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X. PLASMA DYNAMICS

A. Experimental Studies - Waves, Turbulence, and Radiation

1. NEUTRAL BEAM INJECTION SYSTEMS

U. S. Energy Research and Development Administration (Contract E(ll11 - 1)-3070)

Louis D. Smullin, Leslie Bromberg, Peter T. Kenyon

Introduction

The hopes of confined thermonuclear reactor systems are now focused primarily

on Tokamak toroidal machines. The initial production and heating in these machines

is done by transformer coupling of large circulating currents into the toroidal chamber.

The plasma can be heated, in principle, to 2-3 keV temperatures. The limit is imposed

by the rapidly increasing plasma conductivity with T e , and by the limit on circulating

current imposed by the onset of gross MHD instabilities. Thus, to achieve reactor tem-

peratures of 5 keV or so, supplementary power sources are needed. A major candidate

for this role is high-power neutral beam injection. Beams of deuterium at energies of

100-200 keV and energy fluxes corresponding to tens of amperes are required. In a full-

size reactor a number of these beams would be injected into a single machine. The

research reported here is aimed at developing the components necessary to produce such

beams. We have concentrated on one problem, building efficient plasma sources from

which to extract high-current positive ion beams (H+ or D +).

Such devices have been built in several laboratories and are now in experimental

use. The most successful is the multifilament arc developed at Lawrence Berkeley Lab-
1

oratory. It has produced beams of 50 A with good focusing properties. Other schemes

are the duo-PIGatron 2 and the MATS. 3 These have been limited to 5-10 A currents. The

properties that make a good source are the following.

Plasma density = 1012cc over an area of 100-200 cm with uniformity of "5-10%.

Quiescent operation. The level of density fluctuations arising from oscillations or

instabilities should be low (< 1%) and the random transverse ion energies should be

below 1-5 V.

Neutral density at the exit plane should be low in order to avoid interference with

later elements of the beam systems; charge exchange cells, etc. While lower density

is desirable, 5-10 mT is acceptable.

Power efficiency. The power dissipated should be low in order to simplify the

problems of heating and thermal distortion of the extraction grid system.

The existing systems have specific power input of 1-5 kW per extracted beam

ampere. Thus the multifilament airc requires an input power of 1/4 MW to sus-

tain a 50 A beam. Our work has been concentrated on finding a more efficient

system that meets all other criteria.
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Behavior of Plasma Sources

A plasma source requires a power input system to ionize the neutral gas and sustain

all of the plasma losses as well as the extracted current. Since it is desirable to sustain

long pulses (> 1/4 s) or dc operation, the two energy sources that we envision are elec-

tron beams or RF power. We have chosen to concentrate on hot-cathode low-pressure

(1-10 mT) discharges, as have our predecessors. The factors that influence specific

power input are the efficiency of energy transfer to the plasma, and the losses of plasma

caused by diffusion to the walls and volume recombination (negligible because of low

pressure). Since the chamber has only one wall through which ions are extracted, the

other 5 walls (of a cube) represent substantial loss areas. We are studying a magnetic

confinement system that substantially reduces these wall losses. Simple, axial magnetic

fields are unsatisfactory because of flute instabilities that plague all plasma discharges

(they appear to set limits to the performance of the MATS and duo-PIGatron sources). 3

Our system uses a multipole field to reduce lateral wall losses. This produces a radial

minimum I B field that is MHD stable. In order to prevent leakage to the back wall

and to launch the electron beam, we superpose a diverging solenoid field. Figure X-1

shows the basic configuration. The lateral field is produced by ceramic magnets

arranged to be periodic in 0 and uniform along the axis (0-cusp). The combination of

this field with that of the solenoid gives a pattern with IBI increasing radially and

CRS SHELL

N N N

SOLENOID

FILAMENT 5) . S

VAC

HOLLOW BEAM SSYSTEM
GUN

. I 
VSHELL

Fig. X-1. Periodic magnet discharge chamber.

toward the back - there is a broad valley toward the extraction plane. Over the area

of the extraction plane the field must be small (a few gauss) so as not to interfere with

the beam focusing. The high 0-periodicity (12 Indox-5 magnets (7/8 1"t X 1", 7" long)

around the circle) gives a field that decays as r5/a 5 and falls to 25 G within 1i of the

magnet circle.

We have chosen to inject our beams from cylindrical cathodes, emitting radially as

in a magnetron. We expect that relatively large emitting areas will be available from
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fairly compact structures, and there may be advantages in terms of reduced ion bom-

bardment damage. Both oxide-coated, unipotential cathodes and spiral tungsten cathodes

have been used. As long as operation is in the space-charge-limited regime we see no

gross qualitative differences in behavior. Oxide cathodes require only ~1 W/A of
2

electron current at densities of 1 amp/cm 2 . Tungsten requires approximately 100 W;

on the other hand, it is relatively immune to poisoning and may be opened to air, and

therefore has obvious experimental advantages.

We have made some preliminary tests with indirectly heated hollow cathodes and

plan to study them, as well as shielded cathodes used in H 2 thyratrons. These may

offer advantages in terms of resistance to ion bombardment damage, and also the

possibility of operation at higher impedance levels. Thus a given power input will be

achieved with higher Va and lower Ia. If the specific power is the same as that for

conventional cathodes, the cathode size needed for full-power operation, where

100-200 A of cathode current may be required from a magnetron cathode, will be

reduced.

Theoretical Status

The hot-cathode low-pressure arc is still terra incognita despite Langmuir's

observations and correct hypothesis in 1924. There is no closed theory that permits

calculation of the V-I characteristics of such a discharge. Experiments by Druyvestyn4

and Emeleus 5 clearly prove Langmuir' s hypothesis that the coupling between the electron

beam entering the plasma is by induced plasma oscillations. The nonlinear theory of

the formation of the so-called meniscus and transfer of beam energy to plasma electrons

is still largely unexplored. The doctoral thesis of J. A. Davis showed by numerical

simulation what happens 6 and research by Vianna 7 opens up a better analytical under-

standing of the subject. In real geometries, with superposed magnetic fields, there is

still no usable theory. The loss through magnetic cusps presents a difficult problem,

and although there is an extensive literature on cusps, we have not found an easily

applicable theoretical formulation.

Experimental Program

We have built two essentially identical systems (Fig. X-l). The cathode is mounted

within the tube (1 3/4" diam) under the solenoid and the beam enters the chamber

(4 1/2" diam). Near the cathodes an antenna picks up relatively intense oscillations in

the 1-3 GHz range, depending on arc power, etc. Thus far, in our experiments we have
11 -3

produced plasmas up to 1011 cm density in neutral gas atmospheres of 5-10 mT of H Z.
The plasma, viewed from the end opposite the cathode has a relatively uniform core

(~8 cm diam) surrounded by a series of sharp radial spokes going out to the center of

each magnet line. Figure X-2 is a tracing of the current to a probe at the wall, as the
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Fig. X-2.

Grounded probe current next to the wall,
under permanent magnet system. Probe
dimensions: length 1/8", diameter . 010".

CIRCUMFERENTIAL DISTANCE AT RADIUS OF WALL--
-

magnets are rotated past it. The sharp concentration of the plasma within the cusp is

striking. The light radiated by the plasma shows the same sharp cusp geometry.

Figure X-3 is a plot of the saturated ion current to a probe moved across the plasma

showing the radial variation of plasma density.

5 4 3 2 1 0 I 2 3 4 5

RADIAL DISTANCE R (cm)

Fig. X-3. Saturated positive ion current to a 1/2 cm probe
at various positions (z = distance (cm) from the
cathode). P = 811, B = 80 G, BSOL = 80 G.

Figure X-4 shows the plasma density on the axis as a function of arc power for

several different cathode geometries. All data represent space-charge-limited oper-

ation of the cathode. Data below 150 W represent dc operation of the arc. For higher
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Fig. X-4. Saturated positive ion current density vs input arc power.
Probe located on center line about 6" from cathode. Magnetron
cathode 1/Z" diam X 3/4" long. Tapered cathode D = 7/8",
D min = 1/2" X 1t long. max

powers we used a 250 pLs pulse at approximately 5 per second in order to avoid problems

of power dissipation. Empirically, the various geometries show a variation Ip ~ PA'

0.75 < X < 0.65. If the cathode operated under constant perveance conditions, IA = KV/Z
0.6

and if Ip ~ I A , we would expect Ip ~ PA . Neither of these conditions is met precisely

in our experiments, but the agreement is suggestive of a scaling law to predict opera-

tion at higher power levels and plasma densities.

In low-pressure discharges, the ionization is largely due to energetic plasma

electrons rather than the relatively monoenergetic primary beams. Figures X-5 and

X-6 show the V-log I plots taken from Langmuir probe curves indicating the dual-

temperature nature of the plasma at varying distances from the cathode and for

temperature-limited and space-charge-limited operation. The space-charge-limited

operation produces a much hotter tail (30-40 eV) than does the temperature-limited

condition, and the resulting plasma density is approximately twice as great for equal

input powers. The applied arc voltage is ~90 V for the space-charge-limited case, but

there seems to be no trace of the original primary electrons in the resulting distribution

function. At greater distances from the cathode, the ratio of hot to cold electrons

decreases. This is consistent with our model in which plasma heating occurs via beam-

plasma oscillations in the region just outside the cathode sheath.

The self-excited beam-plasma oscillations are presumed to be responsible for the
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Fig. X-5.

"Electron-temperature" plot lo g
(I -I ) vs V showing two

p sat probe
temperatures at various distances
from the cathode. A temperature-
limited tungsten filament was used
for the cathode. Operation: 240 W,
240 mA; p = 4t. Distance from
cathode: a = 2n, b = 5", c = 8".

Te - 3eV

1.0 -

E

0.1 - T'- 35e

-80 -60 -40 -20 -0

Vprobe (volts)

Fig. X-6.

"Electron-temperature" plot log (I -Isa t ) vs

Vprobe showing two temperatures at various

distances from the cathode. A space-charge-
limited tungsten filament was used for the
cathode. Operation: 900 mA, 90 V; p = 44.
Distance from cathode: a = 5", b = 8".
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high-voltage tail in the distribution function. A preliminary experiment was made,

correlating the emitted RF spectrum with arc conditions. Figure X-7 shows the power

detected by a probe near the cathode, displayed on a microwave spectrum analyzer.

b
z

U,
U,

w

C

d

I I I I I

2.0 2.5 3.0 3.5 4.0

POWER (GHz)

Fig. X-7. Microwave power spectrum from discharge showing
increase of the upper frequency limit with increased
arc power. (Image rejection preselection was not used
in these tests.) Operation: a = 400 mA, 120 V; b = 600 mA,
170 V; c = 800 mA, 230 V; d = 1000 mA, 270 V.

