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Abstract
Driven by the mass problem, we raise some issues of the fundamental inter-
actions in terms of non-trivial commutation relations implemented within toy
theories.

Introduction
The four known basic forces of nature turn out to proceed from a universal gauge principle. In particular,
Einstein’s general theory of relativity can be considered as the first Yang–Mills theory. Indeed photons
do not carry an electric charge but gravitons appear to gravitate the way gluons glue in quantum chromo-
dynamics. The confinement and spontaneous symmetry breaking mechanisms put forward to prevent
long-range nuclear forces nowadays form the cornerstone of the Standard Model for particle physics.
Such subtle issues to get round gauge invariance are highly suspected to be responsible for an explicit
violation of the invariance under time-reversal in both strong and weak interactions.

The following three lectures are built upon the problem of mass.

– In the first lecture, a geometrical interpretation of non-Abelian gauge invariance is outlined from
the striking fact that somebody in a free-falling lift would experience no apparent weight. Our
main goal here is to display, through the concepts of mass and energy, how universal the basic
forces may be. For that purpose, we mostly rely on a scalar theory for gravity which allows us to
avoid tedious tensor calculus.

– In the second lecture, we make use of an effective theory for strong interactions to explain the
origin of nucleon masses. We limit ourselves to the case of two light flavours and emphasize that
the observed proton–neutron mass splitting might imply a large electric dipole moment for the
neutron.

– In the last lecture, inspired by the chiral symmetry breaking at work in the theory for strong inter-
actions, we consider an effective theory for electroweak interactions to explain the origin of boson
and fermion masses. We illustrate how Yukawa interactions allow in principle a matter–antimatter
asymmetry, regardless of the flavour mixing pattern.

1 Gauge invariance and [Dµ , Dν ] 6= 0

1.1 Weight of compact bodies
The beauty of modern physics lies in the fact that it allows us not only to relate seemingly different
phenomena, such as the fall of a ripe apple and the motion of the full moon, or electricity and magnetism,
but also to unify apparently independent everyday concepts such as rest and uniform motion, space and
time, or gravitation and acceleration. In this way, we now have at our disposal a well-defined theoretical
frame to explain why we do not feel the gravitational field of the Sun, but also to formulate rather precise
questions about the origin of our weight, at least within the precision of our usual bathroom scales.
Our weight is obviously contingent upon the gravitational force exerted by the Earth:

~W = mgr ~g (g =
GM⊕
R2
⊕

) (1.1)
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and its precise value depends on our location (altitude but also latitude). As opposed to weight, mass
appears to be an intrinsic property of matter which relates its manifest response (acceleration) to an
abstract cause (force) in classical mechanics:

~F = min ~a. (1.2)

Stevin’s dropping of lead spheres from the top of the Delft churchtower, Galileo’s observations of wooden
balls rolling down sloping planes, and Newton’s experiments with pendulums made of various materials
already indicated that all bodies tend to fall with the same acceleration at the surface of the Earth, no
matter what their constitution may be, i.e.,

mgr = min, (1.3)

with an accuracy of about 10−3. More accurate torsion balance experiments initiated by the Hungarian
Baron Roland von Eötvös around 1890 nicely confirmed such a correlation between gravity and inertia at
the level of 10−9. Nowadays, this equality between gravitational and inertial masses is firmly established
at the level of 10−12. The so-called ‘weak’ equivalence principle rests upon Eq. (1.3).

From the striking universality of free fall (see the apple and the Moon falling towards the Earth)
Einstein inferred, as far back as 1907, that his law which links mass to rest energy, i.e.,

m =
E0

c2
, (1.4)

“holds not only for inertial but also for gravitational mass” [1]. In other words, energy has weight. So,
electromagnetic binding energies do contribute equally to the inertial and gravitational mass such that all
atoms (H, H∗, H, etc.) fall with the same acceleration. In particular, matter and antimatter fall the same
way since both represent positive energies. The amazing accuracy of modern experiments extends this
‘Einstein’ equivalence principle to strong and weak nuclear binding energies since atoms are made of
protons, neutrons, and electrons. But what about gravitational bound states?

For an homogeneous and spherical distribution of matter, the gravitational binding energy

Ω ≡ −1
2

∑

i6=j
G
mi mj

rij
(1.5)

is simply given by

Ω = −3
5
GM2

R
. (1.6)

From the useful relation between the Newton constant G, the light velocity c, and the solar mass M� ≈
2× 1030 kg,

2GM�
c2

≈ 3 km, (1.7)

which warns you that the Sun confined inside a (Schwarzschild) radius of 3 km would simply be a black
hole, we get a ratio of the internal gravitational binding energy to the total mass energy scaling like

s ≡ | Ω
Mc2

| ≈ 3
10

(
3 km
R

)(
M

2× 1030 kg
). (1.8)

For a typical ball (say, R = 10 cm, M = 2 kg) we obtain in this manner a ‘sensitivity’ (or compact-
ness factor) of the order of 10−26. Consequently, present Eötvös-like laboratory experiments are totally
unable to tell us whether the gravitational binding energy contributes equally to the inertial and to the
gravitational mass. Let us therefore define the mass ratio for gravitational bound states as follows:

mgr
min
≡ 1 + η

Ω
Mc2

, (1.9)
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with η a dimensionless parameter measuring any departure from universality for compact bodies in free
fall. For an homogeneous Earth (R ≈ 6400 km, M ≈ 6 × 1024 kg) and Moon (R ≈ 1700 km, M
≈ 7 × 1022 kg), the compactness factors are roughly 4 × 10−10 and 2 × 10−11, respectively. The
observational fact that the Moon’s orbit around the Earth does not appear to be continuously polarized
towards the Sun [2] guarantees that they both fall towards the Sun at equal rates with an accuracy of
about 2× 10−13. From the relation

|a⊕ − a$
g

| = η| Ω⊕
M⊕c2

− Ω$
M$c2

|, (1.10)

we infer that their gravitational binding energy contributes equally to the inertial and to the gravitational
mass with an accuracy of about 5 × 10−4. A more careful analysis, taking into account the inhomoge-
neous distribution of matter in the Earth and Moon, gives the range [3]

|ηexp| = (4.0 ± 4.3) × 10−4. (1.11)

Let us raise this empirical fact at the level of a ‘strong’ equivalence principle (SEP) which simply states
that the free fall of a compact body is also independent of its gravitational binding energy, i.e.,

ηSEP ≡ 0. (1.12)

The SEP can be considered as a physical principle which limits the choice of our theory for gravitation
among all the possible metric theories one can construct.

1.2 Mass versus energy in gravitational interactions
The relativistic (Lorentz-invariant) action for a free elementary particle reads

Sfree =
∫
{−min c

2}dτ =
∫
{−minc

2 +min
v2

2
+O(

1
c2

)}dt. (1.13)

If this massive particle carries an electric charge q and freely propagates in an electromagnetic vector
field Aµ(t, ~x), then the action becomes

Se.m. =
∫
{−minc

2 − q

c

dxµ
dτ

Aµ}dτ. (1.14)

By straight analogy with the Coulomb potential A0 in the static limit (dx0 = c dt, d~x = 0), the trajectory
of an elementary particle propagating in a scalar gravitational field V (t, ~x) might simply be defined by

Sgr. =
∫
{−min c

2 −mgrV }dτ. (1.15)

If the weak equivalence principle (1.3) applies, this action can equivalently be written as

Sgr. =
∫
−min c ds, (1.16)

ds being the invariant distance (or arclength) given by

ds2 = (1 +
V

c2
)2ηµνdx

µdxν . (1.17)

Proposed by the Finnish physicist G. Nordström in 1913, i.e., two years before the birth of general
relativity [4], this background-dependent scalar theory is thus characterized by a specific, conformally
flat, space–time defined by

gµν = (1 +
V

c2
)2ηµν . (1.18)
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In other words, the physical metric gµν(t, ~x) has only one degree of freedom, a scalar graviton field, the
rest being fixed a priori by the flat Minkowski metric ηµν which acts here as an absolute background in
a way consistent with the Einstein equivalence principle. As a direct consequence, any massless particle
plunged in this scalar gravitational field keeps on propagating along the light-cone

ds2 ∝ ηµνdx
µdxν = 0. (1.19)

In particular, the massless scalar graviton itself does not feel gravity and the strong equivalence principle
(1.12) obviously holds true since the gravitational binding energy does not interfere in the free fall of a
body.

Nordström’s theory with its prior space–time geometry [5] was the first, mathematically consis-
tent, theory resolving the clash between Newton’s instantaneous gravity and Einstein’s special relativity.
However, this theory was in fact definitively falsified no more than six years after its elaboration. Follow-
ing Nordström, the massless photon does not gravitate either and there is thus no possible light-bending
at the limb of the Sun, in ‘flat’ contradiction with the direct observations [6] made by Dyson and Ed-
dington during a total solar eclipse in 1919. Yet, since it embodies the strong equivalence principle, we
shall rely on this rather simple toy theory in which only mass can feel the gravitational degree of free-
dom. For a more realistic theory where gravity couples to all kinds of energy in a way also compatible
with the SEP, one should introduce a formalism which is free of any prior space–time geometry, i.e.,
background-independent.

