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Piezoelectric actuators and sensors have been broadly used for design 
of smart structures over the last two decades. Different theoretical 
assumptions have been considered in order to model these structures 
by the researchers. In this paper, an enhanced piezolaminated 
sandwich beam finite element model is presented. The facing layers 
follow the Euler-Bernoulli assumption while the core layers are 
modeled with the third-order shear deformation theory (TSDT). To 
refine the model, the displacement-strain relationships are developed 
by using von Karman's nonlinear displacement-strain relation. It will 
be shown that this assumption generates some additional terms on the 
electric fields and also introduces some electromechanical potential 
and non-conservative work terms for the extension piezoelectric sub-
layers. A variational formulation of the problem is presented. In order 
to develop an electromechanically coupled finite element model of 
the extension/shear piezolaminated beam, the electric DoFs as well as 
the mechanical DoFs are considered. For computing the natural 
frequencies, the governing equation is linearized around a static 
equilibrium position. Comparing natural frequencies, the effect of 
nonlinear terms is studied for some examples. 
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1. Introduction 

Piezoelectric actuators/sensors have been widely used for design of smart structures over the last 
two decades leading to high-performance and light-weight solutions. They can be either surface-
mounted or embedded into a host structure. Surface-mounted actuators/sensors are normally 
poled in the thickness direction, so that they act as extension actuators/sensors, while embedded 
actuators/sensors are normally poled in the longitudinal direction; therefore, they act as shear 
actuators/sensors. 
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In view of their wide application, the modeling of these structures is a major concern for many 
researchers. It often requires a coupled modeling between the host structure and the piezoelectric 
sensors and actuators. Due to the complexity of these systems, different theoretical assumptions 
have been considered in order to deal with the coupling effect between the mechanical and 
electric fields and thus, considerable research has been carried out in this regard [1-4]. Most of 
the existing refined models for piezolaminate structures focus on extension piezoelectric 
actuators and sensors [5-7]. Since extension actuators present a simpler electrical behavior, 
simple low order electric models with higher order mechanical models have been developed 
more commonly. 

On the other hand, piezolaminated beam models based on the equivalent single layer (ESL) 
theory cannot accurately model the local shear deformation of the embedded piezoelectric shear 
sensors/actuators [8]. As a result, calculations of both deflections induced by piezoelectric 
actuators and induced electric potential on piezoelectric shear sensors by structural deflection are 
obstructed [9]. Thus, using the classical sandwich beam theory presents a proper mathematical 
approach for modeling the structures with piezoelectric shear layers in order to analyze the 
system statically and dynamically [9-13]. A shear locking free electromechanically coupled finite 
element model for a multilayer beam consisting of both extension and shear piezoelectric layers 
was proposed by Trinidade et al. [11]. In this work, the Euler–Bernoulli hypothesis was assumed 
for the face sub-layers where the Timoshenko theory was considered for the core layer. Later, the 
electric DoFs were introduced as well as the mechanical DoFs leading to a finite element model 
which was in a proper form considering the controller design viewpoint [10-12]. To provide a 
better model, the third-order shear deformation theory (TSDT) was used for the core layer 
instead of the Timoshenko first order shear deformation theory (FSDT) [9]. Also, a static finite 
element model was proposed for the piezoelectric sandwich beam and a third-order electric 
potential was considered for the core piezoelectric layer due to considering the TSDT. As a 
result, more realistic presentations for both shear strain and core electric field were achieved and 
it was shown that using the TSDT could lead to more accurate results of 10-20% for the 
corresponding cases. In a later modeling effort [13], a dynamic finite element model was 
presented where mechanical and electric DoFs were grouped differently to provide a better 
understanding of the electric boundary conditions.    

In this paper, an improved piezolaminated sandwich beam model is presented. The facing layers 
follow the Euler-Bernoulli assumption while the core layers are modeled with the third-order 
shear deformation theory (TSDT). To refine the model, the displacement-strain relationships are 
developed using the von Karman's nonlinear displacement-strain relation. It will be shown that 
this assumption generates some additional terms on the electric fields and also introduces some 
electromechanical potential and non-conservative work terms for the extension piezoelectric sub-
layers. A variational formulation of the problem is presented. The electromechanically coupled 
finite element model of the piezolaminated beam was incorporating both the electric and the 
mechanical DoFs. The governing equation is linearized around a static equilibrium position to 
compute the natural frequencies. Using modal analysis, it is shown that the obtained results are 
in a good agreement with the available data in the literature. Finally, it is shown that if the output 
voltage of the extension piezoelectric layer is taken as the sensor signal, the governing equation 
of the system will be nonlinear. In case of fairly high deformation, this nonlinearity will be more 
noticeably effective and causes the natural flexural frequencies to behave erratically. 
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2. Theoretical formulation 

The proposed model is considering a multilayer beam made of piezoelectric layers using the 
classical sandwich theory. The piezolaminated beam consists of a core layer sandwiched 
between top and bottom laminate face layers. The core itself consists of piezoelectric and elastic 
materials. The Euler-Bernoulli theory is assumed for the extension piezoelectric face layers; 
therefore, they are modeled using classical laminate theory. On the contrary, the core layer 
undergoes the shear strains; hence, it is modeled using the TSDT proposed by [14]. For 
simplicity, all piezoelectric layers are assumed to be orthotropic perfectly either bonded or 
embedded and in the plane stress state. Also, the extension piezoelectric face layers are poled in 
the thickness direction, while the shear piezoelectric layer is poled in the longitudinal direction. 
The length, width and thickness of the beam are denoted by L , b  and h  respectively. Quantities 
which are related to the upper, core and lower layers are represented by the subscripts ja , c and 

jb where the set of subscript  1, , ( , )j n m   denotes a sub-layer of the laminate faces. Faces 

a  and b  may have n  and m  sub-layers respectively.  

2.1. Kinematics and strains 

In view of the aforementioned assumptions, the axial and transverse displacement fields of the 
core and face layers are written as follows (see Fig. 1): 

 ( , , , ) ( , ) ( ) ( , ); ,k k k ku x y z t u x t z z x t k a b   
 

(1) 

 3

2

4( )
( , , , ) ( , ) ( ) ( , ) ( , ) ( , ) ;

3
c

c c c c c
c

z z
u x y z t u x t z z x t x t w x t

h
        


 

 ( , , , ) ( , ); , ,iw x y z t w x t i a b c 
 

 
Fig. 1. Kinematic representation of the piezolaminated beam 
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where lu  is the axial displacement, l is the transverse normal rotation, lz  is the local z-axis 

and w is the transverse displacement, whereas , ,l a b c . 

The same displacement fields ( , )ku k a b  are presumed for all the face sub-layers jk  of the 

face k . Based on the Euler-Bernoulli theory, k w   . For the sake of simplicity, the mid-

plane of the core is set to coincide with the origin of z-axis, namely 0cz  . In the following 

sections, the arguments y and t will be ignored for notational simplicity. 