The spectrum is complex and cannot be defined by a single emission at "W p". There

is a more or less continuous emission up to a highest frequency. This highest frequency

is seen to increase with arc power. Density measurements at the output plane scale

approximately with the high-frequency cutoff of the spectrum.
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2. EXTERNALLY INDUCED "STRONG TURBULENCE"

National Science Foundation (Grant ENG75-06242)

Ady Hershcovitch, Peter A. Politzer

Introduction

Quasi-linear theory and strong turbulence theory are used to extend Dupree's per-

turbation theory for strong plasma turbulence, in order to include the case where tur-

bulence is induced externally.

First, the Vlasov equation is solved for the coherent response fk(v, t) of an infinite

homogeneous magnetized plasma to an oscillating electric field Ek. Second, the diffusion

coefficients arising from oscillating electric fields are computed by using quasi-linear

theory to compute the diffusion coefficients from the external fields, and strong turbu-

lence theory to compute the diffusion coefficients from the self-consistent (internal)

fields. Third, the dispersion relation for a magnetized plasma in the presence of exter-

nal oscillating electric fields is derived. Finally, the dispersion relation is used to

investigate the possibility of experimental stabilization of instabilities in a counter-

streaming electron beam system.

The physical model is the following. When an instability develops, particles are

either trapped or bunched. The external turbulent fields scatter particles incoherently.

If these particles are scattered at a rate that is faster than the bouncing or oscillating

frequencies, the particles can be prevented from being trapped or bunched. The main

difference between this case of externally induced turbulence and the case when an insta-

bility induces the turbulence is that in the former case there is no resonance broadening.

Neither does there exist a possibility for threshold of the electric field which is needed

to "turn on" the diffusion. 2 , 3 The dominating mechanism is incoherent wave-particle

scattering.

Solution of the Vlasov Equation for the Coherent Response to an Oscillating

Electric Field in a Turbulent Medium

Consider

(i) A plasma in a uniform magnetic field. Only one species is considered in the

computation.

(ii) External and self-consistent fields. First, an expression for the coherent

response is derived. This expression is valid for both the external and the self-

consistent fields. Later, the following ordering is assumed: I4 ke I >> Iks ' wke >> s'
where e stands for external and s for self-consistent. But the perturbation fke caused

by ke is such that fo > fke' where fo is the unperturbed distribution function.
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(iii) The external fields define a turbulent medium, and therefore provide a mech-

anism for stabilization through incoherent wave-particle scattering.

(iv) Mode-mode coupling is neglected.
1-5As in previous work of Dupree and Dum, we shall derive the response fk

(T = test) of a "test wave" that coexists with a set of random-phase "background

waves." The effect of the background waves will be incorporated in the theory by using

the perturbed trajectories of the particles moving in the turbulent media.

The Vlasov equation for particles is

v q q
+v +-E* 5 +-vX a f(r,v, t) = 0.

at r m- v m- 8v

Expand the spatial dependence of E in a Fourier series and assume the time dependence

of E to be exp{-it}: E(r, t) = Ek(t) exp{ik r + Ek (t) exp kik r}, f(f) + fk exp ikr,
k T k

where T test wave and angular brackets ( ) denote ensemble average over back-

ground waves.

With these relations, the first-order equation is

+v +-vXBLr "  fk

v -x-p E (t) e xp ik_ - r) + E (t ) exp (ik r) y f

k z

- E (t) e xp {ik -r + E (t) exp (ik. _ r f , (1)
[ zT z

where fo = (f) is a zeroth-order quantity and fk is a first-order quantity. Now, switch
v

y Vx
the spatial variable to guiding center coordinates x = x - --- , = y + Q , z = z, and the

velocity space coordinates to corotating coordinates v - vi , 1, v z , where = 6- 0t.

This set of coordinates is convenient to use, since the unperturbed orbit is a helical

motion about the guiding center. Also, these coordinates are slowly varying in time and

therefore the diffusion coefficients describing the average perturbed orbits in terms of

these coordinates can be computed. Next, a solution to Eq. 1 can be written

f U(t, T) zq (7) exp ik r) + EIT (T) exp (ik r) }

EIT(T) exp ik r} X B
+ f(r , v, T) d +i.v., (2)

B 82I

PR No. 116



(X. PLASMA DYNAMICS)

where U(t, T) is the propagator operator defined by Dupree. 6

We assume electrostatic oscillations EkT = -ikk with exp{-iot} time dependence.

Note that E - ik [ - ky -k , and that the rapidly varying term

a 1
S- -ikL v can be written in two versions.

E I V VI
(i) k v I exp{i[k'.r(t-T)- WT]}= i - exp {i[k r--]} + (wo-kz v) exp{i[kIr-o]}.

(ii) k" V-v 2 expiLY +t]} 8 iv + c.c., where -+t - 4

is the angle between kI and v I . By using the first version, fk can be written as

fk i Ut, T) q f exp i[* r - r]} kk + L8 exp{i[k 'r - T]} + (w-k v )

O

V-y 8 x-• e {i[k'r-0T] V 8V + expi[kr-r}- k 0F Y d iv

(3a)

With the second version, fk becomes

fk = i U(t, ) -xp{i[k'r- kz + I exp _ikr - T + -[ +rT)
k v k 8z ex{i[.r ]} kx

avI  i - c. c. + iexp Ji[k- r - k _T ] k 8 f(r, v , 7) dT + i.v.
vx Yv IvI x y

(3b)

We make the following assumptions.

(a) U is the operator statement of f. Therefore, just as f = (f) + 8f, U = (U) + 5U.

Hence (UU) = (U)(U) + (5U6U) and (6U5U) is assumed to be much smaller than

(U)(U).

(b) Turbulence is stationary in time (U(t, -)) = (U(t-r)).

(c) The integrand in (3a) and (3b) goes to zero as t becomes very large. This

assumption is justified by the fact that the autocorrelation function is peaked in time. The

peaking of the autocorrelation function during a time interval equal to the autocorrelation

time leads to the next assumption.

(d) During a time interval T in which the integrand does make a significant contri-

bution (f) does not change very much. This means that (i) f(t-T) f(t) and (ii) the effect

of (U(T)) on (f) during an interval T can be neglected.

(e) Let to = 0, t - T7 T, and the upper limit on the integral t - oo. With these
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assumptions (3a) and (3b) become

fk 4Ri z + (-k v) vfk m k avz z vi

8 1 "-8 - k 8 + k-+ -k - -k Y+ m 4V I V Iav1 x ay -m k v av 1

q 8 1 8 8 k v 1 a
f = - k Rk + k k + R'
fk m z vr 0 x~ y v

z ay ax) ( I VI

1 +

iv

(4a)

c.. (4b)

(4b)

where

R = exp {-ik-_r f dT exp {iwT )(exp {ik r(-T)).

Next, we note that r is composed of a perturbed part rt and an unperturbed part rup;

that is, r = rt + r . The unperturbed part can be expanded in a series of Bessel func-
t -up

tions by using the identity5  dd [exp{i[ik r+wT-k. r(-T)]}= F Jm
(kJ vu) (nm)4)} m, n=-oo

(k Q)exp{i[-k v -n] T + (n-m)(6-)} . Integration over 0 eliminates the

angular dependence. Hence m = n and, therefore, the resonance function becomes

R = dT
n= -oo

In R' there is an "extra" 0 - P term. By changing the summation variable m and inte-

grating over 0, R' reduces to R.

Equations 4a and 4b are equivalent and can be used to describe the coherent response

to any oscillatory electric field whether it be external or due to unstable waves. Equa-

tion 4a is in a form that is convenient for the derivation of the dispersion relation, while

Eq. 4b can be used to compute the diffusion coefficients.

Computation of the Diffusion Coefficients

The diffusion coefficients will now be computed. We are concerned with two kinds

of random-phase waves, those induced externally, and those that are due to instabilities,

the self-consistent fields.

Starting with the Vlasov equation and using random phase approximation, we

obtain

8a E f +
av - ks ks a- v Ekefk e

-ke
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Recall that e - external, s = self-consistent. When (4b) is used to substitute for fks
and fke in (6), this equation converts into a diffusion equation

d (f)= 27. • .• V.Z+ .• D + Z. .ii3 Dsij 1 ij eij

For simplicity, we assume an isotropic spectrum. Therefore all cross terms in the

diffusion matrices drop out, and hence the remaining coefficients are

2 2

= 2 k k2 R; D Dvvl -
zz m km

kl XB k XB
Sk -kR; 2 2 k B -k R .  (7)

k

2
1q 1

But D 11  2 k zki X ez k-kR; hence, D -1 Dlvi. There are two

k m
of each of these coefficients, one that is due to the external fields and the other to the

self- consistent fields.

Our next task is to evaluate the resonant functions Re and R s . Since ' kel >>  ksl '

quasi-linear theory can be used to compute Re . The integration is done along unper-

turbed orbits. Using Eq. 5 and letting rt = 0, we obtain

02 k vk l

R y dT J2 exp{ i [w- k v -n2] T}= k - n (8)
e = n z z 1 - k z z

The evaluation of R s is much more difficult, since the perturbed part of the orbit is

affected by both the externally induced turbulence and the "regular" background waves

(those set by instabilities). Unlike Re , R s cannot be evaluated explicitly because it

depends on Ds , which is a function of Rs .
In order to evaluate R s , we expand the turbulent part of the orbit function in a cumu-

lant series

(exp{ik rt)) = exp{i(k rt)} - 6(k rt)2 ,

where 6rt = rt - rt); for a Gaussian distribution, terms higher than second order van-

ish. Also, (k ._rt) = 0, since it is an average over the average position.7 Since diffusion
coefficients are defined in terms of the second moment of the random displacement 6rt
in a time interval T during which (f) is unchanged, but which is longer than the auto-

correlation time, ( (k" 6 rt)2) can be written in terms of diffusion coefficients. The
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turbulent part of the orbit has two contributions rt = rts + rte. Since mode-mode

coupling is neglected, the diffusive effects of these two sets of random-phase waves can

be superimposed. That is,

((k. r t) 2 ) T k(D sl+D ) + (Dsvlvl+Devv Tk(D + D (9)

o 1 2

where Ds, e s, evivl + 1 , and Dvlvl includes D and is given by Eq. 7. The

terms containing D v are neglected, since we are interested in cases where kI > k .
z z

By using (5), (7), (8), and (9), R s becomes

R (10)s -k v - n + ik2(D s + D ,
n=-oo

where De is explicitly determined by (7) and (8).

The Nonlinear Dispersion Relation

Ua V P -q
Using Poisson's equation 2 k = dv fk and Eq. 4a, we obtain a nonlinear

o0

dispersion relation with which we can study the propagation and stability characteristics

of plasma modes in a turbulent medium.

2

1 dv iR s z + (w-k v ) + vIX - k + v
k z 1 E 1

(f(X', y, VI z, t)) = 0, (11)

where R s is given by (10).

Analysis of a Counterstreaming Electron Beam System

An investigation of the possibility of stabilizing instabilities in an experimental appa-

ratus 8 by launching a finite-width random-phase spectrum of waves into the plasma can

be described by the following model.

