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Piezoel ectric actuators and sensors have been broadly used for design
of smart structures over the last two decades. Different theoretical
assumptions have been considered in order to model these structures
by the researchers. In this paper, an enhanced piezolaminated
sandwich beam finite element model is presented. The facing layers
follow the Euler-Bernoulli assumption while the core layers are
modeled with the third-order shear deformation theory (TSDT). To
refine the model, the displacement-strain relationships are developed
by using von Karman's nonlinear displacement-strain relation. It will
be shown that this assumption generates some additional terms on the
electric fields and also introduces some electromechanical potential
and non-conservative work terms for the extension piezoelectric sub-
layers. A variational formulation of the problem is presented. In order
to develop an electromechanically coupled finite element model of
the extension/shear piezolaminated beam, the electric DoFs as well as
the mechanical DoFs are considered. For computing the natural
frequencies, the governing equation is linearized around a static
equilibrium position. Comparing natural frequencies, the effect of

nonlinear termsis studied for some examples.
©2016 Iranian Society of Acoustics and Vibration, All rights reserved.

1. Introduction

Piezoelectric actuators/sensors have been widely used for design of smart structures over the last
two decades leading to high-performance and light-weight solutions. They can be either surface-
mounted or embedded into a host structure. Surface-mounted actuators/sensors are normally
poled in the thickness direction, so that they act as extension actuators/sensors, while embedded
actuators/sensors are normally poled in the longitudinal direction; therefore, they act as shear
actuators/sensors.
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In view of their wide application, the modeling of these structures is a major concern for many
researchers. It often requires a coupled modeling between the host structure and the piezoel ectric
sensors and actuators. Due to the complexity of these systems, different theoretical assumptions
have been considered in order to deal with the coupling effect between the mechanical and
electric fields and thus, considerable research has been carried out in this regard [1-4]. Most of
the existing refined models for piezolaminate structures focus on extension piezoelectric
actuators and sensors [5-7]. Since extension actuators present a simpler electrical behavior,
simple low order electric models with higher order mechanical models have been developed
more commonly.

On the other hand, piezolaminated beam models based on the equivalent single layer (ESL)
theory cannot accurately model the local shear deformation of the embedded piezoel ectric shear
sensorg/actuators [8]. As a result, calculations of both deflections induced by piezoelectric
actuators and induced electric potential on piezoelectric shear sensors by structural deflection are
obstructed [9]. Thus, using the classical sandwich beam theory presents a proper mathematical
approach for modeling the structures with piezoelectric shear layers in order to analyze the
system statically and dynamically [9-13]. A shear locking free electromechanically coupled finite
element model for a multilayer beam consisting of both extension and shear piezoelectric layers
was proposed by Trinidade et al. [11]. In thiswork, the Euler—Bernoulli hypothesis was assumed
for the face sub-layers where the Timoshenko theory was considered for the core layer. Later, the
electric DoFs were introduced as well as the mechanical DoFs leading to a finite element model
which was in a proper form considering the controller design viewpoint [10-12]. To provide a
better model, the third-order shear deformation theory (TSDT) was used for the core layer
instead of the Timoshenko first order shear deformation theory (FSDT) [9]. Also, a static finite
element model was proposed for the piezoelectric sandwich beam and a third-order electric
potential was considered for the core piezoelectric layer due to considering the TSDT. As a
result, more realistic presentations for both shear strain and core electric field were achieved and
it was shown that using the TSDT could lead to more accurate results of 10-20% for the
corresponding cases. In a later modeling effort [13], a dynamic finite element model was
presented where mechanical and electric DoFs were grouped differently to provide a better
understanding of the electric boundary conditions.

In this paper, an improved piezolaminated sandwich beam model is presented. The facing layers
follow the Euler-Bernoulli assumption while the core layers are modeled with the third-order
shear deformation theory (TSDT). To refine the model, the displacement-strain relationships are
developed using the von Karman's nonlinear displacement-strain relation. It will be shown that
this assumption generates some additional terms on the electric fields and also introduces some
electromechanical potential and non-conservative work terms for the extension piezoelectric sub-
layers. A variational formulation of the problem is presented. The electromechanically coupled
finite element model of the piezolaminated beam was incorporating both the electric and the
mechanical DoFs. The governing equation is linearized around a static equilibrium position to
compute the natural frequencies. Using modal analysis, it is shown that the obtained results are
in a good agreement with the available datain the literature. Finally, it is shown that if the output
voltage of the extension piezoelectric layer is taken as the sensor signal, the governing equation
of the system will be nonlinear. In case of fairly high deformation, this nonlinearity will be more
noticeably effective and causes the natural flexural frequencies to behave erratically.
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2. Theoretical formulation

The proposed model is considering a multilayer beam made of piezoelectric layers using the
classica sandwich theory. The piezolaminated beam consists of a core layer sandwiched
between top and bottom laminate face layers. The core itself consists of piezoelectric and elastic
materials. The Euler-Bernoulli theory is assumed for the extension piezoelectric face layers;
therefore, they are modeled using classical laminate theory. On the contrary, the core layer
undergoes the shear strains;, hence, it is modeled using the TSDT proposed by [14]. For
simplicity, al piezoelectric layers are assumed to be orthotropic perfectly either bonded or
embedded and in the plane stress state. Also, the extension piezoelectric face layers are poled in
the thickness direction, while the shear piezoelectric layer is poled in the longitudinal direction.

The length, width and thickness of the beam are denoted by L, b and h respectively. Quantities
which are related to the upper, core and lower layers are represented by the subscripts a; , ¢ and

b, where the set of subscript j ={1...,(n,m)} denotes a sub-layer of the laminate faces. Faces
a and b may have n and m sub-layers respectively.

2.1. Kinematics and strains

In view of the aforementioned assumptions, the axial and transverse displacement fields of the
core and face layers are written as follows (see Fig. 1):

a.(xy,zt)=u (xt)+(z-2)6, (xt); k=ab

L0020 =060 + (22, 0~ [ A 06 +wtx) ] o

w,(x,y,z,t)=w(x,t); i=ab,c

Z [

@

u,

—————————— —

X

i,

Fig. 1. Kinematic representation of the piezolaminated beam
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where u, isthe axial displacement, g, isthe transverse normal rotation, z, isthe local z-axis
and w isthe transverse displacement, whereas | =a,b,cC .

The same displacement fields u, (k =a,b) are presumed for al the face sub-layers k; of the
face k. Based on the Euler-Bernoulli theory, S, =-w'. For the sake of simplicity, the mid-

plane of the core is set to coincide with the origin of z-axis, namely z_ =0. In the following
sections, the argumentsy and t will be ignored for notational simplicity.

