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Capitolo 1

Sintesi

1.1 Introduzione

L’oggetto di questa tesi riguarda lo studio di alcuni effetti transitori dovuti
al campo magnetico non costante nei magneti superconduttori, con parti-
colare attenzione per i magneti per acceleratori di particelle, e la realizza-
zione di un codice numerico atto a simularli. Il lavoro è stato svolto pres-
so il CERN (Conseil European pour la Recherché Nucleaire) di Ginevra,
nell’ambito del progetto LHC (Large Hadron Collider).

Quando si vogliono raggiungere campi magnetici che vanno oltre la
saturazione del ferro o quando si hanno requisiti di consumo di potenza e
generazione di calore particolarmente stringenti, l’unica scelta possibile è
l’uso dei magneti superconduttori.

Questo è il caso per i grandi acceleratori di particelle di ultima genera-
zione come LHC, attualmente in costruzione al CERN. LHC è un sincrotro-
ne, un particolare tipo di acceleratore circolare, costruito per far collidere
due fasci di protoni. L’energia di centro di massa nominale che si vorrebbe
raggiungere è di 14 TeV. Forti campi magnetici sono usati per guidare e
controllare il moto delle particelle e farli collidere.

La dinamica delle particelle si basa sull’applicazione della legge di
Lorentz:

F = qe(E + v ×B), (1.1.1)

dove e è la carica dell’elettrone e q è la carica della particella in unità della
carica dell’elettrone.

Per curvare le particelle è necessario un campo magnetico ortogonale
al piano dell’orbita che produce la necessaria forze centripeta per mante-
nere la traiettoria di progetto. Man mano che l’energia aumenta, prima la
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Sintesi 1.2

velocità, poi la massa aumentano richiedendo una forza curvante sempre
maggiore. La relazione che lega campo magnetico B, raggio dell’orbita r,
momento p = mv, carica q è

Br[ T m] = .3356pq[ GeV/c]. (1.1.2)

Si può vedere come il momento, quindi l’energia per particelle relati-
vistiche, l’energia, a parità di raggio, dipende linearmente dal campo ma-
gnetico. Ecco quindi il motivo che lo rende uno dei parametri più impor-
tanti che caratterizzano l’acceleratore su cui sono concentrati i maggiori
sforzi per massimizzarlo.

Dall’ultima relazione (1.1.2) si vede anche che se si vuole mantenere il
raggio costante, man mano che le particelle guadagnano energia, si deve
incrementare il campo magnetico. Un campo magnetico variabile da origi-
ne ad un campo elettrico il quale è fonte di correnti parassite all’interno dei
materiali conduttori che costituiscono il magnete. Queste correnti produ-
cono perdite per effetto Joule e ulteriore campo magnetico che perturba il
campo principale. Le perdite sono particolarmente deleterie perchè si veri-
ficano tra l’altro nei cavi superconduttori stessi che in genere contengono
una percentuale di rame o altro conduttore normale. La generazione di
calore e quindi l’aumento di temperatura sono una delle cause di perdita
dello stato di superconduttività.

Quando il campo magnetico è giunto al massimo di solito viene man-
tenuto per il tempo necessario agli esperimenti con le particelle. A questo
punto il campo elettrico si riduce a zero e le correnti parassite si attenuano
fino a scomparire. Le correnti parassite sono dunque la causa di alcuni dei
più importanti effetti transienti all’interno dei magneti superconduttori.

1.2 Superconduttività

La superconduttività è uno stato della materia che alcuni conduttori pre-
sentano a basse temperature [Mes96]. È caratterizzato dalla scomparsa
della resistenza elettrica. Oltre alla temperatura lo stato di supercondut-
tività dipende dalla densità di corrente presente e dal campo magnetico.
Esistono due tipi di materiali superconduttori. Il tipo I non accetta campo
magnetico al suo interno, al contrario del tipo II. Quest’ultimo quindi è il
tipo a cui appartengo i materiali candidati per essere usati nei magneti. È
possibile definire una superficie critica nelle variabili di stato T , B, J che
separa la regione dove il materiale è supercondutore da quella in cui è un
normale conduttore. Un magnete superconduttore deve far operare i cavi
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Sintesi 1.3

superconduttori entro questa regione. Se anche localmente una regione
del cavo perde la superconduttività, la corrente che prima non dissipava
ora produce calore che riscalda le regioni circostanti. Si instaura una rea-
zione a catena chiamata “quench” che molto rapidamente scalda tutto il
magnete. Le correnti parassite possono provocare o, quanto meno, favo-
rire l’insorgere di questo fenomeno. Il materiale usato per i cavi super-
conduttori è una lega NbTi. I cavi sono formati da “strands” arrotolati in
modo da far assumere al cavo una sezione trapezoidale (cavo Rutherford).
Ogni strand è formato da una gran numero di filamenti di NbTi, arrotolati
anch’essi, immersi in una matrice di rame. La sua presenza è necessaria
per garantire buone prestazione meccaniche, buona conduzione di calore
e di corrente indispensabili per prevenire danni in caso di quench.

Figura 1.2.1 Strand e filamenti di un cavo superconduttore di tipo Rutherford.

La presenza di rame, proprio dove viene prodotto il campo magnetico,
dà origine alle correnti parassite che provocano maggiori perdite, errori di
campo e sono capaci di interferire con lo stato di superconduttività. Per
questo motivo la capacità di simulare le correnti parassite è importante.

11



Sintesi 1.4

1.3 Diffusione magnetica

Tipicamente nei magneti per accelleratori le frequenze in gioco sono molto
basse. Per esempio in LHC i magneti impiegano circa mezz’ora per pas-
sare dal campo all’iniezione delle particelle (≈ 0 T) a quello finale (≈ 8 T).
La variazione di campo è dell’ordine dei 10 mT/ s. I cosiddetti “fast pul-
sed magnets” arrivano ai 4 T/ s. In queste condizioni, basse frequenze
e alte conducibilità, il termine legato alla corrente di spostamento nelle
equazioni di Maxwell può essere ignorato:

∇×B ≈ µσE. (1.3.1)

Questa approssimaione è chiamata magneto quasi statica. Una conse-
guenza è che le correnti sono solenoidali; un’altra è che le equazioni di
Maxwell danno origine ad equazioni di diffusione.

1.4 Modello circuitale per il cavo Rutherford

Vista la complessità della struttura di un cavo Rutherford è comodo usare
un approccio circuitale per discretizzare e risolvere il problema [Mor73].
L’approccio usato per modellizare gli elementi del circuito è conosciuto
come PEEC (partial element equivalent circuit) [Rue74]. L’approssimazio-
ne magneto quasi statica ci porterà ad avere solo resistenze, induttanze e
sorgenti di tensioni come elementi circuitali.

Nella figura 1.4.2 è rappresentato il circuito che modellizza una porzio-
ne di cavo.

Le resistenze modellizzano il rame all’interno degli strand supercon-
duttori e i contatti tra gli strand. Per questo motivo queste correnti pa-
rassite sono chiamate anche “inter-strand coupling currents”. Le indut-
tanze modellizzano l’accoppiamento induttivo tra le correnti parassite, le
sorgenti di tensione il contributo della variazione di flusso all’interno del-
le maglie nelle vesti dell’intelrale di linea del potenziale vettore su ogni
ramo.

Le resistenze sono un dato del problema. La loro modellizzazione è
particolarmente difficile in quanto dipendono essenzialmente dall’ossido
di rame che si forma all’esterno degli strand difficile da controllare. Inoltre
quando assemblati nei magneti i cavi subiscono deformazioni che variano
i maniera non prevedibile e non riproducibile le superfici di contatto, va-
riando dunque la resistenza anche di un ordine di grandezza nello stesso
cavo di uno stesso magnete. Per questo motivo vengono assunte note o al
più vengono lasciate variare casualmente.

12
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Figura 1.4.2 Modello circuitale di una porzione di un cavo Rutherford di 10 strand. In
giallo e rosso sono rappresentate le resistenze, mentre i tubi argentati rappresentano
gli strand superconduttori. La linea azzurra evidenzia il periodo di torsione del cavo.

Le induttanze auto e mutue vengono modellizate utilizzando la for-
mula:

Lij =
µ

4π

1

SiSj

∫
Vi

∫
Vj

wi ·wj

rij
dVidVj, (1.4.1)

dove Vi, Vj sono i volumi dei conduttori, Si, Sj sono le superfici attraverso
le quali scorre la corrente, rij la distanza tra i punti dei conduttori, wi, wj

i versori direzione della densità di corrente.
Per le autoinduttanze i rami sono assunti rettilinei a sezione circolare.

È stata ricavata una espressione approssimata della formula precedente, a
differenza di quelle presenti in letteratura [Gro46] è semplice ed è accurata
anche quando la lunghezza del conduttore è piccola in confronto al raggio:

L =
µ

4π
2l

[
log

(
l

d
+

√
1 +

l2

d2

)
−
√

1 +
d2

l2
+
d

l

]
,

d = Kr,

K = 0.7788− 0.123178

l/r + 0.6283
,

(1.4.2)

dove l è la lunghezza del condurrore e r è il raggio.
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Sintesi 1.6

Per le mutue induttanze è stata usata una approssimazione più grosso-
lana:

Lij =
µ

4π

lilj(wi ·wj)

〈rij〉
, (1.4.3)

dove si è usato il fatto che per conduttori lontani l’integrano della formula
(1.4.1) non varia molto e quindi:

1

ViVj

∫
Vi

∫
Vj

1

rij
dVidVj =

〈
1

rij

〉
≈ 1

〈rij〉
. (1.4.4)

Il motivo è il loro alto numero che rende necessario un modo compu-
tazionalmente veloce per rendere i tempi di calcolo ragionevoli.

1.5 Evidenze sperimentali delle correnti parassi-
te

L’effetto delle correnti parassite è facilmente misurabile nei magneti super-
conduttori. Si trovano infatti perdite e errori di campo correlati linearmen-
te con la variazione di campo. Si osservano inoltre modulazioni del campo
lungo l’asse longitudinale dal periodo compatibile con la lunghezza di ar-
rotolamento, detto twist pitch, nonostante la struttura sia omogenea lungo
tale direzione. Il motivo è che a causa di imperfezioni e a causa della pre-
senza di conduttori a resistenza nulla, vengono eccitate correnti parassite
anche molto elevate che scorrono prevalentemente negli strand supercon-
duttori. Queste correnti non sono responsabili di perdite apprezzabile e
anche gli errori di campo che generano, essendo a media nulla lungo l’as-
se principale, non disturbano la dinamica delle particelle. Tuttavia sono in
grado di far superare localmente la corrente critica provocando l’insorgere
prematuro dei quench. Inoltre interagiscono con le correnti persistenti dei
filamenti supercondoduttori il cui comportamento non lineare, produce
un effetto non più a media nulla (fenomeno del decay e snapback).

Le scale temporali in cui le correnti agiscono variano dai secondi per
le correnti che producono più perdite e scorrono nel rame, ai giorni per
quelle che scorrono prevalentemente nei supercoduttori.

1.6 Analisi del circuito

Il circuito che modellizza il cavo (vedi figura 1.4.2) è analizzato su base ma-
glie. L’approccio usato è completamente matriciale [Kam98]. La relazioni

14



Sintesi 1.6

costitutive possono essere scritte come:

V = RI + L ∂
∂t
I + U , (1.6.1)

dove V è il vettore delle tensioni, R è la matrice delle resistenze, I è il
vettore delle correnti, U il vettore delle sorgenti di tensione.

Si può definire una matrice delle maglieM tale che:

Mab =


1 se il ramo b appartiene alla maglia a con lo stesso verso,
−1 se il ramo b appartiene alla maglia a con il verso opposto,
0 altrimenti.

(1.6.2)
La matriceM permette il passaggio dal vettore delle correnti dei nodi

I a quello delle correnti di maglia IM infatti:

I =MTIM ,
IM =MI.

(1.6.3)

Inoltre può essere usato per esprime la legge di Kirchoff alle tensioni:

MV = 0. (1.6.4)

Usando queste relazioni si giunge al sistema per le correnti di maglia.
Per l’analisi a regime:

MRMTIM +MU = 0. (1.6.5)

Per l’analisi transitoria può essere scritta l’equazione:

RMIM + LM
∂

∂t
IM + UM = 0, (1.6.6)

dove
RM =MRMT ,

LM =MLMT ,

UM =MU .
(1.6.7)

Il metodo trapezoidale è usato per integrare l’equazione differenziale
ottenendo:

M
(
R+

2

h
L
)
MTIM(k + 1) =

−M
(
R− 2

h
L
)
MTIM(k)−MU(k)−MU(k + 1). (1.6.8)
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Sintesi 1.6

Il termine di sorgente è calcolato dal potenziale vettore conosciuto su
ogni nodo. L’integrale sul ramo è ottenuto assumendo che vari linearmen-
te tra un nodo e l’altro, dunque il valore dell’integrale è approssimato alla
media del potenziale vettore sui due nodi moltiplicato scalarmente per il
vettore del ramo: ∫

A ·dl ≈ An + An+1

2
· (rn+1 − rn). (1.6.9)

Usando l’approccio matriciale è agevole effettuare una analisi spettrale
delle soluzioni, sia nel caso a regime sia in quello transitorio.