Applying the displacement continuity conditions between the layers, the displacement field of 
Eq. (1) can be written in terms of the three main variables cu , c  and w  as follows:   

 

( , ) ( ) ; ( ), ( )
3

c c
k c k k

h
u x z u d w z z w k a b

 
        

 


  

(2) 
 3

2

4
( , ) ( )

3c c c c
c

z
u x z u z w

h
     

 

 ( , ) ( ); , ,iw x z w x i a b c 
 

where 

 ,

1

3
; ;

6 2 j

n m
k c k c

k k k k
j

h h h h
d z h h



 
    ( , ), ( , )k a n b m    

2c ce csh h h   
(3) 

Using the von Karman's nonlinear displacement-strain relation, the axial 1  and shear 5  strains 

for the ith layer are written as: 

 2
1

1
( )

2
m b

k k k k tz z        

(4) 

 3
2

1 2

4 1

23
m b h

c c c c t
c

z
z

h
         

 2

5 2

4
1 s

c c
c

z

h
 

 
  
 

 

where 

 
; ; ( ), ( )

3
m bc c
k c k k

h
u d w w k a b


 

 
         

 
  

(5) 
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2.2. Reduced piezoelectric constitutive equations 

Linear orthotropic piezoelectric materials which have the material symmetry axes parallel to the 
beam ones are considered here. Parameters ijc , kje  and kk ( , 1, ,6; 1,2,3)i j k   represent the 

elastic, piezoelectric and dielectric material constants respectively. 

The extension piezoelectric layers are poled transversely and subjected to the transverse and 
longitudinal electric fields. This assumption is considered to satisfy the equilibrium electrostatic 
equation due to the von Karman's displacement-strain relation. Thus, the three dimensional linear 
constitutive equations of the extension piezoelectric face layers due to the plane stress 
assumption ( 03  ) can be reduced to:  

 * *

* *

11 311 1

111 1

31 333 3

0

0 0

0

j j

j

j

j j

j j

j j

k k

k k
k

k k

k k

k k

c e

D E

eD E

 
    
                        

 (6) 

where 

 2 2

* * *
13 13 33

11 11 31 31 33 33 33

33 33 33

; ;
j j j

j j j j j j j

j j j

k k k
k k k k k k k

k k k

c c e
c c e e e

c c c
        (7) 

1 jk
 , 

1 jk
 , 

1 jk
D , 

1 jk
E , 

3 jk
D  and 

3 jk
E are the axial stress, strain, longitudinal electric displacement, 

longitudinal electric field, transverse electric displacement and transverse electric field 
respectively. Sub-script jk is related to the face piezoelectric layers (or extension piezoelectric 

layers as their second name). 

The piezoelectric core layers are poled in the longitudinal direction. Therefore, the three 
dimensional linear constitutive equations due to the plane stress assumption ( 03  ) can be 

reduced to: 

 * *

* *

33 331 1

55 155 5

1 133 33

3 315 11

0 0

0 0

0 0

0 0

c c
c c

c c
c c

c c
c c

c c
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c e

c e

D Ee
D Ee

 
 

    
                

        

 (8) 

where 

 2 2

* * *13 13 31
33 33 33 33 31 33 33

11 11 11

; ;
c cc

c c cc c c c
c c c

c c e
c c e e e

c c c
        (9) 

5c and 5c  are the transverse shear stress and strain respectively. Sub-script c is pertaining to the 

core piezoelectric layer. 

2.3. Electric potentials and fields 

For the extension piezoelectric layers, both transverse and longitudinal electric fields are 
presumed. Furthermore, it is assumed that the transverse electric field is linear through the 
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thickness. Therefore, the electric potential in the extension piezoelectric layers is considered to 
be quadratic such as: 

 2

20 1 2
( , ) ( ) ( ) ( )

j j j j

j j

k
k k

zz
x z x x x

h h
       

(10) 

Applying the electric boundary conditions on the upper and lower skins of the face piezoelectric 
layers yields: 

 
( , )

2
j

j j j

k

k k k

h
x z     

(11) 
 

( , )
2

j

j j j

k
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h
x z     

By the following definitions, 

 
j j jk k k

V      

(12)  

2
j j

j

k k

mk

 


 
  

the following relationship can be obtained: 

 
1 2
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j j j
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z
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    

(13)  2

2

20 1 2

4
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k

k

k
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h
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h h
   

 
 
 
     

For an extension piezoelectric patch with its upper and lower skins covered completely by 
electrodes, the electric potential 

jk
  and 

jk
  , or equivalently, 

jk
V  and 

jmk
 , are constants in the 

longitudinal direction. Thus, the electric potential (Eq. (10)) can be rewritten as follows:  

 
 

2

2
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 (14) 

Hence, the axial 
1

/
j jk k

E x    and the transverse 
3

/
j jk k

E z    electric fields are expressed 

as: 
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21 2
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 
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 (15) 
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23 2

2( )
( )j j

j j

j j
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k
k k

V z z
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  

 

As noted in Eq. (15), the longitudinal electric field appears only due to considering the electric 
potential higher-order terms. Moreover, it vanishes on the upper and lower skins of extension 
piezoelectric layers (see Eq. (15)). By solving the following electrostatic equilibrium equation, 
the choice of a quadratic electric potential is justified. 

 
1 ,1 2 ,2 3 ,3

0
j j jk k k

D D D    (16) 

Assuming 
2 ,2

0
jk

D   and substituting Eq. (6) into the previous equation leads to: 

 
* *1 31

11 31 33 0j jj j j
k kk k kk
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 (17) 

This equation must be satisfied in each point along the z  direction. Using Eqs. (4) and (15), the 
previous equation results into the following equations: 
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Obviously, 
2 j

  depends only on w . 
2 j

 and its second derivative are obtained as follows: 
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Finally, the longitudinal and transverse electric fields can be expressed in the following forms: 
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or alternatively,  
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It is worth mentioning that in the case of assuming small deformation domain, the von Karman’s 
displacement-strain relation, doesn't impose any effect on the electric fields for the extension 
piezoelectric layers. 

For the shear piezoelectric layer, the same strategy is applied. Both longitudinal and transverse 
electric fields are considered here. In addition, a quadratic variation through the thickness is 
assumed for the transverse electric field, i.e., the electric potential in the core piezoelectric layers 
follows cubic variations across the thickness presented with the following equation: 

 2 3

0 1 2 32 3
( , ) ( ) ( ) ( ) ( )c

cs cs cs

z zz
x z x x x x

h h h
         (22) 

The longitudinal and transverse electric fields for the shear piezoelectric layer are expressed as 
follows based on [13]: 

 2

1 32

1

4
c

c
cs cs

z z
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x h h



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(23) 
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3
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3 1

4
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c
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V z
E

z h h h

  
        

 

where electric boundary conditions on the upper and lower skins of the piezoelectric layers are 
the same as extension piezoelectric layers (Eq. (11)). From Eqs. (21) and (23), obviously, the 
independent variables for the electric fields are 

jk
V , cV  and 3 . 

