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Abstract: In a previous paper, one of us pointed out that the anomalous dimension

matrices for all physical processes that have been calculated to date are complex symmetric,

if stated in an orthonormal basis. In this paper we prove this fact and show that it is only

true in a subset of all possible orthonormal bases, but that this subset is the natural one

to use for physical calculations.
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1. Introduction

In perturbation theory resummation becomes necessary when large logarithms compensate

the smallness of the coupling constant and invalidate a fixed order calculation.

For coloured processes the issue of resummation is complicated by the non-Abelian

colour structure. For soft wide angle radiation, where real and virtual gluon emission

cancel (at least for global observables), this complication can be expressed in terms of

a matrix containing colour and phase space information, the soft anomalous dimension

matrix [1 – 11],

Γ =
∑

i6=j

Ti ·Tj Ωij, (1.1)

where Ti · Tj denotes the effect of exchanging a gluon between partons i and j on the

colour structure and Ωij is the result of integrating (azimuth and rapidity) over the region

of phase space where emission is forbidden. This integral can have an imaginary part,

coming from Coulomb phase contributions.

It has previously been observed that the soft anomalous dimension matrices have

always been symmetric if stated in orthonormal bases [12]. Here we give the proof. The

outline of the proof will be to first show that in orthonormal bases the colour matrix Ti ·Tj

is Hermitian. Then we show that for a particularly natural choice of basis, it is also real.

From this the symmetry of Ti ·Tj, and hence Γ, follows. We start by setting the notation.

2. Notation

We consider the amplitude, M, for a hard scattering process involving m partons (we do

not need to make the distinction between incoming and outgoing partons for the colour

considerations discussed here). In general it is a function of the colour index of each of the

m partons,

M = Ma1...ai...aj ...am
, (2.1)
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where ai is in the range 1 to Nc if i is a quark or antiquark and 1 to N2
c −1 if i is a gluon.

In the present discussion, it is only the colour of partons i and j that will be relevant, so

we suppress all other colour labels. The set of physical colour states forms a vector space,

and it is useful to introduce a bra-ket notation for this space,

|M〉 ≡ M...ai...aj .... (2.2)

Physical cross sections are given by the interference of amplitudes, summed over

colour indices,

σ ∼
∑

...ai...aj ...

N ∗
...ai...aj ... M...ai...aj ... ≡ 〈N |M〉. (2.3)

We are interested in the effect on the colour state of M of exchanging a gluon between

partons i and j, which can be written

Tα
aibi

Tα
ajbj

M...bi...bj ..., (2.4)

where α is the colour index of the exchanged gluon and T is the generator of the funda-

mental representation, tαaibi
, if i is an outgoing quark or incoming antiquark, its complex

conjugate, (tαaibi
)∗ = tαbiai

, if i is an outgoing antiquark or incoming quark, and the gen-

erator of the adjoint representation, ifaiαbi
, if i is a gluon.1 Using the Hermiticity of the

generators, the effect of gluon exchange on the conjugate amplitude is

(Tα
aibi

)∗(Tα
ajbj

)∗M∗
...bi...bj ... = M∗

...bi...bj ...T
α
biai

Tα
bjaj

. (2.5)

Similarly, the interference of an amplitude formed by emitting a gluon from parton i in an

amplitude N with that formed by emitting a gluon from parton j in an amplitude M is

given by

N ∗
...bi...bj ...T

α
biai

Tα
bjaj

M...ai...aj .... (2.6)

It is therefore natural to define a colour operator Ti · Tj, to represent the exchange of a

gluon between partons i and j, independent of where it lies relative to the cut through the

diagram that defines the physical final state,

N ∗
...bi...bj ...T

α
biai

Tα
bjaj

M...ai...aj ... ≡ 〈N |Ti · Tj|M〉 = 〈N |Tj ·Ti|M〉. (2.7)

The symmetry of the colour operator in its indices i and j, Ti · Tj = Tj · Ti is obvious

from its definition (2.7) – since the two generators act on different partons’ indices their

order is irrelevant.

In practical calculations it is convenient to introduce a basis for the vector space of

possible colour states for the hard process, the elements of which we denote |K〉. Any state

|M〉 can be written as a linear combination of |K〉 states,

|M〉 ≡ |K〉MK , (2.8)

1Different sign conventions are often chosen for physical calculations, but that will not be relevant for

the present discussion.
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where MK are a set of complex numbers (represented as a column vector M). Restricting

ourselves to orthonormal bases,2 we have

MK = 〈K|M〉. (2.9)

Our aim is to find, and categorize the properties of, the matrix representation of Ti · Tj.

