Top Reconstruction Algorithms in ATLAS

Gustaaf Brooijmans

COLUMBIA UNIVERSITY

3rd Top Workshop, Grenoble, Oct 23-25 2008

From Rare to Common

- Single + pair production ~1.2
 nb (in SM)
 - Not much smaller than $Z \rightarrow ee$
- Top quark physics, but also calibration sample, and significant background source
- Reconstruction algorithms with wide range of sophistication, tailored to specific purposes

Types of Algorithms

• Selection-only

- Require certain objects or sophisticated combinations of objects, no attempt to reconstruct top quark(s)
- "Individual" top quark reconstruction
 - "Classical": low and moderate p^T
 - High p^T
- Global Event Fitters
 - ➡ Top candidates are correlated
- Endpoints

Selection Only

- In a sense, simple, since make no attempt to reconstruct top quark(s)
 In a sense, simple, since make no attempt to attempt to reconstruct top quark(s)
- E.g. dileptons: require
 - 2 good leptons $p^T > 20 \text{ GeV}$
 - Z veto
 - 2 jets $p^T > 20 \text{ GeV}$
 - MET > 25-35 GeV
 ee, eµ and µµ channels

together \rightarrow S/B \sim 4

Also works in lepton + (4) jets

- But even selection-only can be complex
 - E.g. in single top, use BDT to "select" events

"Individual Top Reconstruction"

- Reconstruct individual top quarks "independently" of the rest of the event
- Mostly relevant in the context of tt events
 - Main problem is combinatorics
 - Alleviated somewhat through b-tagging
- At high p^T, no combinatoric problem
 - But need special techniques to reject light quark & gluon jets
- Don't introduce correlations → less sensitivity to detailed understanding of efficiencies and resolutions

Commissioning Analysis

- "Keep it simple"
- Simplest:
 - $e, \mu p^{T} > 20 \text{ GeV}$
 - MET > 20 GeV
 - 3 jets $p^T > 40 \text{ GeV}$
 - 4th jet $p^T > 20 \text{ GeV}$

- Hadronic top is 3-jet combination with highest p^T sum
 - Largest background is <u>signal</u> combinatoric!

• Try to "purify" by requiring that among the three jets, one pair has mass = W

- b-tagging reduces the combinatorics & W+jets background substantially...
 - And with W mass constraint & b-tagging, achieve a purity of 95%
 - total efficiency ~1% (incl BR), vs ~7% for "simplest" analysis

• There are other "purification" variables:

$$X_1 = E_W^* - E_b^* = E_{j1}^* + E_{j2}^* - E_b^* = \frac{M_W^2 - M_b^2}{M_{top}}$$

(E^* = energy in top quark rest frame)

- Angular distributions
 - W polarization in top decay, top spin correlations

$$\frac{1}{N}\frac{dN}{d\cos\Psi} = \frac{3}{2} \left[F_0 \left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L \left(\frac{1-\cos\Psi}{2}\right)^2 + F_R \left(\frac{1+\cos\Psi}{2}\right)^2 \right]$$

Higgs!

• Requires reconstructing top & W restframes, then measure angles

High p^T

- Collimated decay products
 - $dR = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$
 - Typical jet radius ~0.5
 - But calorimeter segmentation much finer (especially in EM)
- For top $pT > \sim 300 \text{ GeV}$
 - dR (qq from W) < 2 R_{jet}
 - dR (bW) < 2 R_{jet}
 - (No isolated lepton!)