Inspired by Nordström’s theory where the equivalence principle has simply been geometrized,
let us assume the gravitational interactions of matter (and light) to be characterized by the universal
coupling to a metric field. For a free massive particle, this simply amounts to substituting gµν(q) for the
Minkowski metric ηµν in Eq. (1.13):

c2dτ2 → ds2 = gµν(q)dqµdqν . (1.20)

The relativistic principle of ‘maximal ageing’, originally set forth for twins, extends to curved space–
time if a local inertial frame can be defined on every segment of the free body world line. In this case,
the variational principle

δ

∫
ds = 0 (1.21)

implies that the track qµ(λ) of a free particle plunged in a given gravitational field is always the shortest
path (or geodesic) of the curved space–time, regardless of its (inertial) mass. Setting dλ = ds on
the unvaried path after all partial derivatives have been evaluated in the generalized Euler–Lagrange
equations of motion,

{ d
dλ

∂

∂q′ρ
− ∂

∂qρ
} {gµν(q)q′µq′ν} 1

2 = 0, (1.22)

one easily obtains
d2qσ

ds2
+ Γσµν

dqµ

ds

dqν

ds
= 0, (1.23)

where
Γσµν ≡

1
2
gσρ(∂νgµρ + ∂µgρν − ∂ρgµν) (1.24)

are the Christoffel symbols, also known as the components of the (affine) connection.
For illustration, let us consider the stationary, inhomogeneous gravitational field

V (r) = −GM
r

(1.25)
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induced by the Sun on the Earth which is 150 million kilometres away. It is enough that the mixed
space–time components of the Γ connection obey the approximate relation

Γi00 =
1
c2
δik∂kV +O(

1
c4

) (1.26)

in the weak field approximation

|V
c2
| ≈ 1.5 km

150 × 106 km = 10−8 � 1 (1.27)

to recover the Newtonian equation of motion

d2~q

dt2
+ ~∇V ≈ ~0. (1.28)

As a consequence, the weak equivalence principle is automatically implemented through the kinematics
of test particles (space–time tells small mass how to move), without any reference to the specific dynam-
ics of gravity (large mass tells space–time how to curve). In the particular case of the Nordström scalar
theory, one has indeed the exact relation

Γi00 = δik ∂k ln(1 +
V

c2
). (1.29)

So, what then privileges Einstein’s non-linear field equations which are supposed to determine the geom-
etry around the Sun as well as the dynamics of the whole Universe? Here, we would like to emphasize
that the free fall for compact bodies (i.e., bodies containing non-negligible gravitational binding energy,
in contrast to test bodies) may give us a clue.

“If a person falls freely he will not feel his own weight” [7]. From this early “happiest thought”,
Einstein inferred that all physical laws of special relativity (electromagnetism included) should remain
valid in a sufficiently small free falling laboratory to eventually establish his quite successful general
theory of relativity, more than eight years later. The geodesic equations of motion we have derived in
Eq. (1.23) nicely illustrate this remarkable property. Indeed they can be interpreted as a generalized
Newtonian first law of classical mechanics in the presence of gravitational forces:

Dpσ ≡ (∂νpσ + Γσµνp
µ)dqν = 0 (1.30)

with pσ ≡ mdqσ/dτ , the relativistic 4-momentum of a test particle. In an inertial (free falling) frame,
the Christoffel symbols Γσµν , which are not the components of a general coordinate tensor, identically
vanish and the reduced equations of motion

(
d2xσ

dτ2
) |Γ→0 = 0 (1.31)

remain covariant with respect to (linear) Lorentz transformations, in full agreement with Einstein’s equi-
valence principle. Similarly, in the limit of non-relativistic velocities the proper-time interval dτ reduces
to the coordinate-time interval dt and the resulting equations of motion for a free particle

(
d2xi

dt2
) | v

c
→0 = 0 (1.32)

are only covariant with respect to Galileo transformations.
Now, on the basis of Eq. (1.30), we assume that the gravitational field interacts with matter and

radiation through the general covariance which simply turns the ordinary derivative ∂ν acting on any
vector into the covariant derivative Dν defined by

(Dν)σµ ≡ ∂νδσµ + Γσµν . (1.33)
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In general, covariant derivatives do not commute in a curved space–time and we have

[Dµ, Dν ]σλ ≡ −Rσλµν (1.34)

where
Rσλµν ≡ ∂νΓσλµ − ∂µΓσλν + ΓρλµΓσρν − ΓρλνΓσρµ (1.35)

is the Riemann tensor. In the weak field approximation | V
c2
| � 1, the following space–time components

of this curvature tensor
Ri00j = − 1

c2
δik∂k∂jV (r) +O(

1
c4

) (1.36)

encode the first non-trivial gravitational effects of the Sun (and of the Moon) that one ‘feels’ on Earth,
i.e., the tides:

Vtide(~x) ≡ 1
2

∑

k,j

xkxj∂k∂jV (~0). (1.37)

But what does determine the full Riemann tensor in general:

Rσλµν 6= 0? (1.38)

Within a metric theory one can raise (lower) the space–time indices of any tensor. In particular, the
anti-symmetry property of the Riemann tensor under a µ↔ ν interchange implies

DνDµR
σ µν
λ = 0! (1.39)

These tensorial identities are most easily derived by working in a local inertial frame (i.e., Γ → 0), as
allowed by the Einstein equivalence principle. It seems therefore quite interesting to focus our attention
on the first covariant derivatives of the Riemann tensor.

In a conformally flat space–time, the metric gµν = A2(V )ηµν only depends on a scalar gravita-
tional field V (t, ~x) and one easily derives the relation

DµR
σ µν
λ =

1
6

[ησνηλρ − δνλδσρ]∂ρR (1.40)

with
R ≡ gλµRνλµν = −6A−3 �η A (1.41)

the curvature scalar. In our toy theory, i.e., the Nordström scalar theory based on Eq. (1.18), A(V ) =
1 + V

c2 and massless gravitons freely propagate in a Minkowski fixed background. Consequently, R = 0
and the Riemann tensor has to fulfil the non-trivial constraints

DµR
σ µν
λ = 0 (1.42)

in the vacuum. Contrary to Eq. (1.39), such non-linear constraints do not result from the Einstein equi-
valence principle. We may thus conjecture that they are necessary to guarantee the strong version of the
equivalence principle in any metric theory for gravitation [8].

It turns out that Einstein’s theory of gravity also complies with the tensorial constraints (1.42) in
empty space. This property, due to the purely geometrical Bianchi identities, is quite remarkable since
the gravitational fields of general relativity are known to interact with themselves, even when propagating
in the vacuum. But in the presence of matter, what is then

DµR
σ µν
λ ≡ jσ νλ (1.43)

geometrically? Well, astrophysics tells us that the Universe might be dominated by some dark matter
at galactic distance scales and by some dark energy at cosmological distance scales. But these inter-
pretations rely on the validity of general relativity at all scales, while direct evidence for such exotic
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substances is still missing. Consequently, alternative identifications of the jσ νλ tensor are still allowed
nowadays.

In the Nordström scalar theory, we note from Eq. (1.40) that the conformally flat space–time
background implies a genuine (mass) conservation law

∂νj
σ ν
λ =

1
6

[ησνηλρ − δνλδσρ]∂ν∂ρR = 0 (1.44)

in a way analogous to the theory for electromagnetism. Indeed, the anti-symmetry property of the field
strength in the inhomogeneous Maxwell equations

∂µF
µν = jν (1.45)

automatically implies the (charge) conservation law

∂νj
ν = 0, (1.46)

whatever the nature of the source at work may be (a Dirac electron, a Klein–Gordon charged pion, etc.).
However, a covariant conservation law like

Dνj
σ ν
λ = 0 (1.47)

does not imply, in general, an exact differential conservation law [9]. This is known to apply also for any
non-Abelian gauge theory to which we now turn.

In 1954, Yang and Mills examined what would happen if the isospin symmetry introduced to
explain similarities of protons and neutrons were a local, i.e., space–time dependent, symmetry. For
that purpose, they explored the possibility that the relative orientation of isospin at two distinct points
of space–time has no physical meaning, (once of course electromagnetism is neglected). The local
Lorentz frames of general relativity (labelled by Greek space–time indices) are thus simply replaced by
local SU(2) frames (labelled by Latin internal indices) and a connection is needed to compare nucleons
located at distinct points of space–time. In particular, the covariant derivative acting on any spinor Ψb is
introduced via the minimal substitution

(Dν)ab ≡ ∂νδab − ig Aabν , (1.48)

with g the relevant coupling constant. To display the geometric nature of non-Abelian gauge interactions,
let us rescale the Yang–Mills Hermitian matrix Aν as follows:

g A→ A. (1.49)

So, the components Γσµν of the connection are replaced by the massless gauge fields Aa
bν and the

Riemann–Christoffel curvature tensor Rσ
λµν by the non-Abelian field strength F a

bµν such that:

[Dµ , Dν ]ab ≡ −i F abµν (1.50)

with
F abµν ≡ ∂µAabν − ∂νAabµ + iAcbµA

a
cν − iAcbνAacµ (1.51)

and a, b, c, isospin (or colour) indices. This parallel drawn between the space–time curvature in Eq.
(1.35) and the non-Abelian field strength in Eq. (1.51) is quite striking. Note here that the appearance of
a factor i in the substitution

Γ→ −iA (1.52)

stems from the hermiticity of the i~∂µ operator in quantum field theory. The identities

Dν Dµ F
a µν
b = 0 (1.53)
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suggest that the universality of free fall (i.e., the strong equivalence principle) is on an equal footing with
the universality of coupling (i.e., the gauge principle). To pursue such a parallel between gravitation and
gauge interactions, we introduce external current densities

Dµ F
a µν
b = ja νb . (1.54)

But again, what is Dµ F
a µν
b geometrically [10]? Well, here high-energy particle physics convincingly

tells us that the gluons couple to (spin- 1
2 ) matter fields, i.e, the coloured quarks. If we define the current

as the first variation of the quantum chromodynamics (QCD) action with respect to the gauge fields, we
obtain

ja νb = q̄bγ
νqa. (1.55)

It is then a direct consequence of the Dirac equation and its conjugate that this current indeed satisfies a
covariant conservation law given by

Dνj
a ν
b = ∂νj

a ν
b − iAacµ jc µb + iAcbµ ja µc = 0. (1.56)

Yet, the current is not conserved in the ordinary sense because gauge fields carry the colours with which
they interact.

