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In this article, vibration analysis of an Euler-Bernoulli beam resting on a 
Pasternak-type foundation is studied. The governing equation is solved by 
using a spectral finite element model (SFEM). The solution involves 
calculating wave and time responses of the beam. The Fast Fourier 
Transform function is used for temporal discretization of the governing 
partial differential equation into a set of ordinary differential equations. 
Then, the interpolating function for an element is derived from the exact 
solution of governing differential equation in the frequency domain. Inverse 
Fourier Transform is performed to rebuild the solution in the time domain. 
The foremost advantages of the SFEM are enormous high accuracy, 
smallness of the problem size and the degrees of freedom, low 
computational cost and high efficiency to deal with dynamic problems and 
digitized data. Moreover, it is very easy to execute the inverse problems by 
using this method. The influences of foundation stiffness, shear layer 
stiffness and axial tensile (or compressive) forces on the dynamic 
characteristic and divergence instability of the beam are investigated. The 
accuracy of the present SFEM is validated by comparing its results with 
those of classical finite element method (FEM). The results show the 
ascendency of SFEM with respect to FEM in reducing elements and 
computational effort, concurrently increasing the numerical accuracy. 
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k wave number (rad/m) ሾSୣሿ elemental dynamic stiffness matrix kୱ stiffness of the shear layer (N) V୵ୟ୴ୣ wave speed or phase speed (m/s) k୵ Winkler foundation modulus (N mଶ⁄ ) ρA mass per length of beam (kg m⁄ ) L span between two end supports (m) ρI mass moment of inertia per length (kg ∙ m) Lୣ  length of an element (m) ω sampling frequency (rad s⁄ ) M(x, t) bending moment (N ∙ m) ωୡ cut-off frequency (rad s⁄ ) 

1. Introduction 

In many engineering applications, beams are located on elastic foundations; for example, 
structures on elastic medium that constitute parts of any machinery for isolation functions, 
concrete structures on soil in civil engineering applications and the cases in railway applications. 
Due to such applications, dynamic behavior of beams on elastic foundations is a subject of 
technological interest. During the past decades, a variety of models have been presented for 
beams resting on elastic foundations such as soil etc. Those structures supported along their main 
axis are represented by numerous approaches such as Winkler, Pasternak or Vlasov, Flonenko - 
Borodich foundations. The Winkler modeling, one of the most fundamental methods, was 
recommended in 1867 by Winkler. The model presents a linear algebraic association between the 
normal displacement of the structure and the contact pressure [1]. The Winkler elastic foundation 
has a single parameter that was used in the studies made by Shin et al. [2], Hsu [3], De Rosa [4], 
and Lee et al. [5]. The Winkler model represents the soil medium by a set of equally independent 
spring elements. This method gives effortlessness in finding closed-form solutions [6, 7]. In 
addition, it grants the possibility of obtaining a nonlinear behavior with lower computational 
struggle compared to other methods [8-13]. There are several studies on the Winkler elastic 
foundation modeling in literature. Zhou [14] and Eisenberger [15] studied a general solution to 
vibrations of beams on a variable Winkler elastic foundation. Auersch [16] accomplished a study 
about infinite beams on half-space compared with finite and infinite beams on a Winkler support. 
Eisenberger and Clastornik [17] inspected the vibrations and buckling of a beam on a variable 
Winkler elastic foundation. Gupta et al. [18] provided buckling and vibration behavior of polar 
orthotropic circular plates with linearly varying thickness. Furthermore, Ruge and Birk [19] 
examined the dynamic behavior of infinite beam models, devoting value to asymptotic behavior 
at high frequencies. Oz and Pakdemirli [20] has scrutinized the resonances of shallow beams 
resting on elastic foundations. The classification of the two parameter foundation models with 
shear modulus or transverse modulus is recognized as a Pasternak foundation model. In two 
parameter foundation models, the first parameter of the foundation is still the Winkler elastic 
foundation parameter. The Pasternak foundation model is introduced by Shin et al [2], El-
Mously [21], Zhu and Leung [22], Arboleda-Monsalve et al. [23], Ma et al. [24] and 
Civalek [25]. 

The solutions of equation of motion for a beam resting on Pasternak-type foundation were 
obtained by various solution techniques including the perturbation method [21], the classical 
finite element method (FEM) [22, 26] and the Laplace transform method [27]. 

