

Higgs and SUSY at the LHC

- prospects for luminosities above 1 fb⁻¹ -

• Introduction

• Higgs

- Updated results on Higgs boson searches
- Measurement of Higgs boson parameters
- SUSY
 - Discovery prospects
 - Parameters of the SUSY model

Karl Jakobs Physikalisches Institut Universität Freiburg / Germany

Key Questions of Particle Physics

Answers to some of these questions are expected at the TeV mass scale, i.e. at the LHC

1. Mass: What is the origin of mass?

- How is the electroweak symmetry broken ?
- Does the **Higgs boson** exist ?

2. Unification: What is the underlying theory ?

- Can the interactions be unified at larger energy?
- How can gravity be incorporated ?
- Is our world supersymmetric ?
- What is the nature of Dark Matter / Dark Energy

3. Flavour: or the generation problem

- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?

be open for surprises !!

The Search for

The Higgs boson

In contrast to the TeVatron:

the first Higgs has already been seen at ATLAS

- Luminosity required for a 5σ discovery of the Higgs particle are good (< 2006 estimates)

J.J. Blaising, A. De Roeck, J. Ellis, F. Gianotti, P. Janot, G. Rolandi and D. Schlatter, **Eur. Strategy workshop (2006)**

~ < 1 fb⁻¹ needed to set a 95% CL limit in most of the mass range (low mass ~ 115 GeV/c² more difficult)

comments:

- these curves are optimistic on the ttH, H→ bb performance
- systematic uncertainties assumed to be luminosity dependent (no simple scaling, $\sigma \sim \sqrt{L}$, possible)

What is new on LHC Higgs studies ?

- Many studies have meanwhile been performed using detailed GEANT simulations of the detectors
 - Physics Performance Technical Design Report from the CMS collaboration
 - ATLAS CSC (Computing System Challenge) notes in preparation, to be released towards the end of 2008

• New (N)NLO Monte Carlos (also for backgrounds)

- MCFM Monte Carlo, J. Campbell and K. Ellis, http://mcfm.fnal.gov
- MC@NLO Monte Carlo, S.Frixione and B. Webber, www.eb.phy.cam.ar.uk/theory/
- T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D68, 073005 (2003)
- E.L.Berger and J. Campbell, Phys. Rev. D70, 073011 (2004)
- C. Anastasiou, K. Melnikov and F. Petriello, hep-ph/0409088 and hep-ph/0501130

-

• New approaches to match parton showers and matrix elements

- ALPGEN Monte Carlo + MLM matching, M. Mangano et al.
- SHERPA Monte Carlo, F. Krauss et al.

- ...

Tevatron data are extremely valuable for validation, work has started

- More detailed, better understood reconstruction methods (partially based on test beam results,...)
- Further studies of new Higgs boson scenarios (Various MSSM benchmark scenarios, CP-violating scenarios, Invisible Higgs boson decays,.....)

Physics Performances Physics Technical Design Report Vol II

CMS: CERN / LHCC 2006-021

ATLAS: CERN-OPEN 2008-020 (to appear)

Standard Model Higgs Boson Searches

$H \rightarrow ZZ^* \rightarrow \ell\ell \ell\ell$

- Main backgrounds: ZZ (irreducible), tt, Zbb (reducible)
- Main experimental tools for background suppression:
 - lepton isolation in the tracker and in the calorimeter
 - impact parameter

Updated ATLAS and CMS studies:

- ZZ background: NLO K factor used
- background from side bands

(gg->ZZ is added as 20% of the LO qq->ZZ)

$$H \rightarrow \gamma \gamma$$

Main backgrounds: γγ irreducible background

γ-jet and jet-jet (reducible)

- Main exp. tools for background suppression:
 - photon identification
 - γ / jet separation (calorimeter + tracker)
 - note: also converted photons need to be reconstructed' (large material in LHC silicon trackers)

New elements of the analyses:

- NLO calculations available (Binoth et al., DIPHOX, RESBOS)
- Realistic detector material
- More realistic K factors (for signal and background)
- Split signal sample acc. to resolution functions

- Comparable results for ATLAS and CMS
- Improvements possible by using more exclusive $\gamma\gamma$ + jet topologies

$\underline{\mathsf{H}} \to WW \to \boldsymbol{\ell}_{\boldsymbol{\mathcal{V}}} \, \boldsymbol{\ell}_{\boldsymbol{\mathcal{V}}}$

