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The Controlled Lagrangian method is a branch of energy shaping methods 
that is designed to control underactuated mechanical systems. The method 
employs the mechanical energy (kinetic energy plus potential energy) of an 
artificial Lagrangian system, that generates similar equations of motion to 
the original underactuated system, as the Lyapunov function. This paper 
presents an application of the Controlled Lagrangian method to control an 
underactuated flexible link, and the results of a theoretical study through 
simulations confirmed by the results from an experimental setup. It is 
shown that the method’s performance is acceptable from a practical point 
of view as well as theoretical perspective. The simulations and the 
experimental results are presented in the sequel to validate the theoretical 
studies. The effect of changing controller gains on the designed controller 
performance is studied in more detail under the terms of the system’s 
mechanical energy. Moreover, gain tuning is also performed to attain high 
quality performance in the experimental study by the aid of their influence 
in the system’s energy. Comparison of the proposed method with the partial 
feedback linearization method shows the degree of robustness of the 
proposed method. The simplicity of the gain tuning shows that the method 
can be implemented conveniently to control mechanical systems. 

© 2018 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1.  Introduction 
Robot manipulators play an essential role in almost all space projects. Given the cost of carrying 
materials to space skyrockets, reducing weight is vital for the continuation of space projects. In 
order to reduce weight in robot manipulators, it is necessary to use lighter materials and slender 
arms. With the reduction of arms thickness, the assumption of rigid links is no longer valid and 
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flexibility should be modeled in the dynamic behavior of manipulators. Methods of modeling 
flexibility in manipulators can be classified into two categories: numerical approaches and 
assumed mode methods [1]. The numerical approaches include finite deference and finite 
element methods [2] where the latter has shown its superiority over the finite deference method 
in terms of precision and computational burden [1]. 

A flexible link is an underactuated system, i.e. its number of actuators is strictly less than its 
degrees of freedom. The goal of controlling such system is to achieve good tracking of a 
reference path while minimizing the tip vibration. The nonlinear nature and the non-minimum 
phase behavior of flexible links render this task challenging and attractive for control theories 
[3]. The input shaping method [4] and direct strain feedback control scheme [5] are two of the 
pioneer works in this regard.  

The Controlled Lagrangian method is an energy shaping method designed to control 
underactuated mechanical systems. It employs kinetic and potential energy shaping to control  
these systems. This method was initially introduced in [6-9]. It is shown that in order to stabilize 
an underactuated system in its unstable equilibrium point, shaping the potential energy alone is 
not sufficient and a modification in kinetic energy is also essential [8, 9]. Bloch et. al [8, 9] 
introduced a method to solve the nonlinear PDEs of kinetic energy and potential energy shaping. 
Auckly et. al [10-12] transformed the nonlinear PDEs of kinetic shaping to a system of linear 
PDEs, namely  λ  equations. Chang et. al. [13] introduced gyroscopic forces in the Controlled 
Lagrangian method to achieve more freedom in control gains, and then used this freedom to 
successfully stabilized more sophisticated systems such as  Fruta pendulum. Donaire et al. [14] 
found a class of mechanical systems for which the solution of  λ equations can be found readily. 
However, the mentioned class is very narrow and many mechanical systems fall out of it. In [15], 
the authors used energy shaping approach for a flexible joint with variable stiffness. The 
Controlled Lagrangian framework was also used in [16] and [17] for gait control of biped robots 
and lower-limb exoskeletons. 

The aforementioned works were done in the Lagrangian framework. Similar works were done in 
the Hamiltonian framework and are referred to as Interconnection and damping assignment 
passivity-based control or IDA-PBC method [18-20]. The Controlled Lagrangian method and the 
IDA-PBC method have been shown to be equivalent [13] . Using the Controlled Lagrangian 
method, a simple control law for stabilizing an inverted cart pendulum system has been 
presented in [21]. In addition, the IDA-PBC method has been experimentally applied to a 
flexible link system [22]. For a class of underactuated mechanical systems such as Inertia Wheel, 
Haddad et al. [23] demonstrated that IDA-PBC is robust against external disturbances. Using a 
nonlinear PID as an outer loop controller, Donaire et al. [24] designed a robust IDA-PBC 
controller for a particular class of internal and external disturbances. In [25], the authors used an 
integral action to enhance the robustness of energy shaping method for underactuated systems. 
In the present paper, we propose a control law for a flexible link system by the method of 
Controlled Lagrangian. Theoretical stability analysis and experimental validation are also 
provided. The effect of the controller's parameters on the system's performance is established via 
their influence on the system's mechanical energy. It is shown that the undesirable effect of 
structured uncertainties, including viscous damping, can be mitigated by this method.  Gain 
tuning is employed to optimize performance in the sense of minimizing tip deflection and 
settling time in the simulation and experimental study by tuning only one coefficient. 
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The rest of the paper is organized as follows. In Section 2, the general formulation of Controlled 
Lagrangian method is presented. Next, the dynamical model of a flexible link system is obtained 
in Section 3. Section 4 employs the Controlled Lagrangian method to design a proper control law 
for the flexible link system.  Simulation results and experimental results are discussed in Section 
5. Conclusion and further remarks are presented in Section 6. 