FEM has been the most popular method in many fields of engineering and science [28, 29]. This 
method may present accurate dynamic characteristics of a structure if the wavelength is large 
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compared to the mesh size. The FEM matrices are typically formulated from presumed 
frequency-independent polynomial shape functions. Nevertheless, as the most important negative 
aspect of FEM, it is recognized that a large number of elements should be used to get dependable 
results particularly at higher frequencies. Clearly, this prerequisite may raise the time and cost of 
computations. Consequently, many researchers ponder alternatives to the FEM. Recently, the 
Spectral Finite Element Method (SFEM) based on the Fast Fourier Transform (FFT) has been 
broadly used in dynamic analysis of structures. In this method, the equations of system are 
solved in the frequency domain and the FFT is utilized to convert the time domain responses to 
the wave domain and vice versa. SFEM utilizes the exact solution of governing differential 
equation (if available) in the wave domain as the interpolating function for element formulation. 
Hence, SFEM, in contrast with FEM, represents a structural member with much lower number of 
elements regardless of its dimensions and without the necessity to separate the member into large 
number of refined elements for increased accuracy. Narayanan and Beskos [30] founded the 
basic concepts of SFEM. To the authors’ knowledge, Doyle [31] is one of the early studies which 
employ SFEM to wave propagation in structures. Doyle [32], and Doyle and Farris[33] 
formulated SFEM for elementary isotropic waveguides and Gopalakrishnan et al. [34] utilized 
SFEM for higher-order waveguides. Lee et al. [35], Kim et al. [36] and some other researchers 
applied SFEM to dynamic problems of beams, plates and trusses. Roy Mahapatra and 
Gopalakrishnan [37] used SFEM for the analysis of axial-flexural-shear coupled wave 
propagation in laminated composite thick beams. Vinod et al. [38] applied SFEM for free 
vibration and wave propagation analysis of uniform and tapered rotating beams. Lee and Lee 
[39] exploited SFEM for an extended Timoshenko beam. Sarvestan et al. [40] used SFEM for 
vibration analysis of cracked viscoelastic Euler-Bernoulli beam subjected to a moving load. 

In the literature reviewed so far, spectrally formulated finite element solution of Euler-Bernoulli 
beams on a two parameter elastic foundation has not been considered and this is the most 
remarkable innovation of this study. Moreover, to the best of authors’ knowledge, wave speed, 
cut-off frequency, and closed-form of divergence instability of this structure has not yet been 
investigated in the literature. Thus, the main objectives of this article are: (1) to develop the 
SFEM for a transversely vibrating beam by considering the Euler-Bernoulli beam theory, elastic 
foundation and axial tensile (or compressive) force at the same time, (2) to highlight the fewer 
energy and time for discretization and more acceptable numerical accuracy of this model as 
compared with those of FEM, and (3) to investigate the effects of elastic foundation and axial 
tensile force on the vibration and wave characteristics (i.e. the natural frequencies, wave speed 
and cut-off frequency) and the divergence instability.  

2. Theory 

The governing wave differential equation of an Euler-Bernoulli beam resting on Pasternak 
foundation, under tensile force (see Fig. 1), is given as [24, 41]: 

ܫܧ  ߲ସݔ߲ݓସ − ( ௫ܲ + ݇௦) ߲ଶݔ߲ݓଶ + ܣߩ ߲ଶݐ߲ݓଶ + ݇௪ݓ = ,ݔ)݂  (1) (ݐ

where ݔ)ݓ, ,ݔ)݂ ,is the lateral deflection (ݐ  ௘ is theܮ ,is the length of the beam ܮ ,is the mass per length of beam ܣߩ ,is the flexural rigidity, ௫ܲ is the axial pretension ܫܧ ,is the excitation force (ݐ
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length of the element, ݇௪ is the Winkler foundation modulus and ݇௦ is the stiffness of the shear 
layer. 

 

Fig. 1. Schematic illustration of a beam resting on a Pasternak foundation 

The force boundary conditions are given as: 

 

۔ۖۖەۖۖ
ۓ ܳ(0, (ݐ = −ܳ௡_ଵ(ݐ) − ௫ܲ ,0)ݓ߲ ݔ߲(ݐ ,0)ܯ        (ݐ = ,௘ܮ)ܳ                             (ݐ)௡_ଵܯ− (ݐ = ܳ௡_ଶ(ݐ) − ௫ܲ ,௘ܮ)ݓ߲ ݔ߲(ݐ ,௘ܮ)ܯ           (ݐ =                               (ݐ)௡_ଶܯ