Nel caso a regime il sistema (1.6.5) può essere scritto come:

IM = −(MRMT )
−1MU

I = −MTR−1
M UM ,

(1.6.10)

doveRM =MRMT e UM =MU .
La matriceRM può essere diagonalizzata:

RM = DRDD−1, (1.6.11)

doveD è la matrice della trasformazione eRD è la matrice diagonalizzata.
Gli autovettori Pλ relativi all’autovalore rλ sono una combinazione li-

neare di correnti di maglie, dunque sono una soluzione del sistema e pos-
sono essere scritti in termini delle correnti dei rami tramite:

Qλ =MTPλ. (1.6.12)

Il vettoreQλ rappresenta un modo del sistema ed è chiamato auto-maglia.
Ogni soluzione del sistema può essere scritto come:

I = −
∑
λ

uλ
rλ
Qλ, (1.6.13)

dove uλ è il termine di eccitazione relativo all’autovalore rλ e al modo Qλ.
Questi termini possono essere calcolati usando:

UD = DTMU , (1.6.14)

dove il vettore UD contiene tutti i termini uλ.
Per il caso transitorio è interessante diagonalizzare la matrice respon-

sabile delle costanti di tempo. Infatti il sistema (1.6.10) ha come soluzione
analitica [Akh98]
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Sintesi 1.8

IM = (E − eL
−1
M RM t)R−1

M U =(
E −

∑
λ

exp(wλt)
∏
λ 6=λ′

W − wλE
wλ′ − wλ

)
R−1
M U ,

(1.6.15)

dove W = L−1
M RM i cui autovalori wλ rappresentano l’inverso delle co-

stanti di tempo.
Due tipi di condizioni al contorno possono essere applicate al cavo. La

prima considera il cavo tagliato alle estremità, la seconda permette di con-
siderare un cavo infinitamente lungo imponendo che le correnti alle estre-
mità di una porzione di cavo siano identiche. Queste ultime condizioni
sono chiamate condizione spaziali al contorno periodiche.

1.7 Risultati numerici

Il codice sviluppato è piuttosto generale e permette l’analisi di cavi Ru-
therford di dimensioni e numero di strand arbitrari. Il codice può analiz-
zare più cavi contemporaneamente includendo la loro interazione e è sta-
to integrato in ROXIE [Rus99], un ambiente integrato per la simulazione,
il progetto e l’ottimizzazione di magneti superconduttori per accelerato-
ri. Questo permette l’analisi di correnti parassite direttamente durante il
processo di progettazione e ottimizzazione.

Come esempi sono stati analizzati casi 2D, 3D, analisi transitoriore e a
regime, su singolo cavo o all’interno di magneti, effetti aleatori e analisi
spettrali.

Per 2D si intende lo studio della più piccola porzione di cavo possibile
usando condizione spaziali a contorno periodiche. Questa analisi permet-
te di studiare le correnti a basse costanti di tempo e ad alta dissipazione. In
queste condizioni sono state effettuate analisi a regime, transitorie (figura
1.7.3), effetti aleatori per il singolo cavo e a regime per un intero magnete
(figura 1.7.4).

Per 3D si intende l’analisi di un cavo di una certa lunghezza (figure
1.7.5), in questa situazione è stata effettuata una analisi transitoria e spet-
trale senza condizioni spaziali a contorno periodiche e un analisi spettrale
con condizioni spaziali a contorno periodiche.
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Figura 1.7.3 Evoluzione temporale della corrente negli strand di un cavo Rutherford
dovuto ad una variazione del campo magnetico.

1.8 Implementazione

L’alto numero di rami per casi pratici impone l’utilizzo di codice parti-
colarmente ottimizzato. L’esistenza di diverse scale temporali impone la
necessità di poter variare l’intervallo temporale tra uno step all’altro.

Tutte le matrici sono sparse, l’unica matrice non sparsa, quella delle
induttanze, è resa sparsa trascurando i termini piccoli. Le matrici sono re-
gistrate in modo particolare per evitare di usare memoria per gli elementi
nulli. Le matrici delle resistenze e delle induttanze non sono memorizza-
te, ma sono funzioni. Le moltiplicazioni tra matrici sono realizzati tramite
algoritmi adattati alla loro struttura. Il sistema lineare è risolto usando la
decomposizione LU, tramite un codice open source (SuperLU [XD98]) ot-
timizzato per matrici sparse. La decomposizione della matrice è effettuata
solo quando serve, in particolare quando cambia l’intervallo di tempo e il
contributo delle induttanze cambia.

1.9 Conclusioni

In questa tesi è mostrato uno studio su alcuni effetti transitori dovuti al-
le coerenti parassite all’interno dei magneti superconduttori che usano un
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Figura 1.7.4 Correnti parassiti e campo prodotto in un dipolo durante una rampa di
corrente.

Figura 1.7.5 Dettaglio delle correnti parassite in un campione di cavo superconduttore
soggetto ad una variazione di campo magnetico.
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cavo Rutherford. Un codice generale è stato sviluppato per lo studio degli
effetti sul singolo cavo e nei magneti grazie all’integrazione col program-
ma ROXIE. Alcuni esempi sono stati sviluppati, ma non esaurisco le possi-
bilità del codice. Infatti sarà possibile studiare l’interazione delle correnti
parassite con la magnetizzazione dei cavi o le dinamica delle correnti ai
bordi del magnete dove gli avvolgimenti hanno una complessa disposi-
zione nello spazio. L’uso di questo codice potrà essere usato durante il
processo di progettazione di nuovi magneti e la validazione con i risultati
sperimentali dei modelli usati per descrivere i magneti.
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Chapter 2

Introduction

The subject of this thesis is the study of time transient effects in super-
conducting magnets, with applications to accelerator magnnets, and the
development of a software code in order to simulte them. The work has
been performed at CERN (Conseil European pour la Recherché Nucleaire)
at Geneva, in the LHC project.

2.1 Large Hadron Collider

The Large Hadron Collider (LHC), presently in construction at CERN,
the European Organisation for Nuclear Research near Geneva (Switzer-
land), will be upon its completion the world’s most advanced high-energy
physics tool. The LHC basically consists of two interleaved synchrotrons,
26.7km in circumference, accelerating and bringing into collision two in-
tense counter-rotating beams of protons, at a centre-of-mass energy of 14
TeV and a luminosity (rate of interaction per unit cross-section) of 1034/cm2s.
The LHC will also be able to collide heavy ions, such as lead ions, up to
an energy level of about 1100 TeV. These collisions are estimated to cause
phase transition of nuclear matter into quark-gluon plasma as it existed
around 10−6 seconds after the Big Bang. Two large detectors, ATLAS (A
Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid), will detect
and record the results of these collisions. Together with ALICE and LHC-
b, 4 experiments will be located around the accelerator, all equipped with
large particle detector.

The LHC will be installed in the existing tunnel of the Large Electron
Positron Collider (LEP), see figure 2.1.1. LHC and LEP are both syn-
chrotrons, in which the particle beam is held in a circular orbit by more
than one thousand dipole magnets, see figure 2.1.2. The guiding field in-
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creases with the particle energy as to keep the orbit stationary. The maxi-
mum energy of the leptons accelerated in LEP is limited to about 100 GeV
due to synchrotron radiation emitted as the loaded particles are bent into
a circular path. For the heavier protons, synchrotron radiation only occurs
at much higher energies, and therefore the maximum energy is limited
by the field in the dipole magnets. Using superconducting magnets with
a nominal field of 8.33 T will allow the storage of proton beams with an
energy of up to 7 TeV per beam, with the bending radius given by the
existing LEP tunnel. To produce the anti-parallel fields required for bend-
ing the counter-rotating beams along their paths in the tunnel, the collider
needs two separate magnetic channels. In the LHC dipoles (see picture
2.1.3), two sets of windings are combined in a common mechanical and
magnetic structure to constitute twin-aperture magnets, a more compact
and efficient solution, as the return flux of one aperture contributes to in-
creasing the field in the other.

The LHC will make use of the existing injector chain (see figure 2.1.4).
The beams will be injected into the LHC from the SPS at an energy of 450
GeV and be accelerated to 7 TeV in about 30 minutes.

The pre-accelerators are operational and the modifications required to
achieve the LHC beam parameters will be finished before the LHC comes
into operation. The civil engineering for the LHC is limited to the con-
struction of two large underground caverns for the ATLAS and CMS ex-
periments, and the two transfer tunnels (each 2.5 km long) from the SPS
to the LHC.

2.2 Motivation

The absence of electrical resistance in the superconducting coil and the
fact that they can produce magnetic field greater than normal conducting
magnets (limited by the iron saturation) is the main reason of their use
for particle accelerators. In particular in synchrotrons they are the main
component that limits the maximum energy reachable. In fact particles
are guided by a magnetic field in order to follow a close circle orbit and
accelerated by an electric field in order to increase their energy. More the
particle gains in energy, higher is the magnetic field necessary to make
particles follow the same path.

For storing particle for long time it is necessary to produce a magnetic
field whose relative deviation from the ideal field is in the order of 10−4.
A great effort is needed in order to control every effects that can damage
field quality.
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Figure 2.1.1 Aerial view of CERN site. Path of LEP/LHC tunnel is highlighted.
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Figure 2.1.2 View of LHC tunnel once finished.
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Figure 2.1.3 Cross section scheme of LHC dipole.
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Figure 2.1.4 CERN accelerators chain.
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In synchrotrons the magnetic field has to follow the time variation of
accelerated particle that is, in the first approximation linear, thus it is im-
portant to control field quality during ramping (see figure 2.3.6. During
this period errors are different from the steady state case, change with time
and depend on the ramp rate and the previous excitation of the magnet.
The main sources of these errors are eddy currents generated by the time-
varying magnetic field, in particular inside superconducting cable, where
resistivity is lower than the other parts.

Figure 2.2.5 Particular LHC dipole coil cross section. Collars in stainless steel keep in
the right position superconducting cable. In the centre there the vacuum pipe where
beam flows.
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Calculation of eddy currents is superconducting cables is the subject of
this thesis.

From 1970s to today eddy currents, also called coupling currents, have
been studied with several models and performing measure to validate
them. Few efforts have been made to integrate this model in a magnet
design tool in order to take this effect into account during design and test-
ing process. In this thesis is shown how to efficiently integrate a model for
eddy currents into the CERN magnet design program ROXIE [Rus99].

ROXIE is a integrated tool for simulating and optimise magnets design
taking into account the effects of iron yoke, persistent current magneti-
sation and coil ends. Integration of a eddy currents model for supercon-
ducting cables will make possible to study magnetic field during ramping
either for a better understanding of transient effects, or for helping in de-
sign process for future magnets.

Even if LHC magnets are in the production line, research and devel-
opment is still in progress. After approximately ten years of operation
several magnets close to the interaction region will be damaged by radia-
tion, their replacement could be a opportunity for a luminosity upgrade.
Several new synchrotron using fast pulsed superconducting magnets are
going to be built in the next decades, a tool for calculating a ramp rate
dependent error could be a great aid during design process.

2.3 Synchrotron Basics

A is a particle accelerator that use electric field of resonant cavities to ac-
celerate particle. Magnets are used to bend particles in order to make a
circular trajectory so that can pass several time through cavities to be ac-
celerated. It is a very simple application of Lorentz force:

F = qe(E + v ×B), (2.3.1)

where e is the charge of electron, q is the charge of the particle in unit of
electron charge, E the electric field, v the velocity and B the magnetic
field.

From (2.3.1) we see that we can use only electric field to accelerate a
particle in order to increase its energy. Moreover we can see that effi-
ciently bend high velocity particle with magnetic field, because force is
proportional to the velocity.

Magnets are also used to control trajectory of particles and stabilise it
using magnetic field as lens.
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If the magnetic field is homogeneous particles follow a circular path.
Momentum, radius and magnetic field are related by the formula:

Br[ T m] = 0.3356pq[ GeV/c] (2.3.2)

where r is the radius of the circle and p the momentum and q is the number
of electron charge of the particles.

From this relation we can argue that if we want particle accelerated to
have more energy we have to increase magnetic field and radius. Max-
imum radius depends on cost we can afford, but magnetic field strange
depends on technology. High magnetic field can be produced only with
superconducting coil where high currents can flow without ohmic losses
and produce magnetic field beyond iron saturation.

Moreover, relation (2.3.2) means that if we can keep the radius con-
stant, while the particle get energy and increase the momentum, we have
to increase the magnet field. Thus magnets have to follow a ramp in or-
der to bend particle from injection energy to extraction or collision. In the
figure 2.3.6 the excitation current for a dipole is shown.
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Figure 2.3.6 Proposed excitation function from injection to final energy for a LHC
dipole.

The fact that magnets are used during ramp implies that the transients
effects should be taken into account in magnet design.
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2.4 Eddy currents

Main transient effects are due to the fact that magnetic field it is not con-
stant in time. When magnetic field is not constant, an electric field is cre-
ated due to the induction law. If there are material with low resistivity the
electric field produces eddy currents that are responsible for ohmic losses
and field errors. In accelerator magnets there are several parts with low
resistivity where eddy currents are produced such as beam screen, copper
wedge and superconducting cables. In the latter the resistivity is very low
due to the fact that are made by a Nb-Ti alloy in superconducting state and
copper and this leads to the highest currents.

2.5 Field errors

Deviations in the nominal field of the dipole bending magnets distort the
central closed orbit (the path on which an ideal particle not performing
oscillations will travel through the machine) and thus reduce the available
machine aperture. Nonlinear field imperfections can cause resonances and
limit the dynamic aperture (the maximum initial amplitude of oscillations
around the closed orbit below which the particle motion is stable) partic-
ularly at injection, where the errors are large due to the remanent fields,
and where the beam has a large emittance.

The magnetic field errors in the aperture of accelerator magnets can be
expressed as the coefficients of the Fourier-series expansion of the radial
field component at a given reference radius (in the 2-dimensional case).
In the 3-dimensional case, the transverse field components are integrated
over the entire length of the magnet. For beam tracking it is sufficient
to consider the transverse field components, since the effect of the longi-
tudinal component of the field (present only in the magnet ends) on the
particle motion can be neglected. Assuming that the radial component of
the magnetic flux density Br at a given reference radius r = r0 inside the
aperture of a magnet is measured or calculated as a function of the angu-
lar position ϕ, we get for the Fourier-series expansion of the radial field
component

Br(r0, ϕ) =
∞∑
n=1

(Bn(r0) sinnϕ+ An(r0) cosnϕ), (2.5.1)
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with

An(r0) =
1

π

∫ π

−π
Br(r0, ϕ) cosnϕdϕ,

Bn(r0) =
1

π

∫ π

−π
Br(r0, ϕ) sinnϕdϕ.

