



#### **Richard Hawkings (CERN)**

#### Top workshop @ Grenoble 23/10/08

- Introduction: b-tagging for top at LHC
  - What is required of b-tagging algorithms?
- Tagging b-jets
  - Lifetime-based b-tagging algorithms
  - Soft lepton-based b-tagging algorithms
- Commissioning b-tagging
  - Track selection and alignment
  - Measuring light quark tagging rates
  - Measuring b-tagging efficiency with di-jet and ttbar events
  - Towards the ultimate peformance
- Conclusions

#### [Results taken from ATLAS CSC book (tracking performance, flavour tagging and top)]

23rd October 2008





- B-tagging important tool for top physics at LHC
  - BR(t→Wb)=100% in Standard Model 1 t  $\Rightarrow$ 1 b
    - One of the most important signatures of top
- But not **essential** to see top-pair production
  - 'Commissioning' analyses can see top peak without b-tagging ... before b-tag is commissioned
    - B/g is mixture of W+jets, QCD, ttbar combinatorial
- B-tagging for top-pair events brings
  - Reduction in non-ttbar background without b-jets
  - Help in dealing with ttbar combinatorial background
    - assigning jets to tops
      - Important for top reconstruction and top mass
  - B-tagging essential for single top (smaller S/B)
    - ... but does not help with irreducible ttbar background
  - Ultimate b-tag performance (R<sub>uds</sub>>100) not crucial, but will need to know R<sub>uds</sub> and ε<sub>b</sub> well
    - Good understanding of efficiency in top environment vital for x-section analysis ( $\Delta \sigma \sim \Delta \epsilon_b \text{ or } 2\Delta \epsilon_b$ )





# Tagging b-jets at LHC



- Properties of b-jets useful for tagging
  - B-hadron flies ~few mm before decaying
    - Tracks inconsistent with primary vertex
    - Tracks form a secondary vertex with high s multiplicity, high energy fraction and high invariant mass
  - In ~40% of cases, B hadron decays include a soft lepton (e/µ) from b→l or b→c→l
- Complications ...
  - Dense jet environment patrec is difficult, hard to find (non-isolated) soft leptons
  - Pileup confuses primary vertex finding
  - Fake signatures from K<sub>S</sub>, Λ, hyperons, and gluon splitting to heavy quarks in light jets
  - Charm quarks, midway between light and b-jets
- Combine information to get maximum performance...
  - But don't lose understanding, calibrate on data and with imperfect Monte Carlo
    23rd October 2008
    Richard Hawkings





# Tracking performance

0.25

0.2

0.15

0.1

0.05



- mm) ( Keys to b-tagging performance 0.4 ົ<mark>ວ</mark>ີ 0.35
  - **Pixel detector determines** impact parameter resolution
  - Low  $p_{T}$  tracks (~ 5 GeV)
    - Resl<sup>n</sup> ~40μm in rφ (dominated) by multiple scattering)
    - ~100µm in z (mult-scat/resl<sup>n</sup>)
  - Reasonable track-finding efficiency (~80%) and low fake rate (~0.5%) in dense jet environment
    - Trade-off between two in pat-rec algorithms
  - Particularly difficult for high  $p_{T}$  (> 200 GeV) b-jets
- b-tagging algorithms make quality cuts
  - Relatively small impact parameters wrt PV (~mm)
  - $p_{\tau}$ >1 GeV, hit required in b-layer + 1 other pixel
  - Removal of tracks consistent with material interactions/photon conversion (e.g. beampipe)



23rd October 2008



#### Lifetime-based b-tagging algorithms



- Algorithms based on track impact parameters
  - Form track-by-track likelihood (b vs uds) using track IPs, then combine into a likelihood weight for the jet
    - IP2D likelihood combines transverse IPs, IP3D uses transverse and longitudinal IPs, including correlations
    - Final output is a weight w: small w=uds-like, large w=b-like
- Algorithms based on secondary vertex finding
  - Seed a secondary vertex using tracks with large IP, collect all tracks compatible with this vertex and fit it
    - SV1 uses vertex mass, energy fraction and N-2track as variables to form a likelihood - again for b vs uds jets











- Measure performance on tt Monte Carlo events
  - Efficiency for tagging b-jets vs rejection of light (uds) jets - charm jets from W→cs,cd ignored
  - When testing algorithms, 'purify' light jets remove one close to b or c (gluon splitting, overlapping jets)
  - IP3D+SV1 achieves rejection  $10^2$ - $10^3$  for  $\varepsilon_b$ =50-60%
- In real life, things are more complex
  - Strong dependence of performance on:
    - Jet E<sub>T</sub> best around 100 GeV, falls above and below
    - Jet η tracking performance degrades at high η
    - Jet environment presence of other jets nearby
    - .. Different results achieved on e.g. WH, tt, ttH Monte Carlo samples - need to be analysis-specific
  - Algorithms lose performance for jet E<sub>T</sub>>300 GeV
    - Jets become narrower, more fragmentation tracks, pat-rec problems, some B hadrons decay after b-layer
    - Optimisation needed (see talks of Vos, Brooijmans)