(a) An electron gas is in a uniform constant B field composed of two counter-

streaming electron beams.

(b) The beams are uniform across their cross section. Therefore constant density
2.4

can be assumed with kI = -, where rb is the beam radius. Even though DII
Sb

can be large, its effect is neglected, since spatial diffusion would occur only
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at the plasma boundary.

(c) The following distribution function is assumed:

(f) = 1 exp

273/2v 3
T

21
v I (vz-vo)2

exp - 2
VT

S(Vz+V o)2
+ exp - 2o

where v0 = drift velocity, VT = thermal velocity and VT = VTz = VTI.

(d) We focus our attention at the onset of the instability. The external fields define

the turbulent media, while the turbulence that is due to the self-consistent fields can

be neglected. Thus Ike >> lks , and hence De Ds. Also, at the onset time VT cor-

responds to the temperature of the cathode.

(e) The turbulence is launched with a center frequency of nie. Therefore, it couples

resonantly to the plasma; hence, the contribution of the resonant denominator Re is 7,
00 k

since Jn\ /= 1. Using this value of Re, we determine De from Eq. 7.

n=-oo
With these assumptions and using Eq. 11, we obtain a dispersion relation for the

system. The procedure to be followed is similar to that for the linear analysis of the

/2 frequency instability.7 ' 8 After performing the velocity integration and keeping only

the n = 0, -1 modes, we obtain

2kVT 0 (wk v + n k2D e
E = ++ exp-bIn(b) Z k V +iT k V 0

n=-l ZT
(12)

k 2 kv
where b = kVT The Z functions are expanded about the point = in the

E o 1

c-k plane. In the case of marginal stability y = . Now y can be calculated
8- RE
8 e

from (12) in terms of De . Since we are interested in the case y = 0, the value of De

q2 kZI rms 2

needed for stabilization is determined. Since De -- 2 , and T = 0. 1 eV,
eB -2 m

kI  2.4 X 103 m , =-e , and B = 10 tesla; therefore, 4 rms 10 pV.
e
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B. General Theory

1. PARAMETRIC EXCITATION OF ELECTROSTATIC ION

CYCLOTRON MODES WITH ARBITRARY kai

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

Charles F. F. Karney, Abraham Bers

Introduction

The problem of parametrically exciting electrostatic ion cyclotron (EIC) modes has

been considered in previous reports1- 3 in which we used a fluid description for the EIC

modes. The fluid description is only valid in the limit kla << 1 (a i is the ion gyro radius,

(Ti/mi.)/2
a i = ). In this report we relax the restriction on klai by using a kinetic

1

description for the ions. We shall see that if we allow klai > 1, then lightly damped

EIC modes exist when < -. The importance of this observation lies in the fact
k1

that we shall now be able to excite EIC modes by using an electrostatic wave close to the

lower hybrid frequency (wOLH). This leads in turn to a more complete transfer of power

from the pump to the EIC modes (as a consequence of the Manley-Rowe relations) and

raises the possibility of more efficient heating of ions in a Tokamak by using RF energy

near the lower hybrid frequency.

Linear Dispersion Relation for EIC Modes

We start with the Harris dispersion relation for a Maxwellian plasma

K= 1 +X +X e = 0, (1)
where

2
o

X 2 2  1 + 0 r n Zn (2)

k v T  n=-oo

Tfor the electrons and ions, and v2 = T/m; n = - n2 -Z Z(C ) r e-I (X);X = = ka . Here In is the modified Bessel function. We shall look for roots

to (1) in the range 0. < < 20 ..
1 1

If oe << 1 and Xe << 1, then the electrons behave adiabatically and

2
pe

Xek 2 2 (3)
k VTe
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If k2 vTe pe2  = k 2  << 1, (1) reduces toTe/pe De

K = Xi + X = 0.

In order to avoid ion Landau and ion cyclotron damping we demand that Oni > 1, for

all n. (A sufficient condition is that ii >> 1. In cases of interest w is closer to 2. than1
to 202. and so ion cyclotron damping from the fundamental is the most important.) We

may then use the asymptotic expansion for Z in evaluating Zni, so Zni =-1/ni.
Neglecting all terms in the sum in (2) except for the n = 0 and n = 1 terms, we obtain

2 2

X pi r oi ir = 1- r 1
i k2 v2 2 2 i - . 1 

k i k vTi

(Hereafter we shall omit the subscript i from r n and K.) The neglect of the n = 2 term

is justifiable because r2 < r 1, for all K and ~ 2 > > 1 as long as w - 0 < 2. -w. The

neglect of the other terms follows in a similar manner.

Using (3) and (5) in (4), we obtain

0 I 2 3 4

kL ai

Fig. X-8. Dispersion relation for electrostatic ion cyclotron modes.
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2
pe

K k2 2
kTe

2
pi 1- o F =0

k2 o i - 1
kVTi 1

Solving for o, we obtain

= i.
10 1 -ll + -T o)

This is plotted in Fig. X-8 as a function of k1 a i for T /T i = 1, 2, and 4. Note that our

assumption w - 02. < 2~. - o is justified for these temperature ratios. Using this, we

may rewrite (7) as

1 + e [-
T.1

In the limit X << , o = 1 and we recover the

1 Ti r

Conditions of Validity of the Dispersion Relation

Having obtained the dispersion relation, we

imations.

2 2 2«
A. k v / e < 1

Te pe

familiar dispersion relation o =

must go back and check the approx-

SZ Te pi
or ka << 

SiT 2
i

under the assumption k = k1 . For the ranges of Te/Ti that we are considering and the

typical values of Opi/ i encountered in Tokamaks (approximately 20) this is a relatively

mild condition on the parameter klai.

B. X < 1e

o ZT m.
or ka << e

l i me

This is normally implied by A.

C. oe 1oe
or kia. >> k (m /mi)1/2 (T/T) 1/2

1 ki e 1 1 e

under the assumption w ~ 0..
1
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D. li >> l or kla <

Combining C and D, we obtain

(Ti/Te) /2 1 kil 1/2 1 1 _(9)klai << (mi/me << (m i/me) klai 0 (9)

The inequalities in (9) show that when klai > 1 we can choose kll/k i to be less than
i, - 2.(me/m±) /2. i., 0. 1 and for

(m /m.)1. For example, when T /T = 1 and kla = from 1 to 3, . and for
1 kl )1/Z 1

an H plasma (9) becomes 1 _ -ki (mi/me <<) . Note that we are not well able
kli k e kla

to satisfy these inequalities and, for that reason, it is important to find the damping

rate for these waves. Note that the inequalities in (9) serve two purposes: They allow

us to expand the Z-function and so obtain a simple dispersion relation, and they are the

condition that the damping rate is small. When the inequalities break down, we are pri-

marily interested in the magnitude of the damping rate.

Damping Rate

As long as the damping rate y is small, it may be obtained from

Im (K)
- K/ (10)

To evaluate 8K/8w, we use (6), and to find Im (K) we include the imaginary part of the

Z-function. Keeping only the largest contributions, those from Zoe and Z1 i, we find

2 2
pe pi 2

Im (K) 22 oe &T + 2- oi exp (11)xp
k vTe k VTi

From this we obtain

i oe + oi i exp (- 2li

where w is given by (7). This is plotted in Fig. X-9. Note that even for Te = Ti there

are waves with y < 0. 1 01 and kl/k, < (me/mi)1/2

Energy Density and Group Velocity

The energy density for electrostatic modes is given by
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Fig. X-9.

0.6

0.4

Damping rate,

To /T = 4

y, for electrostatic ion cyclotron modes.

2 3 4

ki oi

Fig. X-10. Group velocity, vgi , for electrostatic ion cyclotron modes.
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S12 8K(13)W = -E E co - (13)

We evaluate (13) using (6) to obtain

2

W 0 E 2 2 2 1(14)
k vTi (-0 i)

where 0 is given by (7).

The group velocity vg is given by

8K/ak
ga= = a (15)ga 8ka 8K/8w

where a is I or II. Since, from (6), K is independent of k11, vgil is approximately zero.

Evaluating (15) with a = I and making use of the identities: r' = - [1 +n/X] + n andn n nl1
r-1 =rl, where prime indicates differentiation with respect to X, we find

v 0.Vg- 2klai  , (16)

vTi 1 1

where a is given by (7). This is plotted in Fig. X-10.

Parametric Coupling from Lower Hybrid Waves

We have established that when klai > 1 there exist lightly damped EIC modes for

which k 1 /kL < (me/mi)1/2. We wish to excite these modes parametrically using a pump

and idler that are lower hybrid modes with the dispersion relation

2 i 1+ m cos 2 8 . (17)

pl me

(For simplicity, we take wLH = pi; this is true for most Tokamak plasmas for which
2 2 1

2 > o .) The c and k matching conditions or resonance conditions can be satisfied
e pe

easily in this instance by choosing the k1 and the kll for all three modes to be roughly

the same. For example, if we choose klai for the EIC mode to be 4, then from Fig. X-9
kl 1 1/2

we see that this wave is least damped at -- (me/mi) . Using this value in (17),

we have 1. . 12 , .. Thus we can utilize pumps at all frequencies above the lower
pl

hybrid frequency.

Accessibility Conditions

Having found that waves close to wLH can excite EIC modes, we must next check
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that these waves can be linearly excited from the exterior. The most important condi-

tion is the "accessibility condition" on nil (=kc/w). This is the condition that the pump

be propagating (as opposed to evanescent) all the way through the density gradient except

for a very narrow region at low densities. Golant4 gives this condition as

2
pe

nil >  1 + -. (18)

e

This condition is derived by using cold-plasma theory. In most cases (18) reduces to

nil > 1.

The inclusion of warm-plasma effects introduces two new effects, (i) electron Landau

damping, and (ii) linear wave conversion to an outward traveling mode before the lower

hybrid resonance is reached.

Landau Damping for Lower Hybrid Modes

The relevant quantity to examine when considering the effect of Landau damping in

kxi (the imaginary part of kx ) is

Im (K)
k . = - (19)xi 8K/8kx

where x is the direction of the density gradient. The major contribution to Im (K) comes

from electron Landau damping parallel to the magnetic field so that

2 C2
k oe3 pe (2 ) (20)

Im (K)= Z exp exp (20)
k 2

2
kl pe

Using 8K/k x  2 2 , we find

x oe oe f
kld= J ] oe exp (-5oe) k. (21)

We use the fact that we are interested in pumps for which klai  1, and consider a

plasma with B = 50 kG, n0 = 10 14 m -3, T = 2 keV, and T. = 1 keV, then a. ~ 1 mm.