To summarize, the concepts of mass and energy in gravity provide us with a deep connection
between general coordinate transformations and gauge transformations, and in particular between general
relativity and non-Abelian gauge theories. Einstein gravitational fields carry energy and thus gravitate
the way Yang–Mills gauge fields carry colours and thus self-interact. This has to be contrasted with the
Nordström massless graviton which couples only to mass and the Maxwell neutral photon which couples
only to electric charge.

1.3 Mass versus energy in electromagnetic, weak, and strong interactions
Today, Einstein’s famous question

Does the inertia of a body depend upon its energy content?

applies to all forms of binding energy Ω that contribute to the inertial mass M of bound states:

M =
∑

i

mi +
Ω
c2
. (1.57)

For compact spherical bodies of radius R, we already know from Eq. (1.8) that the gravitational contri-
bution to the binding energy per unit mass scales like M

R :

sgrav ≡ |Ωgrav
Mc2
| ≈ 10−26 (sphere..................M = 2×100 kg.......R = 10 cm)
≈ 10−10 (Earth....................M = 6×1024 kg......R = 6400 km)
≈ 10−6 (Sun......................M = 2×1030 kg......R = 700 000 km)
≈ 10−3 (white dwarf..........M = 2×1030 kg......R = 1000 km)
≈ 10−1 (neutron star...........M = 2×1030 kg......R = 10 km).

(1.58)

The ultimate stage of a heavy star, a stellar black hole, may thus be regarded as the extreme case where
the binding energy is of the same order as the rest mass energy. For a dense stellar object withR ≈ 2GM

c2 ,
one indeed guesses sgrav ≈ 0.3 from Eq. (1.6).

In the case of microscopic black holes, quantum arguments plead in favour of a mass directly
proportional to the Planck scale,

Mbh ∝ (
~c
G

)
1
2 ≈ 1019 GeV, (1.59)
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excluding thus any production at the LHC if space–time is only 4-dimensional. For a binding energy
proportional to the Newton constant G, Eq. (1.57) allows us to re-express the sensitivity as

sgrav = − G
M

∂M

∂G
. (1.60)

Consequently, from Eq. (1.59) one derives now a firm upper bound for the ratio of internal gravitational
binding energy to the total mass energy:

sgrav ≤
1
2
, (1.61)

in full agreement with the field equations around a black hole for a tensor-scalar theory of gravity [11].
What about the other fundamental interactions?

At the molecular level, mass defects in chemical reactions are known to be quite negligible since
Lavoisier (1789):

2H2 + O2 → 2H2O +Q with Q

Mc2
≈ 10−13. (1.62)

At the (sub) atomic level, such is not the case anymore. Electromagnetic, nuclear, and strong interactions
lead, respectively, to

−
∣∣∣ Ωem
Mc2

∣∣∣ ≈ 10−8 (mhydrogen ≈ mproton +melectron − 13.6
eV
c2

)

−
∣∣∣Ωnucl
Mc2

∣∣∣ ≈ 10−3 (mdeuterium ≈ mproton +mneutron − 2.2
MeV
c2

)

− Estrong
Mc2

≈ 1 (mproton ≈ mneutron = + 940
MeV
c2

).

(1.63)

As a result, the origin of the bulk of our mass and, consequently, of our weight is the kinetic energy of the
massless gluons and nearly massless quarks confined in the nucleons. In technical words, our bathroom
scales simply react to the fact that the QCD vacuum behaves like a paramagnetic medium [12]. The
anti-screening effect of virtual gluons at 10−18 m is also a superb answer of the strong interactions to
Einstein’s question about the inertia of a body: gravitational self-interactions cannot saturate the mass of
black holes the way strong interactions do for the mass of nucleons.

2 Confinement and [qi, pj] 6= 0

2.1 Nucleon mass
In Lecture 1, we have seen that the strong interactions are based on a gauge-invariant theory with Dirac
particles (quarks) acting as colour sources:

Lfundamental(gluons; quarks) = q̄ (iγµDµ −m) q. (2.1)

In the limit of two massless (up and down) quark flavours, chirality is conserved:

qL = 1
2 (1− γ5)q , γ5qL = −qL

qR = 1
2(1 + γ5)q , γ5qR = +qR

(2.2)

and the corresponding Lagrangian

Lfundamental(gluons; quarks = u, d) = q̄L iγµD
µ qL + q̄R iγµD

µ qR (2.3)

is invariant under a global U(2)L× U(2)R symmetry:

qL → gL qL ∼ (2L, 1R)
qR → gR qR ∼ (1L, 2R).

(2.4)
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In Nature, one doublet of nucleon states (JP = 1
2

+) turns out to be massive (1 GeV) while one triplet
of light pions (JP = 0−) is observed around 100 MeV. In other words, the chiral symmetry appears
to be spontaneously broken down to an (approximate) SU(2) isospin symmetry through the confinement
mechanism. In order to label the vacuum states, we introduce an effective (colour singlet) two-by-two
complex matrix χ which, by construction, transforms according to

χ→ gL χ g
†
R ∼ (2L, 2∗R) (2.5)

with respect to the underlying chiral symmetry group. We may of course simply consider a bilinear in
the up and down quark fields,

χba ÷ q̄a(1− γ5)qb, (2.6)

though what really matters here are the chiral transformation properties. The complex field χ can always
be expressed as a linear combination of two independent Hermitian matrix fields σ and π:

χ ≡ (σ + iπ)√
2

(σ = σατα , π = πατα) (2.7)

with τ0 the two-by-two unity matrix and τ1,2,3 the standard Pauli spin matrices:
(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
. (2.8)

The effective Lagrangian for this field reads in general

Leffective(χ) =
1
2

Tr (∂µχ∂µχ†)− V [Tr (χχ†)n] (2.9)

and the chiral invariant potential V should provide χ with a non-zero real vacuum expectation value
(v.e.v.) proportional to the unity matrix in order to preserve the isospin SU(2) subgroup characterized by
gL = gR vectorial transformations.

For illustration, we may consider a minimal linear sigma model

Llinear(χ) =
1
2

Tr (∂µχ∂µχ†)−
λ

4
Tr (χχ† − f2

2
)2 , λ > 0 (2.10)

where
< 0|σ|0 > = f1|
< 0|π|0 > = 0.

(2.11)

A suitable redefinition of the σ field,

σ → σ− < 0|σ|0 >, (2.12)

leads then to the following physical mass spectrum

mσα =
√
λf

mπα = 0.
(2.13)

If, in addition, we assume that the nucleon doublet

N =



p

n


 (2.14)

transforms as
NL → gLNL ∼ (2L, 1R)
NR → gRNR ∼ (1L, 2R)

(2.15)
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under the chiral symmetry group, we may also consider

Llinear(N) = NL iγµ∂
µ NL +NR iγµ∂

µNR − gπNN(NLχNR + h.c.)

= N iγµ∂
µN − gπNN√

2
(NσN + iNγ5πN)

(2.16)

with gπNN√
2
≈ 13.5, the measured pseudoscalar coupling. The σ and π are then identified as scalar (0+)

and pseudoscalar (0−) fields, respectively, while the nucleon mass is driven by the v.e.v. of the σ field
given in Eq. (2.11) to fulfil the relation

MN = gπNN
f√
2
. (2.17)

The rather simple linear sigma model defined by (2.10) and (2.16) seems to correctly implement the
chiral symmetry breaking since it produces a (semi) realistic mass spectrum for the pseudoscalar triplet
π, the nucleon doublet N , and the scalar triplet a0:

140 MeV = mπ �MN ≈ ma0 = 980 MeV. (2.18)

However, at the experimental level, the full scalar multiplet around the nucleon mass scale is not settled
yet. Moreover, at the theoretical level, chiral transformations of baryons are ambiguous. This latter fact
becomes particularly obvious in the generalized case of three massless quark flavours (u, d, s). The
Gell-Mann baryon octet (JP = 1

2
+)

B =




Σ0 + Λ√
3

√
2Σ+

√
2p√

2Σ− −Σ0 + Λ√
3

√
2n√

2Ξ−
√

2Ξ0 −2Λ√
3


 (2.19)

may indeed transform either as

BL → gLBLg
†
L ∼ (8L, 1R)

BR → gRBRg
†
R ∼ (1L, 8R)

(2.20)

or as
BL → gLBLg

†
R ∼ (3L, 3∗R)

BR → gRBRg
†
L ∼ (3∗L, 3R)

(2.21)

under SU(3)L× SU(3)R since only the transformation properties of the baryon under the vectorial sub-
group SU(nF ) (isospin symmetry, eightfold way, etc.) really matter [13]. So, let us turn to a non-linear
effective theory to get rid of the elusive scalars and couple baryons to pseudoscalars in a unique way.
For that purpose, we make use of the polar theorem which tells us that any arbitrary matrix (ξ †χ) can be
written as the product of a Hermitian matrix (σ) and a unitary matrix (ξ):

χ ≡ ξ(π)
σ√
2
ξ(π). (2.22)

The main advantage of this new parametrization is that now the most general potential only depends on
the scalar fields:

V [Tr (χχ†)n] = V (σ). (2.23)

The chiral transformations (2.5) of χ require

ξ → gLξh
† = h ξg†R (2.24)
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such that these scalars transform linearly with respect to h:

σ → h(x)σ h(x)†. (2.25)

The vectorial transformations h are not broken by the v.e.v. of the σ field given in Eq. (2.11). Moreover,
being non-linear functions of gL, gR and π(x), they depend in general on the space–time coordinates.
Yet, for gL = gR, we have h = gL = gR and we recover the successful SU(2)I×U(1)B global symmetry.
It is thus quite natural to extend these linear, though local, transformations to all the other hadron isospin
multiplets to describe their interactions with the light pseudoscalar one. In particular, we shall impose
this local hidden symmetry on the nucleons:

N → h(x) N. (2.26)

From the following transformation laws

(ξ†∂µξ)→ h(ξ†∂µξ)h† + h(∂µ)h†

(ξ∂µξ†)→ h(ξ∂µξ†)h† + h(∂µ)h†,
(2.27)

one can indeed easily build a gauge-invariant effective Lagrangian for the nucleon–pion interactions. At
the leading order in the derivative couplings, it reads