2.4. Variational formulation 

Using the Hamilton's principle with an extension for piezoelectric media, the following 
variational equation can be written for the multilayer beam: 

  2 2

1 1

0
t tC NC

t t
T H W dt W         

(24) 
 3, , , , , ,

j
c c ck

u w w V V        

where T , H , CW  and NCW  are the kinetic energy, the electromechanical enthalpy, the work 

of conservative forces and the work of non-conservative forces respectively. The 
electromechanical enthalpy in the layered faces sandwich beam is, 

 ,

1
j

n mb

ce cs k
k a j

H H H H
 

    (25) 

where 
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 11 3 3 1 1
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H dv      ௖௦ is theܪ ,௞ೕ is the electromechanical enthalpy of the ௝݇-th extension piezoelectric layerܪ 

electromechanical enthalpy of the shear piezoelectric layers in the core and ܪ௖௘ is the mechanical 
enthalpy of the elastic layer in the core. 

By using the strain field relations (Eq. (4)), the constitutive relations (Eqs. (6) and (8)) and the 
electric field relations (Eq. (21) and (23)) while neglecting the higher-order terms such as

2 3, , , , , , ,h b m m b
t c t c t c t t t t k t k t              (considering the small deformation domain) and 

applying the variational operator for integration through the thickness, the previous equations 
result into: 
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The presence of the term 
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 is due to considering the von Karman's 

displacement-strain relation. It is clear that this term can be considered for extension 
piezoelectric sensors where the sensor signal is the output voltage. It will be shown that since 
this term does not vanish for sensors, the governing equation of the system will be nonlinear and 
thus, this term is the origin of the nonlinearity in the system.  
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The kinetic energy of the multilayer beam is, 
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  is the density of each layer ( , ,jl k cs ce ). Applying the variational operator, integrating 

by parts, using the displacement fields (Eq. (2)) and integrating through the thickness yields the 
following relations: 
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Moreover, the virtual works of applied conservative forces are the same as presented in [9]. 

In case of clamped-free mechanical boundary condition, the non-conservative work must be 
taken into account, 
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with 
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where 
jk

P is the piezoelectric force in the j -th extension piezoelectric layer due to considering 

the von Karman's displacement-strain relation and it can be expressed as follows: 
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P e A

h
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Since in the case of pinned-pinned, clamped-clamped or clamped-pinned mechanical boundary 
conditions,   0w L  , there is no need to take account of Eq. (37) in calculation of Eq. (24) for 

the mentioned mechanical boundary conditions.  

3. Dynamic finite element model 

In this section, a finite element model for the multilayer beam is developed based on the 
expressions of the virtual works in the variational formulation. Lagrangian shape functions are 
considered for the longitudinal displacement of the core layers cu . For transverse displacement,

w , Hermite cubic shape functions are assumed. The 
jk

V  of the face piezoelectric layers and cV  

of the core piezoelectric layer are assumed to be constant within an element. A quadratic shape 
function is used for the section rotation c  in order to avoid shear locking and also for the 

coefficient 3  to satisfy the electrostatic equilibrium condition [9]. Hence, the elemental DoF 

column vector q̂ is defined as: 
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where ^  is used to define the elemental quantities. (0) (0) (0) (0) (0)
1 1,..., , ,..., ,

s
a a b bp c

V V V V V correspond to 

piezoelectric layers acting as sensors and (0) (0) (0) (0)(0)
1 1,..., , ,..., ,

a
axal bp by c

V V V V V   correspond to piezoelectric 

layers acting as actuators. Figure 2 shows the element with its degrees of freedom. 

 

 
Fig. 2. The finite element degrees of freedom for the multilayer beam element 

In spite of defining (0) (0) (0) (0) (0)
1 1,..., , ,..., ,

s
a a b bp c

V V V V V  for an element, another important condition 

should be met for sensor voltages of piezoelectric layers. Each piezoelectric layer, acting as a 
sensor, should have only one sensor voltage. This voltage must be equal to the rest of voltages of 
the elements representing that specific piezoelectric layer, i.e.  (0)

1aV for element number 1 should 

be equal to (0)
1aV  for element number 2 and other elements which are representing one specific 

piezoelectric layer. In the following section, it is explained how to apply such condition. 

By applying Eq. (40) to Eqs. (27), (28) and (29), the discretized virtual works of the elemental 
electromechanical internal forces of the face piezoelectric layers ˆ

jk
H , the piezoelectric core 

layers ˆ
csH  and the elastic core layers ˆ

ceH  are given as follows: 
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where the elemental mechanical ˆ
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K , piezoelectric ˆ
jk me

K , dielectric ˆ
jk e

K  and nonlinear 

piezoelectric ˆ
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K  stiffness matrices of the jk -th face layers are: 
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K
B N N B

 

*

33 20

ˆ e jj

j j j

j

L kk T

k e Pk Pk
k

A
dx

h

     
  

K N N  

 *

310

ˆ e jj

j N j

j

L kk T
t tk me Pk

k

A
e dx

h

    
  

K B B N  

eL is the element length. kmB , kbB  and tB  are the membrane, bending strain and section rotation 

operators of the face layers. 
jPk

N is the interpolation matrix used for 
jk

V  in the face layers.  

In the matrix ˆ
jk m

K , the presence of the terms
*

*

2
(1) (1) (2)31

33

2
j

jj j jj

k
T T T T
km kb kb kb kb km kb kbmekek ek ekk

e
I I I I    
 

B B B B B B B B  and 

*

*

(2) 24
2

(3)11 31

2
33

16 24

j j
jj j j

jj

k k
kk k ek T

kb kbekk

I hA he
I
 

          

B B  are due to considering higher-order terms for the 

longitudinal and transverse electric fields, respectively. In addition, the presence of the matrix 
ˆ

j Nk me
K  is due to considering the von Karman's displacement-strain. This new electromechanical 

matrix is valid for both the extension piezoelectric sensor and actuator.  