(2.5.2)

If the field components are related to the main field component BN we
get with N=1 for the dipole, N=2 for the quadrupole, etc.

Br(r0, ϕ) = BN(r0)
∞∑
n=1

(bn(r0) sinnϕ+ an(r0) cosnϕ) (2.5.3)

The Bn are called the normal and the An the skew components of the
field given in Tesla, bn the normal relative, and an the skew relative field
components. The latter are dimensionless and are usually given in units
of 10−4 at a 17 mm reference radius (about 2/3 of the aperture). For a good
field quality these multipole components have to be less than one unit in
10−4.

As an example we show a pure dipole field where all but b1 compo-
nents are equal 0, a quadrupole field where only b2 6= 0 and a sextupole
field where b3 6= 0.

Figure 2.5.7 First three normal field component: left B1, centre B2, right B3.

2.6 Quench

A quench is the transition from the superconducting to the normal state
for an entire magnets. When a local increase of temperature, current or
magnetic field such that superconductivity is broken, the current begins to
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dissipate heat that propagates in the neighbours region provoking a new
transitions. This produces is fast (milliseconds) and can be destructive if it
is not detected.
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Chapter 3

Superconductivity

3.1 Classic Theory

Superconductivity it is a property of some metals or alloys whose resistiv-
ity is unmeasurable low below a certain critical temperature. Transition
between normal conducting and superconducting state is stepwise. Criti-
cal temperature depends from the material and the presence of currents or
magnetic field that are able to increase the internal energy of the material.
For this reason there is a limit in the current and magnetic field generated
by superconducting coils. It can be defined a critical surface in the space
of three state variable, current, magnetic field and temperature (see figure
3.1.1).
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Figure 3.1.1 Critical current surface of the NbTi alloy as a function of temperature and
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3.2 Superconducting Materials

There are two type of superconducting material: type I and type II. The
former cannot have magnetic field inside in the superconducting state,
they produce current in the surface in order to shield external magnetic
field. The latter can have magnetic field inside. Usually type II supercon-
ducting materials have a higher critical magnetic field, thus they are well
suited for superconducting magnets.

Magnetic field is not distributed continuously inside a type II super-
conductor, but it is located flux tubes called fluxoids. Inside a fluxoid
superconductor is in normal conducting state, fluxoid are surrounded by
currents that shield the part in superconducting state. When a current flow
in the superconductor the fluxoids, due the Lorentz force, tends to move
generating heat. For this reason it has been developed material with pin-
ning centre, impurity or defects, that take fluxoids fixed in a position. For
example in the NbTi alloy, the normal conducting titanium precipitated in
small region facilitate the creation of pinning centres. The materials with
strong pinning centre are called hard superconductor and are the material
to be used in superconducting magnets.

In superconducting magnets field distribution is dominated by coil
shape, and not by iron yoke as in the normal conducting magnet. For this
reason it is important to choose a material with good mechanics proper-
ties. This needs limit superconducting material to NbTi and Nb3Sn alloys.
The former have better mechanical properties but a lower critical field, the
contrary for the latter. Nowadays the most used alloy is NbTi, but a great
effort in R&D is made Nb3Sn alloys in order to use it in superconducting
magnets.

3.3 Rutherford-type Cable

Cables used for superconducting magnets have a complex structure. They
are composed of strands twisted together in order to assume a flat form.
In figure 3.3.2 we can see a 36 strands Rutherford-type cable. Strands are
compressed together in order to make the cut assume a trapezoidal form
(see figure 3.3.4). Each strand is composed of filaments included in a cop-
per matrix. Photo 3.3.3 gives an idea.

In the figure 3.3.4 we can see a cut of four cables. We can recognise the
strands, some of which are deformed in order to obtain the desired shape
of the cables. In the figure 3.3.5 is shown an enlarged cut of a strand in
which are clearly visible the superconducting filament.
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Figure 3.3.2 Strands of a Rutherford type cable.
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Figure 3.3.3 Strands and filaments of a Rutherford type cable.

Figure 3.3.4 Cut through a block of conductors showing the cables composed of super-
conducting strands

37



Superconductivity 3.3

Figure 3.3.5 Multi-filament strand.
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3.4 Physical properties

The cable is characterised by several typical properties. The table shows
typical values for accelerator magnets [VtKL+95]:

Twist Pitch Lenght Lp 100− 130 mm
Width w 7− 17 mm
Thickness h 1− 2.5 mm
Strand Diameter Ds 0.8− 1.1 mm
Filament Diameter Df 5− 7µm
Number of Strands Ns 20− 40
Number of Filament Ns 5000− 9000
Cable Critical current, 1.9 K, 10 T Imax 12− 13 kA
Strand Critical current, 1.9 K, 10 T Imaxs 0.3− 0.5 kA

(3.4.1)

The number of strands in a cable ranges from 20 to 40 depending on
the type of magnets and in the same magnet on the layer.

Thickness of the cable can be different due to key stoning (see fig-
ure 3.3.4). In fact cables are compressed and deformed in order to make
them assume the right shape. The compression increases the contact sur-
face between strands leading to a decrease of electrical resistance between
strands, the main responsible of eddy current generation.

Contact resistances are divided in two family, cross resistances and ad-
jacent resistances. Cross resistances, Rc, are the resistances from strands
that belongs to different layer, adjacent resistances are the resistances that
occurs between two close strand in the same layer.

Contact resistances mainly depend on the surface of the strands usu-
ally copper oxide. Surface is subject several treatment and temperature
cycles during fabrication. Matrix resistivity doesn’t play a role only if it is
made by pure copper. In some cables a resistive barrier is put between the
two layers of the cable, thus only cross resistances are enhanced.

In addiction to this effects that depend on the fabrication process, there
are other process that change the resistance inside a magnets. The key
stoning changes the contact surfaces and the pressure between strands.
This pressure is not uniform in the magnets, in particular different in the
coil ends. The pressure change during the operation of the magnets be-
cause cables are subjects to the Lorentz force.

All this factors are difficult to control. Moreover contact resistance are
difficult to measure. Even if measured before magnet assembling , they
will change during fabrication process and during operation of the mag-
nets. Inside a magnets can be measured only by inverse field calculation
and a correlation with losses.
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Experimental Observations

Eddy currents (also known as coupling currents) effects play a role in the
heat losses, the ramp rate dependent field errors, quench current limit, ca-
ble magnetisation. When the magnetic field begins to increase eddy cur-
rents starts to build up in the conductors. Then they reach a limit depend-
ing on the variation of the magnetic field. When the the magnetic field
increas stops, the eddy cirrents decay.

We can classify coupling currents if three categories [Ver95]:

IFCC Interfilament coupling currents;

ISCC Interstrand coupling currents, also called simply “coupling currents”;

BICC Boundary induce coupling currents, also called “supercurrents” [KS95].

IFCC are the currents which flow between filament in the strands, they
grow with a time scale of milliseconds. They are important during quench
propagation process.

Between strands flow two kind of currents. ISCC are currents which
depend only on a single periodic part of the twisted cable. They have time
scales of seconds. They are responsible of the main losses and field errors.
BICC depend on the whole lenght of the cable for the fact that the cable it
not infinite (spatial variation of ∂

∂t
B [VtK95], [KS95]) and that the cable it is

not perfect (not perfect cancelation of flux linkage). They have a time scale
of order of hours or days. They are long loops of currents flowing mainly
in the superconductor. They are responsible a periodic field pattern along
longitudinal axis and affects quench current limit due to a local rise of cur-
rent density. The interaction of this currents with filament magnetization
is responsible of the so-called “decay and snapback” [HKdO+01].
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4.1 Interstrands Coupling Currents

The existence of eddy currents inside superconducting cables has been ev-
ident from the first stage of cable studies and realizations. A linear relation
between ramp rate dependent losses can be measured easily on supercon-
ducting magnets ([ABB+00]), see figure 4.1.1.
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Figure 4.1.1 Work done by the current during a cycle from minimum to maximum cur-
rent and back in a LHC dipole magnet.

Another linear correletaion with the ramp rate can be found with the
histeresis width for field error normalized component.

In the figure 4.1.2 we can see the ramp rate depend histeresis of a field
compoment. The histeresis is not centered in the 0 for the presence of a
geometrical error. The amplitude of the width is linear with the ramparate
as we can see in the figure:

4.2 Boundary Induced Coupling Currents

The existence of periodic field pattern in superconducting magnets was
discovered at first at HERA [BGK+91]. In the figure 4.2.4 we can see a pe-
riodic field pattern of the sextupole component. Subsequently this pattern
has been measured in the rest of superconducting magnets. The periodic-
ity length is equal to the cable twist pitch inside the measure errors. This is
an evidence that it is cable effects. The periodicity affects all the harmonic
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Figure 4.1.2 Sextupole histeresis at different ramp rate [BRW+95].

component of magnetic field, even the not allowed component due to the
symmetry. This fact is compatible to the randomness of interstrands con-
tact resistances. At the early stage of excitation the magnets do not present
the periodic pattern. After ramping magnetic field this pattern persist for
hours and show a decay.

In the figures 4.2.4, 4.2.5, 4.2.6 we can see measures of periodic pattern
of the sextupole component in LHC magnets in several situation [BWA97].
From that we can have an idea on the time scale involved. It is important
to note that the pattern is different from magnet to magnets of the same
type and in the same magnets with different excitation history.
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Figure 4.2.3 Periodic field pattern of the sextupole component in a HERA magnet.
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evolution during ramp up. Courtesy of Luca Bottura.
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Chapter 5

Electromagnetic Diffusion
Problems

5.1 Maxwell Equations

Maxwell equations are:

∇ ·D = ρ

∇ ·B = 0

∇×E = − ∂

∂t
B

∇×H = J +
∂

∂t
D

(5.1.1)

with

D = εE

J = σE

B = µH .

(5.1.2)

Using∇ ·B = 0, a vector potential A can be defined such that

B = ∇×A. (5.1.3)

Using∇× (E + ∂
∂t

A) = 0, Φ can be defined such that

E = −∇Φ− ∂

∂t
A. (5.1.4)

In the following we assume ε and µ to be scalar and constant. σ could
be a tensor depending on the position and the current.
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5.2 Magneto Quasi-static Approximation

Last equation of (5.1.1) multiplied by µ becomes

∇×B = µσE + µε
∂

∂t
E. (5.2.1)

In order to compare the importance of the two terms of the right hand
side of the last equation we can state:

∂

∂t
E = O

(
E

τ

)
, (5.2.2)

where τ is the typical time scale of our system.
Now the last equation can be written as

∇×B = µ
(
O (σE) +O

( ε
τ
E
))

. (5.2.3)

If
σ � ε

τ
, (5.2.4)

we can neglect the last term of (5.2.1),

ε
∂

∂t
E = O

( ε
τ
E
)
≈ 0. (5.2.5)

This is called magneto quasi-static approximation.
In this case Maxwell equations (5.1.1) can be written as:

∇×E = − ∂

∂t
B

∇×B = µσE.
(5.2.6)

One consequence is:

∇ ·J = ∇ ·σE = 0. (5.2.7)

Knowing that ρ = ε∇ ·E, ρ = 0 holds only if

∇ ·σE = σ∇ ·E, (5.2.8)

that happens if σ is scalar and independent of the position.
In conclusion the magneto quasi-static approximation means that we

can neglect the effects of the charge building process, assuming that if this
charge exists it builds up instantaneously. The existence of this charge and
his effects is studied in [Car04].
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5.3 External Sources

In our problems we need to introduce an external source of magnetic field
Be or vector potential Ae neglecting the effects that the system has on
those sources. In fact we don’t want to simulate the entire magnet because
the effects of the eddy currents are small compared those of the transport
currents. We only use the magnetic field generated by them. We can for-
malise this assumption writing Maxwell’s equations for the sum of two
current density and magnetic fields. J and B are the current densities and
magnetic field due to the eddy currents and Je, Be due to the transport
currents. In this way we can write

∇×E = − ∂

∂t
B − ∂

∂t
Be (5.3.1)

and
∇×B +∇×Be = µJ + µJe. (5.3.2)

The assumption of none feed back can be taken into account writing:

∇×Be = µJe (5.3.3)

which yields
∇×B = µJ (5.3.4)

Using vector potentials for both B and Be we can write

E = −∇Φ− ∂

∂t
(A + Ae), (5.3.5)

where Be = ∇×Ae.

5.4 Diffusion equations

Quasi static assumpion leads to diffusion equation. In fact we can write
several equations derived from Maxwell’s equation:

σ−1(∇×B) = µE ⇒

∇×
(
σ−1(∇×B)

)
= −µ ∂

∂t
(B + Be)

(5.4.1)

or

∇× ∂

∂t
B = ∇× (∇×E − ∂

∂t
Be) = −µσ ∂

∂t
E ⇒

∇×∇×E = −µσ ∂
∂t

E +∇× ∂

∂t
Be

(5.4.2)
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or

∇×∇× σ−1J = −µ ∂
∂t

J +∇× ∂

∂t
Be. (5.4.3)

If conducibility is homogeneous and isotropic preavios equations be-
come diffusion equations because left hand sides of preavios equation be-
come curl-curl operator applied to diverge free fields, that is a laplacian
operator. In fact

∇×
(
σ−1(∇×B)

)
= σ−1∇×∇×B,

∇×∇× σ−1J = σ−1∇×∇× J ,

∇ ·E = σ−1∇ ·J = 0,

(5.4.4)

thus

∇2B = σµ
∂

∂t
(B + Be)

∇2E = σµ
∂

∂t
E +∇× ∂

∂t
Be,

∇2J = σµ
∂

∂t
J − σ∇× ∂

∂t
Be.