Acting with Ti ·Tj on the state |M〉 defines a new state, Ti ·Tj|M〉 from which we obtain

(Ti ·Tj)LK = 〈L|Ti ·Tj |K〉. (2.10)

We can now state the goal of our proof. Since we observe that the matrix representation

of Γ is symmetric for arbitrary observables, and the Ωij are observable-dependent, it must

be that the matrix representation of Ti ·Tj is symmetric in orthonormal bases. Our proof

is in two parts, first we prove that it is Hermitian in any orthonormal basis, then we try to

prove that it is real, since a real Hermitian matrix is automatically symmetric. However,

we will find that it is true in only a subset of bases. Finally, we will argue that these are the

most natural set of bases, and hence that it is not surprising that all previous calculations,

when orthonormalized, do give symmetric matrices.

3. Hermiticity of colour structure

Having taken care to set up the notation, the proof that the matrix representation of Ti ·Tj

is Hermitian is straightforward. It is a consequence only of the definition (2.10) and the

Hermiticity of the generators in the parton indices. In fact it is already clear from the

definition of the matrix element (2.7) that the right-hand-side of eq. (2.10) is Hermitian,

((Ti · Tj)LK)∗ = (〈L|Ti · Tj|K〉)∗ = (L∗
...bi...bj ...T

α
biai

Tα
bjaj

K...ai...aj ...)
∗

= K∗
...ai...aj ...T

α
aibi

Tα
ajbj

L...bi...bj ...

= 〈K|Ti ·Tj|L〉 = (Ti ·Tj)KL. (3.1)

That is,

(Ti ·Tj)
† = Ti ·Tj, (3.2)

the matrix representation of Ti ·Tj is Hermitian.

4. Realness of scalar product

It now remains only to show that 〈K|Ti ·Tj|L〉 is real for all i and j for all elements |K〉,

|L〉 in an orthonormal basis. In fact it is easy to see that this cannot be the case in general,

because if there is some initial basis in which it is true, one can apply an arbitrary unitary

2Anomalous dimension calculations have typically been performed in orthogonal, but not normalized,

bases, in which the symmetry property observed in [12] is not manifest. It is interesting to note that [13],

which appeared on the same day as [12], does use an orthonormal basis and does obtain a symmetric

anomalous dimension matrix, as does an appendix, not referred to in the rest of the paper, of [14], which

appeared some weeks later.
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transformation to another orthonormal basis in which it is not. Our task is therefore to

show that there does exist a basis, or set of bases, in which it is true. In this section we

show, not only that this is the case, but also that such a basis is the most natural one to use

for a physical calculation, explaining why this property has been observed in all previous

calculations.

In general, one can always choose a basis constructed from delta functions in quark in-

dices, delta functions in gluon indices, generators tabc, and the symmetric and antisymmetric

structure constants dabc and ifabc,

(if/d)abc = 2(Tr[tatbtc](−/+)Tr[tbtatc]). (4.1)

These can be used to form a complete basis for any physical process, because the Feyn-

man rules contain no other factors. Therefore the matrix element 〈K|Ti · Tj|L〉 is a

scalar in colour space, constructed from these building blocks. Using the relation (4.1),

all occurences of dabc and ifabc can be converted into generators of the fundamental rep-

resentation. Moreover, these generators can be replaced pairwise by delta functions using

the relation

tαcat
α
db =

1

2

(

δadδbc −
1

Nc

δacδbd

)

. (4.2)

Thus every matrix element in such a basis reduces to strings of delta functions with real

coefficients and is clearly real.

Therefore any orthonormal basis constructed from delta functions, generators and

group structure constants will result in a symmetric anomalous dimension matrix. As

we have already mentioned, such a choice of basis is extremely natural for describing

physical processes, since the colour part of any Feynman rule can be represented in this

way. Although we have shown that the colour part of the anomalous dimension matrix,

Ti · Tj in eq. (1.1), is real and Hermitian, and therefore symmetric, the kinematic part,

Ωij , is complex in general, so the anomalous dimension matrix itself is complex symmetric,

and hence not Hermitian.
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