Jet Structure

- Decay hadrons reconstructed as a single jet
 - But even if it looks like a single jet, it originates from a massive particle decaying to 2/3 hard partons, not one
- If I measured each of the partons in the jet perfectly, I would be able to:
 - Reconstruct the "originator's" invariant mass
 - Reconstruct the direct daughter partons
- But
 - quarks hadronize -> cross-talk
 - my detector can't resolve all individual hadrons

- k_T jet algorithm is much better suited to understand jet substructure than cone:
 - Cone maximizes energy in an $\eta x \phi$ cone
 - k_T is a "nearest neighbor" clusterer

$$y_{2} = \min\left(E_{a}^{2}, E_{b}^{2}\right) \cdot \theta_{ab}^{2} / p_{T(jet)}^{2}$$
$$Y \text{ scale } = \sqrt{p_{T(jet)}^{2} \cdot y_{2}}$$

- Can use the k_T algorithm on jet constituents and get the k_T distance (y-scale) at which one switches from 1 -> 2 (-> 3 etc.) jets
 - scale is related to mass of the decaying particle

kΤ

$\underline{Z' \rightarrow tt}$

Gustaaf Brooijmans

Top Reconstruction in ATLAS

Efficiencies

Jet p_T (GeV)	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Top Samples (%)	5.6	19	32	37	47	45	56	64	63	68	74
Background Samples (%)	0.1	0.5	1.3	2.5	4.2	4.7	7.1	7.4	9.8	12.8	10.2

Gustaaf Brooijmans

Top Reconstruction in ATLAS

Global Fitters

- Test the overall event morphology against a signal hypothesis, yielding a figure-of-merit for each possible combination
 - Typically used when want to measure a property of the system, e.g. m_{tt}
 - Analysis can use best solution, or multiple solutions with weight related to figure of merit
- Crucial aspect is that top quark candidates <u>cannot</u> be considered individually
 - Any adjustment (like jet energy rescaling) changes figure of merit and other top candidate properties

• "Classical" global fitter

- But multiple approaches, depending if allow to rescale some measurements
 - And what the purpose is!

$$\chi^{2} = \sum_{i=1}^{4} \left(\frac{\alpha_{i} E_{i} - E_{i}}{\sigma_{\text{jets}}(\alpha_{i} E_{i})} \right)^{2} + \left(\frac{\lambda \not{E}_{\text{T}} - \not{E}_{\text{T}}}{\sigma_{\not{E}_{\text{T}}}(\lambda \not{E}_{\text{T}})} \right)^{2} + \sum_{\text{type=lep,had}} \left(\frac{M_{W}^{\text{type}} - M_{W}^{0}}{\Gamma_{W}} \right)^{2} + \sum_{\text{type=lep,had}} \left(\frac{M_{\text{top}}^{\text{type}} - M_{\text{top}}^{0}}{\Gamma_{\text{top}}} \right)^{2}$$

• Example: m_{tt}

- "Reconstructed" = "simple" reconstruction
- Full event fit is χ^2 -based

• Other examples: polarization measurements, rare decays, ...

- χ^2 fits assume gaussian probability density functions
 - Often have tails in resolution functions
 - Can be reduced by tight acceptance criteria, at the expense of efficiency
 - With good detector, get improvement by constraining W and top to Breit-Wigner rather than gaussian
- Alternative solution is to use likelihood approach
 - Signals & resolutions can be represented by appropriate *pdf's*
 - Under development...
- Or, use matrix element approach...

- Studies of SUSY signals (two escaping particles) have yielded many distributions with characteristic endpoints
 - No attempt to reconstruct individual decaying particles
 - In top dilepton events, have $m_{lj}^{\text{max}} \simeq \sqrt{m^2(t) m^2(W)} \sim (155 \text{ GeV})$

Points: events from "data" for which top quark kinematics were derived using mw, m_{top} and MET constraints, then top quarks were "redecayed" with MC ⇒ eliminate many MC uncertainties (UE, extra jets, etc.)

- Many other similar variables
 - E.g. "contransverse mass" (<u>arXiv:0802.2879</u>)
 - For dilepton tt:

$$M_{CT}^{max} = \frac{m^2(t) - m^2(W) + m^2(b)}{m(t)}$$

- Many different top reconstruction techniques
 - From the simplest event selection to very high tech fitting methods
 - Tailored to specific needs:
 - Calibration
 - Background
 - Top physics
 - Provide necessary redundancy for complex final state
 - Sensitive to many "features" of detector and reconstruction
- Eager to test on data!