Lnon-linear(N,π) = N(i γµDµ −MN )N + gA N γµγ5 Aµ N (2.28)

with
Dµ N ≡ [∂µ +

1
2

(ξ†∂µξ + ξ∂µξ
†)]N → h(x)Dµ N (2.29)

the effective covariant derivative acting on the nucleon doublet and

Aµ ≡
i

2
(ξ†∂µξ − ξ∂µξ†)→ hAµh

† (2.30)

an effective field coupled to the axial-vector nucleon current.
If the elusive scalar degrees of freedom are frozen at their v.e.v., they simply decouple and we are

left with an effective theory for the light pseudoscalar fields alone:

Lnon-linear(π) = −f 2 Tr (AµAµ) =
f2

4
Tr (∂µU ∂µU †) (2.31)

with
U ≡ ξ2 → gL U g†R. (2.32)

This minimal effective Lagrangian contains in fact all the necessary features of the spontaneous chiral
symmetry breaking pattern

U(2)L × U(2)R → SU(2)isospin × U(1)baryon. (2.33)

Indeed, if we expand the U field as follows:

U(π) = 1|+ i(
π

f
)− 1

2
(
π

f
)2 − i a(

π

f
)3 + (a− 1

8
)(
π

f
)4 +O(π5), (2.34)

– the vacuum expectation value of U is invariant under the unbroken vectorial subgroup U(2)L+ R

defined by gL = gR:
gL < 0|U |0 > g†R = < 0|U |0 >; (2.35)
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– the excited fields out of the vacuum are the four pseudoscalar Goldstone bosons associated with
the four broken generators:

π =
(
π3 + η0

√
2π+

√
2π− −π3 + η0

)
. (2.36)

The unitarity condition
UU † = 1| (2.37)

is fulfilled for any real value of a. It is quite convenient (and also standard) to fix the value of this free
parameter to

a =
1
6

(2.38)

with
U(π) = exp(

iπ

f
). (2.39)

But you may as well choose for example the value

a =
1
4

(2.40)

with

U(π) =
(1 + iπ

2f )

(1− iπ
2f )

(2.41)

since chiral invariance ensures that any physical quantity is independent of a.
Expanding Aµ defined in Eq. (2.30) to first order in π, we note that the derivative nucleon–pion

interaction is related to the standard pseudoscalar one through the Dirac equation of motion and implies
the Goldberger–Treiman relation [14]

gπNN√
2

= gA
MN

f
. (2.42)

From gA ≈ 1.27, the axial-vector coupling measured in parity-violating (n → peν̄) β decays, and
MN ≈ 940 MeV, the average mass of the nucleons, one can already infer that f ≈ 90 MeV for the v.e.v.
of the σ field defined in Eq. (2.11). However, a more precise estimate of the remaining free parameter f
is directly obtained from weak interactions. Indeed, gauging SU(2)L requires, as usual, the introduction
of a covariant derivative. At the fundamental level, it amounts to the minimal substitution

Dµ → Dµ − iWL
µ (2.43)

for the left-handed component of the quark fields in Eq. (2.1), such that

Lfund.(q) 3 q̄ aL γµWL ab
µ q bL ≡ JµL(q)WL

µ (2.44)

with
(JµL)ba(q) = q̄ aL γ

µq bL . (2.45)

At the effective level, we have to consider the minimal substitution

∂µU → DµU = ∂µU − iWL
µU (2.46)

in Eq. (2.31) since
U → gL(x)U (2.47)

under SU(2)L gauge transformations. The interaction terms are given by

Leff.(π) 3 −if
2

4
Tr (WL

µ U∂
µU † − ∂µUU †WL

µ) ≡ JµL(π)WL
µ (2.48)
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with
(JµL)ba(π) = i

f2

2
(∂µUU †)ba 3 −f

2
∂µπba (2.49)

the left-handed hadronic current. Consequently, we obtain the vacuum-to-pion hadronic matrix element

< 0|(JµL)ud|π+ > = −i f√
2
pµ (2.50)

with
f = fπ ≈ 93 MeV (2.51)

extracted from the measured π+ → e+νe decay amplitude.
So, now we dispose of a rather elegant and very efficient frame to incorporate all the well-known

results originally obtained from standard current algebra techniques, and in particular the theorems
on electromagnetic quantum corrections derived in the 1960s. Electromagnetism is indeed introduced
through the minimal substitution

∂µU → DµU = ∂µU − iVµ[Q,U ], Q = e diag (+
2
3
,−1

3
) (2.52)

since
U → g(x) Ug(x)† (2.53)

under vectorial U(1)QED gauge transformations. In the Landau gauge for the photon propagator, the
only relevant one-loop diagram is a quadratically divergent tadpole produced by the contact term

L(U) 3 e
2f2

2
Tr (QUQU †)Vµ V µ, (2.54)

with U(π) defined in Eq. (2.34). Consequently,

– expanding the U field at O(π2), we obtain the combination Tr(QQπ2 −QπQπ) which implies a
mass correction for the charged pion only:

m2
π+ −m2

π0 =
3α
4π

Λ2 ; (2.55)

– expanding the U field at O(π4), with a = 0 to get rid of the cubic term, we obtain the combination
Tr(QQπ4 −Qπ2Qπ2) which does not allow an iso-singlet to decay into three pions, i.e.,

Ae.m.(η0 → π+π0π−) = 0. (2.56)

The knowledge of the underlying QCD theory helped us in understanding these two puzzling re-
sults. On the one hand, the quadratic dependence on the ultraviolet momentum cut-off Λ in the π+ − π0

mass difference is tamed in a natural way by one-loop diagrams involving the vector and axial vector
resonances at work around 0.8GeV. (Interestingly, the composite structure of the pion softens its electro-
magnetic self-energy the way a composite structure for the Higgs scalar would naturally protect its mass
in an effective theory of electroweak interactions.) On the other hand, the observed isospin-violating
η(′) → πππ decays are induced by the up–down quark mass difference to which we now turn.

2.2 Nucleon mass splitting
At the fundamental level, isospin violation beyond electromagnetism arises from the mass term

∆Lm(u, d) = −q̄La ma
b q

b
R + h.c. (2.57)
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If the two-by-two quark mass matrix m is first treated as a spurion field, it has to transform under the
chiral U(2)L × U(2)R group according to the rule

m(x)→ gL m(x)g†R. (2.58)

At the effective level, the leading mass correction for the nucleons arises from the chiral invariant

∆Lm(N) = − b
2
N(ξ†mξ† + ξm†ξ)N 3 − b

2
N(m+m†)N. (2.59)

Once the quark mass matrix is frozen to its real eigenvalues

m =
(
mu 0
0 md

)
(2.60)

a neutron–proton splitting then takes place with

mn −mp = b(md −mu) ≈ 1.3 MeV (2.61)

if electromagnetic self-interaction corrections (in principle favourable to the proton) are neglected. Cor-
respondingly, the leading mass correction for the (pseudo-) Goldstone bosons arises from

∆Lm(π) =
f2r

4
Tr (mU † + Um†) 3 −r

4
Tr (mπ2). (2.62)

For the charged pions, we obtain

m2
π± =

r

2
(mu +md) ≈ 140 MeV. (2.63)

From the trace of the neutral pseudoscalars squared mass matrix

m2
neutral =

r

2



mu +md mu −md

mu −md mu +md


 , (2.64)

we also obtain a quadratic mass relation

m2
π0 +m2

η′ = 2m2
π± (2.65)

in clear contradiction with the observed mass spectrum

mπ0 = 135 MeV
mη′ = 958 MeV. (2.66)

The fact that the η′ mass is close to the nucleon (and scalar) mass scale given in Eq. (2.18) strongly
suggests the way to solve this problem [15]: assume the symmetry breaking pattern to be

SU(2)L × SU(2)R × U(1)B → SU(2)I × U(1)B (2.67)

instead of (2.33), such that only three Goldstone bosons are produced and not four. To implement the
explicit breaking of the axial U(1), we thus add an O(1 GeV) mass term for the iso-singlet η0:

∆LU(1) = −1
2
m2

0 η
2

0 . (2.68)

The squared mass matrix then becomes

m2
neutral =



m2
π± ∆

∆ m2
0 +m2

π±


 ; |∆| ≡ r

2
|mu −md| � m2

0 (2.69)
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and the resulting quadratic mass relations

m2
π0 ≈ m2

π± −
∆2

m 2
0

m2
η′ ≈ m2

0 +m2
π± +

∆2

m2
0

(2.70)

are in agreement with the electromagnetic self-interaction correction given in Eq. (2.55). But we still
have to check that the modification (2.68) of the effective theory for strong interactions is compatible with
what we know from the underlying QCD dynamics. Let us for that purpose consider the conservation
law of the iso-singlet current

Jµ5 ≡ ūγµγ5u+ d̄γµγ5d (2.71)

associated with the axial U(1) symmetry. At the effective level, the right-handed current J µR is directly
obtained from the simple parity transformation

U(π) P−→ U †(π) = U(−π) (2.72)

applied on the left-handed hadronic current JµL already derived in Eq. (2.49), such that

Jµ5 ≡ Tr (JµR − J
µ
L) = i

f2

2
Tr (∂µU †U − ∂µUU †). (2.73)

From the identity
Tr (∂µUU+) =

2i
f
∂µη0, (2.74)

we infer that the iso-singlet current is not conserved in the massless limit mu = md = 0:

∂µJ
µ
5 = 2f � η0 = −2fm2

0η0. (2.75)

At the fundamental level, the same violation of a classical conservation law is induced by quantum effects
and the so-called axial U(1) anomaly is precisely given by

∂µJ
µ
5 = nF

αs
4π
GαβG̃αβ (2.76)

with
G̃αβ ≡

1
2
εαβγδG

γδ (2.77)

the dual of the gluon field strength. But this is not the end of the story since, as we shall see, the Standard
Model of electroweak interactions provides us in principle with a complex quark mass matrix

m 6= m† (2.78)

via the Higgs mechanism. Up to now, specific chiral g0
L,R unitary transformations had been implicitly

used to write this mass matrix as a diagonal and real one. But the axial U(1) anomaly implies that one
phase cannot be rotated away and that we end up at best with

g0
Lmg

0 †
R = exp(

iθM
4

)
(
mu 0
0 md

)
exp(

iθM
4

). (2.79)

The presence of a physical phase is in principle the signal for a violation under time reversal. The
corresponding T operator is indeed anti-unitary, as is most easily seen from its effect on the Heisenberg
commutator

[qi, pj ] = i~ δij
T→ −i~ δij = [qi,−pj]. (2.80)
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Note that this microscopic irreversibility has to be distinguished from macroscopic ones which originate
in quite peculiar boundary conditions: a Bunsen burner for heat propagation or the Lemaître Big Bang
for an expanding Universe.