Applying the displacement continuity conditions between the layers, the displacement field of
EQq. (1) can be written in terms of the three main variablesu, , . andw asfollows:

t]k(x,z):(ucih‘:%+dkwj (z-z, w'; k=a(+)b(-)

0, (0,2) =4, + 2~ 22 (3, +w) @
3h;
w, (x,z)=w(x); i=ab,c
where
d, =3hk;h° v Zy =ih =§hk k =a(+,n),b(-,m)
=1

©)
h, =2h, +hg

Using the von Karman's nonlinear displacement-strain relation, the axial ¢, and shear ¢, strains
for thei™ layer are written as:

1
m b 2
& =6 +(Z-2,)¢, +§gt

& =& +28 —Eg +132
2 4
427 .
850 :{1_}’]_3]8(:
where
& :[uc' J_rh°3ﬁ“ idkw") & = "k =a(+),b(-)

©)

’

s Ees =0 W g =W
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2.2. Reduced piezoel ectric constitutive equations

Linear orthotropic piezoelectric materials which have the material symmetry axes parallel to the
beam ones are considered here. Parameters ¢ , e, and ¢, (i,j =1...,6:k =1,2,3) represent the

ij 1

elastic, piezoelectric and dielectric material constants respectively.

The extension piezoelectric layers are poled transversely and subjected to the transverse and
longitudinal electric fields. This assumption is considered to satisfy the equilibrium electrostatic
equation due to the von Karman's displacement-strain relation. Thus, the three dimensional linear
constitutive equations of the extension piezoelectric face layers due to the plane stress
assumption (o, = 0) can be reduced to:

o
0 -e
k

=/ 0 € 0 E (6)

o
e, 0 ey E

where
2 Kk Kk 2
] C J k} ki C l kJ . kI kJ ]
Cy =Cy — 113( € =€y —%933, C33 = €33 +3sT ™
Cas Cas Cas
Oy v &y 0 Dy o By v Dy and E, are the axial stress, strain, longitudinal electric displacement,

longitudinal electric field, transverse electric displacement and transverse electric field
respectively. Sub-script k is related to the face piezoelectric layers (or extension piezoelectric

layers as their second name).

The piezoelectric core layers are poled in the longitudinal direction. Therefore, the three
dimensional linear constitutive equations due to the plane stress assumption (o, =0) can be

reduced to:

oy C§3 0 —e;; 0 ||&
o | | O Cs 0 —e5|le
Dy - e§3 0 Eg:,’ 0 E. ®
Da 0 e O € Ex
where
. ce ’ . cs . c’
A T Rt TR S ©

11 11 11

o, ande,, arethe transverse shear stress and strain respectively. Sub-script c is pertaining to the
core piezoelectric layer.

2.3. Electric potentials and fields

For the extension piezoelectric layers, both transverse and longitudinal electric fields are
presumed. Furthermore, it is assumed that the transverse electric field is linear through the
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thickness. Therefore, the electric potential in the extension piezoelectric layers is considered to
be quadratic such as:

2

v, 062) =v, ()4, (x)+§7wzl (x) (10)

k;j

Applying the electric boundary conditions on the upper and lower skins of the face piezoelectric
layersyields:

h.
v, (2, +=0)=v,
(11)

l//kJ (X’ZkJ __) = l//l:l

By the following definitions,

- (12)

the following relationship can be obtained:

2z,
l//ll S l/lzl - VkJ

\

K )
2t

2 '

V/Ol + hK l//lj + th VIZJ :l//mkj

For an extension piezoelectric patch with its upper and lower skins covered completely by
electrodes, the electric potential y; and v, , or equivalently, v, and v , are constants in the

longitudinal direction. Thus, the electric potential (Eg. (10)) can be rewritten as follows:
h2

K

(Z_Zk,)v .\ (2-2)"—
ho h

1 1

Vi (x,2) = Vo, + V., (X) (14)

Hence, the axial E, =-0y, /ox andthetransverse E, =-oy, /oz €electric fields are expressed
as:

(Z—Zk]) 4
By =—| ——=—|v;,(® (15)

f 7

Il
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Vv, 2(z-z)
= _J_[ hszJ ]VIZJ(X)

1

E3kl hk

As noted in EqQ. (15), the longitudinal electric field appears only due to considering the electric
potential higher-order terms. Moreover, it vanishes on the upper and lower skins of extension
piezoelectric layers (see Eq. (15)). By solving the following electrostatic equilibrium equation,
the choice of aquadratic electric potential isjustified.

lej,1+D2kj,2+D3kj,3:0 (16)

Assuming D, , =0 and substituting Eq. (6) into the previous equation |eads to:

OE OE
1k; ki 8elk K 3K;
—+€; + €44 =0 17
ox oz ¥ ooz (17)

This equation must be satisfied in each point along the z direction. Using Egs. (4) and (15), the
previous equation results into the following equations:

Z2

kJ
€n

k. K € K 2e
i ioon 11 g 33 _
T€n 5 Vo TV, meaW Y, =0
h j 4 j h j
K| Kj
k.
]
2¢ ij .
2 72 =0 (18)
Kj
K
S o 0
h2 2

<
ey h? (19)
I(*J W [

j
2e3)

l//z_ =-

]

Finally, the longitudinal and transverse electric fields can be expressed in the following forms:

oy h? ek
Elk‘ __ kj — (Z—Zk )Z_L 3_1kW m
i OX ) 4 2€3§

(20)
__al//kl _ij +(Z—Z )e;(lJ W"
3, 0z h, “lek

or aternatively,
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oy, h? Kj
— i 2 ki | € b
Eyx == __[(Z_ij) e < Gk

i OX 4 2¢es)
(21)
oy \ kj
* - __L_(Z_Z )533_{85
i oz h K Kj
K, 33

It is worth mentioning that in the case of assuming small deformation domain, the von Karman's
displacement-strain relation, doesn't impose any effect on the electric fields for the extension
piezoelectric layers.

For the shear piezoelectric layer, the same strategy is applied. Both longitudinal and transverse
electric fields are considered here. In addition, a quadratic variation through the thickness is
assumed for the transverse electric field, i.e., the electric potential in the core piezoelectric layers
follows cubic variations across the thickness presented with the following equation:

2 Z3

v, (x,2) ='//O(X)+éw1(X)+%wz(X)+E%(X) 22

The longitudinal and transverse electric fields for the shear piezoelectric layer are expressed as
follows based on [13]:

Gl z? 1)z
E :——C:— —— — — 4
© T o (h; 4]h Ve

cs

(23)

6z h, \h2 4)h

cs cs

oy, V., (322 1};//3
E3C:__:___ —_—_— | —

where electric boundary conditions on the upper and lower skins of the piezoelectric layers are
the same as extension piezoelectric layers (Eq. (11)). From Egs. (21) and (23), obvioudly, the
independent variables for the electric fields areVkj Ve and vy, .