23rd October 2008



### Soft-lepton tagging algorithms



- ► ~40% of b-jets contain soft  $e/\mu$  from b→l, b→c→l
  - Can be exploited for b-tagging, limited by BR
    - Low correlation with lifetime-based taggers can add to performance, and very useful for calibration
    - Also useful to identify b-jets with large neutrino energy component ⇒ energy-scale corrections
- Require identification of **soft** leptons in jet cone
  - Muon background from π/K decays in flight, punch through calorimeter material, and 'neutron gas' in cavern ('cavern background')
  - Electron background from π in jet, photon conversions, Dalitz decays
  - Final discrimination using e.g. p<sub>Trel</sub> of lepton wrt jet and lepton impact parameter wrt primary vertex
- Performance ( $\mu$ /e):  $\epsilon_{b}$ =10%/7% for R<sub>uds</sub>=400/110
  - Expect degradation of 10-15% in R<sub>uds</sub> with pileup background at 2 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>



23rd October 2008





- Have sophisticated algorithms giving excellent performance on Monte Carlo
  ... but what about data?
- Commissioning tracking, primary vertexing, lepton-ID
  - Starting to achieve separation between b and light quark jets start with simple algorithms, and gradually add sophistication as calibration/performance improves
  - For tracking calibration, already made a start using O(1M) ID-cosmics from 2008
- Measuring the performance of what we have
  - Determining light jet rejection tracking studies, simple taggers, MC extrapolation
- Measuring b-tagging efficiency in data
  - Using di-jet events (Tevatron-inspired methods, e.g. 'p<sub>T</sub>rel,' 'System8')
    - Needs dedicated trigger, environment rather different from tt events
  - Using top events themselves unlike at Tevatron, we should have plenty
    - Well-identified topologies: use fractions of events with 1, 2, 3 tags
    - Or selections designed to isolate unbiased b-jet samples
  - Transporting the results to the analyses which need them (jet  $E_T$ ,  $\eta$ , environment)
- Many tools will be needed to build a consistent picture, ready for analysis



### Selecting good tracks and vertices



- Understanding track-by-track resolution critical
  - 'Missing' hits degrade the tracking resolution
    - Missed due to dead module, or pat-rec error?
    - Need link to conditions database
  - Tracks with 'shared' hits (assigned to >1 track) have worse resolution, larger tails
    - Signal of dense environment, pat-rec ambiguities
  - About 2% of tracks in top-event jets have shared hits, rises strongly with jet and top p<sub>T</sub>
    - Important to treat these tracks correctly
- Primary vertex finding also important
  - Beamsize of 15μm dominates in transverse plane, vertex finding in z gives resolution of ~40 μm
  - Vertex z-position resolution strongly affected by pileup: with 5 events/crossing, 10% wrong PV
    - With e.g. 75ns bunch spacing running, pileup becomes important well below L=10<sup>33</sup> cm<sup>2</sup>s<sup>-1</sup>



23rd October 2008





- Alignment precision (pixels most important for b-tagging) depends on:
  - As-built / as-installed precision of detector mechanics (10-20 μm module-module)
  - Ability of track-based alignment to find and follow real module positions
  - Sensitivity to 'weak modes' distortions in directions not well-constrained by tracks - e.g. clocking rotations of one barrel wrt next, 'breathing' of cylinders
- B-tagging sensitivity to alignment studied with various scenarios in MC:
  - 'Random10' 10/30/30  $\mu$ m random module displacements in r $\phi$ /z/r
  - 'Random5' 5/15/15 μm random
  - 'Aligned' 1st results of applying trackbased alignment procedures to MC of 'realistic as-built' detector
    - Including O(mm) scale movements between detector parts
- Error scaling can also be applied
  - Parameterise residual misalignment scales to be determined on data
    - By analysing track pulls



23rd October 2008



#### Alignment effect on b-tagging



 Compare uds-jet rejection with different alignments at constant b-tagging efi, for tt (and WH) events

- Small degradation (10-15%) from perfect $\rightarrow$ aligned
  - Error scaling does not make much difference
  - Track-based alignment determines alignment parameters crucial to b-tagging well
  - Macroscopic distortions not important (c.f. z-vtx resl<sup>n</sup>)
- Large degradation (~x4) from perfect →Random10
  - Error scaling is important for these significant misalignments - helps to partially recover performance
  - ... both good resolution and good description important
- Sensitivity of different algorithms to alignment
  - Impact parameter-based tags (IP2D,3D) much more affected (factor 2-3) than SV1 (after error rescaling)
    - Performance depends directly on tracking resolution
- In principle, should recalibrate likelihood refs
  - In practice, this produces only a small change in rej<sup>n</sup>