For a machine with minor radius a = 1 m we demand that k .as given by (21) be less
-1 c x

than 1 (m ). This means that oe > 3. 5 and nil < 3.2. This figure for oe

J Te oe
is insensitive to most of the parameters in the problem, and so the upper limit on nil
scales as 1/N- .e
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Linear Wave Conversion

The problem of linear mode conversion has been extensively studied by Simonutti. 5

His results indicate that wave conversion occurs at a density given by

pi 2kll (3Ti/m )1/2
Z= 1 - (3T./me)1/2 = 1 - 2ni c (22)

(3Ti/me)1/2 1
For T. = 1 keV the quantity c = . From this we have 1 < n < 3.2, and

therefore mode conversion occurs for frequencies 1. 1 0 . < 0 < 1.2 ., under the
pl pl

assumption that we wish to utilize the full range of the nil. These results indicate that

in order to avoid linear mode conversion we have to choose w > 1.2 o .. This number
pl

increases as the ions become hotter.

Resonance Conditions

We must now check that lower hybrid waves lying in the accessible range of the nil
have k comparable to those of the EIC waves discussed in the first part of this report.

k
To do this we observe from Fig. X-9 that the productk I (mi/me) 1/2 ka i lies in the

range 1-2 when the EIC modes are lightly damped. With the same plasma parameter
kll pump

as before, k11 EIC - 0.5 to 2.

To summarize these results: From the outside of the plasma we are able to excite

lower hybrid waves inside the plasma with the nll lying in the range 1-3 and frequencies

of 1.2 c . or above. These waves have the k that are comparable to the k of EIC modes

propagating closely perpendicular to the magnetic field and so the resonance conditions

for the parametric interaction are satisfied.

Coupling Coefficient and Growth Rate

Since the electrons in these kinetic EIC modes behave in the same way as in the fluid

limit (viz. adiabatically), and since the electrons provide the major contribution to the

coupling coefficient, the form of the coupling coefficient is the same for coupling to the

fluid EIC modes as reported previously.1 Using this and the energy density given by

(14), we obtain the following expression for the growth rate, y , of the EIC mode:

Yo N lc s/vTi n pe vae
- sin ael (23a)T 2. w 4v

I 1/2 1 + 1- ]  i a Te
bn T o1I
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where subscripts a, b, and n denote the pump, idler, and EIC mode; 4 is the angle

between the projections of ka and kb on the x-y plane; and Vael = Ea/Bo is the E X B

velocity of the electrons in the pump field.

If we take = a' then (23) can be rewritten

o TT pi/a)1/2 1/2 Vael sin
0 1 a , 4 .t. c sin I. T . a 4 pi 1 c
1 1+ e [1-ro] 1 s

1

= C (cW ./.)1/2 Vael sin 4.
4 pli 1 s

s
(2 3b)

We assume 0 = a and that for a given 0n, klnai and hence wn are determined by
n a n Jnni n

kin/kin (mi/me)1/2 - k-,a' to avoid damping on the EIC mode. Then the factor C in

(23a) contains the terms that are related to the pump frequency, Wa . In Fig. X-11 the

quantity is plotted against Ca for various T /T i. Note that the growth rate is maximum

near oa  1.5 p (or k a. 1). In fact, the maximum growth rate may occur for

0.3

0.2

C 4

2

0.1 - Te /T = I

0 I I I I I I I I
2 3 4 5

0 / i

Fig. X-11. Dependence of growth rate, y , on pump frequency oa .(C is defined by Eq. 23b.)
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somewhat lower pump frequencies (higher kinai), since, by the WKB field enhancement, 2

Vael tends to increase as we approach lower hybrid resonance.
14 -3

As an example, consider a plasma with B = 50 kG, n = 10 cm , Te = 2 keV,

T. = 1 keV, a = .,i E = 10 kV/cm, which corresponds to a wall field of ~1 kV/cm at
1 3 a p a

the wall, and k nai= 2, then yo - 0.2 .. Since the linear damping rate for the EIC modes

is approximately 0. 1 2. and the damping of the idler is typically far less than for the
1 2

EIC mode, this figure for yo easily exceeds normal threshold yo = yn'b'

Thresholds Attributable to Plasma Nonuniformity

The threshold condition just mentioned is the condition that there be growth of the

modes in a uniform plasma in the presence of a uniform pump. The effect of nonunifor-

mity of the plasma is to introduce a position-dependent k mismatch into the parametric

interaction. If we assume that the k mismatch is a linear function of x, the direction

of nonuniformity, then the idler and the EIC modes grow and saturate6 with a gain of eT

where X is given by

2
X o (24)

KV V
bx nx

Here K is d[ka+kb-kn/dx, and vband vnare the group velocities of the idler and the EIC

mode. The threshold condition that this introduces is e >> 1. If this condition is satis-

fied, noise is greatly amplified and some other saturating effect may well be important.

Effect of Density Gradient

We shall consider two types of nonuniformity: a density gradient, and a magnetic

field gradient. When exciting waves in a Tokamak we must inevitably consider the prop-

agation of waves in the density gradient. After a while, however, the waves will reach

a central region where the density can be assumed constant. The situation is different

with the magnetic field gradient, since it is present throughout the plasma and must be

accounted for even in the central homogeneous part of the plasma.

In both cases we assume a slab model in which x is the direction of nonuniformity.

The justification for this is that the wavelength of the modes under consideration is much

less than the minor radius of the Tokamak, so that effects of the cylindrical or toroidal

nature of the geometry are unimportant.

The density gradient causes the dispersion relation for the pump and the idler to be

functions of position. (The dispersion relation for the EIC mode does not depend on den-
2 2

sity.) For simplicity, we assume wa > wpi the local ion plasma frequency, so that wa,b

p cos a, (Remember that the local wpi in the density gradient is less than that in

the center of the plasma, and that we choose ca pi, center.) K is given bya Ply center*
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1 1 dn1 1 dn (25)K 2 kla n dx

Thus taking vbx ~ Oa/ka and Vnx c s , we have

2

S~ Yo, (26)a)cas

1 dn~
where Ln =n d a, the minor radius of the Tokamak. Using yo = 0.2 0. and the plasma

-1parameter used before, X ~ 1.5 (m ) a.

In present Tokamaks a ~ 10 cm and the density gradient effectively prevents the para-

metric interaction from occurring anywhere except in the central homogeneous region.

In the larger machines envisaged for the future a ~ 1 m and the parametric interaction

will cause only moderate gain (~e ) of the noise present in the density gradient.

Effect of Magnetic Field Gradient

The main (toroidal) magnetic field in a Tokamak has a 1/R dependence, where R is

the distance to the axis of the machine. Only the dispersion relation for the EIC mode

is sensitive to the magnetic field. In this case K is given by

ak n 1 8kn 1(27)
a80. x 8. R '

1 1 o

where R is the major radius, and 8akn/a82i has a singularity at one point, but vnx
8aw/kln goes to zero at the same point and X remains finite, given by

2
Y

X = ' (28)
(Q./R o )  n

I 0 80. bx1

where 8O /80. is very close to unity, since ~ 2.. We take Vb = /kb, with k =n 1 n 1 bx ailb lb

2a. . This is an overestimate of vbx if w a is close to op.. Then = 4(m ) R . We

see that in present machines (Ro~ I m), and to a lesser extent in future machines
(Ro ~ 5 m) magnetic field inhomogeneity may play a role in saturating the parametric
instability in the central, homogeneous density region of the plasma.

In this work we have not considered the effect of the magnetic field gradient on the
linear behavior of the EIC modes. The work of Sperling and Perkins 7 indicates that this
may lead to stronger damping of the EIC modes.

Effect of Finite Pump Extent

An array of waveguides at the wall of a Tokamak 8 can excite a narrow ray of lower
hybrid waves which travel nearly parallel to the magnetic field. We can conveniently
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treat the problem of the pulse response for the parametric interaction in such a system

by looking at its two-dimensional analogue. Ignoring the y-dimension and assuming, for

convenience, that the pump ray is parallel to the z axis, the equations for the pulse

response are

Vx- x V~ z al = Yoa 2 + 6(x, y, z) (29)

- vx 2  z2 a 2 = yal'  (30)

where 1 and 2 are the decay products of the parametric interaction, a is the mode ampli-

tude normalized to the action density, and v is the group velocity. (Note that we define

v2 = -Vx2x + vz2Z. We take the boundaries of the pump ray to be at x = 0 and x= .

We distinguish two cases: First, if Vx1 Vx2 < 0, then both edges of the pulse travel

out of the pump ray in the same direction. The total amplification, A, of the pulse will

be approximately exp v y 0 The threshold criterion would then be that
IV + IV 2,9

A>> 1, as calculated in previous reports.

The second case is vxlVx2 > 0. In this case there is the possibility of pulse growth

similar to that occurring in a one-dimensional backward wave oscillator. We transform

(29) and (30) to the coordinate system

t' = t

x' = x (31)

z'= z-ut-ax

where a = (v z 1 -Vz2)/(xl+Vx2) and u = Vzl - avxl. Note that z' = 0 gives the line along

which the pulse response is nonzero for an infinite system. We use (31), and (29) and (30)

become

S+ vx x al = yoa 2 + 6(x', z', t'), (32)

t - Vx2  aZ = o al (33)

If Vxl1 x2>0, the boundary conditions are al(0) = a 2 (f) = 0. If z'= 0, then (32) and (33)

are the one-dimensional equations solved by Bobroff and Haus. Elsewhere, for z' = 0,

the pulse response is zero. Using the results of Bobroff and Haus and reversing the

transformation (31), we obtain the following description of the pulse response: Initially

the pulse grows as it would in a pump of infinite extent.11 This continues until one of

the edges of the pulse (traveling at v1 or v 2 ) meets the boundary. Although the bound-

aries in this problem are nonreflecting, the fact that the edge of one mode has propagated

out of the system is mathematically reflected as a discontinuity in some derivative on
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the other mode which carries it back along the line of the pulse. After a few reflections

the 'normal mode' solution is established. This is the same as the normal mode solution

in one dimension, except that the wave packets in this case propagate along the ray with

velocity u. The normal mode grows as long as f exceeds the threshold length:

vv7T lx (342x
th 2 Yo 

(34)
The growth rate for the mode is

o lx 2x
y = 1x , (35)

(v1x+ 2x)/z

where p is the largest root of p tan ( p2 0. As - o, p - 1,

with p = 0.8 when k = 2. 5 kth'

The threshold condition for this case is less strict than when v 1 vZx < 0, since nor-

mally the x-directed group velocity of an EIC mode is much less than that of a lower
hybrid idler, so /vx vZx <(Vlx+VZx)/2.

A limit on the eventual growth of an unstable normal mode is set either by nonlinear

effects, or by the magnetic field gradient which introduces a t'-varying mismatch into
the right-hand sides of (32) and (33). Finally, there is the possibility that the pulse will

continue to grow until the pump ray leaves the plasma.
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2. PARAMETRIC DOWNCONVERSION FROM LOWER HYBRID WAVES

TO KINETIC ION CYCLOTRON HARMONIC WAVES

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

Duncan C. Watson, Abraham Bers

Introduction

Recently Bers and Karney1 proposed a scheme for the RF heating of Tokamak plas-

mas that depends on parametric downconversion occurring in the central, relatively

homogeneous region of the plasma. Downconversion to warm-fluid modes has already

been investigated.2,3 Downconversion to kinetic modes is considered in this report.

