The ATLAS experiment: from calibrations & cosmics to first beams

Manuella G. Vincter (Carleton University) on behalf of the ATLAS Collaboration

Commissioning of the ATLAS experiment

- ATLAS detector commissioning
- Subsystems and their performance
 - Trigger
 - Inner detector
 - Calorimeters
 - Muon system
- In-situ commissioning since 2005

1994

Manuella G. Vincter

Commissioning runs

In-situ detector commissioning

- System-specific stand-alone calibration runs
 - Noise measurements
 - Calibration pulses
- Stand-alone cosmics runs
- Combined cosmics runs
 - Trigger at Level 1 with:
 - Calorimeters (LAr&Tile)
 - Muon system (RPC&TGC)
 - Minimum bias scintillators
 - Detector subsystems have joined combined runs as they came online

Level-1

- Custom-made electronics
- Reduced granularity info from calorimeter and muon systems
- Signatures from high p_T muons, γ/e, jets, τ, events with large E_T^{miss}

High-Level Trigger

- Software and mainly commercially available equipment
- Level-2: seeded by Regions of Interest (RoI) provided by Level-1, full detector granularity in RoI (tracking information used)
- Event Filter: uses offline analysis procedures to further select events, potential full access to event

Event rate reduced 40MHz ⇒200Hz

Inner detector

Inner detector system: 87 million readout channels

- Silicon pixel
 - Discrete space points, 3 layers, |η|<2.5
- Silicon microstrip (SCT)
 - Stereo pairs, 8 layers (4 space points), |η|<2.5
- Straw tube transition radiation tracker (TRT)
 - Typically 36 hits per track, |η|<2.0

Goals:

Instrinsic accuracy	R- φ	R or z
Pixel	10 µm	115 μm
SCT	17 μm	580 μm
TRT	130 µm	

σ/p_T ~ 0.05% p_T ⊕ 1%

2008 commissioning:

 2.5% lost due to cooling leaks and heater problems in endcap (much can be recovered in shutdown)

TRT with cosmic events

- TRT hit resolution already close to design requirements (130µm)
- In September, TRT switched to Xenon gas mixture
- First in-situ transition radiation probability curve with cosmic muons
 - Track p_T 1-400 GeV
 - Comparison with barrel TB results

- ~200k readout channels
- Electromagnetic:
- 3 sampling depths in precision region |η|<2.5
- Presampler |η|<1.8</p>

Hadronic:

- Barrel: |η|<1.7, 3 sampling depths</p>
- Endcaps: 1.5<|η|<3.2, 4 sampling depths
- Forward: $3.1 < |\eta| < 4.9$
- 3 sampling depths (1 for electromagnetic and 2 for hadronic measurements)

Performance Perfo

Goals:

- fine granularity in overlap region with inner detector for precision measurements of e/γ
 - σ/E ~ 10%/√E ⊕ 0.7%
 - Linearity to ~0.1%
- Coarser granularity in the other regions sufficient for jet reconstruction and E_T^{miss} measurements
 - $\sigma/E \sim 50\%/\sqrt{E \oplus 3\%}$ (barrel/endcap)
 - $\sigma/E \sim 100\%/\sqrt{E \oplus 10\%}$ (forward)

Calorimeter performance

Calorimeter commissioning

- "Dead" channels:
 - EM: ~0.01% (+0.5%, most can be recovered at next shutdown via frontend board replacement)
 - HEC: ~0.1% (+LVPS impacting ¼ of an endcap, to be resolved next shutdown)
 - FCal: none
 - Tile: ~1.5% (all should be recoverable next shutdown!)
- LAr: Some channels require special corrections e.g. high voltage
- Tile: Cs source used to set HV and equalise PMT gains to <1%
- Tile timing corrections: can intercalibrate to 0.5ns
- Effort is now more focused on performance
 - Long term stability
 - Prediction of the signal
 - Calibration constants

October 2008

500

100

Calorimeter performance

- Energy reconstruction
 - LAr EM: Reconstruct E with 3x3 calorimeter cells, comparison to Landau
 - energy η dependence agreement, though there is a 5% systematic uncertainty on the MC prediction
 - Tile: energy deposited by μ vs. η , normalised by distance traveled in tile
 - energy scale&uniformity tested to 2-3%

Cluster Energy (0.3 < hpl < 0.4)

3x3

Clusters / 20 M

250

200

150

100

50

300

290

100

200

300

400

500

600

700

800

900

Energy (Mev)

Data

1000

η

3x3

LAr EM

2295

0.5395

35.5/37

11.77 ± 1.10

 260.9 ± 2.3

60.78 ± 2.35

4.529e+04 ± 974

Entries

 χ^2 / ndf

Prob

Width

MPV

Area

 σ_{G}

October 2008

Calo/trigger performance

300 MeV/ IEI>2 o Random Trigger **EM cells** Trigger L1Calo Toy MC stu 10² with "a priori good" ionisation pulses 10 5 10 15 20 25 E_T (GeV) $E_{T} = \sqrt{(\Sigma E_{T,x}^{2} + \Sigma E_{T,y}^{2})}$

- Correlation between energy as measured in calorimeter and as seen in L1 trigger
- Impact of air showers as sources of non-IP jets: reduced though timing cuts

Muon spectrometer

Air-core toroid magnet system Precision tracking chambers

- 3 barrel layers, 3 endcap wheels
- ~370k readout channels
- Monitored Drift Tubes (MDT)
 - |η|<2.7 (innermost layer |η|<2.0)
- Cathode Strip Chambers (CSC)
 - innermost layer 2.0<|η|<2.7</p>