#### Measuring the light jet rejection



- Light jet rejection depends on
  - Intrinsic tracking resolution
  - Presence of long-lived decays ( $K_s$ ,  $\Lambda$ , hyperon)
    - g→bb,cc in light jets (in MC, remove by 'purification')
- Extract the first from data most transparently with simple JetProb tag (pioneered by ALEPH at LEP)
  - Resolution function gives track consistency with PV

$$\mathscr{P}_i = \int_{-\infty}^{-|d_0^i/\sigma_{d_0}^i|} \mathscr{R}(x) dx$$

- $P_i$  can be measured from inclusive negative  $d_0/\sigma$  tail
- Combine P<sub>i</sub> for all tracks in jet, get JetProb P<sub>jet</sub>
  - Can calculate P<sub>i</sub> in categories of track quality
  - Performance is inferior to more sophisticated taggers, but easier to calibrate at start
- Correct for long-lived decays and negative tail flavour dependence using scale factors from MC
- Once understood, extend to more complex taggers
  23rd October 2008 Richard Hawkings







Select a sample of events with jets containing muons 5000

- Majority from b,c decays transverse momentum of muon wrt jet axis (p<sub>Trel</sub>) larger in b-decays
- Take templates of muon p<sub>Trel</sub> from MC b- and c-jets, and data uds, and fit samples before/after lifetime b-tag
  - Derive number of b-jets in each sample, extract  $\boldsymbol{\epsilon}_{b}$
  - Can be done as a function of jet  $\textbf{p}_{\text{T}}$  and  $\eta$
- Complicating factors …
  - Need to take b/c templates from MC modelling syst
  - Take uds templates from QCD di-jet data need to remove b,c contamination (heavy flavour prod, g→bb)
  - Little p<sub>Trel</sub> discrimination above 80 GeV, method breaks
  - Expect systematic error controlled to ~6% abs
  - Statistical error determined by trigger bandwidth devoted to muon-jet sample
    - Need online selection and prescaling as function of E<sub>T</sub>
  - Additional MC correction for jets w/hadronic b-decays
    23rd October 2008
    Richard Hawkings







#### Again, exploits two samples with different b-fractions

- Muon-jet sample (n), and sample (p) with additional requirement of a lifetime tag on opposite jet
- Then measure fraction of muon-jets tagged by:
  - Muon with signifcant p<sub>T</sub>rel
  - Lifetime tagger under test (~uncorrelated to muon-tag)
- Measure n, p,  $n^{\mu}$ ,  $p^{\mu}$ ,  $n^{LT}$ ,  $p^{LT}$ ,  $n^{both}$ ,  $p^{both}$ , and solve 8 equations for unknowns including  $\epsilon_{h}$  of LT tagger
- Complicating factors
  - Tags are not quite uncorrelated, and n/p samples do not have same ratio of charm to uds jets
    - Correction for this requires large MC samples...
  - Muon  $p_{Trel}$  tag has limited performance for  $E_T$ >80 GeV
  - Expect systematics to be around 6% as for  $p_{Trel}$  method Can perform measurement as fn of  $E_T$  and  $\eta$ , given stats
  - Have to correct efficiencies to apply them to **hadronic** b-decays - correction factor is large below 40 GeV



**Richard Hawkings** 





14



# Counting b-tags, rediscovering top



- 'Classical' top discovery analysis ...
  - Select events with lepton (p<sub>T</sub>>20 GeV), missing-E<sub>T</sub>>20 GeV, 4 jets E<sub>T</sub>>30 GeV
    - Count number of jets which are b-tagged, excess signals presence of ttbar events
  - Assuming kinematic acceptances and  $\epsilon_{uds}$  from Monte Carlo, fit to extract  $\epsilon_{b}$ ,  $\epsilon_{c}$  and  $\sigma_{tt}$ 
    - Can get  $\epsilon_b$  to ±3% (stat) ±3% (syst) in 100 pb<sup>-1</sup>
    - Systematics dominated by knowledge of ISR/FSR
- Can also use dilepton events ee/μμ/eμ
  - Veto dilepton mass around Z resonance
    - Can get  $\varepsilon_b$  to ±4% (stat) ±4% (syst) in 100 pb<sup>-1</sup>
- Mixed di-lepton mode could be source of pure b-jets
  - Tag one b-jet ... other should have very high probability to be b