The elemental stiffness matrices of the core layers, ˆ
csmK , ˆ

csmeK  and ˆ
cseK  are expressed as 

follows: 
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 
*

(2)
(1)

2

33 (3)

40

(2) (1)

55 4 2

4

3

16ˆ
9

16 8

e

T T T Tcs
cs cm cm cs cb cb cb ch ch cb

cc

L Tcs
ch chcsm

c

c Tcs cs
cs cs cs

c c

I
A I

h
c

I
dx

h

I I
c A

h h

  
    

  
      

   
         



B B B B B B B B

B BK

B B

 

(43) 

 

 

 

*

3 3

*

3 3

(2) (1)
33

2

(3) (2)
33

2 2

(1)
15

2

(1) (1) (2)
15

2 2 2

4

4

43ˆ
4

2

3 12

2

c c

c
T Tcs cs
cb cb

cs cs

c
T Tcs cs
ch ch

c cs cs

csme
c

T Tcs
cs cs csV V

cs c

c
cs cs cs

cs cs c cs

e I I

h h

e I I

h h h

e I
A

h h

e I I I

h h h h h

 

 

 
   

 

 
    

  
 

   
 

  

B N N B

B N N B

K

B N N B

 
3 3

0

2 4

eL

T Tcs
cs cs

c

dx

A
 

 
 
 
 
 
  
 
 
 
 
  
   
   



B N N B

 

 

*

3 3

3 3

3 3

(3) (1) (2)
11

33 6 2 4 2

(1)
11
2 2

(2) (1)
11
2 4 2

16 2

3ˆ
4

9 3

16 2

c c

c c

c
c T Tcs cs cs cs

V V
cs cs cs cs

c
T Tcs cs

cse V V
cs cs

c
Tcs cs cs

cs cs cs

I I I A

h h h h

I A

h h

I A I

h h h

 

 

 

         
  
         

  
         

N N N N

K N N N N

N N

0

eL
dx



  

The matrix ˆ
cemK  for the elastic core layer is: 

 
 

(2)
(1)

2

11 (3)

40

(2) (1)

55 4 2

4

3

16ˆ
9

16 8

e

T T T Tce
ce cm cm ce cb cb cb ch ch cb

cce

L Tce
ch chcem

c

ce Tce ce
ce cs cs

c c

I
A I

h
c

I
dx

h

I I
c A

h h

  
    

  
      

   
         



B B B B B B B B

B BK

B B

 (44) 

Similarly, by using the elemental DoF vector (Eq. (40)), the discretized virtual works of the 
inertial forces ˆ

jp
T , ĉsT  and ĉeT  are written as, 

  ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
j j j j j j

T T T

k k t k tr k tr k r k
T        q M M M M q q M q   

(45)   ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆT T T
cs cst csrs csrs csr css csT         q M M M M M q q M q   

  ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆT T T
ce cet cers cers cer ces ceT         q M M M M M q q M q   
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where q̂ is the elemental acceleration vector. The elemental mass matrices of the multilayer 
beam can be expressed as follows: 

 

 
0

ˆ e

j j j

L T T
kx kx z zk t k k

A dx M N N N N  

(46) 

(1)

0

ˆ e

j j j

L T
kx krk tr k mk

I dx M N N  

(2)

0

ˆ e

j j j

L T
kr krk r k mk

I dx M N N  

 
0

ˆ eL T T
cst cs cs cx cx z zA dx M N N N N  

(1)

0

ˆ eL T
csr cs cs cr crI dx M N N  

(2)

20

4ˆ
3

eL Tcs
csrs cs cr cs

c

I
dx

h
 M N N  

(3)

40

16ˆ
9

eL Tcs
css cs cs cs

c

I
dx

h
 M N N  

 
0

ˆ eL T T
cet ce ce cx cx z zA dx M N N N N  

(1)

0

ˆ eL T
cer ce ce cr crI dx M N N  

(2)

20

4ˆ
3

eL Tce
cers ce cr cs

c

I
dx

h
 M N N  

(3)

40

16ˆ
9

eL Tce
ces ce cs cs

c

I
dx

h
 M N N  

where ixN , zN , irN and csN  are the translations in x and z directions, rotation and shear 
interpolation matrices. A Lagrange linear interpolation is assumed for c  to evaluate the 
corresponding mass matrices since it is highly recommended to perform a static condensation of 
the elemental core section rotation (0 )

c  [13]. 

The discretized virtual work of the conservative forces is: 

 ˆ ˆˆC T
mW  q F  (47) 

where the generalized forces are: 

  
 0

ˆ e

T T T T
L ax a bx b cx c z a b c

m T T T
ar a b cr c cs c

n n n q q q
dx

m m m p

     
 
     


N N N N

F
N N N

 (48) 

Moreover, to compute the distributed load vectors, a linear interpolation for c  is used to avoid 
any induced equivalent nodal load contributions for (0 )

c . Therefore, the static condensation of 
this degree of freedom will be easier [13]. 
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The discretized virtual work of the non-conservative force is: 

  ˆ ˆˆ ˆ ˆ ˆ
j j j

NC T T T
t tk k NC k x L x L

W P    
 

 q K q q B B q  (49) 

Apparently, the discretized virtual work of the non-conservative force can be added to the 
stiffness matrix of the element. Hence, the discretized variational formulation for an element is 
written as follows: 

    ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
f c f c NC m    M M q K K K q F  (50) 

where ˆ ˆ
j

f k j k
 M M , ˆ ˆ

j
f k j k
 K K and ˆ ˆ

j
NC k j k NC

 K K . Since there are no inertial 

electric DoFs, the mechanical and electric DoFs are coupled statically. Thus, in pursuit of a faster 
and more reliable solution and also, to prevent the ill-conditioning problem, the static 
condensation is performed to eliminate the electric DoFs. Since there are elemental ( (0)

ja
V , (0)

jb
V ,

(0 )
cV  and (0 )

3 ) and nodal ( (1)
3  and ( 2 )

3 ) electric DoFs, the static condensation is performed in 
two steps: First, the unknown elemental DoFs are condensed at the element level; second, after 
assembling, the nodal electric DoFs are condensed at the global level [13]. Since the von 
Karman's displacement-strain relation is used here, the obtained finite element model is a 
nonlinear model. Therefore, before global condensing, the governing equations are linearized.  

3.1. Static condensation 

In this section, in order to apply the static condensation, the elemental DoFs vector is 
decomposed. When there is an actuator, an elemental DoFs vector ˆ aq  corresponding to the ( (0)

ja
V ,

(0)

jb
V  and (0 )

cV ) is defined. For the sensor case of face and core piezoelectric layers, unknown 

elemental DoFs vectors ˆ
ks

q  and ˆ
cs

q corresponding to ( (0)

ja
V and (0)

jb
V ) and ( (0 )

cV ) respectively are 

not defined. Even for the actuator case, when (0 )
cV  is prescribed, the variables ( ( 0 )

3 , (1)
3 and ( 2 )

3 ) 
are still unknown. Since the nodal electric DoFs (1)

3  and ( 2 )
3  are to be condensed after 

assembling, a DoFs vector ˆ eq  is introduced. In addition, both elemental variables (0 )
3  and (0 )

c

are defined by a DoFs vector ˆ cq . Therefore, the elemental DoF vector is decomposed as follows: 

  ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,
k c

T

m e c as s
q q q q q q q  (51) 

where 

  (1) (1) (2) (2)(1) (1) (2) (2)ˆ , , , , , , ,
T

m c c c cu w w u w w  q  

(52)  (1) (2)
3 3ˆ ,

T

e  q  

 (0)(0)
3ˆ ,

T

c c q  
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 
 

(0) (0) (0) (0)
1 1

(0)