2. General method of Controlled Lagrangian 
As mentioned in [10-13], the Controlled Lagrangian method is a control law strategy for 
underactuated systems with a regular Lagrangian. A regular Lagrangian system, by its 
definition, is a Lagrangian with the property of 

̇ ̇
≠ 0. This expression is equivalent to the 

existence of a non-degenerative inertia tensor in simple mechanical systems. Unlike 
conventional potential energy shaping methods, Controlled Lagrangian method shapes the 
system’s kinetic energy as well as its potential energy to obtain asymptotic stability in its 
intrinsically unstable equilibrium point. The main idea of the Controlled Lagrangian method is 
based on a simple fact: different lagrangians are able to produce same equations of motion (see 
[26] for more details). Different notations have been used by different authors, and in this paper, 
we adopt the notations and symbols of [13]. 

Simple Lagrangian systems are those whose Lagrangians (퐿 = 푇 − 푈) are quadratic with respect 
to velocity vector [27]. For a simple Lagrangian system, the triple (L, F, W) is defined as 
Controlled Lagrangian system where L is the Lagrangian of the system, F is the external force 
acting on the system and W is the control bundle of the system. The system is underactuated if 
the inequality rank W < dim Q (Q is the configuration space of the system) holds. Equations of 
motion of a Controlled Lagrangian system are given by [13],  

 ℇℒ(L) ≜
d
dt
∂L
∂q̇

−
∂L
∂q

= F + [W]( × )u (1) 

where n = dim Q and m = rank W.  

Using (1) for the regular Lagrangians  퐿	 and 	퐿, one can write, 

 
0 = − ℇℒ 퐿 − 퐹 +	 푊 푢	⟹ 0 =

휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇ ℇℒ 퐿 − 퐹 +

휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇ 	 푊 푢 

 

Now, it is assumed that the two different regular Lagrangians (L, F, W) and  (퐿,		퐹,		푊) generate 
the same equations of motion. Hence,  푞̈ = 푞̈ must be valid for all 푞 ∈ 푄. In other words, the 
following expression is held for all 푞 ∈ 푄.  

 
[푊]푢 = ℇℒ(퐿)− 퐹 −

휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇ ℇℒ 퐿 − 퐹 +

휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇ 	 푊 푢 (2) 

For a simple mechanical system, (2) simplifies to [13], 

 
[푊]푢 = [퐶] − [푀] 푀 퐶 푞̇ + {푔} − [푀] 푀 {푔}

− 퐹	 + [푀] 푀 퐹 + [푀] 푀 푊 푢 (3) 
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where [M] is the inertia tensor, [C] is the Coriolis and centripetal matrix, and {푔} is  (effect of 
the potential energy). Since [W] is not a full rank matrix, it has a nonzero left annihilator. In 
other words, there exists a nonzero matrix  [W ] with two properties:  First, 푇∗푄= W+ 푊  and 
second, [푊 ][W] = 0. Note that 푇∗푄 is the tangent space of 푄 (see [8] for definition of tangent 
space). These two conditions are satisfied by a matrix 푊  whose rows 푣 are defined as [8], 
 {푣 ∈ 푇∗푄|∀훼 ∈ 푊,	〈푣,훼〉 = 0} (4) 

where  <⋅,⋅>	is the inner product. Left multiplication of (3) by [W ] results in, 
 0 = [푊 ] [퐶] − [푀] 푀 퐶 푞̇ + [푊 ] {푔} − [푀] 푀 {푔}

+ [푊 ] [푀] 푀 퐹 − 퐹 + [푀] 푀 푊 푢  (5) 

In order to satisfy (3) for all 푞̈, the control bundle 푊 must be in the following form [13] , 

 
푊 =

휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇

[푊] (6) 

In this sequel we decompose the external forces  퐹  and 	퐹  as, 

 퐹 = 퐹 (푞) + 퐹 (푞, 푞̇) + 퐹 (푞, 푞̇), (7) 