(5.4.5)

5.5 Maxwell’s Equation Solution

A direct use of Maxwell’s equations is difficult due the fact that the in-
ternal structure of the cable is small compared to the total dimensions. A
continuous approach can be used if we neglect the structure of the cable
and we use a global non isotropic conductivity. Only the equations are
derived.

The main problem to solve equations (5.4.1), (5.4.2) and (5.4.1) is that
the curl-curl operator cannot be simplified using divergence free field or
there is a tensor that multiply the vector field. In both cases the compo-
nents of the vector fields are coupled. In the 2D equation can be decoupled
if conductivity is diagonal and independent on position.

Assuming B = B(x, y, t)ez, Be = Be(x, y, t)ez and σ = σxexex +σyeyey
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the equation for B (5.4.1) can be simplified:

∇×B(x, y, t)ez =
∂

∂y
B(x, y, t)ex −

∂

∂x
B(x, y, t)ey

σ−1

(
∂

∂y
B(x, y, t)ex −

∂

∂x
B(x, y, t)ey

)
=

∂

∂y

B(x, y, t)

σx
ex −

∂

∂x

B(x, y, t)

σy
ey

∇×
(
∂

∂y

B(x, y, t)

σx
ex −

∂

∂x

B(x, y, t)

σy
ey

)
=

∂2

∂x2

B(x, y, t)

σy
ez +

∂2

∂y2

B(x, y, t)

σx
ez

∂2

∂x2

B(x, y, t)

σy
+

∂2

∂y2

B(x, y, t)

σx
= −µ ∂

∂t
B(x, y, t)− µ ∂

∂t
Be(x, y, t).

(5.5.1)

This is the equation for a piece of flat conductor with a conductivity
that depends on the direction, for example a non twisted Rutherford-type
cable. In order to “simulate” a twisting the source Be could be assumed
sinusoidal in the direction of twisting.

5.6 Potential Formulation

Assuming the Coulomb Gauge, ∇ ·A = 0, the Maxwell’s equations (5.1.1)
became:

∇2A(r, t) = −µJ(r, t) (5.6.1)
∇ ·J(r, t) = 0 (5.6.2)

σ−1(r,J)J(r, t) = −∇Φ(r, t)− ∂

∂t
A(r, t), (5.6.3)

where σ−1(r,J) is the resistivity. In particular for mixed normal con-
ductor, super-conductor is a tensor depending on the position and on the
current density, in the following to ease notation, we will write simply σ−1,
but during calculation, these dependences are taken into account.

If we want to consider an external source of vector potential Ae ne-
glecting the effects on it (using (5.3.1)), the previous system becomes

∇2A(r, t) = −µJ(r, t) (5.6.4)
∇ ·J(r, t) = 0 (5.6.5)

σ−1J(r, t) = −∇Φ(r, t)− ∂

∂t
(A(r, t) + Ae(r, t)). (5.6.6)

An approach that leads us to a numerical solution is to solve (5.6.4)
using the Green function of the Laplace operator for free space G(r) = 1

4πr
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where r = |r|. This yields:

A(r, t) = G(r) ~ (µJ(r)) =
µ

4π

∫
V ′

J(r′, t)

|r′ − r|
dV ′. (5.6.7)

Equation (5.6.6) becomes

σ−1J(r, t) +
µ

4π

∫
V ′

∂
∂t

J(r′, t)

|r′ − r′|
dV ′ = −∇Φ(r, t)− ∂

∂t
Ae(r, t). (5.6.8)

5.7 Numerical Approach

A numerical solution of the system can be found using the PEEC (par-
tial element equivalent circuit ) analysis [Rue74]. The magneto quasi static
aproximation yields the existence of resistance, inductance circuit elements
and voltage source elements.

Following [BRR79] and [Kam98], equation (5.6.8) can be solved assum-
ing J constant in space in some region and zero outside.This can be done
using the expansion:

J(r, t) =
∑
i

Ji(t)wi(r) =
∑
i

Ji(t)wi(r) (5.7.1)

where Ji(t) is the current density assumed constant in the volume Vi, wi(r)
is weighting function that is 1 in the volume Vi and 0 outside. Thus wi(r)
is a vector field that is Ji(t)/Ji(t) in the volume Vi and 0 outside, where
Ji(t) = |Ji(t)|. Volume Vi has to be a flux tube of J in order to simplify
next calculations. Volumes can overlap, the important is that∫

V

wi(r) ·wj(r) = δij, (5.7.2)

where δij is the Kronecker delta.
In the figure 5.7.1 the elementary volume Vi is sketched
Under this assumption can be defined a current in the volume

Ii(t) =

∫
Si

Ji(t)wi ·dSi = SiJi(t), (5.7.3)

where Si is a surface orthogonal to wi.
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li

Sα

SβSi

Vi

J = Ji(t)wi

Figure 5.7.1 Elementary volume Vi in which space is subdivided.

Now we can integrate in the volume each term of (5.6.8) weighted with
each wi(r) function. This yields for the first term:∫

V

wi(r) · (σ−1J(r, t))dV =

∫
Vi

∑
i

σ−1Jj(t)wj(r) ·wi(r)dVi =

=

∫
Vi

σ−1Ji(t)dV = Ii(t)

∫
li

σ−1

Si
dli = RiIi(t),

(5.7.4)

where li is a field line of J and Ri is the resistance of the volume Vi in
the direction of wi.

The second term of (5.6.8) yields

µ

4π

∫
V

wi(r) ·
∫
V ′

∂
∂t

J(r′, t)

|r′ − r|
dV ′dV =

=
µ

4π

∑
j

∫
Vi

∫
Vj

wi(r) ·wj(r) ∂
∂t
Jj(t)

rij
dVidVj =

=
∑
j

∂

∂t
Ij(t)

µ

4π

1

SiSj

∫
Vi

∫
Vj

wi ·wj

rij
dVidVj =

∑
j

Lij
∂

∂t
Ij,

(5.7.5)

where rij is the distance function between the volumes Vi and Vj and
Lij are the mutual inductances.

For the third term of (5.6.8), using ∇ ·J(r) = Ji∇ ·wi(r) = 0 in the
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volume Vi, we obtain

−
∫
V

wi(r) · ∇Φ(r, t)dV = −
∫
Vi

∇ · (wi(r)Φ(r, t)) dVi =

=
1

Sα

∫
Sα

Φ(r, t)dSα −
1

Sβ

∫
Sβ

Φ(r, t)dSβ = Φα − Φβ = Φi,
(5.7.6)

where Sα, Sβ are the surface at the edge of the volume Vi as shown in
figure 5.7.1, Φα and Φβ are the potential in the surfaces Sα and Sβ and Φi

their difference.
For the fourth term of (5.6.8) we derive

−
∫
V

wi(r) · ∂
∂t

Ae(r, t) = Ui, (5.7.7)

where Ui is the voltage drop due to Ae along the length of the volume.
Plugging all together we get an equation for each Ii

RiIi +
∑
j

Lij
∂

∂t
Ij = Φi − Ui. (5.7.8)

Using matrix notation we obtain

RI + L ∂
∂t
I = V − U . (5.7.9)

This is the constitutive equation for a network of lumped elements that
can be solved with one of the Kirchoff laws (see chapter 6).
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Chapter 6

Network Analysis

6.1 Introduction

The study of eddy currents using a R-L network brings us to a modifica-
tion of Kirchoff laws in order to include the effect of magnetic field change.

6.2 Steady State Analysis

In the steady state analysis we can neglect the effects of accumulation of
magnetic energy and consider only a resistive network.

6.2.1 Node Analysis

An electrical network can be represented as an orientated graph. Assume
the oriented graph composed by N nodes and B branches. If we number
nodes and branches, we can describe the graph using the so-called com-
plete incidence matrix Aa : N ×B, defined as follow:

Amn =


1 if branch n exit from node m,
−1 if branch n enter in node m,
0 otherwise.

(6.2.1)
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The incidence matrix, for the graph in the figure 6.2.1, reads:

Aa =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 −1 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 −1 0 0 1 0 0 0 0 −1 0 0
0 0 0 −1 0 0 1 0 0 −1 0 0 0 0 1 0 0 0 1 0 0
0 0 −1 0 0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 1


(6.2.2)

Sums of columns are always 0, the rank of Aa is N − 1.

 1         

 2         

 3         

 4         

 5         

 6         

 7         

 8         
 9         

 10        

 11        

 12        

 13        

 14        

 15        

 16        

 17        

 18        

 19        

 20        

 21        

 1         

 2         
 3         

 4         

 5          6         

 7          8         

 9         

 10        
 11        

 12        

Figure 6.2.1 A graph of 21 branches and 12 nodes. Number in red refer to strand la-
belling, in black node labelling

For a network we can build the incidence matrixA : (N−1)×B defined
as Aa without one row.

We can define the admittance matrix G : B × B in which the element
Gab = ia/vb is the contribution of voltage va to the current ib and voltage
source matrix U : B × 1 where Ub1 is the voltage source of branch b.
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m n

vm vnvu

ub

vb

ib

Figure 6.2.2 Definitions on branch b between nodes m and n

Using figure 6.2.2 we can write a constitutive equation

ib = Gb(vm − vu)
ub = vu − vn
ib = Gb(vm − vn)−Gbub,

(6.2.3)

Using incidence matrix we can derive for all nodes the matrix equation:

I = GATVn − GU . (6.2.4)

where Vn is the node potential matrix, I is the branch current matrix and
V = ATVn is the branch voltage matrix.

Using the Kirchoff current law written for incidence matrix,

AI = 0, (6.2.5)

the previous equation can be solved

Vn = (AGAT )−1AGU . (6.2.6)

6.2.2 Mesh Analysis

In a network of N nodes and B branches we can define the (N − 1)-
branches tree set and (B − N + 1)-branches co-tree set. A mesh is set of
branches that represent a closed path between nodes. Each co-tree branch
defines a mesh whose currents is equal to the co-tree branch current.

A set of independent meshes can be represented using the so-called
mesh matrixM : (B −N + 1)×B defined as follow:

Mab =


1 if branch b belongs to loop a with same orientation,
−1 if branch b belongs to loop a with opposit orientation,
0 otherwise.

(6.2.7)
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For example a set of meshes of the graph in the figure 6.2.1, has the
following mesh matrix

M =


0 1 0 0 0 0 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −1 0 0
1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 −1 0 0
0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 −1
0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 −1

 (6.2.8)

where the co-tree set is composed by branch {1, 2, 3, 4, 5, 6, 9, 14, 16, 18}
and the tree set is {7, 8, 10, 11, 12, 13, 15, 17, 19, 20, 21}.

All the branch currents can be derived using this matrix equation

I =MTIM , (6.2.9)

where IM : (B −N + 1) × 1 is the mesh current matrix. As we did before
we can write a constitutive equation

V = RI + U = RMTIM + U , (6.2.10)

whereR = G−1. Using the Kirchoff voltage law

MV = 0, (6.2.11)

we can solve the system

MRMTIM +MU = 0 (6.2.12)

in

IM = −(MRMT )
−1MU

I = −MTR−1
M UM ,

(6.2.13)

where RM = MRMT and UM = MU . RM is the matrix of mesh resis-
tance, the diagonal elements of RM are the total resistance of each mesh
and the off-diagonal are the algebraic sum of the common resistances be-
tween meshes. UM is the sum of the voltage sources in each mesh.

6.3 Link between Node and Mesh Analysis

The incidence matrix A and the mesh matrixM are linked by the relation

AMT = 0. (6.3.1)
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In fact this product perform the scalar product between every row
of M that represents the meshes and every row of A that represent the
branches that belongs to the nodes. Every node in a mesh has to belong to
two branches in which the mesh current respectively enters and exits, the
dot product checks this condition choosing the branches that belongs to a
node and summing their orientations.

If we use tree and co-tree technique to find meshes, we can partition A
in (AC |AT ) where AT contains the tree branches informations and AC the
co-tree informations. AlsoM can be partitioned in (MC |MT ). This yields
that AT is a non singular square matrix and MC = E the unit diagonal
matrix. Using the previous relations (6.3.1) we can find

ACMT
C +ATMT

T = 0

MT
T = −A−1

T AC .
(6.3.2)

We can also generalize the concept of meshes noting that if we make a
linear combination of two rows of mesh matrixM we do not change his
algebraic properties. We can consider a mesh as a particular vector in the
branch space that belongs to the null space of A. The mesh matrix can be
determinated by a set of linearly independent mesh. In fact the nullity of
A is equal the number of independent meshes.

6.3.1 Circuit in an External Time Varying Magnetic Field

If we want to include the effects of an external magnetic field we should
include in the Kirchoff law the Faraday induction equation for a closed
loop

u = − ∂

∂t

∫
B ·dS = − ∂

∂t

∮
A ·dl, (6.3.3)

where A is the vector potential, B = ∇×A is the magnetic field.
We discretize A assigning it to each node a An. Moreover we approx-

imate A linear with the distance. With this assumption Faraday law inte-
gral (6.3.3) becomes:∮

A ·dl ≈
∑
n

An + An+1

2
· (rn+1 − rn) (6.3.4)

for every n that belongs to the loop.
As an example we can study the circuit in the figure 6.3.3, where only

∂
∂t
B0z 6= 0.
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x

(x2, y2)

(x1, y1)

(x4, y4)

(x3, y3)

∂
∂t
Bz

Rd

Rc

Rb

Ra

l

i

1 2

4 3

Figure 6.3.3 Simple circuit in a homogeneous time-varying B0z field.