#### Selecting 'pure' samples of b-jets

0.9 d

0.7

0.6

0.5

0.4



Exploit topology / kinematics of semileptonic tt events 

- Standard lepton+4 jets selection, assign jets to tops
  - Typically tag **one** b-jet (associated to hadronic top), but do not look at b-tagging info on other b-jet (leptonic top)
- Many jet permutations to be considered
  - Especially in events with >4 jets (ISR/FSR jets)
- Choose the 'correct' combination in various ways:
  - **Topological** selection based on recon top masses
  - **Likelihood** selection using jet/lepton  $p_{\tau}$  and angles
  - **Kinematic** fit-based selection, using fit  $\chi^2$  for each comb<sup>n</sup> purity
- Select samples of ~few 100 jets in 100 pb<sup>-1</sup>, purity 70-90%
  - Higher purity (but lower statistics) as jet  $E_{\tau}$  increases
  - Trade off between b-jet sample purity and data statistics ... only a few % of the tt sample is used 23rd October 2008





# Measuring b-tagging efficiency



- Various ways to subtract background from b-jet sample
  - Define a control region with similar b/c/uds flavour mixture in data
  - Use Monte Carlo templates to fit contamination
- End up with a subtracted sample which is 'statistically' pure in b-jets
  - Then can study distribution of b-tag weights on this 'unbiased' sample to determine efficiency - to around 5% in 100-200 pb<sup>-1</sup>
  - Have to determine ε<sub>b</sub> in bins of jet E<sup>-1</sup> due to changing sample purity
  - With enough statistics, can look at other variables (η, jet environment)
    - To be further developed ...



23rd October 2008





- Systematic uncertainty summary for counting and b-jet selection methods
  - Relative errors in %, for a b-jet efficiency working point of  $\varepsilon_{b}$ =0.6

| Systematic                          | Counting   |          | Topological | Likelihood | Kinematic |
|-------------------------------------|------------|----------|-------------|------------|-----------|
|                                     | lepton+jet | dilepton |             |            |           |
| Light jets and $	au$                | 0.1        | 0.7      | 0.5         | 5.2        | 0.6       |
| Charm jets                          | 0.0        | 0.8      | 0.7         | 4.6        | 2.2       |
| Jet energy scale                    | 0.9        | 0.5      | 0.5         | 2.5        | 1.1       |
| <i>b</i> -jet labelling             | 1.4        | 1.4      | -           | -          | -         |
| MC generators                       | 0.1        | 2        | 0.2         | 5.9        | 5.5       |
| ISR/FSR                             | 2.7        | 2        | 1           | 2.2        | 0.5       |
| W+jet background                    | 1.2        | 0.3      | 2.8         | 9.6        | 0.3       |
| Single top background               | 0.1        | 0.1      | 1.2         | -          | 1.2       |
| Top quark mass                      | 0.3        | 0.5      | -           | 4.1        | -         |
| Total systematic                    | 3.4        | 3.5      | 3.4         | 14.2       | 6.2       |
| Statistical (100 pb <sup>-1</sup> ) | 2.7        | 4.2      | -           | 5.0        | 7.7       |
| Statistical (200 pb <sup>-1</sup> ) | 1.9        | 3.0      | 6.4         | 4.4        | 5.5       |

- Counting method is most precise, but cannot study dependencies (jet  $E_T$ ,  $\eta$ )
  - Other methods will become more useful as luminosity increases
- All studying performance in top event environment complementary to di-jet



#### Towards ultimate performance



- As integrated luminosity increases:
  - Commission more complex taggers
    - Need to understand input distributions, check data/Monte Carlo distributions
  - Feedback discrepancies to tune MC
  - Study dependence of tagging on environment (e.g. jet multiplicity)
  - Extend to higher jet energies
- Selecting b-jet samples can help
  - Cross-check Monte Carlo predictions
    - Use background-subtracted data distributions to check against MC prediction
  - Eventually use likelihood references based on real data distributions
    - Needs large statistics for n-dimensional distributions where correlations need to be taken into account



SVtx Efrac





Input variables for IP3D+SV1, for b/gsubtracted b-jet 'data' and MC for ~1 fb<sup>-1</sup> (topological selection)

23rd October 2008



#### Conclusions



- B-tagging is very important for the ATLAS top physics program
- An enormous amount of work on b-tagging algorithms
  - Sophisticated multivariate lifetime-based algorithms to extract ultimate performance
    - Need to focus now on simpler algorithms for startup (e.g. JetProb with 'symmetric' performance on jets without lifetime)
  - Lepton-based taggers also well-developed
    - Less performant, but small-correlation with lifetime-based algorithms, essential for calibration and cross-checks during commissioning
- Commissioning requires
  - Good understanding of detector performance, in particular tracking
  - Rapid progress in alignment especially track-based alignment
  - Methods to measure mistag rate from data
  - Methods to measure efficiency from data
    - Di-jet events with dedicated trigger
    - ttbar for 'in-situ' measurement of performance in the environment where it will be used
- Eventually use ttbar events to improve MC simulation of b-jets and tune the b-tagging performance on data 23rd October 2008 **Richard Hawkings**