 퐹 = 퐹 (푞) + 퐹 (푞, 푞̇) + 퐹 (푞, 푞̇), (8) 

in which  퐹 (푞), 퐹 (푞) are functions of coordinates 푞 and are independent from velocity. The 
functions 퐹 (푞, 푞̇), 퐹 (푞, 푞̇)	 are external forces due to viscous damping in the systems and 
other external forces that are first order with respect to the velocity vector 푞̇ and functions 
퐹 (푞, 푞̇), 퐹 (푞, 푞̇)	 are external forces that are second order with respect to velocity vector 푞̇. 
The reason that we distinguish between 퐹  and 퐹  is that these functions are being treated 
differently with respect to the left annihilator [W ]. Using (6)-(8), Equation (5) reduces to three 
separate equations given as, 

 [푊 ] [퐶] − [푀] 푀 퐶 {푞̇} − 퐹 (푞, 푞̇) + [푀] 푀 퐹 (푞, 푞̇) = 0, (9) 

 [푊 ] {푔} − [푀] 푀 {푔}− 퐹 (푞)+ [푀] 푀 퐹 (푞) = 0, (10) 

 [푊 ] −퐹 (푞, 푞̇) + [푀] 푀 퐹 (푞, 푞̇) = 0 . (11) 

In local coordinations, these equations are expressed as, 

 
푊 [푖푗, 푘]푞̇ 푞̇ − 푚 푚 [횤횥, 푏]푞̇ 푞̇ − 퐹 + 푚 푚 퐹 = 0, (12) 

 
푊

휕푈(푞)
휕푞 − 푚 푚

휕푈(푞)
휕푞 − 퐹 +푚 푚 퐹 = 0 (13) 

 
푊

휕퐷
휕푞̇ − 푚 푚

휕퐷
휕푞̇ − 퐹 + 푚 푚 퐹 = 0 (14) 

in which [푖푗, 푘] denotes the Christoffel symbols of inertia matrix 푚 .  
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Equations (9)-(11) and their local representations (12)-(14) are known as matching equations 
[13]. The process of solving these equations is: First, (12) should be solved to determine all 
elements of [푀]. The solution of [푀] shapes the kinetic energy. Then, the potential function 푈 is 
determined by shaping the potential energy via solving (13). Finally, the effect of external forces 
are compensated by solving (14). 

In practice, due to the product of unknown 푚  to its Christoffel symbols [횤횥, 푏],  (12) contains a 
set of first order nonlinear PDE’s whose solutions can be quite prohibitive. However, the 
nonlinear PDEs (12)-(14) can be transformed to a set of triangular first order linear PDEs by 
using a new variable set, called λ. This variable is defined as [10]:  

 휆 = 푀 [푀]. (15) 

Using (15), expressions (9)-(11) transform after some calculations, to the 휆 equations that in 
local coordinates are represented by [10]: 

 휕 푚 휆
휕푞 − [훼푘,푖]휆 − [훽푘,푖]휆 − 퐺 휆 휆 = 0 (16) 

 휆
휕푚
휕푞

+
휕휆
휕푞

푚 +
휕휆
휕푞

푚 =
휕푚
휕푞

− 2퐺 휆  (17) 

 
휆

휕푈
휕푞 =

휕푈
휕푞 − 퐹( ) + 휆 퐹( ) (18) 

 퐹( ) = 휆 퐹( ) (19) 

In (16)-(19), the Latin indices vary from 1 to the total number of degrees of freedom (Dim	푄) 
and the Greek indices vary from 1 to the number of underactuations (Dim	푄 −Dim	푊). These 
equations are triangular, that is  (10) is solved first to determine 휆 , then, using 휆,  (17) is solved 
for	푚 , and finally, the shaped potential energy (푈), is obtained from (18). Finally, (19) is used 
to transform external force 퐹( ) to its equivalent in Lagrangian 퐿.  

Equations (16)-(19) indicate that the two Lagrangians (L, F,W) and 퐿,퐹,푊  generate the same 
equations of motion i.e. the equations of motion of Lagrangian (L, F, W) is equivalent to the 
equations of motion of Lagrangian 퐿,퐹,푊 . During the solving process of (16)-(19), some 
arbitrary functions and constants emerge. These free functions and constants consist the control 
gains that are to be used to establish system stability. In the Controlled Lagrangian method, the 
Lyapunov candidate is the mechanical energy of the system (퐸 	= 	푇 	+	푈). In this sequel, we 
employ the energy-momentum method to establish stability of the system. The general theory of 
the energy-momentum method with its details is given in [27]. In the case of a simple 
Lagrangian system, the energy-momentum method states that the system is stable at a specific 
point if the second variation of the mechanical energy function is positive-definite† at that point. 
In other terms, if all eigenvalues of the Hessian matrix for the mechanical energy function have 
positive real values, then the system is stable. For the mechanical energy function 퐸, the second 
variation or Hessian matrix is defined as, 