ˆ ,..., , ,...,

ˆ

k

c

T

a a b bps

T

css

V V V V

V





q

q


 

 (0) (0) (0)(0) (0)
1 1ˆ ,..., , ,..., ,

T

a ax caal bp byV V V V V q  

According to the aforementioned definitions, the matrices ˆ
j Nk me

K and ˆ
jk NC

K  for sensor and 

actuator cases are rewritten as: 

 

* *

* *31 310 0

ˆ e ej jj j

j N j j j k j

j j

L Lk kk kT T
t t t t ak me k s k a P k s P k

k k

A A
e V orV dx e or dx

h h

                         
 K B B B B N q N q  

(53) 

   * *

* *31 31
ˆ j jj j

j j j j k j

j j

k kk kT T
t t t t ak NC k s k a P k s P kx L x L x L x L

k k

A A
e V orV e or

h h   
   K B B B B N q N q  

where 
jk s

V  and 
jk a

V  are the voltages corresponding to each face piezoelectric sensor and actuator 

respectively. 
ks

q  and aq  are the electric sensing and actuating voltage vectors of each face 

piezoelectric sensor and actuator respectively. *
jP k

N  is defined as: 

 
*

1

*

*
1

*

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

p

l

y

P a

P b

P a

P b



 
   
   
   
   
    
   
   
   
     
 

N

N

N

N


  

  


 (54) 

Hence, Eq. (50) can be decomposed as: 

  ˆ ˆ ˆ ˆ ˆ ˆ,ˆ

ˆ ˆ ˆ ˆˆ
ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

k k c

c

k c

k
k k

c
c c

mm a me mc mas ms msm

e ee ec eaes

c cc cacs cs

s
s s

s
s s

a
aa

sym

                                
   

    
  
  
     

K q q K K K K Kq

q K K 0 K K
M 0 q K K K K

q
K 0 00 0

q K 0

q K





 

   






ˆ ˆ
ˆ

ˆ

ˆ

ˆ

ˆ

k

c

m
m

e

c

s

s

a

   
   
   
         
   
   
   
      


q F
q 0
q 0
q 0

q 0

0q

 (55) 

Since ˆ aq  is defined, its virtual variation ˆ a q  vanishes. Hence, the sixth line of Eq. (55) is 
automatically satisfied and can be neglected. In addition, the remaining terms corresponding to 
ˆ aq  have to be moved to the right hand side leading to the following equivalent electric load 

vectors: 



A. A. Tahmasebi Moradi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(1) 35-64 (2016) 

53 
 

 ˆ ˆ ˆ
m a m a aF K q  

(56) 
ˆ ˆ ˆ

ca ca aF K q  

ˆ ˆ ˆ
ea ea aF K q  

Considering the non-singularity of matrix ˆ
ccK , the third line of Eq. (55) can be solved for ˆ cq  as 

follows: 

  1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
k k c c

c cc cm m ce e cacs s cs s

    q K K q K q K q K q F  (57) 

Replacing Eqs. (56) and (57) in Eq. (55) yields the following equation: 

  * * * * *

** * *

* *

*

ˆ ˆ ˆ ˆ ˆ ˆ,ˆ ˆ
ˆ ˆˆ ˆ ˆˆ ˆ

ˆˆˆ ˆ ˆ

ˆˆ ˆ

k k c

k c

kk
k k k c

c
c

c c

mm a mes ms msm m mam

e eaeee es es

s ss
s s s s

s
s

s s
sym

                            
       

              

K q q K K Kq F Fq
M 0 q FqK K K

q Fq K K0 0
qq K



 

   




*

*ˆ
k

c

a

s a

 
 
  
 
 
 
  F

 (58) 

The modified stiffness matrices and load vectors are: 

 

   * 1ˆ ˆ ˆ ˆ ˆˆ, ,
k k

mm a mm a mc cc cms s

 K q q K q q K K K  

(59) 

* 1ˆ ˆ ˆ ˆ ˆ
m e m e m c cc ce

 K K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
k k k

mc ccms ms cs

 K K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
c c c

mc ccms ms cs

 K K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
ee ee ec cc ce

 K K K K K  

* 1ˆ ˆ ˆ ˆ
k k

ec cces cs

K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
c c c

ec cces es cs

 K K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
k k k k k k

ccs s s s s c cs

 K K K K K  

* 1ˆ ˆ ˆ ˆ
k c k c

ccs s s c cs

K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
c c c c c c

ccs s s s s c cs

 K K K K K  

* 1ˆ ˆ ˆ ˆ ˆ
m a m a m c cc ca

 F F K K F  

* 1ˆ ˆ ˆ ˆ ˆ
ea ea ec cc ca

 F F K K F  

* 1ˆ ˆ ˆ ˆ
k k

cc cas a s c

F K K F  

* 1ˆ ˆ ˆ ˆ
c c

cc cas a s c

F K K F  
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In the case of short-circuited piezoelectric sensors, ˆ
ks
q 0  and ˆ

cs
q 0 . Thus, the third and fourth 

lines of Eq. (58) can be neglected. On the other hand, for the open-circuit case, the induced 
differences of potential ˆ

cs
q  for the core piezoelectric layer can be obtained by solving the fourth 

line of Eq. (58). Hence, ˆ
cs

q  is written in terms of ˆ
mq , ˆ

eq  and ˆ
ks

q as follows: 

  * 1 * * * *ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
c c c c c c k k c

m es s s s m s e s s s s a

   q K K q K q K q F  (60) 

Replacing ˆ
cs

q  in the first, second and third lines of Eq. (58) yields: 

  ** ** **
**

** ** ** **

**** ** **

ˆ ˆ ˆ, ˆ ˆˆˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

k k

k

k kk
k k k k

mm a mes msm m mam

e em ee e eaes

s s as s m s e s s

                              
        

              

K q q K Kq F FM 0 0 q

0 0 0 q K K K q F

0 0 0 q Fq K K K







 (61) 

where the modified stiffness matrices and load vectors are, 

 

   ** * * * 1 *ˆ ˆ ˆ ˆ ˆ, ,
k k c c c c

mm a mm as s ms s s s m

 K q q K q q K K K  

(62) 

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
c c c c

me me ms s s s e

 K K K K K  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
k k c c c c kms ms ms s s s s

 K K K K K  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
c c c c

ee ee es s s s e

 K K K K K  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
k k c c c c kes es es s s s s

 K K K K K  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
k k k k k c c c c ks s s s s s s s s s

 K K K K K  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
c c c c

ma ma ms s s s a

 F F K K F  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
c c c c

ea ea es s s s a

 F F K K F  

** * * * 1 *ˆ ˆ ˆ ˆ ˆ
k k k c c c cs a s a s s s s s a

 F F K K F  

For the open circuit case, ˆ
ks

q  can be expressed in terms of ˆ
mq  and ˆ

eq  as follows: 

  ** 1 ** ** **ˆ ˆ ˆ ˆˆ ˆ ˆ
k k k k k k

m es s s s m s e s a

  q K K q K q F  (63) 