2.4. Variational formulation

Using the Hamilton's principle with an extension for piezoelectric media, the following
variational equation can be written for the multilayer beam:

j:(a'r —SH +&/Vc)dt+Jtzz&NNC -0

(24)
YU, o, W, W'\, &, 5y,

where T, H, W ¢ and W "° are the kinetic energy, the electromechanical enthalpy, the work

of conservative forces and the work of non-conservative forces respectively. The
electromechanical enthalpy in the layered faces sandwich beamis,

b nm

H :Hoe+HCS+ZZHkJ_ 25)

k=aj=1
where
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1
H kj :EJ’V (lei b~ D3k1 E3kj B lel Elkl )dV

kj

1
Heo :Ejv (6301 + 0o, ~ Dic By — Do B v (26)

1
He = EJ‘VOS (o-lcglC + O 85, )dv

Hy, is the electromechanical enthalpy of the k;-th extension piezoelectric layer, H, is the

electromechanical enthalpy of the shear piezoelectric layersin the core and H,, isthe mechanical
enthalpy of the elastic layer in the core.

By using the strain field relations (Eg. (4)), the constitutive relations (Egs. (6) and (8)) and the
electric field relations (Eq. (21) and (23)) while neglecting the higher-order terms such as

gl ele &le &le &8 € ,6)¢ e ¢, (considering the small deformation domain) and

applying the variational operator for integration through the thickness, the previous equations
result into:

] h j

. . \Y; Kj
m| K m. @ b k] K @ €1 b
5{;‘k Cll Akjgk +Imkjgk —831 _Ak- __Iek Tj*gk
kj €33

b K (@ @ b K1 o Vi exl b
j m _ j _ i _ 31
+0gy | Cf (I | &k +Imkj ekj ey Imkj ' Imekl ok

. \Y
K k.
+05 | el A —¢
t { CIATI

kj 63113
L *
oH :I N, : : Vi, el dx
el {e;’ (A1 e { o0 Sy @

K;

Ki(i@ .m b
]
. 831 (Iekigk +Imekjgk

e j

+0, —= | Dy K
ki k] & ki (281 b
3B |+ Eqd | ——— 1 7 g

h &) K]
K €33

K Ko A h4 | (2)h2
e € i @ Tk k& K &
| e
4€|§é2 i 16 2

.V
The presence of the term -+ {es‘fl’ A, higt} IS due to considering the von Karman's
J
Kj

displacement-strain relation. It is clear that this term can be considered for extension
piezoelectric sensors where the sensor signal is the output voltage. It will be shown that since
this term does not vanish for sensors, the governing equation of the system will be nonlinear and
thus, thisterm is the origin of the nonlinearity in the system.
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e |(2) |(1)

ol 4 )

| @ @
a4

4 (10 12
D [ I
3h’h, (302 4

oe. (C;Acsgcm )

b| ¢ &)
+0¢, {033 (I o o

b

ae
T2 e
C

16l (3)

a9
_66‘: {C ( 3h 2 (EJ
o 1
€3 h_
+e;(_

on'

| (2) | (€N}
_cs s | gb
h2 4

1® 1@
ho2ng
1612 89
h4 h?

4e

" 3nh,
|(1) ,
T1eng )V
Fe

c ) &) o o
] (ALY (22,30 12 Al
2 he 2 h? 4 h
&/C
+
h. Y
+e,; h Ve h
e (122 3 ﬁ_k Al
2h |l h2n2 T2 T 4 )T
Ve (3 A,
s 'E[E‘T
T €) )
9" 3l A |¥s
h! 2n2 16 Jn’
m ce b _.ce @b 4|c(eZ) h
llAcegc +0¢, ¢ C11 Icegc _3_hczgc
L 41 2 (2) 1 |(3)
5Hoe:j P - WP Olee” 1 dx
0 3h; Sl
1612 8
+8e5 | & + ce Zce |S
c[ 55 {Ace h¢4 hcz (¢
o) @ +b/2 zk_+hk_/2 B B 2
[Aki’lm Imk} J.blz-[zkj—hkjlz[l(z 2 (2 Z")JdZdy

i i

(28)

(29)
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[li) |$) |$) |mekj| j+b/2J-z +h /2|:(Z Zk)(Z Zk) (Z Z )3 (Z Zk)(Z zk)}dzdy

b/2 h /2

+b/2 +h(5/2
[ACS 1919, I(3) J. I 1z ,24,26szdy

b/2 hCS/Z
A (3) +b/2 o-h/2 > a4 6 +b/2 p+he+he/2 > 4 6
[A: e lee s e J.b/2»..hce hcs/2 Lz z',z dZdy+-[b/2J-hcs/2 :Lz z z}dzdy
with
h -1
z, =% iz  k=a(+),b(-) (31

The kinetic energy of the multilayer beam is,

T =T +T, +ZZTK 32)

k=a j=1
where
1 . .
T =5 (62 +wi 2 av
kj 2 Vk pkj k kj
j

1 < <
To= Jvcs p. (u 2w 2)olvCS (33)

1 2 22
- :Ejvce P, (uc +W )dvOe

and p isthe density of each layer (I =k ,cs,ce). Applying the variational operator, integrating

by parts, using the displacement fields (Eg. (2)) and integrating through the thickness yields the
following relations:

ka[ (St + i ) - o (5ukv(/"+§w’U'k)+lr(nzk)jb‘w'vv'}dx (34)
Acs (Ul + S |
+ & B,
ot :_JLP a7 (o, +ow') A, |po¥
=), P 3hz[ﬂc(ﬂc+w) (o +0w') . | (35)
9 o+
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Ace (8l +aw )

e B e

ot :‘j ury . +vii' N ] pax

=) Peet- = | (B +i)+ (05, +ow') A | (36)

, 16 5
oht

(8, +ow')( /i +w")

Moreover, the virtual works of applied conservative forces are the same as presented in [9].

In case of clamped-free mechanical boundary condition, the non-conservative work must be
taken into account,

n,m
NC NC
WS = ) oW @)
j=

with
SW, ' =P, & (L)aw (L) (38)

where P is the piezoelectric force in the j -th extension piezoelectric layer due to considering

the von Karman's displacement-strain relation and it can be expressed as follows:
Pe = &3 Ao — (39)

Since in the case of pinned-pinned, clamped-clamped or clamped-pinned mechanical boundary
conditions, éw (L)=0, there is no need to take account of Eq. (37) in calculation of Eq. (24) for

the mentioned mechanical boundary conditions.