The form of the required coupling coefficients is derived in Section X-B.5. Here

the computations are carried through to an estimation of the growth rate for a Bernstein

wave signal and Bernstein wave idler driven by a lower hybrid wave pump. The growth

rate compares favorably with growth rates for unstable downconversion to fluid modes. 3

In the Bers and Karney scheme for heating the central region of a Tokamak plasma,

microwave radiation beamed at the plasma surface is only attenuated slightly by eva-

nescence in a thin surface layer, beyond which it converts to an electron-plasma wave.4

The microwave frequency is chosen so that this plasma wave then propagates inward

to the central region of the plasma without further linear conversion. 5 The component

of the wavevector parallel to the steady magnetic field remains constant as the energy

travels inward, and the perpendicular component greatly increases.4 The frequency is

near the value of the lower hybrid resonance at the center of the plasma, so that the

electron plasma wave there may appropriately be termed a lower hybrid wave.

The actual heating takes place as follows. Linear WKB theory predicts that the

amplitude of the wave, which we shall call the pump wave, is markedly increased in

the denser region of the plasma column. The pump amplitude may then be chosen so

that only in the central region it exceeds the threshold for parametric downconversion

into other waves. The unstable coupling causes the decay products to grow until these

decay waves are capable of heating the ions by nonlinear processes.

The growth rate of the decay products depends on the coupling coefficient for the

coherent three-wave interaction that is considered. Karney, Bers, and Kulp 2 have

computed the coupling coefficient in three cases of downconversion of the lower hybrid

pump wave: (i) downconversion into two ion-acoustic waves, (ii) downconversion into

another lower hybrid wave and an electrostatic ion cyclotron wave, and (iii) downcon-

version into another lower hybrid wave and a magnetosonic wave. In these three cases

fluid modes were considered, and so a fluid model of the plasma dynamics suffices for

the computation of the coupling coefficient.

The possibility exists that the pump wave may downconvert into modes that cannot
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be described by the fluid model and then the corresponding coupling coefficient must

be computed from Vlasov theory. This introduces a new feature. We recall that in lin-

ear theory fluid waves are undamped, whereas Vlasov waves, when causality is included

properly, display Landau damping. In nonlinear theory the wave-wave coupling coef-

ficient computed from fluid theory is completely symmetric in all three interacting
6

waves, whereas the wave-wave coupling coefficient computed from Vlasov theory, when

causality is included properly, is in general not symmetric. The asymmetry disappears

if the waves possess no resonant particles. This point is enlarged upon in Section X-B.5.

Physical Parameters of Interacting Waves

There are two principal possibilities for downconverting a lower hybrid pump wave

into Vlasov modes. The first is to downconvert into two electrostatic ion cyclotron har-

monic (EICH) waves. This is the Vlasov model version of the downconversion into two

ion acoustic waves; indeed the EICH waves mark the appearance of kinetic effects in

the ion acoustic regime of wavevector and frequency. This first possibility entails the

computation of the coupling between modes that have very different kinematics; the pump

has kilVTe << 0 but the decay waves have kIlvTe >> c. A problem arises when computing

the electron contribution to the coupling coefficient according to Eq. 25 of Section X-B.5,

since each of the three terms in that contribution must be evaluated by using a different

set of physical approximations. Furthermore, we shall find that the resulting coupling

coefficient does not satisfy the usual symmetries, and must be recomputed for each

choice of driven and driving modes.

The second possibility is to downconvert into two Bernstein waves. This possibility

entails the computation of coupling between modes all of which have kl vTe << (. This

means that the three terms in the electron contribution to the coupling coefficient can

be evaluated in identical fashion. Furthermore, the near absence of resonant particles

allows us to use the computed result for any choice of driven and driving modes, since

the usual coupling coefficient symmetry is approximately satisfied.

We shall look at the validity of the further approximations

kil = 0 (1)

klVTi/ i > 1 (2)

as applied to all three interacting modes (the pump wave and the two decay waves). These

approximations will enable asymptotic methods to be used in computing the ion

contribution to the coupling coefficient. The limit on klai for the pump wave is

set by the onset of cold-mode to warm-mode conversion. Results of Simonutti 5

indicate that this conversion occurs at a position in the plasma density gradient

such that
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2

2 - 2 kTe(Ti/T 1/2 (3)
pump pumppump

The cold-fluid mode dispersion relation is

2 (1 m ecos2 e) (4)

By combining (3) and (4), we have

k 2 . 2l (Ti/Tel/2
11 Me C A e) (5)

k2 - kTe 1/2

For the ingoing pump wave to avoid Landau damping

kllVTe << 0 (6)

and Ti/T e is of order unity. Thus (5) may be approximated by setting the denominator

of the right-hand side equal to unity. Then the squared ratio of ion Larmor radius to

perpendicular wavelength becomes

2 2 1/2 kIIvTe W2 1
klai = (Ti /T ) 2  (7)

1

To avoid Landau damping effectively

0/kllVTe > 2.5. (8)

The pump frequency lies roughly at the 13t h harmonic in the Bers-Karney heating

scheme.1 Thus we may attain a value of the parameter (7) as large as

2 2 T)1/2.9)kiai = 25(Ti/T) (9)

Hence asymptotic evaluation of the ion contribution to the coupling coefficient, based

on the largeness of (9), is worth considering.

Having thus justified approximation (2) let us look at (1). Detailed justification of (1)

awaits computation of the coupling coefficient; but we should at least check that kil/k i

is small before using approximation (1). According to (5), at the conversion point in the

plasma density gradient

k, (Ti/T e)/4 (me/mi)1/2 k vTe 23 (10)

k 1 
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We deduce that we can attain

klI < (me/mi) 1/2

so that (1) may be used at least as a first approximation.

Evaluation of Bernstein Coupling Coefficient

For the purpose of evaluating the ion part of the Bernstein wave coupling coefficient

(Eq. 35 in Sec. X-B.5) in the limit (2), we assume a Maxwellian distribution, and

rewrite in terms of half-angles as

2
a(Pb, c +Pc, b) p kcl / 0 /2 dsdt

Eo 2 aabck al bi cl 7Tw 7 b i -/T -7/0
o n sin - sin-- b 7T2 Tn2

exp[i(csas+wbt)] cos -cos- in ca) s - 6bca 2 2 2 ca bc

k v 2k vep alVT 2 s bT 2 Otexp f cos z  cos -4k 2 2 2

2
4kalkblVT Qs Qt Os tcos cos -cos 2+ a2 2 2 2 2 ab

+ 2 more terms obtained by cyclic permutation of subscripts a,b,c.

(12)

The angle 0 ab is defined as the angle through which kal must be rotated (in clockwise

direction as seen by an observer looking in the positive z direction) in order to lie along

kbl-

As the asymptotic parameters I klVT/2I become very large, the final exponential

factor becomes very small except where its exponent is zero. The last occurrence then

determines those parts of the range of integration whose contributions dominate as

IkvT/ -
The final exponent is negative semidefinite. It is zero at the corners of the square

forming the region of integration. At the corners the trigonometrical functions pre-

ceding the final exponential go to zero. The final exponent is also zero at the point

determined by the equations

Sis it
kal cos~- kbl cos - 2- (13)

2s 2t2 2 = -ab + 7 + 2nT, (14)
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where n is chosen so that (s, t) lies within the region of integration. That is,

Os 2t0  < b < 7 2S 2 - a b + 7 (15)ab Z 2 ab

-7 < a < 0 -0 - 7. (16)

At this point, say (s c, tc), the trigonometrical functions preceding the final exponential

are not zero. Therefore, as the asymptotic parameters I klvT/ - co, the contributions

from the neighborhoods of the corners of the region of integration are outweighed by the

contribution from the neighborhood of the point (s , tc). This point may be located from

(13)-(16) by using the trigonometry of the triangle formed by kal, kbli and kcl'
Take 0 < ab' 0 bc, ca < 7 without loss of generality. Then

2s
S= eca (17)2 ca 2

2t
c -0 bc + (18)

2 bc 2

Standard asymptotic methods now yield an estimate for (12) in the form

a(Pb, c + Pc, b) q 1/2 /2

E 2 abbc (kalkbkcl) 2
o mn VT

kc2 exp (2ca- exp - (2bc
T bcJsin 0 sin ebc

sin a sin

{'(kalb cos Oca + "la cos ebc)2 - kalkb2 b
exp 2 .+ a ) . (19)

2(kalkblkcl) kclT 'k,,,c

cyclically

This dominant contribution can cease to be dominant if the propagation vectors become

collinear. Then the factor sin 8ca sin 0 bc goes to zero and the estimate (19) must be

supplemented by estimates of the contribution from the corners of the region of inter-

action. This collinear case has been studied exhaustively by Coppi, Rosenbluth, and

Sudan;7 it will not be pursued further here.

Expression (19) is still more complicated than we would like. It may be simplified

if we regard the largeness of the asymptotic parameters I klvT/I as resulting from

the largeness of klvT , with frequencies 0 and o fixed. Then the parameters I klvT/1
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also become large and the final exponential becomes unity. Including the subscript-

permuted terms explicitly, we have the coupling coefficient for noncollinearly propa-
gating waves:

2
a(Pb, c ,Pc b p 1/2 (2)1/2

E o2 aabc(kalklk kc) 20 m2 vm

k/2 sin ca sin bc
c 7Tw 7 exp

sin a sin a

Sk1/2 sin ab sin ca+ k a- 7Tw expal l% e w

sin sin e

1/2 sin ebc sin 0ab
+ ks expc a

sin sin

i a  O1b 1
S(2Oa - 7 ) - (2bc ~ )

iCb  i'c 1

-c(2 -7) ia ) t

bc - ab

Thus the ion contribution to the normalized coupling coefficient depends on

magnitudes of the problem as follows:

(20)

the physical

qi pi 1
C. 2

i m2 klVTi
(21)

Now we examine the electron contribution. Assume a Maxwellian distribution

and take the electron Larmor radius to be small compared with the wavelength.

Since the Bernstein coupling coefficient is known from Eq. 35 in Section X-B. 5 to be

symmetric in all three modes, this coupling coefficient may be calculated from Eq. 25

in Section X-B. 5, with all three terms having the same sign and the same intervals of

integration, and with the imaginary parts of wa' b' wc chosen merely to ensure conver-

gence. Then the electron contribution to the coupling coefficient to zero order in the
electron Larmor radius is just the cold-fluid result of Eq. 29 in Section X-B. 5 with all
kll set to zero:

2
ca(Pb, c + , b )  kc a exp(i ca )

E m a b ckalkbikcl T (W - )

exp(iebc) exp(-iOeb)

Sb(wb +0) wb(w -) + c

exp(-i ca

ca (a + )

cyclically.
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Thus the electron contribution to the normalized coupling coefficient depends on the phys-

ical magnitudes of the problem as follows:

2
e pe k I

C e pe (23)e m 2 2
ee

Comparing this with the ion contribution (21), we see that

22 2
klVTi (i

ion contribution : electron contribution ' 1 :2 2. (24)
Q 2

1

From (7) this leads to the conclusion that the ion and electron contributions to the cou-

pling coefficient are comparable.