The solution is:

(Ra +Rb +Rc +Rd)i =
∂

∂t
B0zl

2. (6.3.5)

For a homogeneous magnetic field,

B(x, y, z) = B0 = B0xex +B0yey +B0zez, (6.3.6)

a vector potential is

A(x, y, z) =
1

2
B0 × r

=
1

2
((B0yx−B0zy)ex + (B0zx−B0xz)ey + (B0xy −B0yx)ez) ,

(6.3.7)

the flux can be written, if ∂
∂t
B0x = 0, ∂

∂t
B0y = 0, as

∂

∂t
B0zl

2 =

∮
∂

∂t
A ·dl =

∑
b

∫
b

∂

∂t
A ·dl

= ua + ub + uc + ud.

(6.3.8)

The solution now can be written as:

(Ra +Rb +Rc +Rd)i = ua + ub + uc + ud. (6.3.9)
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The solution of this circuit is equal to the solution of circuit 6.3.4, in
which u =

∫
b
∂
∂t

A ·dl. In other words we can split the circulation of ∂
∂t

A
and associate each portion to a circuit branch. Using the approximation
seen above for A (see (6.3.4)), we obtain

ua =
∂

∂t

Ax1 + Ax2

2
(x2 − x1) +

∂

∂t

Ay1 + Ay2

2
(y2 − y1). (6.3.10)

Rb

ub

uc Rc

ud

rd

uaRa1 2

4 3

i

l

y

x

(x4, y4)

(x2, y2)

(x3, y3)

(x1, y1)

Figure 6.3.4 Simple circuit in a homogeneous B0z field, where the effects B0z is inside
voltage sources u.

It is easy to prove that the solution is the same.
This leads us to reformulate the matrix equations including the contri-

bution of magnetic field change.
If we define X , Y , Z as the node position matrices,Ax,Ay,Az the node

vector potential matrices and A2 the incidence matrix with all elements
squared, we can write

U =
1

2

(
(AT2

∂

∂t
Ax)(ATaX ) + (AT2

∂

∂t
Ay)(ATaY) + (AT2

∂

∂t
Az)(ATaZ)

)
.

(6.3.11)
It is important to note that the vector potential and the scalar poten-

tial depend on the choice of the gauge. While node analysis, that use as
unknowns the scalar potential, has to deal with this choice, mesh analy-
sis using Kirchoff voltage law eliminates the ambiguity of gauging. Ma-
trix multiplicationMU perform a discrete path integral able to cancel all
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the possible curl free parts of the discretized vector potential. In fact Kir-
choff voltage law, in presence of a magnetic field, is an application of
∇ × (E + ∂

∂t
A) = 0 instead of simply ∇ × E = 0 in normal network

analysis.

6.4 Transient Analysis

For transient analysis we need to introduce the mutual inductance ele-
ments that takes into account the effect of a current change of one branch
on another branch.

The constitutive equations in matrix form now reads:

V = RI + L ∂
∂t
I + U , (6.4.1)

where L is such that diagonal elements are the self-inductances of each
branch and the off-diagonal are the mutual-inductances.

If we use the Kirchoff voltage law (6.2.11) and the definition of mesh
current (6.2.9) we obtain:

RMIM + LM
∂

∂t
IM + UM = 0, (6.4.2)

where diagonal elements ofLM =MLMT are the self-inductances of each
mesh and the off-diagonal are the mutual-inductances between meshes.

6.4.1 Numerical Approach

For a numerical integration in time domain of equation (6.4.2) we can
choose the trapezoidal approximation for the time derivative. That is

∂

∂t
I
(
tk+1 + tk

2

)
≈ I (tk+1)− I (tk)

h
,

I
(
tk+1 + tk

2

)
≈ I (tk+1) + I (tk)

2
,

V
(
tk+1 + tk

2

)
≈ V (tk+1) + V (tk)

2
,

U
(
tk+1 + tk

2

)
≈ U (tk+1) + U (tk)

2
,

(6.4.3)

where tk = kh and h is the time step size.
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t

I(k)

I(k + 1)

I

∂
∂t
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Figure 6.4.5 Trapezoidal approximation for I and ∂
∂tI

Trapezoidal approximation uses values of the quantity at steps tk and
tk+1 in order to approximate the differential equation at (tk+1 + tk)/2. In
the figure 6.4.5 is show a graphic representation.

The matrix equation (6.4.1) approximated in t = (tk+1 + tk)/2 becomes

V(k) + V(k + 1) = R
(
I(k) + I(k + 1)

)
+

+
2

h
L
(
I(k + 1)− I(k)

)
+ U(k) + U(k + 1). (6.4.4)

Rearranging the terms yields

V(k) + V(k + 1) =(
R+

2

h
L
)
I(k + 1) +

(
R− 2

h
L
)
I(k) + U(k) + U(k + 1). (6.4.5)

Using the equation for mesh currents (6.2.9) and left multiplying byM
gives

M
(
R+

2

h
L
)
MTIM(k + 1) =

−M
(
R− 2

h
L
)
MTIM(k)−MU(k)−MU(k + 1), (6.4.6)
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which can be solved:

IM(k + 1) = −Z−1
A

(
ZBIM(k) +MU(k) +MU(k + 1)

)
, (6.4.7)

where ZA =M
(
R+ 2

h
L
)
MT and ZB =M

(
R− 2

h
L
)
MT .

Trapezoidal approximation leads to a local error proportional to h3 and
it is stable ([MS96]).

6.5 Spectral Analysis of Mesh Method Solutions

6.5.1 Steady State

RM in equation (6.2.13) can be diagonalised using the transformation

RM = DRDD−1, (6.5.1)

where the columns of D are the eigenvectors Pλ corresponding to the
eigenvalues rλ = RDλλ and D−1 = DT because RM is real and symmet-
ric.

We can define the matrices

MD = DTM,

ID =MDI,
UD =MDU .

(6.5.2)

If we left multiply forDT , useDDT = E and apply last definition in the
system for the mesh currents (6.2.12) we obtain

MRMTIM +MU = 0

DTMRMT (DDT )MI +DTMU = 0,

MDRMT
DMDI +MT

DUD = 0,

RDID +MT
DUD = 0.

(6.5.3)

As we did, we can solve this system as

I = −MT
DR−1

D UD. (6.5.4)

whereRD =MDRMT
D.

We can recognize that MD is a new mesh matrix, ID are the currents
of the meshes, UD is are the voltages sources of the meshes and RD is the
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resistance of the mesh. These meshes are “generalized” mesh because each
row of MD, that represent a mesh, it is not more composed by 1, 0, −1,
but it is fully populated of non integer values. This means that the mesh
are no more a set of branches, but a set of coefficients associated to each
branch. This coefficients represents the fraction of the current of branches
that belongs to each current of meshes. Then these meshes do not interact
each others because RD is diagonal. Each of them represent a solution of
the system if the system is excited by UD such that each component is 0
but the component relative to the mesh that is equal 1. In [AIS98] they are
called eigen-currents and can be considered the modes of the system.

If we call Qλ the λth row of MD, rλ the λth eigenvalue, uλ the λth
source, we obtain from (6.5.4)

Ii = −
∑
λ

MDλi

UDλ
RDλ

⇒

I = −
∑
λ

uλ
rλ
Qλ

(6.5.5)

We have expressed the currents as a weighted sum of eigen-currents.
The weight depends on the ratio between the resistance of the relative
meshes and the voltage associated. Eigen-currents can be calculated using
the first of equations (6.5.2). From that we obtain:

Qλ =MTPλ (6.5.6)

Thus Qλ is the eigenvector corresponding the eigenvalue rλ expressed
in terms of branches, instead of Pλ that is expressed in terms of mesh cur-
rents.

6.5.2 Transient

We can do the same as done before, solving the equation for the transient
(6.4.2).

The solution is ([Akh98])

IM = (E − eL
−1
M RM t)R−1

M U = (E − eWt)R−1
M U (6.5.7)

where E is the unit matrix andW = L−1
M RM .

If we diagonaliseW , we can write equation (6.5.7) as:

IM =

(
E −

∑
λ

exp(wλt)
∏
λ 6=λ′

W − wλE
wλ′ − wλ

)
R−1
M U (6.5.8)
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where eigenvalues wλ of W represent the inverse of time constant spec-
trum of our system.
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Chapter 7

Network Model for Eddy
Currents

7.1 Introduction

Interstrand coupling currents are eddy currents generated by ∂
∂t

B across
strands and copper inside a Rutherford-type cable. They produce losses,
field errors and reduce the maximum transport currents during ramping.
They are responsible of a limitation of cycle ramp rate in magnets.

Several models have been developed either assuming the cable as a
continuum ( [Car75], [CWM75], [Car77], [Cam80], [Cam81], [Cam82] ), as
a network of lumped elements ( [Mor73], [ADO94], [AKOT95], [Ver95],
[DO95], [Akh98], [AIS98], [Akh00b] ) and as a network of distributed el-
ements ( [Tur74], [KS95], [KS96], [ABBR00], [Akh00a], [Akh01], [ABB01],
[Akh02], [BRB00], [BBSS02], [BBR03], [BBF03], ). For a comparison of these
models refer to [Akh00a].

7.2 Network Model

The Rutherford-type cableis represented as a network of superconducting
thin wires and discrete contact resistances. Figure 7.2.1 shows a modelized
version a twist pitch length Lp portion of a cable.

As seen in chapter 6, we can study the circuit with mesh or nodal analy-
sis. Although node analysis is easier to implement, mesh analysis is used.
The main reason is that with node analysis should used conductances.
Conductances of branches representing strands diverge when they are in
the superconducting state and this leads to numerical instabilities.
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lpz

y

x w

h

Figure 7.2.1 Network model of a twist pitch length (Lp) portion of a 10 strands cable.
The dashed cyan line represent the spatial disposition of a strand in a twist pitch.

7.3 Geometric Parameters

From figure 7.2.1 it easy to see that there is a sub-periodicity of a Lb =
Lp/Ns, where Ns is the number of strands (see figure 7.3.2).

This part of the cable is called band.
From a geometric point of view, a cable is defined by (see figure 7.2.1)

• Ns: number of strands,

• Nb: number of bands,

• lp: twist pitch,

• h1, h2: height,

• w: width.

From these quantities it is possible to determine physical dimension
of the cable and the quantity associate to the graph. In the following we
make use of definitions:

• N = 2NsNb +Ns: number of nodes,
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Figure 7.3.2 Periodic band of a 10 strands cable
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• Bs = 2NsNb: number of strand branches,

• Ba = 2NsNb: number of adjacent resistance branches,

• Bc = (Ns − 1)Nb +Ns/2: number of cross resistance branches

• B = Bs +Ba +Bc = (5Ns − 1)Nb +Ns/2: total number of branches,

• M = B − N + 1 = (3Ns − 1)Nb − Ns/2 + 1: number of independent
meshes

• lb = lpNs: length of a band

• lc = Nblb = lpNb/Ns: length of the cable

In figure 7.3.3 the graph for one band of 10-strand cable is shown . We
assume that z-axes correspond to the longitudinal direction of the cable, x
the width direction and y the height.
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Figure 7.3.3 Graph a one band of 10-strands cable. Black arrows are branches that
represent strands, red arrows represent cross resistances, yellow arrows represents ad-
jacent resistances. Blue numbers label branch and black numbers nodes.
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7.4 Lumped elements

7.4.1 Strand Resistances

Resistance in the strand is determined by the presence of two kind of elec-
trons. Superconducting electrons that are inside the Nb-Ti if it is in the
superconducting state, and normal electrons that are inside copper and
Nb-Ti as well. For field errors currents of normal conducting electrons are
not important because it is small compared to the super-conducting one.

Thus strands can be considered having zero conductance until Nb-Ti is
in the superconducting state. Anyway it is interesting to have the possi-
bility to associate a non zero resistance and calculate its effects, e.g. in use
of a quench.

7.4.2 Contact Resistances

Resistance between strands is determined by an oxide layer on cable ([Wil97]).
There are two kind of resistances: cross resistances (Rc) between strands
in the upper and lower layer and adjacent resistances (Ra) between same
layer strands on the on horizontal plane.

Rc values have been directly measured and indirectly estimated for
LHC cables [WLR+97]. Their values vary randomly across the cable in
width and length, vary from cable to cable, and vary for the same cable
during process for magnets fabrication. In the figure 7.4.4 is showed the
results of a series of measures of the mean of the cross resistance Rc in
some LHC cables. We can see that values vary one order of magnitude
from 20µΩ to 200µΩ.

Ra should have slightly greater values than Rc because the contact sur-
face between two adjacent strands is greater than the cross one. But their
effects on interstrand coupling currents is small and their values have not
been measured.

In figure 7.4.5 we can see the variation of the inverse of cross-resistance
in a single magnets. Values represents the estimated mean of cross resis-
tance in each cable depending of its position in the magnet cross section.
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Figure 7.4.4 Measurements of the mean of Rc in LHC cables. Data provided by D.
Ritcher

Figure 7.4.5 Cross conductance (1/Rc) of different cables of the same magnet. Data
provided by R. Wolf.
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7.4.3 Branch Inductances

Each branch has a self-inductance and a mutual-inductance with respect to
the other branches. Calculation of this inductances is difficult task because
the usual formulas loose their validity when the section area of the conduc-
tor is comparable with the length and distance of the other branch. There
is no accordance on what formulas or technique are used (see [VtKL+95],
[KS95], [ADMS93], [SM97], [ABBR00]).

A good estimation of inductances can be found calculating it for thin
wires and considering a thick wire composed by thin wire.

The general formula for calculating self and mutual inductances is (see
(5.7.5)) is:

Lij =
µ

4π

1

SiSj

∫
Vi

∫
Vj

wi ·wj

rij
dVidVj =

µ

4π

1

SiSj

∫
Si

∫
Sj

∫
li

∫
lj

wi ·wj

rij
dlidljdSidSj.