- Large H \rightarrow WW $\,$ BR for $m_{H}^{} \sim 160 \; GeV/c^{2}$
- Neutrinos → no mass peak,
 → use transverse mass
- Large backgrounds: WW, Wt, tt
- Two main discriminants:
- (i) Lepton angular correlation

(ii) Jet veto: no jet activity in central detector region

Difficulties:

- (i) need precise knowledge of the backgrounds
 - Strategy: use control region(s) in data, extrapolation in signal region
- (ii) jet veto efficiencies need to be understood for signal and background events
 - \rightarrow reliable Monte Carlo generators, data driven-background normalizations

Vector Boson Fusion qq H

Motivation: Increase discovery potential at low mass Improve and extend measurement of Higgs boson parameters (couplings to bosons, fermions)

> Established (low mass region) by D. Zeppenfeld et al. (1997/98) Earlier studies: R.Kleiss W.J.Stirling, Phys. Lett. 200 (1988) 193; Dokshitzer, Khoze, Troyan, Sov.J. Nucl. Phys. 46 (1987) 712; Dokshitzer, Khoze, Sjöstrand, Phys.Lett., B274 (1992) 116.

Distinctive Signature of:

- two high P_T forward tag jets
- little jet activity in the central region
 ⇒ central jet Veto

Rapidity distribution of jets in tt and Higgs signal events:

Two search channels at the LHC:

Selection criteria:

- Lepton P_T cuts and
- Tag jet requirements ($\Delta \eta$, P_T, Large mass)
- Jet veto (important)
- Lepton angular and mass cuts

Experimental challenge:

- Identification of hadronic taus
- good E_T^{miss} resolution
 (ττ mass reconstruction in collinear approximation)
- control of the $Z \to \tau \tau$ background shape in the high mass region
 - \rightarrow use data to constrain the background (Z $\rightarrow \mu\mu$), see talk by Y. Sirois

(ii) Results from the first full simulation analysis of $qqH \rightarrow qq \tau\tau \rightarrow qq \ell_{VV} had v$

- This channel plays an important rôle for the Higgs search at low mass at the LHC both in the Standard Model as well as in the MSSM
- Two key issues: efficient tau identification control of $Z \rightarrow \tau \tau$ background from data !

$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$

Complex final states: $H \rightarrow bb$, $t \rightarrow bjj$, $t \rightarrow b\ell v$

 $t \rightarrow b\ell v, t \rightarrow b\ell v$ $t \rightarrow bjj, t \rightarrow bjj$

Main backgrounds:

- combinatorial background from signal (4b in final state)
- ttjj, ttbb, ttZ,...
- Wjjjjjj, WWbbjj, etc. (excellent b-tag performance required)

 Updated CMS study (2006): ALPGEN matrix element calculations for backgrounds → larger backgrounds (ttjj dominant), experimental + theoretical uncertainties, e.g. ttbb, exp. norm. difficult.....

M (bb) after final cuts, 60 fb⁻¹

Signal significance as function of background uncertainty

.....comparable situation in ATLAS (ttH cont.)

preliminary	Preselection cut	$t\bar{t}H(fb)$	$t\bar{t}b\bar{b}(\mathrm{EW})$ (fb)	$t\bar{t}b\bar{b}(QCD)$ (fb)	$t\bar{t}X$ (fb)
	[lepton cuts (ID + p_{τ})	57. ± 0.2	141 ± 1.0	1356 ± 6	63710 ± 99
	$+ \ge 6$ jets	36 ± 0.2	77 ± 0.9	665 ± 4	26214 ± 64
	$+ \ge 4$ loose <i>b</i> -tags	16.2 ± 0.2	23 ± 0.7	198 ± 3	2589 ± 25
	$+ \ge 4$ tight <i>b</i> -tags	3.8 ± 0.06	4.2 ± 0.2	30 ± 0.8	51 ± 2
		LO	LO	LO	NLO

estimated uncertainty on the background: $\pm 25\%$ (theory, $+ \exp(b-tagging)$) \Rightarrow Normalization from data needed to reduce this (non trivial,...)

W/Z H associated production appears difficult as well; re-assessed at present for highly boosted Higgs (see paper by J. Butterworth et al.)

LHC discovery potential for 30 fb⁻¹

- Full mass range (up to ~ 1TeV/c²) can be covered after a few years at low luminosity [at high mass: more channels (in WW and ZZ decay modes) available than shown here]
- Comparable performance in the two experiments
- Several channels available over a large range of masses

Important changes w.r.t. previous studies:

- $H \rightarrow \gamma \gamma$ sensitivity of ATLAS and CMS comparable
- ttH \rightarrow tt bb disappeared in both ATLAS and CMS studies

Is it a Higgs Boson ?