Replacing ˆ
ks

q  in the first and second lines of Eq. (61) yields: 

  *** *** ***

****** ***

ˆ ˆ ˆ ˆˆ ,ˆ ˆ

ˆˆˆ ˆ ˆ
k

mm a mem m mas m

e eae em ee

                                      

K q q Kq F FqM 0

q0 0 Fq K K




 (64) 

where the modified stiffness matrices and load vectors are: 
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   *** ** ** ** 1 **ˆ ˆ ˆ ˆ ˆ, ,
k k k k k k

mm a mm as s ms s s s m

 K q q K q q K K K  

(65) 

*** ** ** ** 1 **ˆ ˆ ˆ ˆ ˆ
k k k k

me me ms s s s e

 K K K K K  

*** ** ** ** 1 **ˆ ˆ ˆ ˆ ˆ
k k k k

ee ee es s s s e

 K K K K K  

*** ** ** ** 1 **ˆ ˆ ˆ ˆ ˆ
k k k k

ma ma ms s s s a

 F F K K F  

*** ** ** ** 1 **ˆ ˆ ˆ ˆ ˆ
k k k k

ea ea es s s s a

 F F K K F  

The unknown elemental internal ˆ
cq , sensors ˆ

ks
q and ˆ

cs
q DoF vectors can be computed in a post-

processing calculation using Eqs. (60) and (63). To satisfy the continuity condition of the nodal 
electric DoFs ˆ

eq , the second line of Eq. (64) is to be condensed after assembling. However, the 
second line of Eq. (64) is valid for an element and it can be expressed as: 

  *** 1 *** ***ˆ ˆ ˆˆ ˆ
e ee em m ea

 q K K q F  (66) 

Replacing the latest equation into Eq. (63), the vector ˆ
ks

q  can be expressed in terms of ˆ
mq  and 

ˆ
aq  as follows: 

  ** 1 ** ** 1 ** *** 1 *** ** *** 1 *** ** 1 **ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
k k k k k k k k k k k

ee em m ee eas s s s m s s s e s e s s s a

       q K K K K K K q K K F K F  (67) 

Similarly, the sensing voltage of the shear piezoelectric layers, i.e. Eq. (60), can be rewritten in 
terms of ˆ

mq  and ˆ
aq  as follows: 

  
 

* 1 * * *** 1 *** * ** 1 ** ** *** 1 ***

* 1 * *** 1 *** * ** *** 1 *** ** 1 ** *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

c c c c c c k k k k k

c c c c k k k k k c

ee em ee em ms s s s m s e s s s s s m s e

ee ea ee eas s s e s s s e s s s a s a

   

   

      
      

q K K K K K K K K K K K q

K K K F K K K F K F F
 (68) 

Considering Eqs. (67) and (68) one may notice that ˆ
ks

q  and ˆ
cs

q  are functions of ˆ
mq . As a result, 

for different values of ˆ
mq , different values of ˆ

ks
q  and ˆ

cs
q will be obtained. Hence, even for one 

piezoelectric layer acting as sensor, different ˆ
ks

q  will be obtained for each element. However, 

this is not physically possible since every piezoelectric layer acting as either sensor or actuator is 
assigned only one sensor or actuation voltage. Therefore, if we had assembled Eq. (55), we 
would have considered the same ˆ

ks
q  for each element representing a specific piezoelectric layer 

and would have assembled this degree of freedom in a way that only one degree of freedom 
represents the sensor or actuator. However, Eqs. (67) and (88) are valid for an element and these 
equations have been used to condense the governing equation of motion of the system. Hence, in 
order to obtain the sensor voltage for a piezoelectric layer, Eqs. (67) and (68) should be globally 
assembled as follows: 

  ** 1 ** ** 1 ** *** 1 *** ** *** 1 *** ** 1 **1
k k k k k k k k k k k

ee em m ee eas s s s m s s s e s e s s s a
kn

          
q K K K K K K q K K F K F  (69) 
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  

 

* 1

* * *** 1 *** * ** 1 ** ** *** 1 ***

* 1

* *** 1 *** * ** *** 1 *** ** 1 ** *

c c

c c c c k k k k k

c c

c c k k k k k c

s s

ee em ee em ms s m s e s s s s s m s e
c

s s

ee ea ee eas e s s s e s s s a s a
c

n

n



  



  

      

      

K
q K K K K K K K K K K q

K
K K F K K K F K F F

 (70) 

where **

k ks s
K , **

ks m
K , **

ks e
K , ***

eeK , ***
emK , ***

eaF  and **

ks a
F  are the global stiffness matrices and load 

vectors and kn  and cn  are the number of elements representing each extension piezoelectric 

layer and shear piezoelectric layer respectively. 

Therefore,  ***ˆ ,
k

mm as
K q q  can be shown as  ***ˆ ,mm m aK q q  and then, Eq. (64) can be rewritten as: 

  *** *** ***

****** ***

ˆ ˆ ˆ ˆˆ ,ˆ ˆ

ˆˆˆ ˆˆ

mm m a mem m mam

e eae em ee

                      
               

K q q Kq F FqM 0

q0 0 Fq K K




 (71) 

The latest equation can be globally assembled as follows: 

  *** *** ***

****** ***

,mm m a mem m m ma

e e eaem ee

                     
              

K q q KM 0 q q F F

0 0 q q FK K




 (72) 

By considering the second line of Eq. (72), eq  can be expressed in term of mq  as:  

  *** 1 *** ***
e ee em m ea

 q K K q F  (73) 

So the last step of the static condensation can be performed as follows: 

ሷܙۻ  ௠ + ሾ۹௠௠∗∗∗ ሺܙ୫, ୟሻܙ − ۹௠௘∗∗∗۹௘௘∗∗∗ିଵ۹௘௠∗∗∗ሿܙ୫ = ۴୫ + ۴௠௔∗∗∗ + ۹௠௘∗∗∗۹௘௘∗∗∗ିଵ۴௘௔∗∗∗ 
(74) 

However, since the  *** ,mm m aK q q  is a function of the mq  vector, Eq. (74) is nonlinear and 

therefore, its solution is troublesome. Hence, before assembling, it needs to be linearized.  

3.2. Linearization around a static equilibrium position 

It is generally assumed that the nodal load vector mF  is a function of the known parameters 

vector, f  and a function of the displacement vector mq , i.e.  ,m m mF F q f . 

Suppose that the governing equations of the system due to known i aq  and i f  is expressed as: 

   
     

*** *** *** 1 ***

*** *** *** ***

,

,

m mm m i a me ee em

m m i ma i a me ee ea i a

  

 

Mq K q q K K K

F q f F q K K F q


 (75) 

Assume a small perturbation around a static equilibrium position for mq  as: 

      , ,m i m mx t x x t q q q  
(76) 

where i mq  is the static equilibrium position. 
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Substituting Eq. (67) into Eq. (75) and using the Taylor's series expansion around the static 
equilibrium position i mq  and neglecting the higher order terms, Eq. (75) can be rewritten as: 

 
 

***
*** *** *** 1 ***,

m i m m i m

mm m
m mm i m i a me ee em i m m

m m

 

 

       
   q q q q

K F
M q K q q K K K q q 0

q q
  (77) 

Having known both vectors i aq  and i mq , one may easily calculate the natural frequencies 
around the static equilibrium position. 

