Prospects for Single Top Cross Section Measurements at ATLAS with Early Data

Top Workshop Grenoble - 24 October 2008 -

Julien Donini, LPSC Grenoble – CNRS/IN2P3

Why Study Single Top at LHC ?

Window to new physics

- Electroweak top production
- Cross section directly proportional to |v_{tb}|²
- → Sensitive to any new additional non standard particles that may modify the top's weak coupling

• But also

- Evidence of Single top at Tevatron but yet to be observed
- Wt-channel can only be observed at LHC
- Background to top analyses
 - Single top cross section is large at LHC: ~320 pb

Objective of This Talk

- Determine sensitivity for single top cross section
 measurement
 - For all three single top channels
 - With **simple** techniques: cut based analyses
 - and with more sophisticated tools: MVA
 - For early data (1-10 fb⁻¹) but not first data
- With our current knowledge of
 - **Expected systematic** uncertainties
 - Theoretical cross sections
 - Detector full simulation
 - Trigger and reconstruction algorithm efficiencies

Single Top Quark Production at LHC

- Top quark pair production
 - LHC: $pp \rightarrow gluon \rightarrow ttbar$ (833 pb) dominant mode
- Single top production
 - Weak production mechanism: Wtb vertex
 - Signature: 1 central high-p_t b-jet, W leptonic decay, 1-2 extra jets

Single Top Signatures

t-channel single top

- 1 or 2 extra forward jet (b-jet often very forward)
- leptonic decay of W only: 1 high- p_T e or μ + missing E_T

s-channel single top

- 1 second central b-jet
- leptonic decay of W only : high- p_T e or μ + missing E_T

Associated Wt production

- 1 second W boson
- lepton + jet channel: 2 jets,1 lepton, missing E_T
- di-lepton channel: 2 leptons, some missing E_T, no extra jet
 - (not considered in this talk)

• Generator used to simulate these processes: AcerMC + Pythia

Main Backgrounds

Top pairs ($\sigma \approx 800$ pb) \rightarrow Dominant background to all analyses

- Can be reduced by requiring 1 b-tag veto, cut on forward jet
- Generators: MC@NLO+Herwig (NLO),
- AcerMC + Pythia (ISR/FSR)

W+jets

W+light jets(σ≈O(100) nb)

W+bb+jets (σ≈O(0.1) nb)

- hard b-jet pt cut helps reduce this BG
- **Generators**: Alpgen + Pythia (+K fact)

Multijet events with a fake lepton

- Triangular cut in ME_T vs $\Delta\phi(Lepton,~ME_T)$ plane could help reduce this BG
- Generator: Pythia dijet

Event Selection

Common pre-selection

- Inclusive lepton trigger (80% efficiency)
- 1 isolated electron or muon, $p_T > 30$ GeV, $|\eta| < 2.5$
- Missing E_T > 20 GeV
- 1 b-tagged jet, p_T > 30 GeV, |η|<2.5</p>
 - b-tag eff ~60%, rej ~ 100
- 1 extra jet, p_T > 30 GeV
- 2 to 4 jets with p_T>15 GeV
- Removes most of the multijet and W+jet background
- Then apply analysis specific selection

Number of Selected Events: 1fb⁻¹

Process	t-channel	s-channel	Wt-channel
Selection	• b-jet cut $p_T > 50$ GeV • fwd light jet cut $ \eta > 2.5$	• 2^{nd} b-jet $p_T>30$ GeV • Veto extra jet $p_T>15$ GeV • Topological cut: H_T (jets), $\Delta R(b1,b2), p_T$ (lep)	 b-jet cut p_T>50 GeV Veto extra b-jet, Hadronic W mass cut
Signal	1460	24.8	639
Other ST	148	39.5	1418
ttbar	2816	145.1	3022
W+jets	942	66.4	3384
Total BG	3906	251	7824
S/B	0.37	0.1	0.08
S/√B	23.4	1.6	7.2

Significance ok for t-channel and Wt. But systematics not included !