A simple way to convince ourselves that the strong axial anomaly indeed implies T violation is
through the field redefinition

U → exp(
iθM

2
)U (2.81)

or, equivalently,
η0 → η0 +

f

2
θM (2.82)

with
θM ≡ arg detm. (2.83)

This field redefinition renders m totally real in Eq. (2.62) but modifies of course the anomalous part
(2.68) of the effective Lagrangian,

∆LU(1) → ∆LU(1) −
f

2
m2

0θMη0, (2.84)

in such a way that the η0 pseudoscalar field now gets a non-zero v.e.v.:

< 0|η0(0−+)|0 >≈ −[
m2

0

m2
0 +m2

π

]
fθM

2
. (2.85)

Accordingly, both T and P violations occur in strong interactions once m2
0 6= 0. The identification of

the axial anomaly, expressed at the effective level in Eq. (2.75) and at the fundamental one in Eq. (2.76),
together with the shift in Eq. (2.84) requires a corresponding modification of the QCD action itself:

LQCD → LQCD +
αs
8π
θMG

αβG̃αβ . (2.86)

So, this new pseudoscalar term implies physical effects despite the fact that GG̃ can be written as a total
derivative. Let us illustrate this rather surprising result with a first example.

If we choose a = 1
6 in Eq. (2.34), we may ignore the kinetic term in Eq. (2.31) and focus on the

mass term in Eq. (2.62), with

∆Lm(π) 3 m2
π

2f2
η0π

+π−η0 (2.87)

in the isospin limit, to get a non-zero T -violating η ′ → π+π− decay amplitude. Indeed, let one of the
two η0’s propagate and then annihilate into the vacuum via the linear term in η0 introduced in Eq. (2.84):

π−

π+

η0η0

This non-local ‘tadpole’ contribution amounts to substituting directly < 0|η0|0 > for one η0 in Eq. (2.87)
and we obtain in that manner the local amplitude

|A(η′ → π+π−)| = m2
π

2f
[

m2
0

m2
0 +m2

π

]θM . (2.88)
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The corresponding two-body decay width reads

Γ(η′ → π+π−) ≡ 1
16πmη′

|A(η′ → π+π−)|2[1− 4
m2
π

m2
η′

]
1
2 ≈ 0.2×θ2

M MeV. (2.89)

Taking into account the measured η′ total width, we obtain

Br (η′ → π+π−) ≈ θ2
M (2.90)

such that the present experimental limit on this branching ratio

Br (η′ → π+π−) < 2×10−2 (2.91)

provides a rather weak bound
θM . 10−1. (2.92)

Note, however, that the sizeable η0 component in η(548) extracted from the non-linear effective theory
with three light quark flavours (u, d, s) [16],

η = η8 cosφ− η0 sinφ
(φ ≈ −22◦),

η′ = η8 sinφ+ η0 cosφ
(2.93)

allows us to get a stronger bound, namely

θM < 3×10−4, (2.94)

from the new experimental limit

Br (η → π+π−) < 1.3 ×10−5. (2.95)

Significant improvements on these tree-level bounds are not foreseen since branching ratios are quadratic
in the theta angle. So, let us turn to a second application with the (pπ− loop-induced) neutron electric
dipole moment linear in θM .

2.3 Nucleon electric dipole moment
Working in the isospin limit mu = md ≡ mq, the T -conserving effective interaction

∆Lm(N) 3 b mq

f2
NπNη0, (2.96)

derived this time from Eq. (2.59), leads to a scalar (i.e., T -violating) coupling if, again, η0 is replaced
by its v.e.v. given in Eq. (2.85). Consequently, the full pion–nucleon interaction is now defined by

LπNN = − 1√
2
N(gπNN i γ5 + gθπNN )πN (2.97)

with
gπNN ≈

√
2
MN

f
(2.98)

and
gθπNN ≈

mq

∆mq

∆MN√
2f

[
m2

0

m2
0 +m2

π

]θM , (2.99)
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the T -conserving and T -violating effective couplings, respectively. For particles with spin ~s moving in
an electromagnetic field ( ~E, ~B), the classical dipole interactions are described by

H = −(d ~E + µ ~B) · ~s. (2.100)

At this level the spin can be viewed as an intrinsic angular momentum such that its transformation
laws under T and P are the same as for the magnetic field, but opposite to the ones for the electric
field. Accordingly, only a magnetic moment is allowed in any T -invariant theory. The Dirac relativistic
equation alone tells us that the electron should have a magnetic moment given by

µe = − e~
2mec

. (2.101)

Were the proton and neutron elementary particles, the Dirac theory would then also predict

µ(D)
p = +

e~
2mpc

, µ(D)
n = 0. (2.102)

In fact, measurements yield anomalous magnetic moments:

µp ≈ +2.79µN , µn ≈ −1.91µN (2.103)

with
µN ≡

e~
2MN c

≈ 10−14e.cm. (2.104)

the nuclear magneton (remember, ~c ≈ 197 MeV Fermi). These large departures from the predicted
Dirac values are consequences of the fractional charge of the quarks confined in the nucleons. At the
effective level, the magnetic dipole moment of the neutron can be associated with its charged pion cloud.
In this heuristic picture, the neutron electric dipole moment obtained by substituting g θπNN for the left or
right gπNN vertex of the associated diagram

π−π−

p n

~B( ~E)

n

is thus expected to scale like

dn ≈ 2[
gθπNN
gπNN

]µn. (2.105)

Neglecting again electromagnetic contributions to the proton–neutron mass difference, we obtain then

dn ≈ [
mn −mp

mn +mp
] · [md +mu

md −mu
]θM µn. (2.106)

Compared with the present experimental limit,

|dn| < 2.9 ×10−26e.cm., (2.107)
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the approximate expression (2.106) confirms the quite impressive bound first derived in Ref. [17]:

θM < 10−9. (2.108)

Such a strong constraint has been challenging theoreticians for decades. The fine-tuning we face here
for the time-reversal violation in a quantum theory of strong interactions (QCD) is rather similar to the
fine-tuning for the vacuum energy density in a relativistic theory of gravitational interactions (GR):

θ ≡ arg detm+ θQCD ≈ 0⇔ (2×10−3 eV)4 ≈ c2

8πG
ΛGR +

f2m2
π

2
≡ ρvac.. (2.109)

Two ad hoc parameters, θQCD and ΛGR, are indeed introduced by hand to reconcile our theoretical
prejudices with observations. Possible issues for the strong θ-puzzle are in fact inspired by attempts to
solve the cosmological Λ-problem. Let us briefly consider two of them.

Firstly, by analogy with quintessence models which promote the cosmological constant Λ at the
level of a field, one may transform the θ-parameter into a new dynamical variable

θ(x) =
2a0(x)
F

. (2.110)

All the pseudoscalar fields then have a zero v.e.v. since

< 0|η0|0 >=< 0|a0|0 >= 0 (2.111)

corresponds to the minimum of the new effective theory

L(η0, a0) =
1
2
∂µη0∂

µη0 +
1
2
∂µa0∂

µa0 −
1
2
m 2

0

F 2
[Fη0 + fa0]2 (2.112)

obtained after a field redefinition analogous to Eq. (2.81), i.e.,

U → exp(
ia0

F
)U. (2.113)

As a consequence, the T and P discrete transformations are conserved in strong interactions but the
spectrum of light pseudoscalars is modified. In the limit of massless quarks, the heavy iso-singlet pseu-
doscalar present in Eq. (2.112) is indeed given by

η′ =
[Fη0 + fa0]

(F 2 + f2)
1
2

(2.114)

while a new Goldstone boson, the axion, appears as the orthogonal combination:

a =
[−fη0 + Fa0]

(F 2 + f2)
1
2

. (2.115)

The axion can be treated as the light brother of η ′. Yet, despite an efficient ∆I = 1
2 contribution through

its η0 component which implies

Br (K+ → π+a) ≈ f2

F 2
Br (K0 → π+π−), (2.116)

it has not been seen so far and the present bound is

Br (K+ → π+a) < 6×10−11. (2.117)
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This direct limit from particle physics already puts a rather severe constraint on the scale F , namely

F > 104 GeV. (2.118)

Consequently, the scale F associated with the spontaneous symmetry breaking at the origin of the axion
cannot be identified with the Fermi scale and the original Peccei–Quinn scenario [18] is excluded by this
simple exercise. Once the u and d quark masses are taken into account, the neutral squared mass matrix

m2
neutral =




m2
π± 0 0

0 m2
0 +m2

π± ( fF )m2
0

0 ( fF )m2
0 ( fF )2m2

0




(2.119)

implies that the axion is in fact a pseudo-Goldstone boson with a mass given by

ma ≈
f

F
mπ < 1 keV. (2.120)

Being a light cousin of the neutral pion, it only decays into two photons (in a P -wave) and its lifetime
scales like

τ(a→ γγ) ≈ (
mπ

ma
)3(

F

f
)2τ(π → γγ) ≈ (

F

f
)5 ×10−16s. (2.121)

Axions couple to electromagnetic fields just as neutral pions do via the well-known Primakoff effect. So,
if axions exist, they should be produced at the solar core and immediately leave the Sun without further
scattering, carrying an energy of the order of T core = 107 K (≈ 1 keV). This has to be contrasted with
photons which scatter for about 107 years before reaching the surface of the Sun with an energy of the
order of T surface = 6000 K (≈ 1 eV). From the known energy loss of the Sun, one infers the bound [19]

F > 107 GeV. (2.122)

This indirect astrophysical limit pushes the allowed lifetime of the axion far beyond the age of the Uni-
verse, promoting in this way the elusive particle at the level of a candidate for dark matter in cosmology
if F < 1012 GeV.