 (2) 

where ܳ(ݔ, ,ݔ)ܯ and (ݐ  :are the shear force and bending moment defined as (ݐ

,ݔ)ܳ  (ݐ ≜ ܫܧ− ߲ଷݔ߲ݓଷ  (3) 

,ݔ)ܯ  (ݐ ≜ ܫܧ ߲ଶݔ߲ݓଶ ݔ are the bending moment and the lateral shear force applied at (ݐ)and ܳ௡_ଵ (ݐ)௡_ଵܯ (4)  = ݔ are the bending moment and the lateral shear force applied at (ݐ)and ܳ௡_ଶ (ݐ)௡_ଶܯ .0 =  ௘ (seeܮ
Fig. 2). 

 

 

Fig. 2. A finite element model of the beam 
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3. Temporal and spatial discretization 

Assume that the transverse displacement of an Euler-Bernoulli beam in the spectral form is [42]:  

,ݔ)ݓ  (ݐ = 1ܰ ෍ ௡ܹ(ݔ; ݅߱௡)݁௜ఠ೙௧ேିଵ
௡ୀ଴  (5) 

where ௡ܹ(ݔ; ݅߱௡) are the spectral components of the displacement field ݔ)ݓ,  Also, ܰ is the .(ݐ
total number of frequency samples used in DFT transformation. By using Eq. (5), for a specific 
discrete frequency ߱ = ߱௡, keeping in mind that the subscript is vanished for more legibility, 
Eq. (1) can be converted into wave-domain expression as: 

ܫܧ  ݀ସܹ݀ݔସ − ( ௫ܲ + ݇௦) ݀ଶܹ݀ݔଶ + (−߱ଶܣߩ + ݇௪)ܹ =  (6) ܨ

where ܨ represents the spectral components of ݂(ݔ,  .Forced boundary conditions given in Eqs .(ݐ
(3) and (4) are similarly transformed as: 

 ℳ = ܫܧ ݀ଶܹ݀ݔଶ  (7) 

 ࣫ = ܫܧ− ݀ଷܹ݀ݔଷ  (8) 

The exact interpolating functions obtained from solving ODEs considering free bending 
(flexural) vibration, i.e. Eq. (6) without ܨ, are: 

 ܹ =  ௪݁ି௜௞௫ (9)ܥ

where ݇ is the wavenumber. Substituting the interpolating functions into the homogeneous 
equations, resulting from ODEs, i.e. Eq. (6), yields a dispersion relation as: 

ସ݇ܫܧ  + ( ௫ܲ + ݇௦)݇ଶ + ݇௪ − ߱ଶܣߩ = 0 (10) 

Therefore, ሼܥ௪ሽ = ሼܥ௪ଵ ௪ଶܥ ௪ଷܥ  ௪ସሽ் are the constants to be derived from the boundaryܥ
conditions at the two nodes (see Fig. 3), i.e. nodal displacements ሼݑ௘ሽ = ሼ ௡ܹ_ଵ ௡_ଵߠ ௡ܹ_ଶ ௡_ଶሽ் where ௡ܹ_ଵߠ ≜ ܹ| ௫ୀ଴, ߠ௡_ଵ ≜ ௗௐௗ௫ ቚ ௫ୀ଴, ௡ܹ_ଶ ≜ ܹ| ௫ୀ௅೐, 

and ߠ௡_ଶ ≜ ௗௐௗ௫ ቚ ௫ୀ௅೐. 
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Fig. 3. An SFE of the beam with equivalent nodal forces and the degrees of freedom (DOFs) 

 

Thus, nodal displacement and unknown constants can be related as: 

 ሼݑ௘ሽ = ۔ە
ۓ ௡ܹ_ଵߠ௡_ଵ௡ܹ_ଶߠ௡_ଶ ۙۘ

ۗ = ሾܶሿሼܥ௪ሽ (11) 

from the force boundary conditions Eqs. (2), (7) and (8), nodal forces ሼܨ௘ሽ = ሼ࣫௡_ଵ ℳ௡_ଵ ࣫௡_ଶ ℳ௡_ଶሽ் and unknown constants can be related as: 

 ሼܨ௘ሽ = ۔ە
ۓ ࣫௡_ଵℳ௡_ଵ࣫௡_ଶℳ௡_ଶۙۘ

ۗ = ሾܶᇱሿሼܥ௪ሽ (12) 

where ࣫௡_ଵ = −࣫| ௫ୀ଴ − ௫ܲ ௗௐௗ௫ ቚ ௫ୀ଴, ℳ௡_ଵ = −ℳ| ௫ୀ଴, ࣫௡_ଶ = ࣫| ௫ୀ௅೐ + ௫ܲ ௗௐௗ௫ ቚ ௫ୀ௅೐ and ℳ௡_ଶ = ℳ| ௫ୀ௅. 