3. Dynamic finite element model

In this section, a finite element model for the multilayer beam is developed based on the
expressions of the virtual works in the variational formulation. Lagrangian shape functions are

considered for the longitudinal displacement of the core layers u, . For transverse displacement,
w , Hermite cubic shape functions are assumed. The ij of the face piezoelectric layers and v,

of the core piezoelectric layer are assumed to be constant within an element. A quadratic shape
function is used for the section rotation s, in order to avoid shear locking and also for the

coefficient y, to satisfy the electrostatic equilibrium condition [9]. Hence, the elemental DoF
column vector § isdefined as:
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.
D@ @ @ (2 (@ (D e Q) (2
uPw @ w® g0 @ w®@ W@ 52,00
~ 0 0 0 0 0 0 0
G =|.A° l//:g’)'Va(:l-)""’va([)’Vb(l)""!vb(p):vc(s) w0

0 (9) 0 0 (9)
,vd(jl,...,va(x>,vb§,11,...,vb(y’,vci)

where " is used to define the elemental quantities. V...V V.0 ,..v) ,VC(SO) correspond to
piezoelectric layers acting as sensors and V{%,,..V O V&, ..V, (9 ’Vc(aO) correspond to piezoelectric
layers acting as actuators. Figure 2 shows the element with its degrees of freedom.

r (0) 07 @ (@ (O
VP WSV DT,

al o

0 (0 lI)] 0 0
_,V( ) -Vax )_,V( ---vaﬁ )’Vc( )

a+12°°0? bp+l2 q ‘e

l |
o) 1 e
W gy W Q’? w O
O\ T e T Wp— T e
Vfé o ,/(1) (D))‘ ; ¢

} ¢ s %quz)

|

Fig. 2. The finite element degrees of freedom for the multilayer beam element

In spite of defining V,9,.vOVP,..vOv O for an element, another important condition

should be met for sensor voltages of piezoelectric layers. Each piezoelectric layer, acting as a
sensor, should have only one sensor voltage. This voltage must be equal to the rest of voltages of
the elements representing that specific piezoelectric layer, i.e. v for element number 1 should
be equal to v ? for element number 2 and other elements which are representing one specific
piezoelectric layer. In the following section, it is explained how to apply such condition.

By applying Eq. (40) to Egs. (27), (28) and (29), the discretized virtual works of the elemental
electromechanical internal forces of the face piezoelectric layers sH . » the piezoelectric core

layers sH. and the elastic core layers sH,, are given asfollows:

e A AT
§ij =49 (Kkim_Kkjme_’—Kkje-i_KkjmeN )q =0 qu

SHes =80 (Keam ~Kome +K o )8 =56 K8 (41)

OH e 25611— (kcem)a

a7
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where the elemental mechanical K, _, piezoelectric K, ., dielectric K, _ and nonlinear
] J J

piezoelectric Kk_meN stiffness matrices of the k ; -th face layers are:

K: T 1) T T 2) pT
Ciy [AKJ BkmBym *1 r(nl)<J (BkmBkb + Bkakm)+ | ,sqk)J Bkakb:l
s Le e§£2 o gT T ® gT @gT
Kkjm :Io +T(|ek,- BkmBio + 2 mek Bk Bub +Ieki Bk Bim _leki Bkakb) dx
€33
K k' o A h? 1@p2
_Eli 63]{ | 3 n kj Kk _ ek Kj B/T B’
— e, e, T > kb Bkb
4eg) :
R T T () T T (42)
) e A (BLaNG, +NT Bu J 419 (BLN,, +NT, By
=_[ ")z dx
k; me 0

h
k|- e(le (Bleka + NTpk] Bkb)

>
-
®
x
=

kje 0 € h2 R Rk

kj

& le Do (n o
k; mey _.[0 e31h_ t t( Pkl) X

Kj

L. isthe element length. B,,, By, and B, arethe membrane, bending strain and section rotation
operators of the face layers. N, istheinterpolation matrix used for V, in the face layers.

Inthe matrix K, _, the presence of the terms
J

kx2
€31 1) pT T 1) T 2)RT
T(Ié()] BinBko + 2 1 BhoBuo +|efk>J By By —Ie(kJ)Bkakb and
GJ

33

| oki2 A, h? |(2)h2_ . . .
N kiﬁ“ - eklzk' B/ B, aredueto considering higher-order terms for the
4egy? :

K.

longitudinal and transverse electric fields, respectively. In addition, the presence of the matrix

Ky me, ISdueto considering the von Karman's displacement-strain. This new electromechanical

matrix isvalid for both the extension piezoel ectric sensor and actuator.

The elemental stiffness matrices of the core layers, Ky, , Kene and K, are expressed as
follows:
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42
A_B! B, +1®B\B, — ~ —=-(B},By, +B,By)
c%

K- JLe 16I X

C

ghcj BIh Ba dx

) 1612 82
+055(ACS+ e h BB«

e (1@ 10
== os 2= |(BUN +NB,)
h. hé 4 O Ty vs ©

c |(3) | @
_ 4e33 __¢cs (BThN/ +N/TBh)
3h’h, | h2 4 s vs €
Kcsme =_J‘

0 c @ (43)
€15 _4| T T
o (Acs j(B N, +Nj B

6 (30 10 @O AY
T[ STy LAY
¢ |(3) I(l) IC(SZ) T L S As T
e”(hﬁ tenz 20t N TR NN

s [t €h 3|(1) Acs T T
Ke=-], " (hz : (NVCNW3+NW3I\klc) dx

LS 9|g§>+&_3|<1> NT N
hZ\ hi 16 2n2 ) v v

o

The matrix K ., for the elastic core layer is:
A.Bl B, +1 9Bl B, 4|(ZJ(BTB +BB,, )
e —cm—cm 3hc cb ch™cb
11
- L 16IO(:) .
Kcem:J.O 9h4 B B dx (44)
Oe 1612 89
+055[Aoe T he JB;BCS

Similarly, by using the elemental DoF vector (Eq. (40)), the discretized virtual works of the
inertial forces o7, oT,, and oT,, arewritten as,

5T, =0 (W1, —NT, M, +W1, )§ =08 M, &
STy =06 (M ML~ + M +M ) =00 MG (45)
5Ty =00 (Mg ~ MLy WMy + M, +N ) =567 MG
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where q is the elemental acceleration vector. The elemental mass matrices of the multilayer
beam can be expressed as follows:

_j P A NTkXka+NTN L
a9 [k ® NT

M., =, P 15 NN,

Y @ NT

M, , =, P 15 NN,
=IOLe PP (NI N, +NIN, )ax

— ™, | ONT
My = [, Pl ONE N, dx

cr cr

~ . Al
Mes =" 2 3hi NI N dx
(46)

f 16|§> NN ok

=1 PP (NIN, NN, )i

M, = j £ ONT N dx

R @
Maws =" 22 N TN o
cers 3hc

j 16'0(:) NLN, dx

where N, , N, , N, and N_ are the trandlations in x and z directions, rotation and shear
interpolation matrices. A Lagrange linear interpolation is assumed for g, to evaluate the

corresponding mass matrices since it is highly recommended to perform a static condensation of
the elemental core section rotation s [13].