The eigenvalue problems of the system under open-circuit and short-circuit electric conditions 
may be written, respectively, as: 

 
 

***
2 *** *** *** 1 ***,

m i m m i m

ocmm m
oc mm i m i a me ee em i m

m m

 

 

        
   q q q q

K F
M K q q K K K q 0

q q
 (78) 

 
 

***
2 * * * 1 *,

m i m m i m

scmm m
sc mm i m i a me ee em i m

m m

 

 

        
   q q q q

K F
M K q q K K K q 0

q q
 (79) 

For more details on the short-circuit and open-circuit electric boundary conditions, interested 
readers can refer to [1]. 

4. Model validation  

To validate the proposed FE model, two examples are studied:  

I) A pined-pined laminate elastic/shear piezoelectric/elastic beam, and  

II) A clamped-free laminated elastic/adhesive/extension piezoelectric beam.  

The obtained results are compared to the available data in literature in order to show the degree 
of agreement between the proposed and the available models. 

For the following two cases, since there are no piezoelectric sensors and nonlinear mechanical 

forces, the terms 
***
mm

i m
m



K

q
q

 and m

m



F

q
 are vanished from Eqs. (78) and (79). Thus:  

  *** ***,mm i m i a mmK q q K  (80) 

4.1. A pined-pined laminated elastic/shear piezoelectric/elastic beam 

In this section, a pined-pined sandwich beam with an embedded shear piezoelectric layer is 
considered (Fig. 3). The results are compared with the available numerical data in [13], 
analytical results of [15] and Abaqus software results from [15]. The numerical results are 
obtained using TSDT model where the shear strain and electric field are not constant [13]. The 
analytical results are obtained using the classical sandwich theory with constant shear strain and 
transverse electric field [15]. 
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Fig. 3. A pined-pined sandwich beam with shear piezoelectric layer (dimensions are in mm) 

The shear piezoelectric layer is made of PZT-5A and is sandwiched between two Aluminum 
layers. The material properties are as follows. For the Aluminum layers; the stiffness constants 
are 11 73cec   GPa and 55 28.08cec   GPa and the mass density is 2790ce   kg mଷ⁄ . For the PZT-5A 

layer; the reduced material properties are 
*

33 60.9cc   GPa, 55 21.1cc   GPa and 7700cs   kg mଷ⁄ , the 

piezoelectric coupling coefficients are 
*

33 19.3ce   C mଶ⁄ , 15 12.3ce   C mଶ⁄  and the dielectric 

constants are 8
11 1.531 10c     F m⁄  and 

* 8
33 1.510 10c     F m⁄ . 

The first five natural flexural frequencies are obtained using the proposed model with 80 
elements deployed. Presented in Tables 1 and 2, the obtained results are compared to the 
analytical and numerical results for short-circuit and open-circuit electric boundary conditions 
respectively. The results show good agreement with those reported by others. 

Table 1. Comparison of analytical and numerical (Abaqus and TSDT model) results for the first five flexural natural 
frequencies (in Hz) under a short-circuit electric boundary condition 

Mode TSDT [13] Analytical [14] Abaqus[14] Present model 
1 882.7 882.7 881.6 882.0 
2 3518 3524 3495 3507.0 
3 7868 7904 7752 7815.2 
4 13873 13988 13519 13708.0 
5 21454 21734 20639 21054.1 

Table 2. Comparison of analytical and numerical (Abaqus and TSDT model) results for first five flexural natural 
frequencies (in Hz) under an open-circuit electric boundary condition 

Mode TSDT[13] Analytical [14] Abaqus [14] Present model 
1 882.8 882.9 881.7 882.1 
2 3520 3527 3498 3508 
3 7877 7919 7765 7818 
4 13901 14034 13559 13718 
5 21520 21845 20729 21078 

4.2. A clamped-free laminated elastic/adhesive/extension piezoelectric beam 

As a second example, a piezolaminated beam with an extension piezoelectric layer is considered 
as shown in Fig 4. 
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 Fig. 4. A clamped-free sandwich beam with extension piezoelectric layer (dimensions are in mm) 

The material properties are as follows. For the Aluminum layer; the stiffness constants are 

11 68.97cec   Gpa and 55 27.59cec   Gpa and the mass density is 2769ce   kg mଷ⁄ . For the adhesive 
layer; the Young's modulus is 11 6.90cec   GPa and the mass density is 1662ce   kg mଷ⁄ . The 

reduced material properties of the extension piezoelectric layer are 
*

11 68.97kc   GPa with 

7600
k

   kg mଷ⁄ , piezoelectric coupling coefficient 
*

31 8.41ke   C mଶ⁄  and the dielectric 

constants are 8
11 1.505 10k    F m⁄  and 

* 8
33 1.150 10k     F m⁄ . 

For the open and closed circuit electrical boundary conditions, the first five flexural natural 
frequencies are computed where 14 elements are deployed. The results obtained from the 
proposed finite element model are compared with the results published by Krommer and Irschik 
[16]. Moreover, the obtained results are compared with the available data for the Timoshenko 
multilayer finite element model published by Trinidade, Benjeddou and Ohayon [12]. 

5. Numerical results 

In this section, a pined-pined piezolaminated sandwich beam with extension and shear 
piezoelectric layers acting as actuators and sensors is considered (Fig. 5). All dimensions of the 
beam are in millimeters as shown in Fig. 5. 

It is assumed that the extension piezoelectric layers are made of PZT-5H and their reduced 

material property are 
*

11 65.5jkc   GPa with 7500
jk

   kg mଷ⁄ , piezoelectric coupling coefficients 
*

31 23.2jke    C mଶ⁄  and the dielectric constants 8
11 1.505 10jk     F m⁄  and 

*
8

33 1.540 10jk     F m⁄ . Other 
material properties for the shear piezoelectric and aluminum are the same as those in the 
previous section. 

 
Fig. 5. A pined-pined sandwich beam with shear and extension piezoelectric layers (dimensions are in mm) 

One of the extension piezoelectric layers acts as a sensor and therefore, the nonlinear effect 
exists here due to the von Karman's nonlinear displacement-strain relation. Since the 
piezoelectric sensor voltage depends on the deflection of the piezolaminated beam (see Eqs. (69) 
and (70)), a static external mechanical force is applied on the top surface of the piezolaminated 
beam.  