Finally, substituting ሼܥ௪ሽ from the nodal displacement vector, i.e. Eq. (11) into the nodal force 
vector, i.e. Eq. (12), the nodal displacements and nodal forces are interrelated as: 

 ሼܨ௘ሽ = ሾܶᇱሿሾܶሿିଵሼݑ௘ሽ = ሾܵ௘ሿሼݑ௘ሽ (13) 

Here, ሾS௘ሿ is the elemental dynamic stiffness matrix for the beam. The assembled global 
structural system equations for the SFEM can be obtained by adopting the assembly procedure as 
commonly used in the conventional FEM. The computations of the assembled global matrices 
for ं =  0, 1, . . . , ݊ − 1 are done numerically. These equations can be solved to derive the nodal 
displacement vector, ሼݑሽ, for known nodal forces. Consequently, global nodal displacement ሼݑሽ 
can be substituted into the inverse FFT algorithm to obtain the time domain responses. 
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4. Asymptotic analysis 

The wave speed or phase speed is defined as: 

 ௪ܸ௔௩௘ = ܴ݁ ቀ߱݇ቁ (14) 

it should be noted that the phase speed is defined with respect to real wavenumber ݇. As a result, 
the speeds change with frequencies. The value of the wave speed depends on frequency and there 
can be a frequency after which the wavenumbers transit from being purely imaginary to complex 
or real wavenumbers resulting in propagation of the wave mode. This transition frequency is 
called the cut-off frequency. Thus, in Eq. (14) when ܴ݁(݇) → 0 (or ܸ௪௔௩௘ → ∞), an asymptotic 
equation of Eq. (10) for the natural frequency parameter ߱ can be obtained as: 

 ߱௖ = ඨ݇௪ܣߩ ௖݂       ݎ݋     = ߨ12 ඨ݇௪(15) ܣߩ 

where ߱ܿ is the cut-off frequency. The cut-off frequency is a function of Winkler foundation 
parameter ݇ݓ and the geometrical properties of the beam. If ݇ݓ = 0, there is no possibility for a 
cut-off frequency. 
 

5. Divergence instability 

When the beam is under compressive force − ௫ܲ, the fundamental natural frequency becomes 
zero and the beam becomes unstable by divergence. Thus, the critical load at which the 
divergence instability (divergence load ௫ܲ_஽) happens can also be achieved by bearing in mind 
the existence of the non-trivial equilibrium position, in other words, the static eigenvalue 
problem. For a simply supported Euler-Bernoulli beam resting on a Pasternak-type foundation, 
the static eigenvalue problem can be derived unswervingly from Eq. (10) by inserting ߱ = 0 as 
follows: 

 

ସ݇ܫܧ  + ( ௫ܲ + ݇௦)݇ଶ + ݇௪ = 0 (16) 

Eq. (16) gives four roots as: 

 ݇ଵ = −݇ଶ = ඨ−( ௫ܲ + ݇௦) + ඥ( ௫ܲ + ݇௦)ଶ − ܫܧ௪2݇ܫܧ4 = ॶଵ 

(17) 
 ݇ଷ = −݇ସ = ඨ−( ௫ܲ + ݇௦) − ඥ( ௫ܲ + ݇௦)ଶ − ܫܧ௪2݇ܫܧ4 = ॶଶ 
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Thus, the non-trivial equilibrium displacement can be written as: 

 ܹ = ௪ଵ݁ି௜ॶభ௫ܥ + ௪ଶ݁௜ॶభ௫ܥ + ௪ଷ݁ି௜ॶమ௫ܥ +  ௪ସ݁௜ॶమ௫ (18)ܥ

Applying the simply supported boundary conditions to Eq. (18) gives: 

 ॶଵ = ܮߨ݊ ॶଶ      ݎ݋     = ܮߨ݊            ( ݊ = 1, 2, 3, … ) (19) 

Lastly, substituting Eq. (19) into Eq. (16) gives the closed-form of the divergence load as: 

 ௫ܲ_஽ = − ݇௪ܮସ + ସ(ߨ݊)ܫܧ + ݇௦(݊ܮߨ)ଶ(݊ܮߨ)ଶ        ( ݊ = 1, 2, 3, … ) (20) 

