is derived for

a parabolic index profile,6 and it is a simple matter to replace the dielectric constant,
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and hence m , with a complex quantity. We look for eigenvalue solutions that are
products of functions of x and y. Then the integrals separate and each factor may be
worked on individually. The equation for the x-dependent part is

JSEP

u() (x) sin mL)
a 2 2mxx mx x

dx exp - j ta mL ++
o - t an mL sin mL tan mL

-a

There is an analogous equation for the y-dependent part. In order to reduce the

equation to standard form,7 we write

u(x) = exp -Ax x 2] v(x),

where Ax is so chosen that the eigenvalue equation for v assumes the form

/ jm 1/2

v(2)(x x sin mL
a

-a
dxo exp- j cos mL + A + x - 1x o x j) V(X).xu {-5

Here AIx is the "magnification" associated with the x variation, in general

quantity. The relations for A and AI arex x

A 1

Al =cos mL + 1x 2f -

2 m
f tan mL
x

(2x 2

2 m sin mL
Sf tan mL m

The sign of the square root in (6) and (7) must be selected so that AIli
the (unstable) resonator mode, which is controlled by the mirror radii,

continually as it bounces back and forth in the cavity. The choice of A

by the requirement MI > 1.

(6)

(7)

> 1 because

must diverge

is then dictated

2
T7 maWhen tan mL >> 1 the exponential in (4) is a function that peaks sharply at x/M :

xo and decreases rapidly to either side of this point, and it can be treated as a spatial

impulse function. The integral can be carried out to obtain the result

(2) 1 (l ) / x
v (x) (y X.

x 1/2 AIx
(AIQ x

This is identical to Siegman's expression, 7 except that M is now complex. The eigen-x
values are again
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nvn(x) = x
1

xxMn+l/2

Consider the special case of plane-parallel mirrors, f = oc. The resonator is

2 .2 2.
unstable if the medium has a negative gain profile. Then m - -jp , where [i is real

and positive. From (6) we find

1
A = +iI (1+j)

x 47
(10)

and

M = exp ± - (1+j).x 47 (11)

Because M x > 1 we must choose the upper sign, and the lowest eigenmode has the form

Tr 2 .r 2
v (x) = exp +ip x exp-j- -x . (12)

The mode amplitude increases toward the rim of the mirrors. This is to be expected

for a medium that has the largest gain on the outside.

_ 10 ....--0
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6.0

5.0

,0
4.0

3.0L

2O.<...
2.0

0 0.5 1.0 1.5 2.0
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(b)

Fig. V-5.

(a) Magnification in the x-z plane, M , and

(b) the exponential taper, LImA x, as func-

tions of ImL , with (L/2f x ) as parameter.

PR No. 118

JSEP



(V. QUANTUM ELECTRONICS)

Figure V-5 shows the gain IA I and the taper parameter Im Ax vs the parameter JSEP

mL I for a gain medium of negative profile with (L/2fx ) as a parameter.

For (L/2fx) = -1, we find Im Ax > 0, even for !mLl = 0. This means that the mode

has a radial profile, increasing away from the axis, contrary to what would be expected

for the lowest order mode of an unstable resonator in vacuo. The explanation is as fol-

lows: When (L/2fx) = -1, the resonator configuration is stable in vacuo. With IMxl > 1

the mode pattern singles out the solution that grows exponentially away from the axis

and is disregarded in the stable resonator case. This solution becomes legitimate when

a gain profile is present, but has very high diffraction losses even for weak gain pro-

files. In the design of an unstable resonator with small diffraction loss one should keep

away from the region of stability of the resonator in vacuo, -2 -- L/2fx < 0.
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JSEP 1. STABILITY OF SOLUTIONS OF PASSIVE MlODE LOCKING
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Hermann A. Haus, Peter L. Hagelstein

The recently developed theory of passive mode locking has led to closed-form solu-
1,2

tions for passive mode locking of a laser. The passive mode-locking solutions for

a fast saturable absorber were tested for stability by investigating the initial growth (or

decay) of the energy in a perturbation of varying width and height. This test established

a value of normalized small-signal gain go for each value of the absorber parameter, K,

for which "stable" mode-locking solutions are to be expected. K is defined by

1LK = ( PCLT

AP

where PL and PA are the saturation powers of laser and absorber, respectively, c L is

the linewidth of the laser, and Tp is the period of the pulse train. The boundary go vs K

was used in establishing criteria for the system parameters required to achieve cw pas-

sive mode locking. 3

Although, as we have pointed out,1 the test of stability was not sufficient to establish

stability against any perturbation, it was deemed to be satisfactory for the purpose, in

particular, because physical reasoning suggested that the most dangerous perturbations

were pulselike, with a single maximum coincident with the mode-locked pulse.

In spite of these arguments, it seemed desirable to conduct a test that would be suf-

ficient to establish stability. Such a test, which requires the study of the initial time

evolution of a perturbation of arbitrary shape, was performed by Hagelstein. 4 As

expected, it was found that the stability boundary used by Haus3 was very close to the

correct one. Figure V-6 compares the locus of apices of the 1/L LT vs K curves

(Haus, Fig. 2), which was used as the approximate stability boundary, with the exact

JSEP stability boundary. The two are very close to each other. The surprising result is that
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JSEP

1.1

STABILITY BOUNDARY

Fig. V-6. Stability boundary of mode-locked solution for a
Solutions below the boundary are stable.

fast absorber.

the actual stability boundary lies slightly above the locus of the apices, and hence in a
very narrow regime two mode-locked solutions of slightly different width are found to
be stable; the system is bistable. Whether this finding is of any practical significance
is not yet clear because the difference between the two allowed solutions is very slight.
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