Unstable Growth Rates for Parametric Downconversion

Expressions (20) and (22) are unnormalized couplings between Bernstein modes. To

obtain coupling coefficients normalized to modes of unit electric field strengths, divide

by ab ckalkblkc . Let the normalized ion and electron coupling coefficient contri-

butions be Ci , C e , respectively. Then the growth rate for very small waves a, b in the

presence of a much larger, and hence effectively undepleted, pump wave c is given by

2 _IC i+ C e I2  I 

(2l

y = (25)
(aEa/a8)(aEb/aw)

The linear dispersion function for an ion Bernstein wave is approximately

2 2
pe pi 2n 2

E= 1 + r., (26)2 2 2 2 2)ni(
e k Ti ( -n22) ni

where

k2V 2 2 2

r i =I exp T (27)
ni n ( 2 )

1 1

For fixed kl , (26) determines how near the cyclotron harmonic the frequency c lies. As

k I - 0 or ki - co the function ni - 0 and w - ni., where n indexes the particular har-

monic that is being considered. We keep only this near-resonant harmonic term,
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2 2
W 2 . 2 2

pe pi 2n 0 .
E "-1+ .. (28)2 2 2 2 2 2 ni

e klVTi -

Further approximation is possible, since the resonant denominator can be factored and

o n2.. Also w <<0 so that
1 pe e

2
pi 1.

E - nX i (29)2 Z -n. ni
1

where

Xni = I (A) eJA/Ani n
(30)

A = kVTi/i

From (29)

2
S pi nQi

z~ ni (31)
0 (w - n.)2 n1 1

But the derivative is taken at E = 0, and therefore

O 1 (32)

1

Substituting in (25) and using (21) with the resonant sine-function denominators from (20),

we get

2
.EPeak/2mj W pi W. i .,m c1 (33)i Tiz q w -n (33)

VTi i (kalkbl)1 / VTi ~a-na i)(-nbi)

for growth dominated by ion coupling to decay modes near harmonics of the ion cyclotron

frequency. Substituting in (25) and using (23), we get

2
Epeak w 2 a-ni b-nbi

,cl _c pi (a- na i nbi
Y B 2' .a (34)

for growth dominated by electron coupling. In general (33) and (34) should both be eval-

uated and the square root of the sum of their squares used as a guide to the strength of

the interaction.
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Furthermore, for ion Bernstein waves

(n + ) i (35)

so that the estimates (33) and (34) may be simplified to

2
pump "Pi o 2.

y Q * 1 c 1 (36)
1 thermal 2 a. 2Nk

1 1 Ti

for ion-dominated coupling and

2
W. 2

EX B drift p 1 . 1
Y' kclVe 2 (37)cL e Z wab 2

i

for electron-dominated coupling.

Comparison with Fluid-Mode Coupling

The most promising result found by Karney and Bers (Sec. X-B. 1) is the growth rate

for unstable downconversion of the lower hybrid pump to a lower hybrid idler and an

electrostatic ion cyclotron (EIC) signal. This growth rate is

EX B drift T . I-
oTi 4T 1. 7. 2 (38)

Ti e 1 i  1 li

and is dominated by electron coupling. The EIC wave is found, for values of klvTi/ i
around 5 or 6, to have the parameters

IC 1. 1 Q (39)

li ~ 0.2. (40)

Taking the Tokamak parameters envisaged by Bers and Karney, for equal electron and

ion temperatures we find roughly

E X B drift

Y= e . (41)o 1 VTi 2

Similarly, for the electron-dominated Bernstein downconversion (37) we find

E X B drift

Y *cVT 2, (42)
o vTi 1
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where the subscript c denotes the pump. Recall that the choice of the factors kcl/cab
in the estimate of the electron-dominated Bernstein coupling coefficient (34) is based

on the assumption that the three wavevectors are comparable. Should the pump wave-

vector be markedly smaller than the decay wavevectors, the estimate (42) can be revised

to

E X B drift k
e alVTiy= G.(43)o 1 vTi i

and we still reach the following conclusion. As we allow the ratio of the wavelength to

the ion Larmor radius to become large for any of the three interacting waves, the down-

conversion from a lower hybrid pump to Bernstein decay products acquires a higher

growth rate. The downconversion into a lower hybrid decay wave and an electrostatic

ion cyclotron wave acquires no such higher growth rate. As the parameter kv Ti/ i
increases, therefore, the Bernstein downconversion becomes more advantageous as a

route to the final goal of plasma heating.
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3. WHISTLER WAVE FIELD STRUCTURE INSIDE A LINEAR

DENSITY PROFILE

U. S. Energy Research and Development Administration (Contract E-(11-1)-3070)

Kim S. Theilhaber, Abraham Bers

Introduction

In a previous report I we examined accessibility conditions for the penetration of

whistler waves into a magnetized plasma with a transverse density gradient. The exciting

structure for the waves was an array of waveguides with electric fields at the apertures

transverse to both the external field B and the density gradient (Fig. X-12). We decom-

posed the fields imposed at the boundary into a spectrum of exp(-ikonzz) components,

and found that only a narrow "window" of nz components could penetrate into the plasma

without excessive attenuation. We shall continue the work carried out in the previous

report by examining the whistler wave field structure inside the plasma resulting from

a source of finite extent at the boundary. We shall use explicit solutions to the wave

equation for propagation in a linear density gradient. First, we consider the propagation

of a single nz component into the density gradient. Then the fields corresponding to a

narrow spectrum of nz components will be obtained by integral superposition.

Penetration of a Single nz Component

The geometry for the penetration of the waves is illustrated in Fig. X-12. With a

space-time dependence exp(i(wt-kzz)) the complete wave equation is

dE 212\ 2

ik dE + k -n E - K E = 0 (la)z d o \-nz x ox y

d2E
+ k2K E + k2K-n E =0 (lb)

dx2  oxx o z y

d2E dEz + ik x + k2 K E = 0, (1 c)

k ck
where the K are elements of the cold-plasma dielectric tensor 1 and nz  k -c

d o
In a homogeneous medium, for which we can write = -ikx , Eqs. 1 describe two

independent modes of propagation, a "slow" electrostatic wave with a resonance in kx
at K 1 = 0, and a "fast" electromagnetic wave that is a whistler wave in the regime of

interest.

In a weak density gradient, Eqs. 1 still describe the independent propagation of slow
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PLASMA "INTERIOR "

xaLn--

v nop(x)

DENSITY PROFILE EXCITING STRUCTURE

Fig. X-12. Geometry for wave penetration into the linear
density profile with input field polarizations.

dE
and fast waves. By neglecting ik z d in (la) and eliminating E x between (la) and (lb)

(an approximation that will be justified later), we obtain an equation for the fast wave:

d2 E
y 22
2+ kZn (x) E 0, (2)

dx2  ox y

where

n2x(x) = Kx(x) - n- K (x). (3)

To solve (2), we make the simplifying assumptions: (i) the linear density profile extends
A

to infinity, (ii) the boundary condition at x = 0 is E(x= 0, n) = yE yo(n ) where E yo(n )
is a component of the unperturbed waveguide fields at x = 0 (that is, the fields maintained

in a waveguide with no termination), and (iii) Ey(x, nz) is an outgoing wave at x = oo.

The following quantities are also useful for gauging and comparing the scale lengths

that are involved:

2 2
W ).(x) W 2 (x)

n(x) - 2 1 . 2 (4a)
S \ e Wi/ (X

pi (xLH

2
pi(xLH

-= . '(4b)
1

2 2
where pi(xLH) denotes wpi at the lower hybrid resonance density. In Fig. X-12,

x = Ln denotes the point where the "interior" of the plasma (flat density profile)

begins. The parametric downconversion scheme contemplated previously 1 requires
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2 2 2 2Wpi(Ln) < pi(XLH). In general we shall have 2pi(Ln) pi( LH), which maximizes the

accessibility "window," and P = #(10). Using the definitions (4), we have

Kl(x) = 1 - n(x) (5a)

Kx(x) = ipn(x). (5b)

Cutoff for the fast wave (nx = 0 in (3)) occurs at an x = xc that is given by

2
n -
Sz L (6)

c P(L) n

so that x c/L n  (10-1) and there are many cutoff lengths in the density profile.

Letting 5 = x/x c , we obtain a normalized form of (2):

d2Ey 2 - (1 + 0/ )
2 +a E =0, (7)

where a = ko n - 1. To solve (7), we delineate the density profile into two over-0 n z
lapping regions: region 1, with 0 < x < Ln , and region 2, with x < x < L n In region 1

we have << so that the coefficient of E in (7) can be approximated by a ( -1). An

exact solution can then be obtained for this equation. With the boundary condition

E y(x=0)= Ey o , we get

y yoy yox EW(, O) (l1-iK)

where K = (1 +e7ra 1/2 - exp r a . The W denote parabolic cylinder functions. 2 We

can now calculate from (8) the input impedance for whistler waves. From Faraday's
dE (x)

law, Hz(x) = , where i = ( % o )1/2 377 0. Thus we have

E =LLW/ 1 0
y -i

-H (X = 0) = io iK 1/(9)
Z ( s i - 1 /2

Here, W2 , 0) is given by
HereW \~Z
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f L +i -1/8
4 ) (e/2)1/2 (l+a2) 1 + a

r(3+ia 9)
exp tan- 2 2 )

3T+ a

(10)

The expansion is asymptotic to W as a - co but remains fairly accurate down to a - 0

(within a 20% error). For a = 0, we have angle (n) = +48", so that the reactive part of

the impedance is inductive and remains so for a > 0.

We now solve (7) for region 2. The WKB solution is

E(~)11/4 exp[-iW2() ]'y 1/
(11)

where the phase function is given by

= t2 - ( ) dt + K2 .
(12)

The constant of integration K2 accounts for the effect of the lower limit of integration

in (12), left undefined. Both A and K2 are to be determined by asymptotic matching

to the solution of region 1. First, we find an approximate expression for p2. By fac-

toring t 2 from the radical in the integrand of (12), expanding it in powers of (1 + )2/t2

and integrating successive terms we get

2 ()'! a 2P2 + - 1

- (1+)3/
1/2

+ 2 1+ + log ( 0)2 - 1
1/2

1+ +1
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In the matching region xc < x << Ln , /p << 1 and we can expand (13) in powers of t/p. We

then neglect terms of O( /P). Similarly, we can expand the parabolic cylinder functions
(1)

in (8) in the limit >> 1 to obtain an asymptotic expression for E( (x). This expression
(1) yfor E (x) is in the form of an outgoing wave. By matching the asymptotic forms of

E(1) and E 2 ) (Eqs. 8 and 11), we obtain the complete solution for region 2:
y y

E() Eyo (2/a)1/4 2 1/4
y (/2 1 - iK ) nz- 1 exp[-i 2 (x)], (14)

(nx())1/2 W , 0

where 4P2 (x) is given by (13) with

44 1 } 1 a
K2 = a ~ +- P - log (4p) + +T2 2 4 log (2a). (15)

Eventually we shall use a greatly simplified form of Eq. 13. By retaining only the

leading term of order p2 and performing some expansions, we obtain

22
x Ze (L)

'(x) ! k (16)So weLn (n Kl(x))/2

In the regime x >> xc , the field amplitude is given by

- 1) (n- K)
- 3/4

E(x)I I Eyo(n)I KI (x) . (17)
x yo z (1l+ea) 1/ 4 (Za)1/4 W , O

In the limit a > 1, the exponential tunneling factor caused by wave evanescence near

the x = 0 boundary is evident.