6. Numerical results and discussion 

For numerical studies, the numerical values of material and geometrical parameters of simply 
supported Euler-Bernoulli beam are: length ܮ = 4 m, Young’s modulus ܧ = 2.1 × 10ଵଵ GPa, 
cross-sectional second moment of inertia ܫ = ܾ × ℎଷ 12⁄  ݉ସ, width ܾ = 0.3 m,  
height ℎ = 0.3 m and mass density ߩ = 7860 kg mଷ⁄ . The non-dimensional properties of the 

Pasternak foundation are ݇௪തതതത ≜ ௞ೢ௅రாூ = 10 and ݇௦തതത ≜ ௞ೞ௅మாூ = 25 unless otherwise mentioned. ௫ܲ is 40 kN unless otherwise mentioned. The impulsive load is subjected to the mid-span of the 
simply supported beam that has 100 kN amplitude and the duration of 0 to 1.1 ms. At first, 
SFEM is used to study the natural frequencies, divergence instability and the phase speed. Next, 
SFEM is used to simulate time responses in the same structure. Numerical examples have been 
conducted to evaluate the accuracy and efficiency of the SFEM solutions through a comparison 
with those from FEM. For SFEM wave domain analysis, the whole length of the beam is divided 
into one SFE and for SFEM time domain analysis, the same length is divided into two SFEs. On 
the other hand, for FEM dynamic analysis, the total number of FEs used in the analysis is 
varying in order to improve the numerical accuracy. 
 

6.1. Natural frequencies and divergence instability  

The SFEM is evaluated by comparing the natural frequencies obtained from this method, those 
obtained from the analytical approach [42] and those from the FEM (see Table 1). Table 1 shows 
that the SFEM results are identical to the exact analytical results given by Usiklee [42] while the 
FEM results converge to the SEM results (obtained by using one SFE) as the total number of FEs 
used in FEM is increased. This implies that the SFEM could provide extremely accurate 
solutions even by using smaller number of FEs in the spectral-domain (one SFE) as compared 
with those obtained from FEM. This is true especially at high frequency modes. From Table 1, 
one may observe that the natural frequencies are in general increased as axial tension, Winkler 
foundation modulus and stiffness of the shear layer are increased. 

The effect of compressive axial force on the fundamental natural frequencies of the simply 
supported Euler Bernoulli beam is exhibited in Fig. 4 when ݇௪തതതത = 10 and ݇௦തതത = 25. It is obvious 
that the frequency decreases with compressive force increasing and this descent gets faster when 
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the axial force gets closer to the divergence load. Finally, at the divergence load ௫ܲ_஽, the first 
natural frequency becomes zero. 

 

Table 1. Natural frequencies of the Euler-Bernoulli beam resting on Pasternak-type foundation 

Investigated 
parameters 

Method (number of elements) Natural frequencies (Hz) 

ଵ݂ ଶ݂ ଷ݂ ଵ݂଴ 

௫ܲ = 0 kN ݇௪തതതത = 0 ݇௦തതത = 0  
Theory [42] 

SEM (1) 

FEM (5) 

FEM (30) 

43.95 

43.95 

43.95 

43.95 

175.79 

175.79 

176.08 

175.79 

395.52 

395.52 

398.66 

395.53 

4394.70 

4394.70 

5588.17 

4398.26 

௫ܲ = 40 kN ݇௪തതതത = 0 ݇௦തതത = 0 

Theory [42] 

SEM (1) 

FEM (5) 

FEM (30) 

43.96 

43.96 

43.96 

43.96 

175.80 

175.80 

176.09 

175.80 

395.53 

395.53 

398.67 

395.54 

4394.71 

4394.71 

5588.18 

4398.27 

௫ܲ = 40 kN ݇௪തതതത = 10 ݇௦തതത = 0 

SEM (1) 

FEM (5) 

FEM (30) 

46.16 

46.16 

46.16 

176.36 

176.65 

176.36 

395.78 

398.92 

395.79 

4394.73 

5588.19 

4398.29 

௫ܲ = 40 kN ݇௪തതതത = 10 ݇௦തതത = 25 

SEM (1) 

FEM (5) 

FEM (30) 

83.80 

83.80 

83.80 

225.10 

225.34 

225.10 

447.97 

450.79 

447.98 

4450.04 

5634.57 

4453.56 

 

 

 

Fig. 4. Fundamental natural frequency versus axial force curve when k୵തതതത = 10 and kୱതതത = 25 
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6.2. Wave speed 

For the Euler-Bernoulli beam resting on Pasternak-type foundation, the wave speed variation 
with frequency is shown in Fig. 5. The effects of the Pasternak foundation is shown in Fig. 5 for ௫ܲ = 40 kN and ݇௦തതത = 25. The effects of Pasternak foundation show that the wave will have a 
cut-off frequency. In accordance with Eq. (15), cut-off frequency decreases as the radius of beam 
increases. Moreover, the cut-off frequency increases with the stiffness of the Winker foundation 
parameter. 