                                                   
† In general, being definite is enough i.e. positive-definite or negative-definite. Here without loss of generality and for simplicity, 
positive-definiteness is assumed. 
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훿 퐸 × =

⎣
⎢
⎢
⎢
⎡ 휕 퐸
휕푞

×

휕 퐸
휕푞푞̇

×
휕 퐸
휕푞̇푞 ×

휕 퐸
휕푞̇ × ⎦

⎥
⎥
⎥
⎤

 (20) 

For a simple mechanical system, second variation matrix at the origin (풒 = ퟎ,	풒̇ = ퟎ) reduces to, 

 
훿 퐸 =

휕 푈
휕푞

0

0 푀
 (21) 

where U is the potential function and M is the inertia tensor. 

All of the free functions and constants of the solution for (16)-(19) must be chosen in an 
appropriate way to guarantee the positive-definiteness of the Hessian matrix for the energy 
function of 퐿,퐹,푊 . It should be mentioned here that the positive-definiteness of the Hessian 
matrix only guarantees stability of the system. To establish asymptotic stability, a proper 
dissipative control force	푢 should be also employed.  

By solving the matching equations (9), the control bundle of 퐿 in (6) will be determined. If 푚 
(dim W) is assumed to be 1, which means only one degree of freedom is actuated, then [W] in (1) 
reduces to a column matrix whose elements are w ,	i = 1,…n . In this case, if 푢 is chosen as, 
 푢 = −푐 (푤 푞̇ + ⋯+푤 푞̇ )	,	푐 > 0 (22) 

then, it can be shown that system 퐿,퐹,푊  is asymptotically stable. Finally, using (2), the 
equivalent control force u is computed such that the system (L, F, W) becomes asymptotically 
stable. 

After determining 푢,푊,푀,퐹 from (10)-(15), the equivalent 푢 for the Lagrangian system 
(퐿, 퐹,푊) is obtained from (3) as, 

 

 
Fig 1: Experimental apparatus 
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푢 × = ([푊] [푊]) [푊] (ℇℒ(퐿) − 퐹) − ([푊] [푊]) [푊]

휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇ ℇℒ 퐿 −퐹

+	([푊] [푊]) [푊]
휕 퐿
휕푞̇푞̇

휕 퐿
휕푞̇푞̇

푊 푢. 
(23) 

3. Dynamical model of the flexible link 
A common procedure to model the dynamical behavior of flexible links is to employ  the 
assumed mode method [1, 22]. In the present paper, Euler-Bernoulli beam theory is used to 
model a flexible link with one degree of freedom. In this method, elastic deformation of the link 
푤(푥,푡) is defined as a superposition of an infinite number of modes where time and spatial 
variables are separable as, 

 
푤(푥, 푡) = 	 휓 (푥)퐹 (푡) 

 

where 휓 (푥) and 퐹 (푡) are the i-th mode shape and i-th mode amplitude. 

In order to obtain a set of finite-dimension ODEs, 푛 modes are assumed. The Lagrange 
Equations result in a dynamical system which consists of 푛 + 1	second order differential 
equations [22, 28]: 

 푱 0
0 퐽

푞̈ (푡)
푞̈ (푡) +	 푲풇 0

0 0
푞 (푡)
푞 (푡) = 휓(0)

1
푢 (24) 

where 퐽  is the total inertia around the axis of rotation, 푱 is the inertia matrix regarding to the 
generalized flexible coordinates, 푞 (푡) and 푞 (푡) are the rigid generalized coordinate, 푲풇  is the 
stiffness matrix that depends on the link’s elasticity and it can be defined as 푲풇 = 푑푖푎푔	(휔 ), 
where 휔  is the natural frequency of the i-th mode. Finally 푢 represents the applied control 
torque. Defining the tracking errors as 푞 = 푞 − 푞 , where 푞  is the desired trajectory for the 
flexible link such that 푞̈ = 0 and 푞 = 0, the dynamical equations result in, 

 푱 0
0 퐽

푞̈ (푡)
푞̈ (푡)

+	 푲풇 0
0 0

푞 (푡)
푞 (푡) + 푞 = 휓(0)

1
푢 (25) 

For system (25), the kinetic and potential energy are given as 

 푇 =
1
2
퐽 푞̇ +

1
2
	{푞̇ (푡)} 푱	{푞̇ (푡)}	 (26) 