2008 commissioning: MDT

- 99.8% of chambers readout
 - 2 endcap chambers with no access
- 1.5% of channels dead (should be reduced to 0.2% after shutdown)

2008 commissioning: CSC

- All chambers operational
- <0.1% dead channels</p>

Trigger chambers

- ~680k readout channels
- Resistive Plate Chambers (RPC)
 - |η|<1.05
 - 3 double layers
- Thin Gap Chambers (TGC)
 - 1.05<|η|<2.7 (2.4 for triggering)
 - 4 wheels

Muon status and performance

Goal: stand-alone p_T resolution ~10% for 1TeV tracks

 sagitta along the beam axis of ~500μm for 5m track, to be measured with resolution of 50μm

Status: All chambers installed&services connected

Noise rates are under control

Integrated into the DAQ

- MDT tested to 100kHz, TGC and RPC to 40kHz
- CSC: rate issues related to programming of FPGA
 - Under investigation

Chamber resolution	z/R	φ	time
MDT	35 μm (z)		
CSC	40 µm (R)	5 mm	7 ns
RPC	10 mm (z)	10 mm	1.5 ns
TGC	2-6 mm (R)	3-7 mm	4 ns

Muon performance with cosmics

MDT sees cosmic muon tracks very well!
~6 hits per layer per track

RPC's can see footprint of access shafts

October 2008

Manuella G. Vincter

Muon performance with cosmics

Good correlation between MDT and RPC Distance between MDT centre & projection by TGC (inner, middle, outer layers)

> Entries 10476 Mean 71.49 RMS 118.5 <200mm 100 200 300 400 500 600 700 800 900 1000 Distance (mm)

Joint ID-muon performance

Early cosmic rays for ID in March 2008:

- difference in track (θ,φ) using ID (SCT+TRT) and muon (MDT) hits
- Resolution at the 10mrad level in θ, ϕ

August 2008 cosmics run with magnetic field "on":

- Correlation between momentum in ID (TRT only) and muon spectrometer
- Note: muon charge wrong for downward tracks in upper detector

- **Goal:** 10% accuracy for a 1TeV muon track requires a resolution on the reconstructed sagitta of $50\mu m$. Intrinsic resolution of the muon chambers: $\sim 35\mu m$
 - \bullet relative alignment of the 3 chambers per towers should be known to 30 μ m
 - For needed sagitta accuracy: track-based alignment algorithms used in combination with optical system (~12000 optical sensors)
- Geometer survey: positioning accuracy of the 1100 MDT chambers: ~5mm
- Barrel alignment fit in sector 5: precision of 200-300µm (absolute mode, without straight tracks)
 - best that could be achieved is $100-200\mu m$
- Monte Carlo of optical alignment only where e.g. sector 5 alignment error is propagated to muon sagitta
 - $50\mu m$ in the odd sectors
 - $400\mu m$ in the even ones
 - Track alignment with curved tracks needed to connect the even sectors to the odd ones.

October 2008

Manuella G. Vincter

Φ

Magnet runs

- Barrel and endcap toroid magnets (4T, 20.5kA) have been run at full current, in combination with the solenoid magnet (2T, 7.7kA)
- Impact of barrel toroid field on endcap calorimeter low voltage power supplies solved with extra shielding

First beams in LHC!

- Sept 10, 2008! First LHC beams went sector by sector: stop beams on collimators, realigning beam and move to next sector
- Beam splash events depositing TeV's of energy in the detector
- Beam pick-ups (BPTX) at 175m used as reference for timing-in of experiment
 - Timing evolved quickly!

October 2008

Manuella G. Vincter

2 4 6 Bunch Crossing Number (L1A=0)

Hit position X [mm]

- Distribution of SCT space-points
 - SCT endcaps at 20V during first beam

First LHC beam: inner detector

Manuella G. Vincter

30

25

20

15

10

Through the calorimeters...

- Beam 2 (C-side) in the calorimeters
- Flow of π,μ running through the experiment
- Can observe
 - Lower energy deposit at φ~-π/4 to -3π/4 (probably protected by supports of upstream infrastructure?)
 - 8/16-fold structure due to the endcap toroids and forward shielding
 - Pions attenuated as they go through experiment?

Tile barre

LBA

LAr electromagnetic barrel

LAr hadronic end-cap (HEC

LAr electromagnetic end-cap (EMEC) — LBC

Tile extended barrel

orward shielding

 $\varphi = 0$

Ar forward (FCal)

Nose shieldin

EBC

ATLAS commissioning and first beam: summary

Already 3 years of in-situ commissioning!

- Essentially the entire detector has been fully tested (in some cases, multiple times!) with calibration runs
- Most subsystems have joined the ATLAS combined cosmics runs, with the pixels joining just over a month ago!
- Have a good overview of the status of the subsystems for early running
 - Some intervention required during 2008-9 winter shutdown, which will give us back most of the ailing channels (e.g. some of those due to cooling leaks, LVPS, frontend readout problems)
 - Inaccessible problems at a very low level
- Establish the initial calibration constants for early running
 - Have already some preliminary alignments, energy scale calibrations, timing from cosmics (but nothing beats real collision data!)
- ATLAS saw first beams!
 - Did wonders for timing-in the detector
 - Can see detector geometry through energy deposit and attenuation
- Near future activities centre on further commissioning the detector with cosmics and winter shut-down activities in preparation for first collisions next spring!