The discretized virtual work of the conservative forcesis:
éV\i ¢ = 66‘T 'Em (47)
where the generalized forces are:

Tn, JrNTbxn,D+NT n, +NJ (d, +, +q, )

= d
j m +mb)+NTm —NLp, g (48)

cr C

Moreover, to compute the distributed load vectors, a linear interpolation for s, is used to avoid
any induced equivalent nodal load contributions for g . Therefore, the static condensation of
this degree of freedom will be easier [13].
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The discretized virtual work of the non-conservative forceis:

MKNC _ 5(’:‘]T k

]

5§ =56 (P Bl B

kjNC x=L

)0 (49)

Apparently, the discretized virtual work of the non-conservative force can be added to the
stiffness matrix of the element. Hence, the discretized variational formulation for an element is
written as follows:

(I\?If +|\7IC)(§+(Kf +KC+RNC)Q:Fm (50)

where M, =Y, > M, K, =Y, > K _ad K=Y ,> K, .. Since there are no inertial

electric DoFs, the mechanical and electric DoFs are coupled statically. Thus, in pursuit of afaster
and more reliable solution and also, to prevent the ill-conditioning problem, the static
condensation is performed to eliminate the electric DoFs. Since there are elemental (Vv © v @,

a ' b
v and (") and nodal (¢ and {?) electric DoFs, the static condensation is performed in
two steps: First, the unknown elemental DoFs are condensed at the element level; second, after
assembling, the nodal electric DoFs are condensed at the global level [13]. Since the von
Karman's displacement-strain relation is used here, the obtained finite element model is a
nonlinear model. Therefore, before global condensing, the governing equations are linearized.
3.1. Static condensation

In this section, in order to apply the static condensation, the elemental DoFs vector is
decomposed. When there is an actuator, an elemental DoFs vector G, corresponding to the (V.

Vb(i‘” and v @) is defined. For the sensor case of face and core piezoelectric layers, unknown
elemental DoFs vectors G and g, corresponding to (Va(]‘” and Vb‘j(’)) and (v, ) respectively are
not defined. Even for the actuator case, whenv (© is prescribed, the variables ({2 ,» ¥ and ()
are still unknown. Since the nodal electric DoFs » and »{® are to be condensed after
assembling, a DoFs vector g, isintroduced. In addition, both elemental variables ( and
are defined by a DoFs vector g, . Therefore, the elemental DoF vector is decomposed as follows:

. R A R \T
qz(qm’qe'qc*qsk-qsciqa) (51)
where

o ’ ’ U
A = (uél) W () W (1)’ﬂc(1),ué2) W (2 W (2),ﬂc(2))
- o @\
Ge :(‘//3 W3 ) (52

6~ (A0 )
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.
R 0 0) \/ (O 0
ds, :(Va(l)""'va(l)va(l)""’Vb(P))

.
a =[N\ ©
9 _(VCS )
.
A 0 0 (9) 0 0
G = (V% VOV VO VD)

According to the aforementioned definitions, the matrices K, e, @ K, . for sensor and

k;NC

actuator cases are rewritten as.

> Le k] Aﬂ L k} Aﬂ
Kkjm =Jo {%1 hK—BtTBt [ijsorvkia}}dx=jo {%1 hK—BtTBt [Np.kiq% orNP‘qua]}dx

1 1

(53)
A A A
y l kJ ]
K kjNC =6 _B:|X:L Bt |><:|_ (ijs Orvkia) =6 _B;r

h, i

whereV, S andV, , arethe voltages corresponding to each face piezoelectric sensor and actuator

B . (prkj q or Np*kj qa)

x=L !

respectively. q, and q, are the electric sensing and actuating voltage vectors of each face
piezoelectric sensor and actuator respectively. N, - isdefined as:

N, )
A 1 00 0

Npey 0 10 0

p p—
.| ]o 01 0 (54)
Pai+1 . . .

N | - :
Pby,

Hence, Eq. (50) can be decomposed as:

i Km(qa,qa) Koy K K K K, ; )
) q. Ke Ko 0 K Kallg!| |4
M 0|z - - - - ~
. qC ch _KCSK _KCSC _Kca qc O
. . + ~ =
% . 55
0 0 q, 0 0 a, 0 (55
" ScSk q 0
q 2 S
:sc sym Kes 0 . 0
Ua I kaa_

Since g, is defined, its virtual variation §qG, vanishes. Hence, the sixth line of Eq. (55) is
automatically satisfied and can be neglected. In addition, the remaining terms corresponding to
4, have to be moved to the right hand side leading to the following equivalent electric load

VECtors:
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Fma = K maaa
Fa =K caaa (56)
'Eea = I‘a eaaa

Considering the non-singularity of matrix K ., the third line of Eq. (55) can be solved for g, as

follows:
ac:k;(kmqm+kwqe+kcﬁkqsk+k§ca%+ﬁw) (57)
Replacing Egs. (56) and (57) in Eqg. (55) yields the following equation:
. dm Km(q&’qa) K Koy K a, 'Emj_’\r:"a
M 0 ae k;e _k* _K qe Fea
o + R & R & d = IE* (58)
o --- 0 qSk KskSk _KSkSc A§< sa
- ||d :
q% | sym K s | % Fsca

The modified stiffness matrices and load vectors are:

~

Koo (0, 8 ) = K (0,10~ K oK 2K

& & &« 8
S (59)
=K__ -K_ KK
Sk Sk Sk Sk ScC CSk
~ C ~
Sksc_KSkCKOC €S
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In the case of short-circuited piezoelectric sensors, G, =0 and g_ =0. Thus, the third and fourth

lines of Eqg. (58) can be neglected. On the other hand, for the open-circuit case, the induced
differences of potential dsc for the core piezoelectric layer can be obtained by solving the fourth

line of Eq. (58). Hence, g_ iswrittenintermsof g,,, . and g, asfollows:

~ _"* RV ~ Tk A “* ~ il
q, _Kscsc (Kscmqm +Ksceq‘3+Kscskqsk +Fsca) (60)

Replacing asc in the first, second and third lines of Eq. (58) yields:

i 0 offfa] [Kmlooa) Ku Ko (E G
0 0 0{q, f+ —Ki Ke Ko [{8.¢=1 Fa (61)
R B B VR SR SO A

K™ =K~ +K_K'_ K’ 62)

sa sa@ S% %% %

For the open circuit case, dsk can be expressed intermsof g, and g, asfollows:

6, =K7, (KD G, +KD 8, +F) (63)

K Sk Sk

Replacing dsk in the first and second lines of Eq. (61) yields:

M 0)[dn] | Kim (9, 0.) Ko |fa, ] [ +Fi
:m + A Sk A Am — m . ma (64)
0 0j(a, K Ko | L% Fa

where the modified stiffness matrices and load vectors are;
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Kim (91, +0.) =K (0, .0 )R, KD, K

k SkSk Sm

A***_A**_A** A** 71’\**

Ke =Kg K&‘»kKsksk Kske (65)
o _ - * A** - 71’\

Fa —Fma+KmSkKSksk wa

S 2e o P

F, =F, +K&Ek os Moo

The unknown elemental internal §, , sensors dsk and dsc DoF vectors can be computed in a post-

processing calculation using Egs. (60) and (63). To satisfy the continuity condition of the nodal
electric DoFs g, , the second line of Eq. (64) is to be condensed after assembling. However, the
second line of Eqg. (64) isvalid for an element and it can be expressed as.

4 =R (Rua, +F) ©)
Replacing the latest equation into Eq. (63), the vector ELK can be expressed in terms of q,, and
q, asfollows:

~ ~ S erk_q, ~

~ _ L PRI T N 7 oxk 5 wkk ] Daknx kR ] ek
qsk_(KSkSk Ry +KD R R Kem)qm+r<5ke}<ee F+RT_IF

Sy Sk sea

(67)

Similarly, the sensing voltage of the shear piezoelectric layers, i.e. EQ. (60), can be rewritten in
termsof g, and g, asfollows:

- _ S 1| o+ Tk D wrk_1 5 wek ~w Soax 1[5 xx Tk S wwk_1 5 wkk -
q, =K., [Kscm+KsceKee Rom +RL KT MR +RY RS Kem)}qm

+K ’l[K* K;:’lF;*+K* (K“ Km,lF;*+Kﬂ g )+F* }
s.e SeSk se Sy Sk sca s.a

S e

(68)

Considering Egs. (67) and (68) one may notice that 9, and g, are functions of 4,,. As aresult,
for different values of g, , different values of g, and q_ will be obtained. Hence, even for one
piezoelectric layer acting as sensor, different . will be obtained for each element. However,

thisis not physically possible since every piezoelectric layer acting as either sensor or actuator is
assigned only one sensor or actuation voltage. Therefore, if we had assembled Eg. (55), we
would have considered the same dsk for each element representing a specific piezoelectric layer

and would have assembled this degree of freedom in a way that only one degree of freedom
represents the sensor or actuator. However, Egs. (67) and (88) are valid for an element and these
equations have been used to condense the governing equation of motion of the system. Hence, in
order to obtain the sensor voltage for a piezoelectric layer, Egs. (67) and (68) should be globally
assembled as follows:

a, =i[(*<;;k KKK K***’lK;:)qm FK KGR K] F;:J (69)

K n, Sk Sk se &
k
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K T e e
q, -—= [KSCerKSCeKee Ko +K KE (KD 4K K Kem)}qm

4

K (70)
FRAC S [K; KR K (K KGR ek F;:a)+FS:a]

n

c

where K~ K™ K, k>

vectors and n, and n. are the number of elements representing each extension piezoelectric
layer and shear piezoelectric layer respectively.

. -
K em 1 Fea

and F_ are the global stiffness matrices and load

Therefore, K™ (qsk ,qa> can be shown as K, (d,,.0,) and then, Eq. (64) can be rewritten as:

’\7' 0 am lz*n::n (qm'qa) _R*rr:; dm Iem'f'l’i;:a*
(Tt 5 e s g [T) o (71)
0 0 4. i K K. | d. F.

The latest equation can be globally assembled as follows:

M Ofdn ] [Kim(9ma) Ko |fa,]_[Fo+Fis
O O P23 + kk kK = F*** (72)
qe | _Ke,n Kee B qe ea

By considering the second line of Eq. (72), q, can be expressed interm of q,, as:

=K 2 (Ko +F) 73
So the last step of the static condensation can be performed as follows:
M, + Ko (Am 9a) — KneKee T Kenlam = Fiy + Frig + Ko Koy ™ Feg” (74)

However, since the K’;’,"n(qm,qa) Is a function of the g, vector, Eqg. (74) is nonlinear and
therefore, its solution is troublesome. Hence, before assembling, it needs to be linearized.

3.2. Linearization around a static equilibrium position
It is generally assumed that the nodal load vector F,, is a function of the known parameters
vector, f and afunction of the displacement vector q,_ ,i.e. F, =Fm(qm,f).

Suppose that the governing equations of the system due to known g, and ,f isexpressed as:

My, + (K (s 0) KoK
Fo (G ) P (0 + KK TR () 7

Assume a small perturbation around a static equilibrium position for q,, as:
U (X,t)= 0, (x )+ 50, (x,t) (76)

where g, isthe static equilibrium position.
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Substituting Eq. (67) into Eq. (75) and using the Taylor's series expansion around the static
equilibrium position , q,, and neglecting the higher order terms, Eq. (75) can be rewritten as:

N e DK oF,
Méqm-'_[Knm(iqm'iqa)_KmeKee 1Kem—i_a— i m_8 ]5qm20 (77)
Ain Um=9 Aim Am=iGm

Having known both vectors g, and ,q, , one may easly calculate the natural frequencies
around the static equilibrium position.

The eigenvalue problems of the system under open-circuit and short-circuit electric conditions
may be written, respectively, as.

o [N ey e e OK oF
_ 2 _ -1 mm _ m oc _
{ wocM+Kmm(iqm'iqa) KmeKee Kem+ aq i 4m aq J(ﬂ 0 (78)
M ldm=idm M ldm =i dm
. - . oK oF
2 -1 mm m < _
_wscM+Kmm(iqm'iqa)_KmKee Kem+ i m_aq }/’ =0 (79)
M ldm=iAm M ltm =i dm

For more details on the short-circuit and open-circuit electric boundary conditions, interested
readers can refer to [1].