 푈 =
1
2	
{푞 (푡)} 푲풇	{푞 (푡)}	 (27) 

Assuming the first flexible mode, it is more convenient to change the coordinates from 푞  to 휃 
and 훼, where 휃 is the link angle and 훼 is the tip deflection angle (훼 = tan ≈ ). Hence, the 
kinetic and potential energy of a single flexible link reduce to, 

 푇 =
1
2 퐽 휃̇ +

1
2 퐽 휃̇ + 훼̇ , (28) 

 푈 =
1
2퐾 훼 . (29) 
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where, 퐽  is the moment of inertia of the rotational base,  퐽 = 푚퐿   is the moment of 
inertia of the flexible link, and Kst is the stiffness coefficient that is determined from the first 
flexible shape mode. 

Here (28) and (29) are considered as the model that is used to design the controller. The 
corresponding system's equations of motion are obtained by applying (1) on (28) and (29) as, 

 퐽 퐽
퐽 퐽 + 퐽

훼̈
휃̈ +

퐾 훼
0 = 0

1 푢. (30) 

While the control input in (30) is the torque, the control input of the laboratory experimental 
apparatus is the input voltage to a DC  motor. The relation between these two quantities, based 
on the apparatus specifications, is given by [29] as, 

 
푢 =

휂 휂 퐾 퐾
푅 푉 −

휂 휂 퐾 퐾 퐾
푅 휃̇. (31) 

Thus, the equations of motion for the flexible link  system is [29], 

 
퐽 훼̈ + 퐽 휃̈ + 퐾 훼 = 0, (32) 

 퐽 훼̈ + (퐽 + 퐽 )휃̈ + 퐵 +
휂 휂 퐾 퐾 퐾

푅
	 휃̇ =

휂 휂 퐾 퐾
푅

푉 . (33) 

Where the description and values of constants in (32) and (33) are given in Table 1. 

Table 1. Specifications of laboratory flexible link apparatus [29]  
Property Value Property Value 

Link mass, 푚 65	[푔푟] Moment of inertia of base devices, 퐽  2.086	[푔푟.푚 ] 

Link length, 푙 16.5	[푖푛] Motor armature resistance, 푅  2.6	[훺] 

Total gear ratio, 퐾  70 Motor back-EMF constant, 퐾  0.00767	[푉. 푠/푟푎푑] 

Gearbox efficiency, 휂  0.9 Motor torque constant, 퐾  0.00767	[푁. 푚/퐴] 

Motor efficiency, 휂  0.69 Viscous damping coefficient, 퐵  0.004	[
푁. 푚. 푠
푟푎푑

] 

Link stiffness, 퐾  1.66 [ . ]   

 

4. Controller design 
The control bundle, with respect to voltage 푉  as the controller input, is obtained from (32) and 
(33) as, 

 
푊 =

0
휂 휂 퐾 퐾

푅
 (34) 
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Additionally, for this particular system we have 퐹 (푞, 푞̇) = 0; therefore, solving (16) and (17) 
indicates that elements of the inertia tensor M are arbitrary constants. For simplicity, inverse of 
the inertia tensor is assumed to be, 
 푀 =

푎 푎
푎 푎  (35) 

Consequently, (12) in the absence of external forces (퐹 (푞) = 0) reduces to: 
 (푎 + 푎 )

휕푈
휕훼 +

(푎 + 푎 )
휕푈
휕휃 −

퐾
퐽 훼 = 0. (36) 

The general solution of (36) is, 

 푈 =
1
2

퐾
(푎 + 푎 )퐽 훼 + 퐹 휃 −

푎 + 푎
푎 + 푎 훼 , (37) 

where F1(.) is an arbitrary smooth function of its argument. 

According to energy-momentum (21), 퐹 (⋅) is used to preserve stability; therefore, the second 
derivative of 퐹 (⋅)  should be nonzero. The simplest choice for this function is, 

 퐹 =
1
2
휀 휃 −

푎 + 푎
푎 + 푎

훼  (38) 

Thus, the second variation of the system 퐿,퐹,푊 	(Hessian Matrix) is: 

 

훿 퐸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 퐾
(푎 + 푎 )퐽

+ 휀
푎 + 푎
푎 + 푎

−휀
푎 + 푎
푎 + 푎

0 0

−휀
푎 + 푎
푎 + 푎 휀 0 0

0 0
푎

푎 푎 − 푎
−푎

푎 푎 − 푎

0 0
−푎

푎 푎 − 푎
푎

푎 푎 − 푎 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (39) 