Secondly, by analogy with supersymmetry which ensures a vanishing vacuum energy, one may
also impose an extra chiral symmetry which allows us to rotate away the θ-parameter if

detm = 0. (2.123)

However, the possibility of having a massless quark is hardly consistent with the isospin violation ex-
tracted from the mass spectrum of the full 0−+ nonet, i.e.

mu

md
≈ 1

2
6= 0, (2.124)

and is even ruled out by large-Nc arguments [20].
As a matter of fact, we now have to address the question of the origin of the quark (and lepton)

masses beyond Newton’s classical definitions:

– the measure of inertia (Fa ): a body tends indeed to resist any change in its existing state of rest or
uniform motion, but the confinement of coloured particles tells us that quarks are never at rest and
never free;
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– the amount of matter (ρV ): it is obvious that an elephant weighs much more than a mouse because
it is made of many more atoms than a mouse, but elementary particles like the electron and the top
quark which appear on an equal footing in quantum field theory obey the hierarchy

melectron
mtop

≈ mmouse
melephant

. (2.125)

In lecture 1, we have seen that the bulk of our weight is due to the mass of the nucleon. Why then
should one worry about the mass of the electron? Well, the electron is the substance from which the
chemical elements are built (see Mendeleev’s Table). Its mass determines the size of atoms through the
Bohr radius (∝ m −1

e ) or, to be more precise, the quantized energy levels with

13.6
eV
c2

= [
α2

2
+O(α4)]mec

2 (2.126)

for the hydrogen atom in Dirac’s theory. So, no electron mass, no atoms; but no atoms, no chemistry.
Similarly, no (up and down) quark mass, no stable proton; but no stable proton, no chemistry again!

3 Spontaneous symmetry breaking and [Mu,Md] 6= 0

3.1 Boson masses and mixing
Another way to solve the axial U(1) problem without introducing T -violation in the gauge theory for
strong interactions is to assume the chiral symmetry breaking pattern

SU(2)L × SU(2)R → SU(2)V (3.1)

instead of (2.67). If such was the case, only three pseudoscalar Goldstone bosons would be produced out
of an order parameter made of four degrees of freedom:

χ ≡ (σ + iπ)√
2

(σ = σ0τ0 , π = πaτa) , (3.2)

the missing η0 would not trigger the axial U(1) problem and strong interactions would respect time-
reversal symmetry. However, we know that a full decoupling of the pseudoscalar η0 is not compatible
with the sizeable η − η′ mixing given in Eq. (2.93).

It turns out that the restricted chiral symmetry breaking (3.1) is quite relevant for the gauge theory
of electroweak interactions. Indeed, the local invariance under SU(2)L× U(1)Y of the Standard Model
has to be spontaneously broken into U(1)Q with Q, the conserved electric charge:

Q ≡ T3L +
Y

2
. (3.3)

So, a set of three (eaten up) Goldstone bosons (π = πaτa) is precisely what is needed to preserve one
local U(1) unbroken and, therefore, to guarantee that the zero photon mass is not a mere accident [21].

Let us again make use of the polar theorem [see Eq. (2.22)] to write

χ ≡ ξ(π)
σ√
2
ξ(π) =

σ0

√
2
U(π). (3.4)

In the limit where the iso-singlet scalar field σ0 is frozen at its v.e.v.,

< 0|σ0|0 >= v = (
√

2G Fermi)−
1
2 ≈ 246 GeV, (3.5)

an iso-triplet of Goldstone fields (π±, π3) is embodied in the unitary field

U = exp(
iπ

v
) (3.6)

22

J.-M. GÉRARD

302



which globally transforms as
U → gLUg

†
R (3.7)

under SU(2)L× SU(2)R. The chiral invariant kinetic term

L kinetic(π) =
v2

4
Tr (∂µU∂µU †) (3.8)

analogous to Eq. (2.31) contains all the information about the scalar sector of the Standard Model, except
of course for the elusive Higgs particle (h = σ0 − v).

Gauging now the subgroup SU(2)L× U(1)Y with the following normalizations

T3L =
τ3

2
(3.9)

Y

2
= T3R +

B

2
(3.10)

requires, as we know, the introduction of covariant derivatives. The baryon number B, by definition,
vanishes for scalar fields. From the chiral transformations of U in Eq. (3.7), we therefore write a
covariant derivative similar to Eq. (2.46):

DµU = ∂µU − i
g

2
WL

µU + i
g′

2
UWR

µ (3.11)

with

WL
µ =




W 3
µ

√
2W +

µ

√
2W −

µ −W 3
µ


 and WR

µ =



Bµ 0

0 −Bµ


 . (3.12)

Note that the absence of charged gauge bosons in the W R
µ matrix implies a (maximal) parity-violation

through an explicit breaking of the SU(2)R global symmetry. Expanding the Goldstone field U to zero
order (or, equivalently, working in the unitary gauge U = 1|) in

L non-linear(π) =
v2

4
Tr (DµUD

µU †), (3.13)

we directly read the mass spectrum for the gauge bosons from

Tr




(gW 3
µ − g′Bµ) g

√
2W +

µ

g
√

2W −
µ −(gW 3

µ − g′Bµ)




2

v2

16
≡ 1

2
M2
ZZµZ

µ +M2
WW

+
µ W

−µ. (3.14)

The massive neutral gauge boson is the linear combination of W 3
µ and Bµ present in this trace:

Zµ =
(gW 3

µ − g′Bµ)

(g2 + g′2)
1
2

(3.15)

with
MZ = (g2 + g′2)

1
2
v

2
. (3.16)

The orthogonal combination, absent from this trace, is naturally identified as the massless photon:

Vµ =
(g′W 3

µ + gBµ)

(g2 + g′2)
1
2

. (3.17)
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From the electromagnetic minimal substitution

∂µU → DµU = ∂µU − iVµ[Q,U ], Q = e(
τ3

2
+
τ0

6
) (3.18)

already introduced in Eq. (2.52), we infer that

e =
gg′

(g2 + g′2)
1
2

. (3.19)

If we define the electric charge of the positron as

e ≡ g sin θW , (3.20)

then
g′

g
= tan θW . (3.21)

Finally, the charged gauge bosons W ±
µ have a mass given by

MW =
gv

2
(≈ v

3
) (3.22)

such that a relation between physical quantities, i.e.,

M2
W

M2
Z

= [
g2

g2 + g′2
] = cos2 θW (3.23)

holds true, in remarkable agreement with current precision data.
In the limit g′ → 0, the massive weak gauge bosons (W±,W 3) form another iso-triplet with

respect to the global SU(2)V subgroup. Consequently, this unbroken hidden symmetry ‘protects’ the
tree-level W–Z mass relation (3.23) against large radiative corrections. These one-loop quantum cor-
rections grow logarithmically with the mass of the Higgs (which acts here as an ultraviolet cut-off), not
quadratically. The ‘custodial’ symmetry being a successful feature of the Standard Model, it provides
a rather severe constraint on any possible extension of its scalar sector. For illustration, a Two-Higgs-
Doublet Model (2HDM) characterized by a pair (H±) of physical charged scalars should display some
degeneracy in its scalar mass spectrum. Indeed, yet another iso-triplet can be formed with either a CP-
odd neutral scalar (A0), as is the case for the Minimal Supersymmetric Standard Model (MSSM) in a
decoupling limit:

M2
H± = M2

A0 +M2
W →M2

A0 , (3.24)

or with a CP-even one (H0):
M2
H± = M2

H0 , (3.25)

as is the case if a twisted custodial symmetry is imposed [22]. Note that new interesting LHC phe-
nomenology may take place within the second scenario since the absence of a ZZA0 coupling allows us
to consider A0 to be as light as 50 GeV.