4. Model validation

To validate the proposed FE model, two examples are studied:
1) A pined-pined laminate el astic/shear piezoel ectric/elastic beam, and
I1) A clamped-free laminated €l astic/adhesi ve/extension piezoel ectric beam.

The obtained results are compared to the available data in literature in order to show the degree
of agreement between the proposed and the available models.

For the following two cases, since there are no piezoelectric sensors and nonlinear mechanical

Fn are vanished from Egs. (78) and (79). Thus:

oK
forces, theterms Wm”‘ .q,, and

m m

K::n(iqm’iQa)zK:; (80)

4.1. A pined-pined laminated elastic/shear piezoelectric/elastic beam

In this section, a pined-pined sandwich beam with an embedded shear piezoelectric layer is
considered (Fig. 3). The results are compared with the available numerical data in [13],
analytical results of [15] and Abagqus software results from [15]. The numerical results are
obtained using TSDT model where the shear strain and electric field are not constant [13]. The
analytical results are obtained using the classical sandwich theory with constant shear strain and
transverse electric field [15].
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g Aluminum 2.25
ZD PZT-5A 0.5
: Aluminum 2.25

110

Fig. 3. A pined-pined sandwich beam with shear piezoelectric layer (dimensions are in mm)

The shear piezoelectric layer is made of PZT-5A and is sandwiched between two Aluminum
layers. The material properties are as follows. For the Aluminum layers; the stiffness constants
are c® =73 GPa and cZ =28.08 GPa and the mass density is p, =2790 kg/m?3. For the PZT-5A

layer; the reduced material properties are cg,; =609 GPa, c, =21.1 GPa and p_ = 7700 kg/m3, the
piezoelectric coupling coefficients are e; =193 C/m?, e, =123 C/m? and the dielectric

constants are <¢,=1.531x10° F/m and €,=1510x10° F/m.

The first five natural flexural frequencies are obtained using the proposed model with 80
elements deployed. Presented in Tables 1 and 2, the obtained results are compared to the
analytical and numerical results for short-circuit and open-circuit electric boundary conditions
respectively. The results show good agreement with those reported by others.

Table 1. Comparison of analytical and numerical (Abagus and TSDT model) results for the first five flexural natural
frequencies (in Hz) under a short-circuit electric boundary condition

Mode TSDT [13] Analytical [14] Abagus[14] Present model
1 882.7 882.7 881.6 882.0
2 3518 3524 3495 3507.0
3 7868 7904 7752 7815.2
4 13873 13988 13519 13708.0
5 21454 21734 20639 21054.1

Table 2. Comparison of analytical and numerical (Abagqus and TSDT model) results for first five flexural natural
frequencies (in Hz) under an open-circuit electric boundary condition

Mode TSDT[13] Analytical [14] Abagus[14] Present model
1 882.8 882.9 881.7 882.1
2 3520 3527 3498 3508
3 7877 7919 7765 7818
4 13901 14034 13559 13718
5 21520 21845 20729 21078

4.2. A clamped-free laminated elastic/adhesive/extension piezoelectric beam

As a second example, a piezolaminated beam with an extension piezoelectric layer is considered
asshownin Fig 4.

_~Adhesive

Piezoelectric ~ S24 1] L .c
A 1.524 0,254

Aluminum 15.24

152.4
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Fig. 4. A clamped-free sandwich beam with extension piezoelectric layer (dimensions are in mm)

The material properties are as follows. For the Aluminum layer; the stiffness constants are
c® =68.97 Gpa and c& =27.59 Gpa and the mass density is p, = 2769 kg/m3. For the adhesive

layer; the Young's modulus is ¢ =6.90 GPa and the mass density is p, =1662 kg/m3. The
reduced material properties of the extension piezoelectric layer are cﬁ =6897 GPa with
p, =7600 kg/m3, piezoelectric coupling coefficient e§1 =-841 C/m? and the di€lectric

constants are € =1.506x10°F/m and &5,=1.150x10° F/m.

For the open and closed circuit electrical boundary conditions, the first five flexural natural
frequencies are computed where 14 elements are deployed. The results obtained from the
proposed finite element model are compared with the results published by Krommer and Irschik
[16]. Moreover, the obtained results are compared with the available data for the Timoshenko
multilayer finite element model published by Trinidade, Benjeddou and Ohayon [12].

5. Numerical results

In this section, a pined-pined piezolaminated sandwich beam with extension and shear
piezoelectric layers acting as actuators and sensors is considered (Fig. 5). All dimensions of the
beam are in millimeters as shown in Fig. 5.

It is assumed that the extension piezoelectric layers are made of PZT-5H and their reduced
material property are cﬁf =655 GPa with p_=7500 kg/m?, piezoelectric coupling coefficients

esk; —-232 C/m? and the dielectric constants e;/ =1.505x10° F/m and eg=1.540><1 ® F/m. Other
material properties for the shear piezoelectric and aluminum are the same as those in the
previous section.

i

PZT-5H (sensor) 0.5

7] PZT-5H (actuator) L5
Aluminum 2.25

7N A=

1 PZT-5A (sensor) [ PZT-5A (sensor) 0501 =
Aluminum 2.25
PZT-5H (actuator) .5

330

Fig. 5. A pined-pined sandwich beam with shear and extension piezoelectric layers (dimensions are in mm)

One of the extension piezoelectric layers acts as a sensor and therefore, the nonlinear effect
exists here due to the von Karman's nonlinear displacement-strain relation. Since the
piezoelectric sensor voltage depends on the deflection of the piezolaminated beam (see Egs. (69)
and (70)), a static external mechanical force is applied on the top surface of the piezolaminated
beam.

Considering the fact that the maximum applying electric field can be about 100 kV/cm for PZT
materials [17], the applied voltage to the extension piezoelectric layers is taken from O to -5000
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Volts. Hence, by using Eq. (77), the natural flexural frequencies for different external
mechanical loads at applied voltages 0 and -5000 volts are computed and presented in Table 3.