In order to guarantee the positive definiteness of the Hessian Matrix (39), one can easily check 
that the following conditions must be satisfied: 

 푎 ,푎 ,	휀 > 0	; 푎 + 푎 > 0	; 푎 푎 − 푎 > 0 (40) 

The control bundle 푊 is then obtained by substituting 푀 	from (35) into (6) as: 

 푊 = 푀 [푀] 푊 =
휼풎휼품푲풕푲품

푹풎푱풉풖풃(풂ퟏ풂ퟑ − 풂ퟐퟐ)
	 −(풂ퟐ + 풂ퟑ)

풂ퟏ + 풂ퟐ
= 푃

푃  (41) 

Next, the dissipation function is obtained by employing (22) as: 

 u = −c
η η K K

R J (a a − a ) 	 (a + a )θ̇ − (a + a )α̇ . (42) 

In order to compensate 퐷  in (33) in the control algorithm, we use (19) to determine 퐹  from, 

 퐹 =
0 0
0 퐷

훼̇
휃̇  (43) 

in the control algorithm (23). Finally, the desired control input (in volts) for the flexible link is 
obtained by substituting (35), (37) and (41)-(43) into (23).  
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5.  Simulation and experimental results 
To demonstrate the performance of the proposed controller, a series of simulations and 
experiments are presented in this section. The laboratory apparatus (Figure 1), fabricated by 
Quanser Consulting Inc., is a thin steel ruler that moves in the horizontal plane by the action of a 
DC motor. The angular position of the link 휃 is measured by a US Digital 1024-bit encoder and 
its tip deflection angle 훼 is measured by means of a strain gauge that is placed near the base. The 
method of measuring the tip deflection from the strain gauge is illustrated in the appendix. Table 
1 shows the specifications of the experimental device. The control gains to be determined for the 
suggested controller are 푎 ,푎 ,푎 ,휀 and 푐 . These five control gains have quite different roles in 
the control process: 푎 ,	푎  and 푎  shape the kinetic energy, 휀 shapes the potential energy and 푐  
indicates the dissipation rate of energy from the system. In all of the simulations and 
experiments, the three gains 푎 ,푎 	and		푎 	do not change. Equations (38) and (42) indicate that 
these three coefficients play the interconnection role between 휃, 훼 and their derivatives. The only 
restriction of finding these gains stems from (40). Therefore, any combination 
of	푎 ,푎 	and	푎 	that satisfies (40) is able to stabilize the system. The subject of this paper is to 
deal with 휀 and 푐  from system’s mechanical energy perspective as well as the effect of these 
variables on the system’s performance. In this section, the effects of 휀 and 푐  on the controller 
performance such as overshoot and settling time are examined by means of simulation and 
experiment. Moreover, the difference between simulations and experiments are discussed. 
Finally, effect of these  coefficients  on the system’s mechanical energy and stability is examined 
here. 

Any combination of  a ,a ,a ,ε and c  that satisfies (22) and (40) provides asymptotical stability 
for the system. Further tuning of these values leads to the improvement of system's performance. 
It can be seen from (37) that a .a . a  provides interconnection for potential energy function U, 
so their effect on system's performance is nonlinear which makes them inappropriate for 
improvement in the system's performance. On the other hand, ε and c  could be considered as 
the stiffness and damping coefficients of Lagrangian L. The linear effect of ε and c  on the 
system's energy, which can be seen in (22) and (38), makes them appropriate for the performance 
improvement. 

The inherent robustness of the Controlled Lagrangian method is discussed in [30]. It is shown 
that for structured uncertainties M,C,g, the  uncertain dynamical system, 

 [푀] + 푀 푞̈ + [퐶] + 퐶 푞̇ + {푔} + {푔} = 푢 (44) 

remains stable as long as its associated Hessian matrix remains positive definite. The Hessian 
matrix of the uncertain system is [30], 

 
훿 퐸 =

휕 푈
휕푞 +

휕
휕푞 푀푀

휕푈
휕푞 0

0 푀 +푀푀 푀
 (45) 

Uncertain parameters, including flexibility coefficient K  and mass distribution of the beam, 
pose their effects on U,	M  and C. Unknown damping coefficient of the joints and other 
dissipative effects affect the equations of motions through (43). If the tuning parameters 
a ,a ,a ,ε keep eigenvalues of the nominal Hessian matrix well far from the origin, the negative 
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effect of uncertainties and disturbances does not change the sign of eigenvalues, which leads to 
stability of the system. 