3.2 Fermion masses, mixings, and phase
In the Standard Model of electroweak interactions, fermion masses are generated through arbitrary
Yukawa interactions. If the global SU(2)L× SU(2)R symmetry of the scalar sector is extended to the
fermions, we have

L Yukawa = −YijΨ0 i
L χΨ0 j

R + h.c. (i, j = 1, ..., Ng). (3.26)
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The Latin indices assigned here to the (left and right-handed) quark doublets

Ψ0
L,R =

(
u0

d0

)

L,R

(3.27)

run in the (three-dimensional) generation space. Once the order parameter is frozen at its SU(2)V -inva-
riant v.e.v.,

< 0|χ|0 >=
1√
2

(
v 0
0 v

)
, (3.28)

we necessarily obtain equal mass matrices for the up and down quarks,

M up = M down, (3.29)

as happens for the nucleons [see Eq. (2.17)]. But here only the heaviest quark appears to satisfy an
approximate Goldberger–Treiman relation,

m top ≈ ytt
v√
2
, (3.30)

with ytt ≈ 1. So, today the question is no longer why is the t quark so heavy but why are the other
quarks and leptons so light (see the elephant and the mouse)? In the Standard Model, different Yukawa
couplings to the right-handed quark fields are introduced to break the SU(2)V custodial symmetry. In
other words, the invariance under the global SU(2)R is explicitly broken, as was already the case when
gauging the kinetic term for the Goldstone bosons via Eq. (3.11). The order parameter χ transforms as

χ→ gLχg
†
R (3.31)

under the global SU(2)L× SU(2)R. With the local SU(2)L acting on χ from the left, let us write it in a
bi-doublet matrix form

χ = (H| − iτ2H
∗) =

(
φ0 −(φ−)∗

φ− (φ0)∗

)
(3.32)

with the help of two complex fields
φ0 =

1√
2

(σ0 + iπ3) (3.33)

φ− =
1√
2

(iπ1 − π2). (3.34)

Indeed, if H transforms as a doublet under SU(2),

H → exp(iεaτa)H, (3.35)

so does (−iτ2H
∗) since the Pauli matrices (2.8) satisfy the identities

(−iτ2)(−τ ∗a )(−iτ2)−1 = τa. (3.36)

Both the first column (H) and the second column (−iτ2H
∗) of χ transform as complex doublets under

the local SU(2)L× U(1)Y , with hypercharge Y = −1 and +1, respectively. Accordingly, the most
general gauge-invariant Yukawa interactions are given by

L Yukawa = −Y ij
up Ψ0

Li Hu
0
Rj − Y ij

down Ψ0
Li(−iτ2H

∗)d0
Rj + h.c. (3.37)

In this way, the up and down quark mass matrices are unrelated and independent diagonalizations are
required. Assuming (for a while) Hermitian mass matrices, we write

Mup = Yup
v√
2

= V †u DuVu (3.38)
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Mdown = Ydown
v√
2

= V †d DdVd (3.39)

with
Du = diag (mu,mc,mt) (3.40)

Dd = diag (md,ms,mb) (3.41)

and
VuV

†
u = VdV

†
d = 1|. (3.42)

In the Standard Model of electroweak interactions, mixing angles arise from a misalignment between the
gauge interaction basis {q0} and the mass matrix basis {q} for the quark fields:

{q0} = V †{q}. (3.43)

The left-handed charged current already introduced in Eq. (2.45) is now defined by

ū0 i
L γ

µδijd
0 j
L = ū i

Lγ
µ(VCKM)ijd

j
L (3.44)

and displays indeed a non-trivial Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix

VCKM ≡ VuV †d 6= 1| (3.45)

whenever
[Mu,Md] ≡ V †u [Dup, VCKMDdownV

†
CKM]Vu 6= 0. (3.46)

Note that the trace of any power of this commutator,

Tr [Mu,Md]n = Tr [Dup, VCKMDdownV
†

CKM]n, (3.47)

defines an invariant which only depends on physical quantities, namely the quark masses in Du,d, the
mixing angles and, possibly, phases in VCKM.

In the Standard Model of electroweak interactions, phases indeed arise from the arbitrary, i.e.,
complex, Yukawa couplings [23]:

Yup,down 6= Y ∗up,down. (3.48)

Under the anti-unitary time-reversal operator [see Eq. (2.80)], each entry of the CKM mixing matrix is
complex-conjugated

VCKM
T→ V ∗CKM (3.49)

such that the invariant traces (3.47) transform as

Tr [Mu,Md]n
T→ (−1)nTr [Mu,Md]n. (3.50)

Consequently, we have a T violation in weak interactions once

Tr [Mu,Md]2n+1 6= 0 , n ≥ 1. (3.51)

A well-known theorem named in honour of A. Cayley and W. Hamilton asserts that any N × N matrix
C is the solution of its associated characteristic polynomial:

p(λ) = det(C − λ1|)⇒ p(C) = 0. (3.52)

Let us apply this theorem for the Hermitian matrix

C = i[Mu,Md]. (3.53)
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– In the case of two generations (Ng = 2), it simply implies that

p(C) = (C − c1)(C − c2) = C2 − (Tr C)C + detC1| = 0. (3.54)

The matrix C being traceless, we have

C2 = −detC1|. (3.55)

After n iterations, we obtain

Tr [Mu,Md]2n+1 = (detC)n Tr [Mu,Md] = 0 (3.56)

and time-reversal is always valid.
– In the case of three generations (Ng = 3),

p(C) = (C−c1)(C−c2)(C−c3) = C3−(TrC)C2+
1
2

[(TrC)2−Tr(C2)]C−detC1| = 0 (3.57)

and we now have
C3 − 1

2
[Tr(C2)]C − detC1| = 0. (3.58)

Taking the trace, we conclude that

Tr [Mu,Md]3 = 3 det[Mu,Md] 6= 0 (3.59)

and time-reversal is in principle violated.

Let us first consider a toy theory to illustrate a possible connection between mass generation and
T violation. For that purpose, we simplify the flavour mixing pattern by assuming purely democratic
transitions between the generations. In the two-generation case, it amounts to rotating the d–s frame by
a π

4 angle relative to the u–c one and the Cabibbo mixing matrix is thus real:

VCKM = (
√

2)−1

(
1 1
−1 1

)
. (3.60)

The generalization to the three-generation case is not obvious. Indeed, any d–s–b frame rotation rela-
tive to the u–c–t one violates democracy. We are therefore forced to work in a complex space with the
introduction of a phase

ω = exp(
2iπ
3

) (3.61)

to guarantee full democracy in the moduli of the unitary CKM matrix [24]:

VCKM = (
√

3)−1




1 1 1
ω 1 ω2

ω2 1 ω


 . (3.62)

This geometrical approach nicely confirms the previous mathematical theorem and exhibits the sharp
difference between two and three generations of quarks as far as T violation is concerned.

Inspired by a rather successful mass relation in the charged lepton sector [25],

(me +mµ +mτ ) =
2
3
{√me +

√
mµ +

√
mτ}2, (3.63)

let us implement the CKM mixing matrix (3.62) with a down-quark (Hermitian) mass matrix

Mdown =



a b b∗

b∗ a b
b b∗ a


 (3.64)
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invariant under cyclic permutation (d3 discrete group) in the basis where the up-quark mass matrix is
diagonal:

Mup = diag (mu,mc,mt). (3.65)

Here, the misalignment given in Eq. (3.43) is due to the impossibility of simultaneous diagonalization
since the commutator of the two mass matrices reads

[Mu,Md] =




0 b(mc −mu) b∗(mt −mu)
−b∗(mc −mu) 0 b(mt −mc)
−b(mt −mu) −b∗(mt −mc) 0


 6= 0. (3.66)

Moreover, a T violation occurs in this simple ansatz with democratic mixings since

det[Mu,Md] = (mt −mc)(mt −mu)(mc −mu)(b∗3 − b3) 6= 0. (3.67)

The eigenvalues of the down mass matrix (3.64) are extracted from the relation

MdownVCKM = VCKMDdown (3.68)

and are given by
md = a+ b ω + b∗ω2

ms = a+ b+ b∗

mb = a+ b ω2 + b∗ω.
(3.69)

Consequently,
(b∗3 − b3) =

2i
9

(mb −ms)(mb −md)(ms −md)=(ω2) (3.70)

and the determinant of the [Mu,Md] commutator depends only on physical quantities (the quark masses
in Du,d and the phase in VCKM), as anticipated in Eq. (3.47).

A way to restore T invariance in this toy theory is to impose some mass degeneracy. For example,
in the limit b = b∗, the down mass matrix (3.64) is invariant under permutations (S3 discrete group) and
admits two degenerate eigenvalues (md = mb). In that limit the matrix is real and, consequently, T
conserving. Equivalently, a pseudo-rotation of 45◦ in the d–b plane allows us to rotate away the ω phase
and to write the CKM unitary matrix (3.62) as a ‘tri-bimaximal’ orthogonal one:

VCKM




1√
2

0
−i√

2

0 1 0

1√
2

0
i√
2




=




2√
6

1√
3

0

−1√
6

1√
3

1√
2

−1√
6

1√
3
−1√

2




(3.71)

which appears to be of some relevance for neutrino physics.
Our simple ansatz defined by (3.64) and (3.65) for the quark mass matrices has revealed a deep

connection between mass splitting and T violation. It also provides a rather easy way to understand the
concepts of ‘unitarity triangles’ and ‘J -invariant’, respectively.

In general, for three generations, six independent unitarity triangles (UTs) in the complex plane
are expected from the unitarity constraints

∑

j

(V †
CKM)ij(VCKM)jk = 0 if i 6= k. (3.72)

In our toy theory (3.62), they reduce to a single equilateral UT defined by the relation

1 + ω + ω2 = 0, (3.73)
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PSfrag replacements UT

ω2

3

ω

3

1
3

In general, for three generations, the T -violating invariant is defined by

det[Mu,Md] = 2i(mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)J (3.74)

with
J ≡ ±=[(V )ij(V †)jk(V )kl(V †)li]. (3.75)

As a mnemotechnic, you may consider the flavour structure of a quark loop with two virtual W ’s:

W

uk

VV
†

dl

V
†

V

ui

dj W

The imaginary part of any possible ‘quartet’ (V )ij(V †)jk(V )kl(V †)li (no sum over flavour in-
dices) being equal up to a sign, the absolute value of J is unique and, in fact, proportional to the area A
of any UT:

|J | = 2A∆. (3.76)

In our toy theory (3.62), we indeed obtain

J ≡ =(V12V
∗

22 V23V
∗

13 ) =
1
9
=(ω2) =

−1
6
√

3
. (3.77)

A more realistic CKM matrix has of course to be considered to reproduce the full (K 0, B0) phenomeno-
logy. Expanding in the Cabibbo angle

θc = λ ≈ 0.23, (3.78)

one gets the following (very rough) pattern for the flavour mixings:
(

cos θc sin θc
− sin θc cos θc

)
C≈
(

1 λ
−λ 1

)
KM→




1 λ −λ3ω
−λ 1 λ2

−λ3ω −λ2 1


 . (3.79)

At this level of approximation, we consider
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– one UT directly accessible at O(λ3) in Bd-physics:

(V †V )db = V ∗
ud Vub + V ∗

cd Vcb + V ∗
td Vtb ≈ −λ3(ω2 + 1 + ω) = 0 (3.80)

– the invariant
J = =(V12V

∗
22 V23V

∗
13 ) ≈ λ6=(ω) ≈ 10−4. (3.81)

The hierarchy observed in the CKM mixing matrix may suggest that the phenomenon of flavour mixing
is intimately related to the quark mass spectrum. Specific textures have indeed been proposed in that
context. For illustration, the two-by-two quark mass matrix

Mdown =
(

0 b
b a

)
(3.82)

implies an intriguing relation between the Cabibbo mixing angle and a mass ratio [26],

λ ≈ (
md

ms
)

1
2 , (3.83)

which triggered so many attempts to derive the CKM matrix (3.79) from ‘horizontal’ symmetries acting
in the generation space. The large value conventionally extracted for the CKM phase may rather suggest
a ‘geometrical’ T violation with [27]

δCKM =
2π
Ng

(3.84)

only depending on the number Ng of generations, not on a mass ratio. However, one should keep in mind
that there are in fact nine distinctive parametrizations (Pi) of the CKM matrix,



∗ ∗ ◦
∗ ∗ ◦
◦ ◦ ◦






∗ ◦ ∗
◦ ◦ ◦
∗ ◦ ∗






◦ ◦ ◦
◦ ∗ ∗
◦ ∗ ∗




P1 P2 P3

◦ ∗ ∗
◦ ∗ ∗
◦ ◦ ◦






◦ ◦ ◦
∗ ∗ ◦
∗ ∗ ◦






∗ ◦ ∗
∗ ◦ ∗
◦ ◦ ◦




P4 P5 P6

◦ ◦ ◦
∗ ◦ ∗
∗ ◦ ∗






∗ ∗ ◦
◦ ◦ ◦
∗ ∗ ◦






◦ ∗ ∗
◦ ◦ ◦
◦ ∗ ∗


 ,

P7 P8 P9

each of them being obtained by imposing that one row and one column be real (see the circles in Pi). The
invariant quantity J [28] is indeed expressed in terms of four mixing matrix elements which always form
a ‘plaquette’ (see the asterisks in Pi). So, there are in principle nine independent phase conventions. For
illustration, the original KM parametrization corresponds to excluding the first row and the first column
(P3) for the phase, while the standard convention is equivalent to crossing out the first row and the third
column (P5). However, any fundamental theory hidden behind the observed hierarchical quark mass
spectrum should privilege one of these nine parametrizations. In this respect, we note that one and only
one of them allows a small phase. By crossing out the second row and the second column (P2), we
obtain indeed Vub ∼ λ(e−iδ − 1) with a T -violating angle δ of the order of 1◦:

δ(P2) = (1.1 ± 0.1)◦. (3.85)
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Within this parametrization P2, the three angles are roughly equal to λ and the smallness of the J in-
variant is accounted for by the smallness of the phase (J ≈ λ4δ). A natural relation between the CKM
phase and a mass ratio is therefore also possible [29]. For example, a ‘hierarchical’ T violation with

δCKM =
ms

mb
(3.86)

consistently disappears in the decoupling limit (mb →∞) for the third generation.

3.3 Matter–antimatter asymmetry
In the Standard Model of electroweak interactions, Eq. (3.37) implies that all the currently observed T -
(or CP -) violating phenomena originate from the complex (CPT -invariant) Yukawa couplings Y of the
Higgs field h to the quarks since

L neutral
Y = − 1√

2
(q̄0

LY q
0
R + q̄0

RY
†q0

L)(h + v) (3.87)

with
M = Y

v√
2

T→M∗. (3.88)

In that sense, CP violation is our second compelling argument in favour of a single Higgs field, the first
one being the custodial symmetry at the source of a natural zero photon mass. A multi-Higgs-doublet
model generically produces a massive photon as well as a large neutron electric dipole moment.

However, there is no natural way to guarantee Hermitian quark mass matrices in this Standard
Model. It is a fact that the mass matrices transform as

M = Y
v√
2

P→M † (3.89)

under parity which interchanges left-handed and right-handed fields in Eq. (3.87). But we cannot impose
this discrete symmetry on the whole theory since the weak gauge interactions are known to violate parity.
So we have to consider another invariant involving now the commutator of theMM † Hermitian matrices:

det[MuM
†
u ,MdM

†
d ] ≡ det[D2

up, V D
2
downV

†]

= 2i(m 2
t −m 2

c )(m 2
t −m 2

u )(m 2
c −m 2

u )(m 2
b −m 2

s )(m 2
b −m 2

d )(m 2
s −m 2

d )J.
(3.90)

It also contains all the information about T violation (squared mass splittings and phase) since

det[MuM
†
u ,MdM

†
d ] T→ −det[MuM

†
u ,MdM

†
d ] (3.91)

but clearly has no defined parity:

det[MuM
†
u ,MdM

†
d ] P→ + det[M †

u Mu,M
†
d Md] (3.92)

as expected. So, let us once more invoke the polar decomposition, to write

Mu(d) = Hu(d)U
u(d)
R . (3.93)

A diagonalization in two steps is then necessary to bring both mass matrices into their diagonal, real
form defining the physical quark states. First, one exploits the fact that the right-handed quark fields are
sterile with respect to the charged weak currents to eliminate UR through a chiral transformation. In this
first step, the QCD axial anomaly in Eq. (2.76) just holds back the flavour singlet phase with angle

θM = arg det(Uu
RU

d
R) 6= 0. (3.94)
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The second step consists then in a vectorial transformation acting equally on the left- and right-handed
up (down) quark fields to diagonalize the remaining Hermitian matrices Hu(d). The observed mass
hierarchy for the up and down quarks then gives

2im 2
t mcm

2
b msJ ≈ det[Hu,Hd] 6= 0. (3.95)

In other words, the maximal parity-violation in the quark charged currents (3.44) implies that the θM
and δCKM angles are totally unrelated at the tree level. On the one hand, strong CP violation in flavour
diagonal transitions occurs through a T -violating quantity which is C-even but P -odd since

arg det(Uu
RU

d
R) P→ − arg det(Uu

RU
d
R). (3.96)

And this is precisely what is required to generate an electric dipole moment for the neutron, as already
displayed in Eq. (2.106):

dn ≈ θ ×10−16 e.cm. (3.97)

On the other hand, weak CP violation in (V –A) flavour-changing transitions occurs through a T -viola-
ting quantity which is P -even but C-odd since

det[Hu,Hd]
C→ −det[Hu,Hd]. (3.98)

And this is precisely one of the necessary ingredients to dynamically generate the matter–antimatter
asymmetry observed in the present Universe [30]:

(nB − nB)
nγ

∣∣∣
0
= (6.1± 0.2) ×10−10. (3.99)

From the magnitude and the quantum number assignment of its two independent sources of T violation:

|θ| < 10−9 ; JPC = 0−+

2m 2
t mcm

2
b ms

|J |
( v√

2
)6
≈ 10−14 ; JPC = 0+−

(3.100)

we conclude that the Standard Model of strong and electroweak interactions does not seem to be able
to produce enough baryon asymmetry. However, both sources are deeply connected to the quark mass
spectrum: the former vanishes if one quark is massless (say, mu = 0), while the latter can be rotated
away if two quarks with same electric charge are degenerated (say, md = ms). So one may conjecture
that they have in fact the same magnitude. If such turns out to be the case, |θ| ≈ 10−14 and one expects
a neutron electric dipole moment around 10−30 e.cm.

4 Conclusions
Gauge invariance and time-reversal symmetry provide us with some (modest) steps towards a possible
unification of the fundamental interactions. These symmetries explain, for example, why the weakest
among the four known basic forces of nature, i.e., gravity, may dominate in the celestial environment
(from the spherical shape of planets to the expansion of the Universe).

– Electromagnetic and gravitational interactions indeed obey gauge invariance which requires mass-
less messangers; so they both lead to long-range forces. However, time reversal applied on the
corresponding connections (−iA and Γ, respectively) disentangles them: screening only occurs
for spin-1-mediated interactions between opposite-sign charges, not for spin 0 or 2 ones which
couple positive masses or energies.
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– Strong and weak interactions get round gauge invariance through the subtle mechanisms of con-
finement and spontaneous symmetry breaking, respectively. In this way, T violation is peculiar to
short-range nuclear forces.

This striking correlation between gauge invariance and time-reversal symmetry challenges us.
Questions at issue are the unexpectedly tiny value of the cosmological constant Λ in the Einstein–Hilbert
action and of the angle θ in the QCD action. A direct observation of non-baryonic dark matter and of the
neutron electric dipole moment could bring these fundamental questions to a successful conclusion.

It is needless to emphasize that a theoretical understanding of the full fermion mass spectrum or
(and) the discovery of the Higgs boson would be a major breakthrough in any case.

– If the Higgs boson turns out to be elementary, it will open the door to other hypothetical scalar
fields (quintessence, inflaton, axion etc.) invoked to solve further theoretical puzzles (dark ener-
gy, homogeneity, electric dipole moments etc.) in cosmology and particle physics. Moreover, its
Yukawa interactions which are genuine sources for T violation would be promoted to the rank
of the fifth fundamental interaction and the issue of universal coupling reopened. Our knowledge
about the gravitational interactions may help us in that venture. At this point we simply note that in
the historical Thomson experiment which led to the discovery of the first elementary particle, only
charged particles could feel the electric field, not neutral ones. Similarly, in the early Nordström
theory, only massive particles could feel the gravitational field, not massless ones. So, the Higgs
boson in its present formulation looks more like a scalar graviton. Could the analogy with a more
successful background-independent theory of gravity guide us towards a geometrical interpretation
of the Yukawa interactions?

– If the Higgs boson proves not to be elementary, no doubt the strong interactions will continue to
inspire us in the quest for our precise weight. After all, less than 5% of the matter–energy content
of our Universe is currently understood.
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