Table 3. Comparison of the nonlinear effect on the first four natural flexural frequencies and
sensor voltages for different applied forces

Sensor voltages (V)

Mode 1 Mode 2 Mode 3 Mode 4

Force (kN) Actuator voltages (H2) (H2) (H2) (H2) q

Sk1 Se1

F =20 AtOV 89.36 446.8 1027 1845 1399 22.06
At -5000 V 175.6 532.6 1115 1934 458 9.61
A (%) 96.51 19.20 8.57 4.82 -67.26 -56.43

F =10 AtOV 105.0 453.4 1033 1851 612.8 9.90
At -5000 V 178.2 534.2 1117 1935 225.9 4.76
A (%) 69.71 17.82 8.13 4.54 -63.14 -51.92

F=1 AtOV 114.8 458.0 1038 1856 56.32 0.93
At -5000 V 180.5 535.7 1118 1937 22.37 0.47
A (%) 57.23 16.96 7.71 4.36 -60.28 -49.46

Since the shear deformation is axisymmetric with respect to the mid-point of the beam, two shear
piezoelectric layers are considered. The sensor voltages for the left shear piezoelectric layer q_

are tabulated in Table 3. Due to the symmetric configuration of the shear piezoelectric layers, the
sensor voltage of the right shear piezoelectric layer q,, has an identical numeric value with the

|left one but with an opposite sign. The column identified by q_ is the voltage of the top sensor
layer.
As depicted in Table 3, by increasing the applied voltage, the natural flexural frequencies are

increased. This can be explained by the fact that the extension piezoelectric layers induce an
axial tensile force and this tensile force stiffens the sandwich piezolaminated beam.

The voltage of the top sensor layer (q, ) can be used to compare the axial force on the beam.

From Table 3, it is obvious that by decreasing the applied force, the sensor voltage is decreased
and when the sensor voltage is decreased, the nonlinear effect is less important. It is also shown
that the sensor voltage of the extension piezoelectric layer is higher than the sensor voltage of the
shear piezoelectric layer. Thus, for small deflections, to have a better sensitivity to deflection,
one may prefer to deploy extension piezoel ectric layers instead of shear piezoelectric layers.

To have a better visualization, Figs 6, 7 and 8 show the first natural flexural frequency, sensor
voltages of the extension and shear piezoelectric layers for different applied mechanical forces
and applied voltages respectively. As shown in Fig. 6, at different applied mechanical forces, for
lower applied voltages to the extension piezoelectric actuators, the change in the first natural
flexural frequency is higher than the change in the first natural flexural frequency for the higher
applied voltages. This can be explained by the obtained results depicted in Fig. 7.

60



A. A. Tahmasebi Moradi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(1) 35-64 (2016)

First flexural natural frequency (Hz)

.15
Applied voltages to extension o .2 Applied mechanical force (kN)
piezoelectric actuators (V)

Fig. 6. First natural flexural frequency versus different applied mechanical forces and applied voltages
to the extension piezoel ectric actuators

........

g

§

1000 .. NRC T 1 b et

oo

Sensor veltage at the extension piezoelectric sensor (V)

5 .

Applied mechanical force (kN) =% Applied voltages to the extension

piezoelectric actuators (V)

Fig. 7. Sensor voltage of the extension piezoel ectric sensor versus different applied mechanical forces and applied
voltages to the extension piezoel ectric actuators

It shows that for lower applied voltages, the flexural stiffnessis lower than the flexural stiffness
for higher applied voltages. Thus, in case of applying the identical mechanical forces, for lower
applied voltage, the sensor voltage of the extension piezoelectric sensor is higher than the sensor
voltage for higher applied voltage.

In order to reduce the nonlinear effect, three solutions are suggested:

1) Reducing the thickness of the extension piezoel ectric sensor,

2) Using a short patch of the extension piezoel ectric sensor instead of a complete layer, and
3) Making the configuration symmetric according to the sensor configurations.
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Sensor voltage of the shear piezoelectric sensor (V)
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Applied mechanical force (kN) 5 \

-0
1000 Applied voltages to the extension

0 o !
piezoelectric actuators (V)

Fig. 8. Sensor voltage of the shear piezoelectric sensor versus different applied mechanical forces and applied
voltages to the extension piezoel ectric actuators

The last solution comes from the fact that in the case of symmetric configuration, the sensors
cancel the effect of each other. For the last example, another extension piezoelectric sensor is
added to the earlier configuration (i.e., Fig. 5), as shown in Fig. 9.

F
PZT-5H (sensor) 0.5
PZT-5H (actuator) 0.5
Aluminum 2.25
PZT-5A (sensor) [ PZT-5A (sensor) 0.5
Aluminum 2.25

PZT-5H (actuator)

PZT-5H (sensor)

330

Fig. 9. A pined-pined piezolaminated beam with two symmetric extension piezoelectric sensors

(dimensions are in mm)

Since the configuration of the piezolaminated beam is now symmetric according to the
placement of the extension piezoelectric sensors, the nonlinear effect is nullified. For this case,
the results are presented in Table 4 at 0 volt to actuator layers.

Table 4. Comparison of the nonlinear effect on the first natural flexural frequency and sensor voltage
for a symmetric configuration of the sensors

Sensor voltages (V)
Force (kN) Model(Hz) Mode2(Hz) Mode3(Hz) Mode4 (Hz) q q
Sk1 Se1
F=20 124.1 497.2 1122.4 2005.4 852.7 17.27
F=10 124.1 497.2 1122.4 2005.4 426.3 8.64
F=1 124.1 497.2 1122.4 2005.4 42.63 0.86

As expected, adding another extension piezoelectric sensor stiffens the intrinsic stiffness of the
piezolaminated beam. The results also indicate that for any applied mechanical force, the natural
frequencies are all the same. This can be interpreted that for any applied mechanical forces, the
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sensor voltages of both the top and the bottom extension piezoelectric sensors have the same
magnitude with opposite sign when the top layer is in compression and the bottom layer is in
tension. Therefore, these two sensors cancel out their effect and hence, the calculated natural
frequencies remain unchanged for different applied mechanical forces.

6. Conclusions

In this paper, an electromechanically coupled finite element model for a piezolaminated beam
was presented. For the mechanical model, the classical sandwich theory (CST) was considered
with the core layers modeled according to the third-order shear deformation theory (TSDT). The
face layers were modeled with the Euler-Bernoulli hypothesis. The von Karman's nonlinear
displacement-strain relation was used to develop the displacement-strain relations. Using the
Hamilton's principle with an extension to the piezoel ectric media and governing the equation for
the piezolaminated beam, it was shown that two new terms are observed for the extension
piezoelectric layers due to considering the von Karman's nonlinear displacement-strain relation.
One was an electromechanical stiffness-like term and the other one was a non-conservative work
term. Developing the finite element (FE) model, it was shown that if the output voltage of the
extension piezoelectric layer is deployed as the sensor signal, the system encounters nonlinearity
and this nonlinearity in modeling of the piezolaminated beam has been pointed out for the first
time. Next, the presented model was validated with two cases reported in the literature. Once the
model was validated, a new case, symmetric and asymmetric configuration of a beam consisted
of both extension piezoelectric actuators and sensors, was considered. It was shown that when
the extension asymmetric piezoelectric sensor exists in the system, the nonlinear effect is
important and the flexural natural frequencies change due to the nonlinearity.
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