Academic and Research Staff

Prof. Daniel Kleppner Dr. Theodore W. Ducas Dr. Richard R. Freeman Drof. David E. Pritchard Dr. Rudolph G. Suchannek

Riad N. Ahmad Jerome Apt III	Walter P. Lapatovich Michael G. Littman	William D. Phillips Naser S. Saleh
William E. Cooke	Edward W. Maby	John A. Serri
Martin C. Kaplan		Myron L. Zimmerman

Graduate Students

1. OPTICAL FREQUENCY STANDARD

Joint Services Electronics Program (Contract DAAB07-75-C-1346)

Riad N. Ahmad, Walter P. Lapatovich, David E. Pritchard

Work on our prototype system continues. The reproducibility of our system has been improved so that the drift is ~50 MHz per hour and the day-to-day reproducibility is ~ \pm 500 MHz. These figures represent stabilities of 0.1 and 1.0 ppm, respectively. We are now trying to reduce the day-to-day variations to the 50-MHz design objective. We are also beginning some studies of molecular spectra using a molecular beam to reduce the Doppler widths, since the I₂ cell which is now being used has a Doppler width

of 800 MHz and will soon be a limiting factor in our frequency calibration.

2. NEW METHODS FOR RADIATION DETECTION

Joint Services Electronics Program (Contract DAAB07-75-C-1346)

Daniel Kleppner

We continue to work on the application of highly excited atoms to a photon counting detector in the infrared and millimeter-wave regions. A communications receiver has been designed for detecting signals on a CO₂ laser line at 10 μ m. Operation is pulsed

with a 100-Hz repetition rate and 0.5 μ s observation window. The detector bandwidth is 50 MHz, the antenna half-angle is 15°, the quantum efficiency is 6%, and the noise is 0.2 counts/pulse. Detectors have also been designed for use in the 0.5-1 mm region. Experimental work has begun on the interaction of highly excited atoms with radiation at 10 μ m and 4 mm.

JSEP

3. RESEARCH ON HIGHLY EXCITED ATOMS

U.S. Air Force Office of Scientific Research (Contract F44620-72-C-0057)

Daniel Kleppner

We have developed methods for producing copious numbers of highly excited alkali atoms and detecting them with essentially 100% efficiency. A detailed study of the Stark structure has been undertaken; good agreement between theory and experiment has been obtained. Work is under way on tunneling rates. Many applications for high Rydberg atoms have been studied; these include radiation detection for communication astronomy and plasma diagnostics, and also fundamental investigations of atomic structure, such as problems of core polarization and multiply excited atoms.

JSEP