-can the LHC measure its parameters ?-

1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV/c²) ($\gamma\gamma$ and ZZ \rightarrow 4 ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

3. Spin and CP

Angular distributions in the decay channel $H \rightarrow ZZ(^*) \rightarrow 4$ are sensitive to spin and CP eigenvalue

- C.P. Buszello et al. Eur. Phys. J. C32 (2003) 209;
- S. Y. Choi et al., Phys. Lett. B553 (2003) 61.
- $\rightarrow~$ ATLAS and CMS studies on H \rightarrow ZZ \rightarrow 4ℓ
- + new studies using VBF (CP from tagging jets) in ATLAS

4. Higgs self coupling

Possible channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell_V jj \ell_V jj$ (like sign leptons)

Measurement of Higgs Boson Couplings

Global likelihood-fit (at each possible Higgs boson mass) Input: measured rates, separated for the various production modes

Output: Higgs boson couplings, normalized to the WW-coupling

Relative couplings (Z/W, τ /W, t/W) can be measured with a precision of ~20% (for 300 fb⁻¹)

Higgs Bosons Self-coupling ? (prel., update 2007)

To establish the Higgs mechanism the Higgs boson self-coupling has to be measured:

Cross sections for HH production:

small signal cross sections,

large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

 \Rightarrow no significant measurement possible at the LHC need Super LHC L = 10³⁵ cm⁻² sec⁻¹, 6000 fb⁻¹

Most sensitive channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell \nu jj \ \ell \nu jj$

6000 fb ⁻¹ \Rightarrow $\Delta \lambda_{\text{HHH}} / \lambda_{\text{HHH}} = 19 \% \text{ (stat.)}$ (for m_H = 170 GeV)

Sensitivity is restricted to a limited mass region around 165 GeV

The Higgs Sector

in the MSSM

LHC discovery potential for SUSY Higgs bosons

* Validated by recent ATLAS and CMS full simulation studies *

Coverage in the large m_A wedge region can be improved (slightly) by:

- Higher luminosity: sLHC
- Additional SUSY decay modes (however, model dependent)

Some examples of updated MSSM studies

CMS: $A/H \rightarrow \mu\mu$

ATLAS: Charged Higgs boson searches $H^+ \rightarrow \tau v$ and tb decay modes

95% CL exclusions for 1 to 30 fb⁻¹

Updated MSSM scan for different benchmark scenarios

Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

ATLAS preliminary, 30 fb^{-1,} 5_o discovery

MHMAX scenario $(M_{SUSY} = 1 \text{ TeV/c}^2)$ maximal theoretically allowed region for m_h

Nomixing scenario $(M_{SUSY} = 2 \text{ TeV/c}^2)$ (1TeV almost excl. by LEP) small $m_h \rightarrow$ difficult for LHC

Gluophobic scenario ($M_{SUSY} = 350 \text{ GeV/c}^2$) coupling to gluons suppressed (cancellation of top + stop loops) small rate for g g \rightarrow H, H $\rightarrow \gamma\gamma$ and Z \rightarrow 4 ℓ

Small α **scenario** (M_{SUSY} = 800 GeV/c²) coupling to b (and t) suppressed (cancellation of sbottom, gluino loops) for large tan β and M_A 100 to 500 GeV/c²

Higgs search at the LHC in CP-violating scenarios

- CP conservation at Born level, but CP violation via complex A_t, A_b, M....

- CP eigenstates h, A, H mix to mass eigenstates H₁, H₂, H₃

- Effect maximized in a defined benchmark scenario (CPX)
 (M. Carena et al., Phys.Lett. B 495 155 (2000))
 arg(A_t) = arg(A_b) = arg(M_{aluino}) = 90°
- No lower mass limit for H₁ from LEP ! (decoupling from the Z)

details depend on m_{top} and on theory model (FeynHiggs vs. CPsuperH)

m_{top} = 174.3 GeV/c²

MSSM discovery potential for the CPX scenario

- Large fraction of the parameter range can be covered, however, small hole at (intermediate tan β , low m_{H+}) corresponding to low m_{H1}
- More studies needed, e.g. investigate lower H₁ masses, additional decay channels:

 $tt \rightarrow Wb H^+b \rightarrow \ell \nu b WH_1b, H_1 \rightarrow bb$

Search for

Supersymmetry

First hints of supersymmetry might show up already in early data.....

e.g. deviations from the Standard Model expectation in the E_T^{miss} spectrum

Here: overview

More details on individual analyses and data-driven background normalizations will be given in the talk of Beate Heinemann

Search for Supersymmetry

Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

- 1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations

Squarks and Gluinos

- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{iet} > 4$, $E_T > 100, 50, 50, 50 \text{ GeV}$, $E_T^{miss} > 100 \text{ GeV}$
- Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

example: mSUGRA, point SU3 (bulk region) $m_0 = 100 \text{ GeV}, \quad m_{1/2} = 300 \text{ GeV}$ tan $\beta = 6, \quad A_0 = -300 \text{ GeV}, \quad \mu > 0$ LHC reach for Squark- and Gluino masses: 0.1 fb⁻¹ \Rightarrow M ~ 750 GeV 1 fb⁻¹ \Rightarrow M ~ 1350 GeV 10 fb⁻¹ \Rightarrow M ~ 1800 GeV

Deviations from the Standard Model due to SUSY at the TeV scale can be detected fast !

...additional potential: inclusive searches with leptons

SU3, 4 jets + 0 lepton final states

- smaller signal rates, but better S:B conditions
- Discovery potential is more robust, in particular at the beginning, when systematic uncertainties on the backgrounds are large
- Similar analyses with τ lepton and b quark final states

SU3, 4 jets + 1 lepton final states

4 jets + 1 lepton final states for other benchmark points

LHC reach in the m₀ - m _{1/2} mSUGRA plane:

Multijet + E_T^{miss} signature

SUSY cascade decays give also rise to many other inclusive signatures: **leptons**, **b-jets**, τ 's

- Tevatron reach can be extended with early data
- Expect multiple signatures for TeV-scale SUSY Long term mass reach (300 fb⁻¹): 2.5 – 3 TeV

LHC Strategy for determination of model parameters: End point spectra of cascade decays

Example:
$$\widetilde{q} \to q \widetilde{\chi}_2^0 \to q \widetilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \widetilde{\chi}_1^0$$

- Due to LSPs in the final state the SUSY particle masses cannot be reconstructed
- Measure shapes of kinematic distributions of final state particles; endpoints depend on sparticle masses involved
- $\bullet \ \Rightarrow \ \text{global fit}$

Strategy in SUSY Searches at the LHC:

- Search for multijet + E_T^{miss} excess
- Look for special features (γ's, long lived sleptons)
- Look for ℓ^{\pm} , $\ell^{+} \ell^{-}$, $\ell^{\pm} \ell^{\pm}$, b-jets, τ 's
- End point analyses, global fit
 - ⇒ Parameters of the SUSY model Complex: requires close cooperation between experimentalists and theorists !
 - ⇒ Predict dark matter relic density, check consistency with other measurements

Models other than SUGRA

GMSB:

- LSP is light gravitino
- Phenomenology depends on nature and lifetime of the NLSP
- Generally longer decay chains, e.g. $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^{\pm} \ell^{\mp} \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^- \rightarrow \tilde{G} \gamma \ell^+ \ell^-$

 \Rightarrow models with prompt NLSP decays give additional handles and hence are easier than SUGRA

- NLSP lifetime can be measured:
 - For $\tilde{\chi}_1^0 \to \tilde{G}\gamma$, use Dalitz decays (short lifetime) or search for non-pointing photons
 - Quasi stable sleptons: muon system provides excellent "Time of Flight" system

RPV :

- R-violation via $\chi^0_1 \rightarrow \ell \ell \nu$ or $qq\ell$, $qq\nu$ gives additional leptons and/or E_T^{miss}
- R-violation via $\chi^0_1 \rightarrow$ cds is probably the hardest case; (c-tagging, uncertainties on QCD multijet background)

Conclusions

- The LHC experiments are well set up to explore the existence of Higgs Bosons and Supersymmetry and are well prepared for unexpected scenarios
- Higgs: the full Standard Model mass range and the full MSSM parameter space can be covered (CP-conserving models)

in addition: important parameter measurements (mass, spin, ratio of couplings) can be performed

- SUSY: discovery of deviations from the Standard Model due to SUSY should be easy and fast, the determination of model parameters is more difficult
- LHC data will hopefully soon give guidance to theory and to future experiments