Multivariate Analysis

Improve signal separation

Combine information of several (poorly) discriminating variables

Boosted decision trees: t-channel and Wt

Decision Tree : At each node find variable and cut that gives the best separation

Boosting : Average over several trees, reweight Use TMVA implementation

• Likelihood ratio S/(S+B): s-channel

 $L = \prod P_{\text{Signal}}(x_i) / (\prod P_{\text{Signal}}(x_i) + \prod P_{\text{Background}}(x_i))$

- For each analysis, several discriminants are trained
 - 1 discriminant per principal background
 - Different sets of discriminating variables
 - Split analyses in separate channels (electron/muon, jet multiplicity)
 - Cut on discriminants chosen as to minimize total xsec error

Cross Section Uncertainty

Poisson likelihood

$$L(\sigma) = \prod_{\text{channeli}}^{N} \frac{e^{-(B_i + \alpha_i L_i \sigma)} \cdot (B_i + \alpha_i L_i \sigma)^{D_i}}{D_i!}$$

- B_i : # of background events
- α_i : signal acceptance.
- L : integrated luminosity. D_i : expected data = $B_i + \alpha_i L \sigma_{th}$
- o : cross section to fit
- Use toy MC to generate D as Poisson, shift B_i , α_i , L for all sources of systematic errors

Main systematic effects

- Luminosity: 5% variation
- Jet energy scale: 5% variation jet energy
- B-tagging efficiency: 5% variation
- Cross section: 10% ttbar, 20% W+jets, Wbb+jets
- ISR/FSR: ~10% variation event yield

t-channel Analysis

Entries

Event Selection

- harder b-jet cut: p_T>50 GeV
- forward light jet cut $|\eta|>2.5$ (cut based analysis only)
- **1 BDT discriminant vs top pairs**

Source	δσ/σ cut-based	δσ/σ BDT
Stat. error	5.0%	5.7%
MC stat.	6.5%	7.9%
Luminosity	18.3%	8.8%
B-tag efficiency	18.1%	6.6%
Jet energy scale	21.6%	9.9%
Lepton ID, trigger	2.3%	1.8%
Theory (xs, PDF, ISR/FSR…)	28.1%	13.5%
Total 1(10) fb ⁻¹	45% (22%)	22% (10%)

s-channel Analysis

Event Selection

- 2 b-tagged jets p_T>30 GeV
- Veto of extra jet $p_T > 15 \text{ GeV}$

5 Likelihood functions

- vs tt→l+jets, tt→ll, tt→l+т/тт
- vs W→I+jets, ST t-channel

S~15, S/B~20% (1fb⁻¹)

Source	δσ/σ Likelihood
Stat. error	64%
MC stat.	29%
Luminosity	31%
B-tag efficiency	44%
Jet energy scale	25%
Lepton ID, trigger	6%
Theory (xs, PDF, ISR/FSR…)	74%
Total 1(10) fb ⁻¹	95% (48%)

Wt-channel

Event Selection

- harder b-jet cut: p_T>50 GeV
- Veto extra b-jet

12 Boosted Decision Trees

- vs tt→l+jets, tt→dilepton,
- $W \rightarrow I+jets$, t-channel
- BDT for 2/3/4 jet multiplicity

S~80, S/B~40% (1fb⁻¹)

Source	δσ/σ BDT
Stat. error	20.6%
MC stat.	15.6%
Luminosity	20%
B-tag efficiency	16%
Jet energy scale	11%
Lepton ID, trigger	3.2%
Theory (xs, PDF, ISR/FSR…)	35%
Total 1(10) fb ⁻¹	48%(19%)

• Prospects for single top cross section measurements

- Early data ($\leq 10 \text{ fb}^{-1}$)
- Simple (cut based) and more complex analysis (MVA)
- Realistic systematics, detector simulation ...
- Results
 - t-channel: observation may be possible for ~1fb⁻¹
 - \rightarrow measurement of |Vtb| with Δ |Vtb|/|Vtb|~12%
 - Wt channel: possible observation for ~10fb⁻¹
 - s-channel: require more stat. > 30fb⁻¹
- Prospects: once ST signal is established
 - Study top properties (polarization)
 - New physics searches (non-SM cross section, modified kinematics): charged Higgs, W' ...

BACKUP

Single Top at LHC vs Tevatron

Larger cross sections at LHC

Process	Tevatron	LHC
t-channel	2 pb	240 pb (x120)
s-channel	0.9 pb	11 pb (x11)
Wt	0.1 pb	66 pb (x660)
Top pair	7 pb	833 pb (x120)
W+jets	~2 nb	~20 nb (x10)

• S/B ratio

- t-channel: similar
- s-channel: worse by a factor 10 …
- Wt: improved by a factor of 6
- → But higher statistics

Single Top Triggers

• Trigger turn-on curves

Figure 6: Turn-on curves are shown for the mu20i (a) and the e25i (b) trigger. In both plots, the circles represent Wt-channel single-top, the squares represent s-channel single-top, and the triangles represent t-channel single-top events.