 

 

Fig. 5. Wave speed dispersion with wave frequency in Euler-Bernoulli beam resting on 
Pasternak-type foundation when P୶ = 40 kN and kୱതതത = 25. 

6.3. Time domain analysis 

The structure jumps at divergence instability or buckling where its amplitude increases 
exponentially with time. In other words, when the axial force ௫ܲ crosses the critical value ௫ܲ_஽, 
the first eigenfrequency becomes zero implying a divergence instability. Thus, the undeformed 
equilibrium configuration of the beam becomes linearly unstable. Consequently, Fig. 6 illustrates 
the divergence instability of the structure when ௫ܲ = ௫ܲ_஽, ݇ݓതതതത = 10 and ݇ݏതതത = 25. In addition, 
this figure demonstrates that the results predicted by FEM would converge to those predicted by 
the present SFEM. It should be noted that the total number of FEs used in FEM could increase 
beyond 100. This implies that, in contrast to the FEM, the SFEM provides highly accurate results 
by using only a small number of finite elements (two SFEs). 

From Table 1, the structure should have more stiffness and fundamental frequency for higher 
axial tension, Winkler foundation modulus and stiffness of the shear layer (see Figs. 7-9 
respectively). Therefore, narrower time periods and lower amplitudes of time responses in Figs. 
7-9 would demonstrate this fact of the Euler-Bernoulli beam resting on Pasternak-type 
foundation. It should be noted that, the time responses are obtained from SFEM. 

Numerical results for two values of axial tension, ௫ܲ = 40 kN and 100 MN, is included in Fig. 7. 
As seen, one can generally say that the magnitude of deflection and time period of lower axial 
tension is larger than those of the higher one. 
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Numerical results obtained for the two values of Winkler foundation modulus, ݇௪തതതത = 0 and 10, 
are compared in Fig. 8. It is found that the magnitude of deflection and time period of lower 
modulus is larger than those of higher modulus.  

 

 

Fig. 6. Comparison of SFEM and FEM time response of the Euler-Bernoulli beam resting on 
Pasternak-type foundation when P୶ = P୶_D, k୵തതതത = 10 and kୱതതത = 25 

Numerical results obtained for the two values of stiffness of the shear layer ݇௦തതത = 0 and 25 are 
compared in Fig. 9. It shows that the amplitude of deflection and time period of the lower 
stiffness is larger than those of the higher stiffness.  

One can conclude that higher axial tension, Winkler foundation modulus, and stiffness of the 
shear layer provide safer margins for design of the foundation and the beam. 

 

 

 

Fig. 7. The effects of tensile force on time responses when k୵തതതത = 10 and kୱതതത = 25 
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Fig. 8. The effects of Winkler foundation modulus on time responses when P୶ = 40 kN and kୱതതത = 0 

 

 

Fig. 9. The effects of stiffness of the shear layer on time responses when P୶ = 40 kN and k୵തതതത = 10 

7. Conclusion 

In this article, the spectrally formulated finite element model of an Euler-Bernoulli beam under 
axial tensile (or compressive) force resting on Pasternak-type foundation was presented. The 
main characteristic of SFEM in comparison with other methods such as FEM is demonstrated to 
be its higher accuracy together with using fewer elements. The SFEM method was shown to be 
an efficient alternative formulation instead of FEM or analytical analysis for wave propagation 
problems. Using the SFEM developed here is the main novelty of this article. Moreover, the 
effects of elastic foundation and axial tensile force on the vibration and wave characteristics (i.e. 
natural frequencies, wave speed and cut-off frequency) and divergence instability were 
investigated. Results obtained in the article give ideas about how the time and wave responses 
are affected by foundation parameters and axial forces. By the presented SFEM in this article, 
the vibration trend of a structure under axial force and resting on elastic foundation may be 
estimated. 
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