Considering the fact that the maximum applying electric field can be about 100 kV cm⁄  for PZT 
materials [17], the applied voltage to the extension piezoelectric layers is taken from 0 to -5000 
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Volts. Hence, by using Eq. (77), the natural flexural frequencies for different external 
mechanical loads at applied voltages 0 and -5000 volts are computed and presented in Table 3. 

Table 3. Comparison of the nonlinear effect on the first four natural flexural frequencies and 
sensor voltages for different applied forces 

Force (kN) Actuator voltages 
Mode 1 

(Hz) 
Mode 2 

(Hz) 
Mode 3 

(Hz) 
Mode 4 

(Hz) 

Sensor voltages (V) 

1ks
q  

1cs
q  

20F   At 0 V 89.36 446.8 1027 1845 1399 22.06 
At -5000 V 175.6 532.6 1115 1934 458 9.61 

(%)  96.51 19.20 8.57 4.82 -67.26 -56.43 

10F   At 0 V 105.0 453.4 1033 1851 612.8 9.90 
At -5000 V 178.2 534.2 1117 1935 225.9 4.76 

(%)  69.71 17.82 8.13 4.54 -63.14 -51.92 

1F   At 0 V 114.8 458.0 1038 1856 56.32 0.93 
At -5000 V 180.5 535.7 1118 1937 22.37 0.47 

(%)  57.23 16.96 7.71 4.36 -60.28 -49.46 

Since the shear deformation is axisymmetric with respect to the mid-point of the beam, two shear 
piezoelectric layers are considered. The sensor voltages for the left shear piezoelectric layer 

1cs
q  

are tabulated in Table 3. Due to the symmetric configuration of the shear piezoelectric layers, the 
sensor voltage of the right shear piezoelectric layer 

2cs
q  has an identical numeric value with the 

left one but with an opposite sign. The column identified by 
1ks

q  is the voltage of the top sensor 

layer. 

As depicted in Table 3, by increasing the applied voltage, the natural flexural frequencies are 
increased. This can be explained by the fact that the extension piezoelectric layers induce an 
axial tensile force and this tensile force stiffens the sandwich piezolaminated beam. 

The voltage of the top sensor layer (
1ks

q ) can be used to compare the axial force on the beam. 

From Table 3, it is obvious that by decreasing the applied force, the sensor voltage is decreased 
and when the sensor voltage is decreased, the nonlinear effect is less important. It is also shown 
that the sensor voltage of the extension piezoelectric layer is higher than the sensor voltage of the 
shear piezoelectric layer. Thus, for small deflections, to have a better sensitivity to deflection, 
one may prefer to deploy extension piezoelectric layers instead of shear piezoelectric layers.  

To have a better visualization, Figs 6, 7 and 8 show the first natural flexural frequency, sensor 
voltages of the extension and shear piezoelectric layers for different applied mechanical forces 
and applied voltages respectively. As shown in Fig. 6, at different applied mechanical forces, for 
lower applied voltages to the extension piezoelectric actuators, the change in the first natural 
flexural frequency is higher than the change in the first natural flexural frequency for the higher 
applied voltages. This can be explained by the obtained results depicted in Fig. 7. 
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Fig. 6. First natural flexural frequency versus different applied mechanical forces and applied voltages 

to the extension piezoelectric actuators 

 
Fig. 7. Sensor voltage of the extension piezoelectric sensor versus different applied mechanical forces and applied 

voltages to the extension piezoelectric actuators 

It shows that for lower applied voltages, the flexural stiffness is lower than the flexural stiffness 
for higher applied voltages. Thus, in case of applying the identical mechanical forces, for lower 
applied voltage, the sensor voltage of the extension piezoelectric sensor is higher than the sensor 
voltage for higher applied voltage.  

In order to reduce the nonlinear effect, three solutions are suggested: 

1) Reducing the thickness of the extension piezoelectric sensor,  

2) Using a short patch of the extension piezoelectric sensor instead of a complete layer, and  

3) Making the configuration symmetric according to the sensor configurations.  
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Fig. 8. Sensor voltage of the shear piezoelectric sensor versus different applied mechanical forces and applied 

voltages to the extension piezoelectric actuators 

The last solution comes from the fact that in the case of symmetric configuration, the sensors 
cancel the effect of each other. For the last example, another extension piezoelectric sensor is 
added to the earlier configuration (i.e., Fig. 5), as shown in Fig. 9. 

 
Fig. 9. A pined-pined piezolaminated beam with two symmetric extension piezoelectric sensors 

(dimensions are in mm) 

Since the configuration of the piezolaminated beam is now symmetric according to the 
placement of the extension piezoelectric sensors, the nonlinear effect is nullified. For this case, 
the results are presented in Table 4 at 0 volt to actuator layers.   

Table 4. Comparison of the nonlinear effect on the first natural flexural frequency and sensor voltage 
for a symmetric configuration of the sensors 

Force (kN) Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz) 
Sensor voltages (V) 

1ks
q  

1cs
q  

20F   124.1 497.2 1122.4 2005.4 852.7 17.27 
10F   124.1 497.2 1122.4 2005.4 426.3 8.64 

1F   124.1 497.2 1122.4 2005.4 42.63 0.86 

As expected, adding another extension piezoelectric sensor stiffens the intrinsic stiffness of the 
piezolaminated beam. The results also indicate that for any applied mechanical force, the natural 
frequencies are all the same. This can be interpreted that for any applied mechanical forces, the 
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sensor voltages of both the top and the bottom extension piezoelectric sensors have the same 
magnitude with opposite sign when the top layer is in compression and the bottom layer is in 
tension. Therefore, these two sensors cancel out their effect and hence, the calculated natural 
frequencies remain unchanged for different applied mechanical forces.  

6. Conclusions 

In this paper, an electromechanically coupled finite element model for a piezolaminated beam 
was presented. For the mechanical model, the classical sandwich theory (CST) was considered 
with the core layers modeled according to the third-order shear deformation theory (TSDT). The 
face layers were modeled with the Euler-Bernoulli hypothesis. The von Karman's nonlinear 
displacement-strain relation was used to develop the displacement-strain relations. Using the 
Hamilton's principle with an extension to the piezoelectric media and governing the equation for 
the piezolaminated beam, it was shown that two new terms are observed for the extension 
piezoelectric layers due to considering the von Karman's nonlinear displacement-strain relation. 
One was an electromechanical stiffness-like term and the other one was a non-conservative work 
term. Developing the finite element (FE) model, it was shown that if the output voltage of the 
extension piezoelectric layer is deployed as the sensor signal, the system encounters nonlinearity 
and this nonlinearity in modeling of the piezolaminated beam has been pointed out for the first 
time. Next, the presented model was validated with two cases reported in the literature. Once the 
model was validated, a new case, symmetric and asymmetric configuration of a beam consisted 
of both extension piezoelectric actuators and sensors, was considered. It was shown that when 
the extension asymmetric piezoelectric sensor exists in the system, the nonlinear effect is 
important and the flexural natural frequencies change due to the nonlinearity. 
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