IEx(x)I = IEy Kx(x) 1/2 (n 1 (n2 - Kl - 3 / 4 exp(- a). (18)

The factor exp - a is essentially identical to e , which was used in deriving acces-
1

sibility curves in the previous report. Qualitative plots of the fields as the wave pene-

trates into the density profile are displayed in Fig. X-13.

Finally, let us comment on the validity of the approximation made in deriving (2).

In region 2 both fast and slow waves have short wavelengths, and the effect of the den-

sity gradient, with scale length Ln , is small. Taking d/dx = -ik x and using the polar-

izations of a homogeneous medium, we get
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ik zdE z/dx

k 2 K E
ox y

2
nx fast

2
nx slow

2 2
where nfast is given by (3) and nx slowx fast x slow
mation appears valid in region 2.

Ey(x)
Eyo %

K IIK 1 i 2KI nx -> n .Thus the approxi-
Ki nz - 1)> x fast

x=Ln

(0)

Ex(x)

x= Ln

Fig. X-13. Plots of the fields as they penetrate into the density
profile. (a) Ey (x), (b) Ex(x).

In region 1 the analysis is more complex at least in the vicinity of the slow-wave

cutoff = Ln , Inx fast'. I In x slow,' and slow and fast waves are coupled

pe (L)
together. Equation 2 is no longer valid; it must be replaced by a single fourth-order

equation in one field component. Tang and Wong 3 have considered solutions to this equa-

tion for arbitrary boundary conditions at x = 0. Their "TE excitation" corresponds to

ours; the electric field at x = 0 is transverse to both B and the density gradient. The
-analytical details of their calculations are rather complicated, so we merely quote their

analytical details of their calculations are rather complicated, so we merely quote their
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results. If we define

2 2 dK ,(x)X = - nz - 1 (20)
o z k dx

x=x slow
c

then the ratio of the powers coupled into the slow and fast waves is of order

x slow = 1-4/3 -0(10\). (-1)
x fast

This result corresponds to the case of pure TE excitation at the boundary. Thus the fast

wave will exchange little energy with the slow wave as it tunnels through the region of

narrow evanescence. While coupling between the waves may be nonnegligible in the eva-

nescence region, it occurs over a region of such small extent that it has little effect on

the fast wave once it has reached region 2. Consequently, we shall assume that (2) has

approximate validity even down in region 1.

Superposition of a Spectrum of n z Components

We have just examined the propagation of a single nz component into the density pro-

file. This case corresponds to an infinite sinusoidal excitation along the x = 0 boundary.

We shall now investigate the effect of a source of finite extent at the boundary, one that

corresponds to a whole spectrum of nz components. As explained in the previous

report,l evanescence in the density profile results in a "filtering" process, in which

only a narrow portion of the nz spectrum propagates all the way into the interior of the

plasma. Now we consider only nz components in this narrow frequency range. We refer

to the field at x = 0 corresponding to the narrow nz spectrum as the "filtered" field

E yf(z). We model the filtered spectrum by two rectangular pulses each of 26 width and

1/(26) height, centered about niz = ±n . For a given case the parameters n and 6 are
z 0 1

determined from the accessibility conditions given previously. In this simple approxi-

mation, the filtered field is

sin (koz6)
Eyf(Z) = 2 cos (kozno ) • kzo . (22)

The filtered field and its transform are illustrated in Fig. X-14. The halfwidth of the

envelope of Eyf(Z), AZe , and the period of the carrier of the waveform, Az c , are given

by

Aze = 7/k o (23a)

AZc = 27/kon . (23b)
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Eyf(nz) Eyf (Z)

H28 nz -Vl-t VVVX

-no no

SPECTRUM OF FILTERED FIELD FILTERED FIELD AT xO 0

Fig. X-14. Filtered field at x = 0 and its corresponding
spectrum. n ,2= n .

Equations 16 and 17 can be written

Ex(x, nz) = (x,nz) exp[-i (x, nz)], (24)

where 4(x, nz ) = Ex(x, n) l, with Eyf(n ) replacing Eyo(nz) in the expression for IEx .

We can now use integral superposition on the entire Eyf spectrum. The contribution

from the nz > 0 components is

E (x, z) = n (x, ) exp -iA ( + dr, (25)

1 (1 2 KI) 1

where we have defined the quantities

A = k z (26a)
o

2

1 pe x
B = 1 n 2  (26b)2 o5 L zen

The contribution from the n z < 0 components, as expressed by an integral similar

to (25), is identical to (25), with z in B replaced by (-z). As a first simplification of
2 2

(25), we note that to maximize the accessibility window we must have 2pi(Ln o i(XLH '

for which K1  0. Therefore we neglect KI in the exponent of the integrand in (25). The

dominant contribution to the integral will then come from the stationary-phase points

of the integrand, if they are included inside the range of integration. The stationary-

phase points occur for

d B- (x, 2 - 0. (27)
dr a

For a given '_, nl Ei <n 2 , this requires a z such that
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2

Z2 n2 2 - ray
e

where z (,) is the formula for the ray trajectory of the nz component given in the pre-
ray 1

vious report. Thus at a given x, the dominant contribution to the integral in (25) will

occur whenever zray(12) -<z < zray (1).

To further evaluate (25), we approximate 4('i) = 4(n ) and take this factor out of the

integrand. We also define the following integrals:

F (u, )= I cos ([(t + - 2) dt. (29)

F 2 is defined similarly with sine replacing cosine in the integrand. Finally, let zR
A

zray(nz=nR ) with R = 0, 1,2. Then, with Ex(x, z) = Re Ex(x, z), we obtain

Ex(x, z) = x(n , X) 5-(zx),

where

-(z, x) = n (z/z)1/2 cos (2kno(zzo)1/2) Fl((z/zR)1/2, kono(zzo ) l/)

- sin (2kno(zz 0 )1/2) F ((z/zR) 1/2, kno(zz )1/2) . (30)

R=l1

This complicated expression can be simplified in two complementary regimes. Let
Z - z jto 46

AzR(x) z 1 (x) - Z2 (x) = LZo(x) denote the separation of the ray trajectories of the

extreme nz components in the right-hand pulse of Fig. X-14. There are two cases of

interest.

Case 1. AZR(L) < Az

The field in the interior (x=Ln) is the filtered field multiplied by an amplification

factor

Ex(, z ) = (X/Xco)1/2 1 +e (2a ) W - 0 1

sin (k 6 (z--))
0 cos (kozno), (31)

k6 S(z-z ) o

where the subscript o indicates evaluation at n = n . The waveform at x = 0 has
z o~
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simply propagated as a single nz component at n z = n , following the ray trajectory of

that component. For o = wLH' we have Ln/Xco ~ (10-100) and the overall amplification

of the fields may be as large as 0(10).

The case AzR < Az e is illustrated in Fig. X-15a. I-9(z, Ln) 2 is plotted against z/z o13 -3with the following parameters: Ln = 50 cm, B = 10 T, n (Ln) = 101 cm n = 1.2,

and 6 = 0. 15.

0.08

0.06

0.04

0.02

0

0.03

0.02

0.01

0

z2  z I

(a)

Iq-I2

Aze

carrier

0 0.5 z/zo

Z2 ZI

Fig. X-15. (a)

(b)

Case

Case

1 plot

2 plot

of (z,x) 2 atx= L n .

of f (z, x) 2 at x = L .n
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Case 2. Az R(L n )> Az e

Here the differences in the propagation of individual nz components become impor-

tant. Interference effects spread out the waveform so that it extends at x = Ln over the

range z (Ln) < z < z (Ln) . In this range we can write

n2- 1 1/ /2
2 7 T 0 oyf 0

Ex( X', Z)) z n k xO O

[ =C(v) R= + (v) R=J (32)
R= 1 R= 1

where v = (2/T)/2 (k n o) 1/2 (z/z) 1/2 {(z/zR) /- }, the angular brackets denote

averaging over a period of the "carrier" frequency kono , and C and S refer to Fresnel

integrals of the form4

C(v) = cos (- t 2 ) dt. (33)

The case Az R > Aze is illustrated in Fig. X-15b with the following parameters: Ln14 -3
50 cm, B = 10 T, n (L )= 10 cm , n = 1.4, and 6 = 0.2. The Fresnelintegrals

in (32) exhibit interference fringes about v = 0. The width, Azf, of these fringes is typi-

cally

Az ko )1/o (34)
z knz

These fringes are clearly visible in Fig. X-15b. They contribute to the irregularities

in the envelope of the waveform for the range z2 < z < z 1 . Finally, the maximum ampli-

fication of the fields will be of order

IxE ~ 1 = (1-10). 
(35)

Iy o  (k L n ) /2

The problem of parametric downconversion from various possible field structures

that have been obtained is being investigated.
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4. ANOMALOUS RF EMISSION AND ION HEATING BY

MICROINSTABILITIES IN TOKAMAKS

U. S. Energy Research and Development Administration (Contract E(1 1-1 )-3070)

Abraham Bers, Miloslav S. Tekula

Introduction

Recent experiments on Alcator have produced several interesting results. l In these

experiments Alcator was operated in a low-density (1 X 10 1 3 /cc) and high-drift velocity

((VD/VTe) > ( J/envTe)
Table X-1. Under these

Table X-1.