The control gains are selected as  푎 = 108,		푎 = −100,		푎 = 101,	휀 = 30,	푐 = 0.2. It can be 
shown easily that these values satisfy (22) and (40). The controller goal is to regulate the tip's 
deflection (훼). Figure 2 presents simulation and experimental results for the main control gains 
where the trajectories show tip total angle (휃 + 훼). While the simulation shows no overshoot, 
the experimental result displays about 8 percent (4 degrees) overshoot. Also, the settling time is 
slightly better in the simulation than in the experiment. The main cause of the discrepancy 
between the simulation and experimental result is the uncertainty in the modeling and the effect 
of the non-modelled dynamics. Such an inaccuracy deteriorates the controller performance and 
causes overshoot and a longer settling time. 

As it can be seen in (37)-(40), 휀 is a weighting parameter for shaping the potential energy of the 
equivalent system 퐿. According to (38), this parameter controls the amount of artificially injected 

potential energy into the system 퐿. In other words, one can assume 휀 휃 − 훼 as the 
potential energy of an artificial spring where its stiffness is equal to 휀. Any variation in 휀 changes 
the amount of stored energy in 퐿. Since 퐿 and 퐿 generate same equations of motion, any 
variation in energy content of 퐿 has its direct effect on the equations of motion of the original 
system 퐿. Equation (23) makes the connection between 퐿 and the required control effort 푢, and 
hence, it can be seen from (23) that the value of 휀 controls the maximum input effort 푢. In the 
presence of input constraint, one can tune 휀 to adjust the controller's effort well below the 
constraint. This prevents any saturation in the system's input. Figures 3 to 7 illustrate the effect 
of ϵ in system's performance. In Figures 3 and 4, where the values of 휀 are greater than 30, the 
overshoot and settling time are clearly observed in both simulation and experimental results. 
These results show that an increase in the value of 휀 leads to an increase in the overshoot and a 
decrease in the settling time. The actuator of the experimental setup is a DC motor. The 
maximum input voltage is determined by the manufacturer to be less than 4.2 [V]. Therefore, the 
input saturation level can be considered to be 4.2. Hence, the maximum control input in Figures 
3 and 4 are identical and are equal to 4.2[V]. Figures 3 and 4 also reveal that the controller 
performance is acceptable in the presence of saturation. In other words, actuator saturation does 
not destroy the stability of the system which is regarded as an advantage of the Controlled 
Lagrangian method.  

In Figures 5, 6 and 7, the value of 휀 is selected to be lesser than 30. A comparison between these 
figures show that the best performance in the experimental results is obtained for 휀 = 20 (Figure 
5) where the overshoot is about 1 percent (0.5 degree) and the settling time is below one second 
(much better than the simulation). Figure 7 illustrates that for 휀 < 20	 the experimental results as 
well as the simulation results show no overshoot, but the settling time is longer than a reasonable 
value. Moreover, these figures show that the maximum control effort decreases as 휀 reduces 
where we can use this property to prevent saturation. 

Figures 5 and 8-10 illustrate the effect of 푐 . As it was explained in (22), this coefficient 
indicates the dissipation rate of the system’s energy. For small values of 푐 , represented in 
figures 8 and 9, overshoots were observed. Small values of 푐  mean small dissipation rate in 
energy value; therefore, the presented overshoot is the direct result of an insignificant dissipation 
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energy rate. On the other hand, Figure 10 clearly shows that the large values of 푐  dissipate 
energy more than the desired value which leads to the deterioration of settling time.  

Implication of the partial feedback linearization method [31] on the flexible link system is 
depicted on Figure 11. Using data given in Table 1, the system is  feedback linearized and the 
controller assigns gain coefficients to obtain closed-loop characteristics 휁 = 0.6, 휔 = 6.5. To 
compare with the Controlled Lagrangian method, Figure 11 shows higher discrepancy between 
simulation and experiment. Furthermore, the trajectory and control input history of the 
experimental result are more sluggish for the partial feedback linearization method. The reason 
returns to the characteristics of feedback linearization that any uncertainty or model error 
prevents the cancellation of nonlinear expressions in the governing equations. In other words, the 
discrepancy and sluggish behavior of the experimental result is due to the fact that this method is 
highly sensitive to uncertainties and unknown parameters. On the contrary, as it is observed from 
Figures 2-10, the Controlled Lagrangian method enjoys from a robustness degree against 
unknown parameters and uncertainties. 

It should be noted that both methods use a model based approach to produce the control law. The 
reason that the partial feedback linearization method is sensitive to uncertainties while our 
proposed method is well robust can be explained by the usage of the model in each method. The 
partial feedback linearization method employs system's model to cancel the nonlinear terms of 
the governing equations of motion. Therefore, any difference between the model and the real 
system results in a residual nonlinear term that diminishes stability and performance. On the 
other hand, the Controlled Lagrangian method employs the model to design a control law that 
reduces mechanical energy of the system. In this perspective, the difference between parameters 
of the model and the real system is not a matter of great importance as long as the structure of 
expressions remains the same.  
 