(7.4.1)

For a thin wires becomes:

Lij =
µ

4π

∫
li

∫
lj

wi ·wj

rij
dlidlj. (7.4.2)

Self inductances

Self-inductance for a thick wire can be calculated noting that the wire can
be thought composed of thin parallel wires. Formula for mutual induc-
tance of parallel thin wires can be calculated solving the integral (7.4.2)

L(l/d) =
µ

4π

∫ l

0

∫ l

0

1√
d2 + (li − lj)2

dlidlj =

µ

4π
2l

[
log

(
l

d
+

√
1 +

l2

d2

)
−
√

1 +
d2

l2
+
d

l

]
,

(7.4.3)

where d is the distance between wires and l is the length.
For calculating the self inductance we should average this formula for

every distance between the points inside the section. That is solving the
integral

L =
1

S2

∫
S

∫
S

L(l/d)dSdS, (7.4.4)

where d is the distance of two points of the surface S.
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This integral cannot be computed easily because we should consider
also short distances where L(l/d) diverge.

Following [Gro46], for a wire whose thickness is smaller than length,
the formula (7.4.3) can be approximated as

L(l/d) ≈ La(l/d) =
µ

4π
2l

(
log

(
2l

d

)
− 1

)
, (7.4.5)

because l/d� 1.
The integral (7.4.4) is a sum of logarithms of the distance between two

points in a region, thus its value is the integrand (7.4.3) in which the dis-
tance is the so-called geometric mean distance of the area from itself. In
fact

1

S2

∫
S

∫
S

log

(
2l

d

)
dSdS ≈ 1

n

n∑
i=1

log
2l

di
=

= log n

√√√√ n∏
i=1

2l

di
= log

2l
n
√∏n

i=1 di

, (7.4.6)

where di is the distance between every couple of points in the surface
S. We recognize that

dg = lim
n→∞

n

√√√√ n∏
i=1

di (7.4.7)

is the geometric mean of d. Thus we can write

L ≈ 1

S2

∫
S

∫
S

La(l/d)dSdS = La(l/dg). (7.4.8)

For a round wire of radius r the geometric mean distance is

dg = Kgr = e−1/4r ≈ 0.7788r, (7.4.9)

where r is the radius of the wire and Kg is the geometric mean distance
factor.

In our case this approximation cannot be used because branch thick-
ness has the same magnitude of the length. Nevertheless we can follow
the same idea and define an equivalent mean distance de that depends on
the shape as in the thin wire approximation and the length of the wire
because L(l/d) it is no more a pure logarithm like in (7.4.6), such that:

1

S2

∫
S

∫
S

L(l/d)dSdS = L(l/de), (7.4.10)
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or
1

S2

∫
S

∫
S

F (l/d)dSdS = F (l/de), (7.4.11)

where F (l/d) is the adimensional quantity

F (l/d) = log

(
l

d
+

√
1 +

l2

d2

)
−
√

1 +
d2

l2
+
d

l
. (7.4.12)

Solving the integral on the left of (7.4.11) and inverting F (l/de), the
equivalent mean distance de can be found for any shape and length.

For the circle of radius r, the admimensional quantity F (l/de) will de-
pend only on l/r because is the only adimensional quantity that can be
constructed with r and l the free variables (Buckingamm theorem). Thus
de will have the form

de = K(l/r)r (7.4.13)

because F (l/de) will be written as F ( 1
K(l/r)

l
r
).

Solving the integral (7.4.4) is difficult, even numerically, because it is
a 4-D integral with a 2-D singular surface where d = 0. Anyway can be
solved either with Monte-Carlo methods, or choosing Gauss points close
but not in the singular surface ([HSS03]). Last choice is used for solving
the integral for a round wire.

In analogy with geometric mean distance we define . The results for
K(l/r) is plotted in the figure 7.4.6.

For l � r, K approaches to Kg, the geometric mean distance factor,
because we are in the thin wire approximation.

For K(l/r) a fitting curve can be found:

K(l/r) = Kg −
a

l/r + π/5
, (7.4.14)

where constant a = 0.123178(119).
Resuming, the self inductance for a round wire is approximated by:

L =
µ

4π
2l

log

(
l

de
+

√
1 +

l2

de
2

)
−

√
1 +

de
2

l2
+
de
l

 ,

de = Kr,

K = 0.7788− 0.1232

l/r + 0.6283
.

(7.4.15)
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Figure 7.4.6 Equivalent mean distance for a round wire

Mutual inductances

Mutual inductances for thin wires can be calculated using formula (7.4.2).
This formula can be approximated as:

Lij =
µ

4π

lilj(wi ·wj)

〈rij〉
(7.4.16)

where 〈rij〉 is the distance between the middle points of the segments li,
lj . This approximations strictly works when distance between the wires is
large compared with their length and their thickness because the distance
rij does not vary too much. It gives a good approximation also when wires
are thick and close to each other. The approximation used is:

1

ViVj

∫
Vi

∫
Vj

1

rij
dVidVj =

〈
1

rij

〉
≈ 1

〈rij〉
, (7.4.17)

where the integral can been calculated using Gauss quadrature method
and w are the weights ([PTVF01]).
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Mesh inductances

The self and mutual inductance between loops are composed by an alge-
braic sum of the self and mutual inductances of the branch. These induc-
tances scale as the inverse of the distance, but never vanish. In order to
reduce calculation time, it has been assumed that mesh inductances lower
than the highest value divided by a sparsification factor f . It makes the
mesh matrix sparser and keeps the passivity and symmetry of circuit.

Using definition in section 6.5.2 we can formalise this assumption stat-
ing:

LMij
= 0 if LMij

< max(LM)/f, (7.4.18)

with f > 0.
We can see the effect of sparsification plotting non zero elements of

mesh inductance matrix LM for several sparsification factors, see section
6.5.2.

In order to validate this approximation we can calculate, for several
sparsification factor f , the time spectrum of the system that is determi-
nated by the eigenvalue of matrixW .

In figure 7.4.8 we show a typical time constant spectrum for a 1 me-
ter long cable. We can see how only a small sparsification factor slightly
change the spectrum. We can have a better view plotting the modulus of
relative deviation from the non sparsified spectrum. In figure 7.4.9 we can
see how using f = 100 we have errors in the range of 1%.

7.5 Periodic Boundary Condition

In order to simulate an infinite long cable it is necessary to impone the
currents at the boundary on a finite cable to be equal. This task can be
implememented in several ways: adding the periodic conditions to the
system as homogeneus equation of two variables and reducing the system;
applying the conditions directly to the system adding the colums relative
to the two periodic varibles and cancel an equation; modifing the mesh
matrix. The last solution is the most straight foward but it cannot be used
if the vector potential has a variation on z axis. The problem is in the
productMU . If a modified mesh matrix is used, then the flux of the loops
which link the boundauries are evalueted using the vector potential in two
different palces. If the vector potential has a gauge which leads to a bias in
the voltage sources, the flux is erronealy affected by the bias that it is not
nullified by the mesh matrix beacouse it is not the real one.
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Figure 7.4.7 Sparsification of mesh inductance matrix LM for several sparsification fac-
tors.
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Chapter 8

Numerical Solutions of the
Network Model

8.1 Introduction

In this chapter we present and discuss the results of numerical solutions
of network model Rutherford-type cable in several condition. As stated in
the previous chapter (see figure 7.3.3), we assume that z-axes correspond
to the longitudinal direction of the cable, x the width direction and y the
height.

8.2 2D Analysis

We can start analysing a single band of a cable with boundary spatial peri-
odic conditions, that is the currents on branches at the cut edge of the cable
are the same. For example, in cable in figure 8.2.1, the currents of strands
1− 10, 21− 30, 41− 45 are assumed equal respectively to 50− 59, 70− 79,
90 − 94. More over the topology change and also the nodes at the edges
are the same. This means that the nodes of the first cross section have 4
branches instead of 3 for a cutted cable.

This situation is representative of the central part of a infinity long ca-
ble. It is important to note which are the problems when this kind of con-
dition is implemented in a code. Due to the topology change, there exis
meshes with branch of the first and last parts. These branches spatially
sapareted are combined in order to calculate the flux linked to the mesh.
If the vector potential is 3D then the voltage source of the branches spa-
tially sapareted are affected by a bias and the cannot be used to calculated
the flux. What can be done is to perform this operation splitting the sur-
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face in the two parts belonging the first and the last section. For example
in the figure 8.2.1 the mesh 13 − 71 − 53 − 33 due to the periodic bound-
ary condition becomes 13 − 22 − 4 − 33. The flux linked is not the sum
−u33 + u13 + u22 − u4, but −u33 + u13 + ua + ub +22 −u4 where ua is the
voltage from node 22 to 24 and ua from 4 to 2. If the vector potential is 2D
that is it equal for every z than this problem does not exits because ua = ub.
But in this case only a 2D magnetic field can be studied.
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Figure 8.2.1 Network for 2 band of a 10-strands cable. The branch in yellow are the
branch assumed equal when spatial periodic boundary condition are applied
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We can perform two type of analysis: steady state and transient. In fig-
ure 8.2.2 we show a simplified time evolution of magnetic field and eddy
currents. When magnetic field start the ramp, voltage sources, due to the
change of flux, start to generate currents. This currents cannot start im-
mediately because of the inductive coupling between them. They grow
almost exponential until all magnetic energy it is stored. We call this pe-
riod transient. After transient the value of eddy currents depends only of
the contact resistance and the flux linked to the loop. We call this period
steady state. When magnetic field end its ramp, voltage source becomes
zero, but stored magnetic energy keeps currents flowing for a certain time,
until all stored energy it is dissipated. This is another transient period.

Steady State TransientTransient

B

I

t

Figure 8.2.2 Definition of steady state and transient periods.

8.2.1 Steady State Calculations

Steady state solutions are calculated neglecting inductive coupling. This
represents the situation when steady state solution is reached and the van-
ished time derivative of eddy currents nullify the contribution of induc-
tances.

We study the effects of a homogeneous linearly ramped magnetic field,
which direction is parallel to the height of the cable (y axes).

In order to have rough idea of what happens, we can apply the induc-
tion law on the loop showed in the figure 8.2.3.
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Figure 8.2.3 A loop of current in a 10 strands cable due to a homogeneous ∂
∂tBy . The

dashed cyan line represents the path of the loop.

Area of the loop is 3wlb thus current of the loops is

I =
1

2Rc

∂

∂t
Φ =

3wlb
2Rc

∂

∂t
By (8.2.1)

This gives an idea how eddy currents depends on Rc.
In the picture 8.2.4 we give a qualititative idea of real currents distri-

bution. High currents are located at the edge of the cable and flow on
branches representing superconducting strands. Smaller currents flow in
the cross resistances, and the smallest in the adjacent strands. We note
that there is no electric field in y direction directly due to the ∂

∂t
B because

electric field is orthogonal to the magnetic field.
In picture 8.2.5 we give a qualititative idea of the power dissipation.

The maximum power is distributed in the centre of the cable where cross
resistance have maximum current. This is due to the fact that cross resis-
tance are the resistance that dissipate the current generate by the electric
field in the strands. In fact there is no electric field generated directly by
magnetic field ( ∂

∂t
Ay = 0 if B = Bxey) inside cross resistance.

In figure 8.2.6 the currents in the strands ordered on the x axis are plot-
ted.

In the figure 8.2.7 the currents in the cross resistance ordered on the x
axis are plotted.
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Figure 8.2.4 Current distribution for a 10-strands cable in spatial periodic condition
due to a homogeneous linearly ramped magnetic field. Adjacent and cross resistance
have the same value.

x
z

y

∂
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By

Figure 8.2.5 Power distribution for a 10-strands cable in spatial periodic condition due
to a homogeneous linearly ramped magnetic field. Adjacent and cross resistance have
the same value.
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Figure 8.2.6 Current in the strands of a 36-strands cable. ∂
∂tBy = 0.01 T/m, cross resis-

tance Rc = 1µΩ, adjacent resistance Ra = 1µΩ, width w = 17 mm, height h = 1 mm.

84



Numerical Solutions of the Network Model 8.2

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

C
ur

re
nt

 [
A

]

x-position [m]

36 Strand Cable

Cross Resistance Currents

Figure 8.2.7 Current in the cross resistance of a 36-strands cable. ∂
∂tBy = 0.01 T/m,

cross resistance Rc = 1µΩ, adjacent resistance Ra = 1µΩ, width w = 17 mm, height
h = 1 mm.
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In the figure 8.2.8 the currents in the adjacent resistance ordered on the
x axis are plotted.
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Figure 8.2.8 Current in the adjacent resistances of a 36-strands cable. ∂
∂tBy = 0.01 T/m,

cross resistance Rc = 1µΩ, adjacent resistance Ra = 1µΩ, width w = 17 mm, height
h = 1 mm.

Closed solution for eddy currents are found in case that B is homoge-
neous and Ra are not much bigger than Rc ([VtKL+95], [DO95] ) . This
solution is compatible with our simulations. The light differences are due
to different modelling of the transversal edge of the cable.
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8.2.2 Transient Calculations

In the above situation we analyse the transient effects, we use a twist pitch
length of the cable applying spatial boundary conditions at the edge.

In the figure 8.2.9, 8.2.10, 8.2.11 are plotted the currents for each type
of branch: strand, cross resistance and adjacent resistance. Time is in log-
arithmic scale. Each line refers to a particular branch identified by his x
coordinate. From these pictures we can have an idea of time constants of
different currents. Currents in the strands have time constants in the or-
der of seconds as currents in the cross resistance. This shows that currents
in cross resistance depends on the currents in the strands and belongs to
the same loops. Time constants for adjacent resistance are smaller because
loops area is smaller.