 
Fig 2: Simulation and experimental results for ϵ = 30, c0 = 0.2: (a) Tracking reference input; (b) Control effort 
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Fig 3: Simulation and experimental results for ϵ = 50, c0 = 0.2: (a) Tracking reference input; (b) Control effort 

 
Fig 4: Simulation and experimental results for ϵ = 40, c0 = 0.2: (a) Tracking reference input; (b) Control effort 

 
Fig 5: Simulation and experimental results for ϵ = 20, c0 = 0.2: (a) Tracking reference input; (b) Control effort 
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Fig 6: Simulation and experimental results for ϵ = 15, c0 = 0:2: (a) Tracking reference input; (b) Control effort 

 
Fig 7: Simulation and experimental results for ϵ = 10, c0 = 0.2: (a) Tracking reference input; (b) Control effort 

 
Fig 8: Simulation and experimental results for ϵ = 20, c0 = 0.15: (a) Tracking reference input; (b) Control effort 
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Fig 9: Simulation and experimental results for ϵ = 20, c0 = 0.17: (a) Tracking reference input; (b) Control effort 

 
Fig 10: Simulation and experimental results for ϵ = 20, c0 = 0.25: (a) Tracking reference input; (b) Controller force 

(a) (b)  
Fig 11: Simulation and experimental result for partial feedbalck linearization: (a) Tracking reference input; 

(b) Controller force 
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6. Conclusion 
This sequel presented a theoretical and experimental study about the Controlled Lagrangian 
method to control a laboratory flexible link device. It was shown that the method could be used 
to apply a direct control on the maximum value of the input that can be employed to avoid input 
saturation. Also, it was illustrated that gain tuning can be employed by regulating controller 
gains with respect to their role in the artificial system’s energy. This is of particular importance 
for online tuning of the controller’s gain. Additionally, a comparison between the Controlled 
Lagrangian method and the partial feedback linearization method reveals that the Controlled 
Lagrangian method is able to attenuate the effects of uncertainties on control performance while 
the partial feedback linearization method fails to do that. The experimental results indicated that 
the reference input can be well tracked by adopting this control strategy.  

 

Appendix A- Measurement of tip deflection by strain gauge 
This appendix explains the method that was used to measure tip deflection by means of a strain 
gauge sensor. As it can be seen from Figure A.1, the sensor is attached close to the clamped edge 
of the link. Link’s length is 푙   and the distance between the tip of the link and the strain gauge is 
푙 . The values of 푙  and 푙  are given in Table 1.  

 

Fig A. 1: Tip deflection measuring details of flexible link 

For a constant force 푃  acting at the link tip, it is known that the tip's deflection 훿 is 

 훿 =
푃 푙
3퐸퐼 (A.1) 

where 퐸 and 퐼 denote elastic modulus and second moment of area of the link. This force 
produces moment 푀 = 푃푙  at the clamp. Solving (A.1) for elastic modulus results in 
 

퐸 =
푃 푙
3훿퐼  (A.2) 
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Assuming the first mode shape, the cantilever link of Figure A.1 is acting like a beam in bending. 
The stress 휎 experienced on the surface of the beam in bending is given by, 

 휎(푥) = 퐸휀(푥) = 	
푀(푥)푡
2	퐼

 (A.3) 

where 푡 is the thickness of the beam. Using (A.2) to solve (A.3) for the strain at 푥 = 푙 , it is 
obtained that, 

 휀(푙 ) = 	
푀(푙 )푡
2퐸퐼

=
푃 푙 푡
2퐼

3훿퐼
푃 푙

=
3푡푙
2푙

훿 (A.4) 

Expression (A.4) represents a linear relationship between tip deflection 훿 and strain value at 푥 =
푙 . The calibration process of the strain gauge employs two adjustable potentiometers as it is 
depicted in Figure A.1. First, one should put the flexible link in rest position. In this position, 
output voltage of strain gauge should be zero. If the voltage, measured by a voltmeter, shows 
other values, one should adjust the Offset potentiometer to make the output voltage zero. After 
that, it is necessary to check that the device works linearly for the prospective deflection value. 
The sensor should read 1 Volt per 1 inch of tip deflection [29]. If for 1 inch deflection the sensor 
reads other values, one should gently adjust the gain potentiometer until the sensor reads 1 Volt.  
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