These behaviour is compatible with results in the literature ([Ver95]).
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Figure 8.2.9 Current in the strand of a 36-strands cable. ∂
∂tBy = 0.01 T/m, cross resis-

tance Rc = 1µΩ, adjacent resistance Ra = 1µΩ, width w = 17 mm, height h = 1 mm.
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Figure 8.2.10 Current in the cross resistance of a 36-strands cable. ∂
∂tBy = 0.01 T/m,

cross resistance Rc = 1µΩ, adjacent resistance Ra = 1µΩ, width w = 17 mm, height
h = 1 mm.
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Figure 8.2.11 Current in the adjacent resistance of a 36-strands cable. ∂
∂tBy = 0.01 T/m,

cross resistance Rc = 1µΩ, adjacent resistance Ra = 1µΩ, width w = 17 mm, height
h = 1 mm.
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8.3 Numerical Solution for a Magnet

We can apply the 2D analysis in the whole magnet and calculate the ef-
fects. Calculations are performed with ROXIE [Rus99] In figure 8.3.12 is
show the magnetic field of a dipole, only a quarter is showed. The others
quarters ara symmetrics.In the centre magnetic field is a pure dipole field,
but in the cable region it assume different magnitude and direction. In
particular inner layer cables see a magnetic field orthogonal to their with,
while the outer layer cables are subjected to a parallel field.

In figure 8.3.13 the results of eddy current calculation are shown. In
the inner layer we find the same distribution calculated using a vertical
homogeneous magnetic field. Field generated by eddy currents oppose
the existing field. When the magnetic field tends to be parallel to cable
width the flux linked is quite smaller and the eddy currents are sensibly
smaller.
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Figure 8.3.12 B of a dipole. In color the |B| inside superconducting cables is shown.
Black arrows show the field map.
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Figure 8.3.13 Inter-strands couplings currents of a dipole. ∂
∂tB = 0.094 T/ s. In colour

the magnitude of currents in the strand that flows orthogonal to the plane. Arrows
represent the magnetic field generated by the currents.
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8.4 3D Analysis

3D reveals new dynamics in addition to 2D.
In figures 8.4.15 we can follow the time evolution of currents flowing in

the strands at one edge of the for every z in several instant in a twist pitch
length of 10-strands cable. In these branches flows the maximum current.
In the figure 8.4.14 is highlighted the branch whose currents is plotted in
figure 8.4.15. No boundary condition are applied thus what it is simulated
is the part of the cable showed in figure 8.4.15 in an homogeneous linearly
ramped magnetic field in y direction.

In figure 8.4.16 the same time evolution in 3D with time in an axes it
shown.

z
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x

∂
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By

Figure 8.4.14 In cyan strand branches at the edge of the cable for every band.

In figures 8.4.18 we can follow the time evolution of currents in the
cross resistance in the position x = w/2 for every z in several instant in a
twist pitch length of 10-strands cable. In the figure 8.4.17 is highlighted the
branch whose currents is plotted in figure 8.4.18. In figure 8.4.19 it shown
the same time evolution in 3D with time in an axes.

In the figures 8.4 is show the field map of current density of the first
three twist pitch of cable seen from top (y direction). We can see that the
oscillation we have seen in the currents are part of a loop cell structure.
At the beginning exist only a big loop of currents that closes at the edge.
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Figure 8.4.15 Time evolution of the current of the strand located at x = 0 for each
z-position for a 10-strand 10 twist pitch cable without- spatial boundary periodicity
condition. ∂

∂tBy = 0.01 T/m, cross resistance Rc = 1µΩ, adjacent resistance Ra = 1µΩ,
width w = 17 mm, height h = 1 mm.
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Figure 8.4.16 3D time evolution of the current of the strand located at x = 0 for each
z-position for a 10-strand 10 twist pitch cable without- spatial boundary periodicity
condition. ∂

∂tBy = 0.01 T/m, cross resistance Rc = 1µΩ, adjacent resistance Ra = 1µΩ,
width w = 17 mm, height h = 1 mm.
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Figure 8.4.17 In cyan branches of cross resistances in the position x = w/2 for every
band.

With a long time constant this loop tends to split in smaller loopd from the
edges to the center of the cable.

In the figure 8.4.21 we can see in detail a single loop.
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Figure 8.4.18 Time evolution of the current of the cross resistance located at x = w/2
for each z-position for a 10-strand 10 twist pitch cable without spatial boundary pe-
riodicity condition. ∂

∂tBy = 0.01 T/m, cross resistance Rc = 1µΩ, adjacent resistance
Ra = 1µΩ, width w = 17 mm, height h = 1 mm.
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Figure 8.4.19 3D time evolution of the current of the cross resistance located at x =
w/2 for each z-position for a 10-strand 10 twist pitch cable without spatial boundary
periodicity condition. ∂

∂tBy = 0.01 T/m, cross resistanceRc = 1µΩ, adjacent resistance
Ra = 1µΩ, width w = 17 mm, height h = 1 mm.
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Figure 8.4.20 Comprehensive time evolution of the current of the cross resistance lo-
cated at x = w/2 for each z-position for a 10-strand 10 twist pitch cable without spatial
boundary periodicity condition. ∂

∂tBy = 0.01 T/m, cross resistanceRc = 1µΩ, adjacent
resistance Ra = 1µΩ, width w = 17 mm, height h = 1 mm. Only the first third of the
cable is showed.
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Figure 8.4.21 Detail of current loops and the end of the time evolution in a 10-strand 10
twist pitch cable without spatial boundary periodicity condition.
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8.5 Random effects

We can simulate the random effect of a uniform distribution of contact re-
sistance. In figure we show the results for a cable in the same condition as
section 8.2.1, but cross resistances and adjacent resistances can vary uni-
formly of 50% over the mean value. In figures 8.5.22, 8.5.23, 8.5.24 are
shown the results where the error bars represent the root mean square de-
viation.
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Figure 8.5.22 Current in the strands of a 36-strands cable. ∂
∂tBy = 0.01 T/m, cross

resistance Rc = (1 ± 0.5)µΩ, adjacent resistance Ra = (1 ± 0.5)µΩ, width w = 17 mm,
height h = 1 mm.

In the figure 8.5.25 are shown the perceptual deviation of currents or-
dered on the x axis.

We can see how currents on resistances are equal sensitive to a uni-
form variation of resistance value. Strand currents on the contrary are less
sensitive for high value of current than for lower values.
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Figure 8.5.23 Current in the cross resistances of a 36-strands cable. ∂
∂tBy = 0.01 T/m,

cross resistance Rc = (1 ± 0.5)µΩ, adjacent resistance Ra = (1 ± 0.5)µΩ, width w =
17 mm, height h = 1 mm.

102



Numerical Solutions of the Network Model 8.6

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

C
ur

re
nt

 [
A

]

x-position [m]

36 Strand Cable

Figure 8.5.24 Current in the adjacent resistances of a 36-strands cable. ∂
∂tBy =

0.01 T/m, cross resistance Rc = (1 ± 0.5)µΩ, adjacent resistance Ra = (1 ± 0.5)µΩ,
width w = 17 mm, height h = 1 mm.
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Figure 8.5.25 Perceptual deviation of currents of a 36-strands cable. ∂
∂tBy = 0.01 T/m,

cross resistance Rc = (1 ± 0.5)µΩ, adjacent resistance Ra = (1 ± 0.5)µΩ, width w =
17 mm, height h = 1 mm.
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8.6 Spectral Analysis

Is interesting to analyse the resistance mesh matrix RM . The resistance
mesh matrix is responsible of the steady state solutions through formula
(6.2.13).

In figure 8.6.26 is shown an example of the spectrum of eigenvalues for
a typical cable without spatial boundary periodic condition. Each eigen-
vector can be interpreted as generalised mesh (see section 6.5), thus the
relative eigenvalue represents the resistance of this mesh. In the same fig-
ure are plotted the contribution of the different kind of branches for each
eigen-current. The contribution as been calculated as follow:

|BSQλ|
|Qλ|

,
|BCQλ|
|Qλ|

,
|BAQλ|
|Qλ|

, (8.6.1)

where BS , BC , BA are row vectors whose elements are 1 if the element col-
umn index is the branch index of respectively a strand, a cross resistance
or an adjacent resistance.

We can see that the smallest eigenvalues are relative to the eigenvector
mainly constituted by strand branches that have no resistance.

In figure 8.6.27 we can see the sources due to an homogeneous mag-
netic field. We can see that only few eigen-currents are excited. The most
exited eigen-currents has the lowest eigenvalue. In the figures 8.6.28 and
8.6.29 are shown the density current vector field relative to this mode. As
we have seen in the 3D analysis this is in fact the distribution of the cur-
rents inside a isolated cable.
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Figure 8.6.26 Eigenvalues of the resistance mesh matrix RM of a 10-strand 10 twist
pitch cable without spatial boundary periodicity condition in logarithmic scale.
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Figure 8.6.27 Voltage sources UD relative to the eigen-currents of a 10-strand 10 twist
pitch cable without spatial boundary periodicity condition.

Figure 8.6.28 Eigen-currents relative to the first eigenvalues of the resistance mesh ma-
trixRM of a 10-strand 10 twist pitch cable without spatial boundary periodicity condi-
tion.
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Figure 8.6.29 3D view of eigen-currents relative to the first eigenvalues of the resis-
tance mesh matrix RM of a 10-strand 10 twist pitch cable without spatial boundary
periodicity condition.
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The spectral analysis get more interesting when periodic boundary
conditions are applied. If we choose a number of bands multiple of the
number of strands (an integer number of twist pitch lengths) resistance
mesh matrix becomes singular. The dimension of null space is Ns − 1. It
means that there are a subspace of solutions. With spectral analysis we can
analysis what kind of solution are.

In the figure 8.6.27 are shown the eigenvalues of the resistance mesh
matrixMD in the same case seen before but with periodic boundary con-
dition. In the same figure we can see the contributions of each type of
branch in the eigen-vector. We can see that there are 9 very low eigenval-
ues, less than machine precision, that can be treated as 0. It means that
there are 9 eigen-currents that see no resistances, in fact they flow only su-
perconducting strands as shown in figure 8.6.27. Thus we have 9 modes
that can be exited without limitations.

In the figure 8.6.32 and 8.6.33 we can see one of these eigencurrents.
This kind of modes are currents belonging to few strands that flow in dif-
ferent direction and they closes to the infinity.
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Figure 8.6.30 Eigenvalues of the resistance mesh matrix RM of a 10-strand 10 twist
pitch cable with spatial boundary periodicity condition in logarithmic scale.
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Figure 8.6.31 Voltage sources UD relative to the eigen-currents of a 10-strand 10 twist
pitch cable with spatial boundary periodicity condition.

Figure 8.6.32 Eigen-currents relative to the first eigenvalues of the resistance mesh ma-
trixRM of a 10-strand 10 twist pitch cable with spatial boundary periodicity condition.
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Figure 8.6.33 3D view of eigen-currents relative to the first eigenvalues of the resistance
mesh matrix RM of a 10-strand 10 twist pitch cable with spatial boundary periodicity
condition.
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Chapter 9

Implementation of the Network
Model

9.1 Sparse Matrices

In order to reduce memory consumption and calculation time, all the ma-
trix are stored in special forms.

Incidence matrix it is not calculated directly, instead it is used a net-list
matrix. It is aB×3 matrix, whereB is the number of branches. Row index
is the branch number. In the first column is stored the type of branch
as an integer value: 1 for strands, 2 for adjacent resistances, 3 for cross
resistances. In the second and third column are stored the first a the second
node number.

Mesh matrix it is stored in a special format. It is a M × 4 matrix where
M is the number of independent mesh. Row index is the mesh number.
In each column is stored the branch number that belongs to the mesh. If
the branch has the opposite direction with respect to the mesh current, its
number is negative. The number 4 is used because the number of strands
that belong to mesh it is not greater the 4. In particular the algorithm that
find meshed is implemented in order to obtain mesh with 3 or 4 strands.
For mesh with 3 strands the last column is filled with 0.

System matrices are stored in the so-called Compressed Sparse Columns
(SCS) scheme [Saa96]. In this format only non zero elements are stored. In
particular they are stored in a vector. Two other integer vectors store the
information of the index of non zero elements.

Matrix multiplication of the typeMRMT is calculated using a special
algorithm that use as input and output the matrix in the special form seen
above.
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Resistance matrix and inductance matrix are not stored at all, a func-
tion is used instead. In fact they are used only once when the system
matrices ZA and ZB are calculated for the first time. When they change
due to a time step variation, the previous values that matrices are used to
calculate new values. In fact from definition (6.4.7)

ZA = RM +
2

h
LM

ZB = RM −
2

h
LM

⇒
RM =

ZA + ZB
2

LM = h
ZA −ZB

4

(9.1.1)

9.2 Linear system solution

In order to solve the linear system for steady state analysis (6.2.13)

RMIM(k) = −UM(k) (9.2.1)

or for transient analysis (6.4.6)

ZAIM(k + 1) = −
(
ZBIM(k) + UM(k) + UM(k + 1)

)
, (9.2.2)

is used LU decomposition method [PTVF01].
For a system Ax = b is found a decomposition for A as a multiplication

of a lower triangle and upper triangle matrix A = LU . Then performed a
forward substitution to solve the system Ly = b then a back substitution
to solve system Ux = y.

Decomposition and back substitution is performed by the open source
solver SuperLU [XD98] optimised for sparse matrices in order to take the
advantages due the sparsification.

Decomposition is performed only when necessary (a change in the sys-
tem matrix) and the results is used for substitution every time step. In this
way a great speed is reached.

9.3 Main algorithm

A block diagram of the main algorithm is sketched in the figure 9.3.1
Main routine use as input parameter time, magnetic field, cables infor-

mation and return calculated currents. Routine use some static variable
that are kept from a call to the other in order to store information on the
calling history and the previous time steps.

In order to illustrate the algorithm we can ideally compute the firsts
time step.
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Step 1

It is a dummy step because no derivative can be calculated. The first con-
ditional block recognise that it the first call. All variable are initialised.
Size of arrays are calculated using cable informations from the main pro-
gram. From the same information a list of the branches, meshes and po-
sition of the node are generated. Using magnetic field information the
vector potential is calculated for each node. Because no calculation can be
performed, time and vector potential are stored as old values.

Step 2

In the second time step, the time step size can be calculated. Another
conditional block intercepts the second call. Now system matrices ZA and
ZB or RM can be calculated and decomposed. The actual vector potential
is calculated and using the previous time step one the derivative can be
obtained. With the derivative of vector potential is used for calculating
voltage source matrix UM . Now all variables are ready for solving the
system and obtain currents. At the end the actual values are stored as old
values.

Step 3

If the time step size not changed, only new vector potential has to be cal-
culated to obtain current for the actual time step. But if the time step has
changed the system matrices ZA and ZB have to be updated in order to
reflect the change of the inductive part.

9.4 Performance

Memory consumption depends on the size of matrices that have to be
stored. The greatest matrices are the system matrices ZA and ZB that in
principal have M2 ≈ 9(N2

sL/Lp)
2 elements, where M is the number of in-

dependent meshes, Ns the number of strands, L is the length and Lp is the
twist pitch. For example for a 36 strands LHC cable 10 m long number of
elements are in the order of 1011. Using sparcification technique number
of nonzero elements are in the order of 20N2

sL/Lp for steady state analysis
and 500N2

sL/Lp for transient analysis in practical cases.
Calculation time depends mainly on the calculation of system matrix

in which inductance calculation and triple matrix product it is performed.
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Figure 9.3.1 Main Algorithm
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The product routine uses all non zero elements of mesh matrix and resis-
tance matrix, but use all virtual (matrix it is not stored but it is a function)
elements of inductances matrix thus depends on (N2

sL/Lp)
2. In fact spar-

cification process has made after the calculation of the product elements.
In principle zero elements position can be estimated in order to avoid their
calculation, but this estimation cannot cover all the cases that the code can
manage and it makes code less general. We note that this calculation is
performed only one time during calculation process, this choice can be a
good compromise.

In order to give an idea calculation time for 150 (5 decades) time steps
of a 10 strands 10 twist pitch length cable is 1 minute and use 20 MB on a
1.2GHz single CPU.

9.5 Hypothesis for iteration with persistent cur-
rents and iron joke saturation

The ROXIE program [Rus99] has the capability to calculate the non-linear
and history dependent effects of persistent current and iron yoke satura-
tion. The effects are calculated separately and then an iteration is per-
formed.

The calculation of coupling currents could be added in this scheme
using the scheme in figure 9.5.2.
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FOR t = t0, ..., te

BCOIL(ICOIL)
ACOIL(ICOIL)
AΓ(ICOIL)

M IRON(AΓ)
BIRON(M IRON)
AIRON(M IRON)

ICC(∂t(ACOIL + AIRON))
BCC(ICC)

B = BCOIL + BIRON + BCC

M(B)-Iteration

MPERS(B)
BPERS(MPERS)
APERS(MPERS)

AΓ(ICOIL + ICC,MPERS)
BIRON(M IRON(AΓ))
AIRON(M IRON(AΓ))

ICC(∂t(ACOIL + AIRON + APERS)
BCC(ICC)

B = BCOIL + BPERS + BIRON + BCC

noyes
Convergence?

Figure 9.5.2 Hypothesis of ROXIE M(B) iteration with coupling currents
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Chapter 10

Conclusions

Time transient behaviour of superconducting magnets are dominated by
eddy currents effects. They are responsible of heat losses, field errors and
maximum field achievable. They depend linearly on the inverse of contact
resistances that have a strong random component which cannot be easily
controlled and measured. This characteristic affects the reproducibility of
magnet behaviour and it is problem for accelerator functioning.

A network model for calculation of eddy currents has been imple-
mented. Contact resistances (cross and adjacent) can be assumed constant
or randomly distributed. The inductive effects modelling needs to be ro-
bust and fast due to the high number of branches . A new formula for self
inductance for a round wire, accurate for every length, has been found.

The network of lumped elements is solved using mesh methods for-
mulated using a matrix approach. In this way calculations of the solving
system for mesh currents and the passage to the branch currents involves
only matrix multiplication. Such multiplications are highly optimised us-
ing a sparse matrix storage scheme and optimised routines. Moreover this
approach leads easily to a spectral analysis diagonalising the mesh resis-
tance matrix and time constant matrix. With spectral analysis is possible to
calculate the current density field of the modes (called also eigen-currents),
their time constants or their impedance and their excitation voltages. The
magnetic flux linked with loops is calculated using vector potential inte-
gration over the path closed by the mesh. The integration is performed
directly by the mesh matrix multiplication that sums the contribution of
each branch to the closed part integral. Gauge ambiguity is thus elimi-
nated.

Network of lumped elements for a straight wire is built from the ge-
ometric data: cable position, number of strands, width, heights, length.
Any disposition on the cable in the space can be used if the node position
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is given. The natural application is the study of eddy currents in coil ends.
Spatial periodic boundary conditions can be applied in order to mod-

elize an infinitly long cable. When we study only one band of the cable, we
call this kind analysis 2D because the third dimension effects due his infin-
ity are neglected. Nevertheless when spatial periodic boundary conditions
are applied to a sample longer than one band, new dynamics appear. This
dynamics is exploited by means of spectral analysis that reveals the exis-
tence of zero impedance modes. These modes exist due to the fact that
eddy currents can close to the infinity a thus can flows only on strands.
Considering that a cable can be made hundred of meters long the infinite
length hypothesis it is not so far from reality. Experience confirms this be-
haviour and very long currents loops with very long time constants can
be exited in magnets in which the loops produce their effects: decay, ramp
rate dependence of quench current, periodic patterns of magnetic fields
components.

As example, studies on single cables and magnets are performed. For
a single cable are showed results for steady state and transient 2D, tran-
sient 3D, steady state spectral analysis and random effects analysis. For
magnets cross section are performed steady state 2D analysis.

The code developed in this thesis is integrated in ROXIE program.
ROXIE is used at CERN and in other laboratory as an integrate tool for
magnet design and analysis.

The integration in ROXIE will permit new studies of the interaction
between eddy currents and persistent current responsible of the so called
decay and snapback, the study of eddy currents in coil ends, and a finer
validation of network model for eddy currents. Nevertheless the greatest
advantage will be the possibility of taking into account the eddy currents
effects in magnet design process.
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Appendix A

Self Inductance Calculation

As seen in chapter 7.4.3 we have to solve the integral

I =
1

S2

∫
V

∫
V

1

rij
dVidVj, (A.1.1)

where Vi, Vj are the same cylinder of surface S, radius r, length l and
rij = |ri − rj| is the distance of two points in the cylinder.

The integral I has a singular volume such that rij = 0. We can calculate
the value of the integral in the singular volume evaluating the integral in
the ipervolume rij < δ and calculating the limit for δ → 0.

Iδ =
1

S2

∫
V

∫ δ

0

1

ρ
ρ2 sin(ϑ)dρdϑdϕdVi = 2πδ2 l

S

δ→0−→ 0, (A.1.2)

We can perform an double integration on the longitudinal axe of the
cylinder

I =
1

S2

∫
S

∫
S

∫ l

0

∫ l

0

1√
d2 + (li − lj)2

dlidljdSidSj =

=
2l

S2

∫
S

∫
S

F (l/d)dSidSj,

(A.1.3)

where d is the distance of two points in the surface S and

F (a) = log
(
a+
√

1 + a2
)
−
√

1 +
1

a2
+

1

a
, (A.1.4)

If S is a circle of radius r, I/2l will depends on only r/l because is
the only adimensional variable that can be constructed with r and l. In
analogy with the geometric mean distance we can write

I

2l
= F

(
l

de

)
(A.1.5)
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where de = K(l/r)r
For solving I for every r and l we need to find the function K(l/r) that

can be found solving the equation

1

S2

∫
S

∫
S

F (a)dSidSj = F (b) (A.1.6)

where a = l/d and b = l/(Kr).
If we use polar coordinate we can write

1

(πr2)2

∫ r

0

∫ 2π

0

∫ r

0

∫ 2π

0

F (a)ρiρjdϑidρidϑjdρj = F (b) (A.1.7)

with
a =

l

d
=

l√
ρ2
i + ρ2

j − 2ρiρj cos(ϑi − ϑf )
(A.1.8)

and
b =

l

de
=

l

Kr
. (A.1.9)

We know that

lim
l/r→∞

K(l/r) =
1

S2

∫
S

∫
S

log(d/r)dSidSj =
1
4
√
e
. (A.1.10)

The numerical evaluation of the integral (A.1.8) or (A.1.10) can be ap-
proximated in:

1

(πr2)2

∫ r

0

∫ 2π

0

∫ r

0

∫ 2π

0

f

(
d
(
ρi, ϑi, ρj, ϑj

))
ρidρidϑiρjdρjdϑj ≈

1

π2r4

Nρ∑
n1=1

Nϑ∑
n2=1

Nρ∑
n3=1

Nϑ∑
n4=1

f

(
d
(
ρ̄(n1), ϑ̄(n2), ρ̄(n3), ϑ̄(n4)

))
S(n1)S(n3),

(A.1.11)

where

ρ(n) =r
n

Nρ

ρ̄(n) =
ρ(n) + ρ(n− 1)

2
= r

2n− 1

2Nρ

ϑ(n) =2π
n

Nϑ

ϑ̄(n) =
ϑ(n) + ϑ(n− 1)

2
= 2π

2n− 1

2Nϑ

S(n) =ρ̄(n)
(
ρ(n)− ρ(n− 1)

)(
ϑ(n∗)− ϑ(n∗ − 1)

)
= ρ̄(n)

r

Nρ

2π

Nϑ

.

(A.1.12)
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In other words the integral is the average of the function in the iper
surface. The use of polar coordinate render necessary the weights S(n). In
the figure A.1.1 there is a sketch of the dicretization of the circle.
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(ρ(n− 1), ϑ(n))

S(n)

Figure A.1.1 Discrete circle for numerical integration.

In order to avoid the singular points, the point are kept out of phase
by a value ∆ϑ/Nϑ that goes to zero when the number of points goes to
infinity. The value of ∆ϑ it is chosen to make the results for great l be
equal to the analytic formula.

The results of this procedure are confronted with numerical value ob-
tained from Mathematica Softare using a pseudo Montecarlo method. There
is agreement between the two methods. Nevertheless it is not clear how
the singularity treatment can influence the final results, in particular for
the limit of l/r to 0. For this case there is no analytical calculation that can
confirm the result.
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LHC current cycle

LHC current cycle is made of four segment (see [SAB+01], [SBBE02]): parabolic,
exponential, linear, parabolic (PELP). It is defined from the parameters:

• Ti: initial time;

• Ii: starting current;

• If : final current;

• A: acceleration;

• D: deceleration;

• R: ramp rate;

• Te: exponential starting time.

The exponential segment makes the sextupole components constant
and the parabolic deceleration avoid overshoots to the power supply.

The first segment accelerate at the time Ti from a flat plateau at Ii with
a parabolic function:

Ia(t) =
A

2
(t− Ti)2 + Ii. (B.1.1)

The first segment stop at Te when the exponential segments starts. Its
function is:

Ie(t) = aebt. (B.1.2)

The segments are and have their derivative continuous. Thus

Ie(Te) =Ia(Te)

I ′e(Te) =I ′a(Te),
(B.1.3)
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this implies

b = I ′a(Te)/Ia(Te)

a = Ia(Te)/e
bTe .

(B.1.4)

The exponential segment stops when it reaches the ramp rate R. Thus

I ′e(tl) = R ⇒ tl =
1

b
log

(
R

ab

)
. (B.1.5)

If there is no exponential, conventionally Te = 0, then tl is such that the
parabolic segment reaches the ramp rate R, that is

I ′a(tl) = R ⇒ tl = R/A+ Ti. (B.1.6)

Resuming:

tl =

{
1
b

log
(
R
ab

)
if Te 6= 0,

R
A

+ Ti if Te = 0.
(B.1.7)

The last case defines the upper limit of the exponential starting time:

Ti ≤ Te ≤
R

A
+ Ti (B.1.8)

The linear segment has the equation

Il(t) = R(t− tl) + il, (B.1.9)

where Il is defined by the continuity, that is

il =

{
Ie(tl) if Te 6= 0,

Ia(tl) if Te = 0.
(B.1.10)

When the linear ramp approaches to If begins the parabolic decelera-
tion defined by:

Id(t) = −D
2

(tf − t)2 + If , (B.1.11)

where tf is the final time. The parabolic deceleration starts at tp in order to
match the ramp rate. These time is related to the final time by:

tf = td +D/R. (B.1.12)

The parabolic deceleration time is defined by the continuity:

Il(tp) = Id(tp) ⇒ td =
If − il
R

+ tl −
R

2D
. (B.1.13)

.
Resuming the new parameters that let a complete description of the

current cycle are:
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• Ia(Te) =
A

2
(Te− Ti)2 + Ii: acceleration final current;

• Ia′(Te) = A(Te− Ti): acceleration derivative final current;

• b = I ′a(Te)/Ia(Te): exponential parameter;

• a = Ia(Te)/e
bTe : exponential parameter;

• tl =
1

b
log

(
R

ab

)
if Te 6= 0 or

tl =
R

A
+ Ti if Te = 0 : linear ramp starting time;

• il = ebtl if Te 6= 0 or

il =
A

2
(tl − Ti)2 + Ii if Te = 0 : linear ramp starting current;

• td =
If − il
R

+ tl −
R

2D
: deceleration starting time;

• tf = td +D/R: deceleration final time.

and the function is:

I(t) =



Ii if t < Ti,
A
2
(t− Ti)2 + Ii if Ti ≤ t < Te,

aebt if Te ≤ t < tl,

R(t− tl) + il if tl ≤ t < td,

−D
2

(tf − t)2 + If if td ≤ t < tf ,

If if t ≥ tf .

(B.1.14)
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