=0.3-1) regime. Other plasma parameters are listed in

conditions, microwave radiation ranging from the ion plasma

Alcator parameters in the low-density, high-drift
velocity regime. Major radius = 0.5 m, plasma
radius = 0. 12.

n = 1 X 1013/cc

B = 40 kG

T. = 0.2 keV
1

Te = 1.0 keV

(J/envTe) (vDe/VTe) = 0.3

mi/me = 1836

2. = 3.8 X 108/s
1

S. = 4.1 X 10 /s (650 MHz)pl

v e = 2.4 X 104/sel

eff(r= a /2) = 2.2 X 105/sveff

viiff (r=a /2) = 5.6 X 104/s

be(r= ap/2) = 4.6 X 106 /s

bi(r= ap/2)= 4.8 X 104/s
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frequency to a fraction of the electron plasma frequency and heating of the ions from

0. 2 keV to I keV were observed. From soft and hard x-ray measurements we found that

an electron energy tail extending from several kilovolts to hundreds of kilovolts was

present. From soft x-rays there is also some evidence that a bump in the electron energy

distribution function near 4 keV may have been present. We shall address ourselves to

explaining the microwave radiation and ion heating. We assume that the energy source

for the discharge phenomenon resides in an anisotropic electron velocity distribution

function arising from the applied electric field. We also assume that this drives insta-

bilities in the core of the plasma where the plasma may be assumed to be homogeneous,

and trapped electron effects are negligible. Since the electron distribution functions

parallel to Bo are unknown, we shall study several simple models to see whether any of

them is consistent with the available data. The radiation that is generated in such insta-

bilities in the quasi-homogeneous core of the plasma can only be detected if it can propa-

gate out through the density gradient to the plasma wall. We therefore begin with a study

of such wave propagation.

Wave Propagation in a Density Gradient

The microwave spectrum that was detected outside Alcator is shown schematically

in Fig. X-16. In order to explain it we note that the detection of microwave signals at

the outside of the plasma is the inverse of the problem of wave propagation from the out-

side for lower hybrid heating experiments.2,

We use the cold-plasma approximation to study the propagation of low-frequency

electrostatic plasma waves (LFEPW) out of the plasma that is immersed in a uniform

magnetic field possessing a density gradient. The more exact warm-plasma theory will

not change the arguments significantly. For the sake of simplicity, we use a linear den-

sity profile as shown in Fig. X-17. We have singled out three densities, n 1 (xl), n2 (xz),

n 3 (x3). To each of these there corresponds a lower hybrid fre uency which in the case

of Alcator is approximately equal to the ion plasma frequency =2 p = e 2 n(x)/miEo )

According to cold-plasma theory, a wave with = cah, and a fixed parallel wave number

n(x)

n3 (x 3 )

0-

o 2  (x) - ---
.n(X ) ,

Wpi Wpe XI x2 x3 x

Fig. X-16. Spectrum of microwave radiation. Fig. X-17. Density profile.
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2 2(k11), starting off with k I > k2 inside the plasma, will propagate outward. This is shown

schematically in Fig. X-18 where curves 1,2,3 correspond to the different densities

considered. We pick kl1 to satisfy the condition of accessibility and avoid electron Landau

damping, vTe << -- < c. Wave 1 is evanescent for very low densities n < nI(Xc l ) and alsok 11

for densities greater than n l (x1 ); similarly for the other two waves. We are now ready

to construct the plasma model. We assume that the core of the plasma is homogeneous

but the periphery has a linear density profile. That is, in Fig. X-17 it is assumed that

for x > x2 the density profile is flat (dashed line). We pick n2 to correspond to a density

of 10 13/cc, which corresponds to an ion plasma frequency of 650 MHz. The fact that the

profile is flat for x > x2 means that in Fig. X-18 curve 3 now becomes curve 4 beyond

n 2 (x 2 ). We further assume that the waves leaving the plasma are generated in this

homogeneous core. The reason for this will become clear eventually. If this is indeed
2 2 2

the case, then the waves for o >> pi = e n2 (x2 )/miEo will propagate out of the plasma

(curves 3,4 in Fig. X-18), while waves having frequencies less than this have to go

through a large region of evanescence between n2 (x2 ) and whatever their resonant den-

sity n(x) < n2 (x2 ) is before they start to propagate (see curve I in Fig. X-18).

2 I 2 3k i

----------------------------- 4

nl x l) nl(xI )  n2x 2 )  n3(x 3 )  n(x)

Fig. X-18. Perpendicular wave number as a function of density.

Recall that in the low-density region all waves become evanescent (Fig. X-18). The

higher frequency waves are evanescent starting at higher densities. In the case with

the plasma core homogeneous, the density n(xc) at which each of the waves becomes

evanescent is given by

n(xc) C
=cos 8, (1)

n(x2)

where e is the angle of propagation of the wave at the core of the plasma. For the lower
2 ,

hybrid wave cos 0 = m /m i . This wave corresponds to wave 2 in Fig. X-18. The

reason that no waves are observed at the electron plasma frequency can be inferred
2from Eq. 1. For these waves cos 0 = 1, and hence they are evanescent at n(xc) = n(x 2 ).
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The detailed solution of the wave propagation problem is complicated when k1

approaches zero. The effects of trapped particles may also be important in the density

gradient.

Excitation of Low-Frequency Electrostatic Plasma Waves

We have seen that low-frequency electrostatic plasma (LFEPW) waves generated in

the core of the plasma can propagate out of the plasma. We shall now study these waves

in more detail. The dispersion relation for the LFEPW in a homogeneous magneto-

plasma is given4 by

)2 2, 1 m+ cos2 . (2a)
pi L me j

This can be obtained by modeling the ions and electrons as cold > vTe and takingk H 1VTe
22 2 22 2  2 >

k VTe < 1, kVe/22 1, and k 2 2 << 1. Since we are assuming 2e > , we
Te pe Te e 1vTi 1 e pe

.22 2
need only assume k2 Tev pe << 1. We use the symbols e, kll, k' VTe' pe'e for frequency,

parallel and perpendicular wave numbers, electron thermal velocity, electron plasma

frequency and electron cyclotron frequency, respectively. Equation 2a simplifies into

W : o . (2b)
pl

when 10-7/2 2 << m/mi., which is the lower hybrid wave (LHW), and

S pe cos e (2c)
pe

when I e-r/2 2 > me/mi, which is the electron plasma wave (EPW) (Gould-Trivelpiece

mode). These waves are virtually undamped because of their fast parallel phase veloc-

ities. Three types of anisotropic electron distribution functions destabilize these waves:

drifted, runaway tail, and bump on tail distribution functions. We shall examine each

one separately.

a. Electron Drift

Since these waves (Eqs. 2b and 2c) have very fast parallel speeds, the drift velocity

necessary to destabilize these waves would have to be larger than the electron thermal

speed. (See Fig. X-19.) This would lead to a Buneman-type instability. 4 We shall not

examine this instability further, since the conditions necessary to drive it are not likely

to prevail.

b. Runaway Tail

In this case (Fig. X-20) the waves (LFEPW) (Eqs. 2b and 2c) are maintained by the

bulk of the electron distribution function. The runaway tail is a Maxwellian distribution
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fi

UD VTe +UD VII

Fig. X-19. Distribution function with large relative drifts (UD> VTe).

in the perpendicular direction with a temperature that is smaller than the bulk temper-

ature but flat in the parallel direction. The total number of particles in the tail is nT <<

no , where no is the number of particles in the bulk. Since the distribution function in

the tail is flat, we can only have cyclotron-driven instabilities 4 and for the LFEPW this

produces a growth rate of

2
c, 2

y V pt k e 
(a): 16 Z kZ k foT[Qe/k ],  (3a)

where

S/k]___ (3b)foT eke Iv max - v v ma x  acmax mn max

with a < 1, and c the speed of light. We have picked Vmin < w/kll < Vmax for all of the

LFEPW. Let us now see what v max has to be in order to excite the LFEPW.

Let us consider first the lower hybrid wave with ca o .. To excite these waves,
2 2 2 Z p2

we require that k < / /VTe /VTe be satisfied, which automatically satisfies the1we1 T p /Te
2 2 2 2 22

requirements k < peTe and k < e/VTe. Thus for the lower hybrid wave we get

fo

VT Vmin Vmax V11kFig. X20. Electron distribution 

function 

with 
a runaway 

tail.

Fig. X-20. Electron distribution function with a runaway tail.
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e>> e Te > . (4a)
k.,c epi c

Since Ge/k lc > 1, this implies that the particles that destabilize this wave have velocities

near the speed of light. This means that the relativistic mass correction should be used

in Eqs. 3. These superfast particles are not likely to be confined very long. Thus we

assume that the tail is unlikely to drive the lower hybrid waves.

Let us now consider the electron plasma waves o = p cos 8. Again, we require
2 2 2 2 2 2 pe 2 2 2 2

k < 0o /V = cos /v Te which automatically satisfies k< e/v and k <
II Te pe Te pe Te <

0Z/VTe. We get

e> e Te 1 (4b)k 11c pe c cos '

From this we can obtain an upper bound on the velocities of the electrons that drive these

waves. In the case of Alcator, runaway electrons with energies of several hundred kilo-

volts were observed. Picking 300 keV as an upper bound, we find that v ax/c = 0.78.

When using a relativistic mass correction this means that kll in e/1." 2 c. This

implies that cos 0 >- 0.2 in Eq. 4b. For these maximum values the growth rate in Eq. 3a

is given by y/wpi ' 0.1 n T/noa, which for n T/n = 0.2 and a ! 0.8 reduces to y/op
-2 T op

2.5X 10- 2 . As another example, for o w pe/2, and e/k c 0.5, a =0.8 and n /n

0.2, we get y/o . = 0.015. We can also find the velocities of the slowest particles that
pi

can destabilize these waves. From Eq. 4b we see that Ge/k c is smallest when cos0= 1,
main

which corresponds to vll /c = 0.25. But we note from Eq. 3a that this leads to a zero

growth rate. This is consistent with the Alcator observations where no radiation was

observed near w
pe

c. Bump on Tail

We assume that the LFEPW waves are maintained by the bulk electron distribution

function (Fig. X-21). Thus if we consider a Maxwellian bump with unequal parallel and

perpendicular temperatures containing a total of nb << no particles, the growth rate of

the LFEPW is

2

_ /1 nb pe , 13/2 2
8 2 2 2  (Te/Tb 11 (Ub/vTe -W/kIlvTe) exp(-Te/2Tbl )[/kllVTe Ub/VTe] 2

Te

(5a)

where Tbllis the parallel temperature of the bump, and Te is the temperature of the bulk

electrons. For instability we require Ub > w/kll, while to establish the waves we require
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VTe - Ub  II
kit

Fig. X-21. Bump on tail electron distribution function.

kll < w/VTe. These conditions are met both for the lower hybrid waves and the electron

plasma waves.

We have not yet imposed any restrictions on the bump, but it has to be made consis-

tent with the experimental evidence. With this in mind we shall require that the bump

carry all the measured current (I)

I = enbUbA,  (5b)

where nb , Ub are the homogeneous bump density and velocity. The toroidal effects have

been lumped into the area A, which may be different from 7rrc, the estimated current

channel area. To relate nb Ub to experimentally measured quantities, we now define

the parameter

SI teneTeo 
(5c)

where I is the measured current, neo and vTeo are the central electron density and

temperature, and S1 and S2 are integrals that involve the electron density and tempera-

ture profiles. In deriving Eq. 5b it was assumed that the resistivity was classical (pro-
-3/2portional to T (r) ) and the electric field was constant across the cross section.

Combining (5b) and (5c), we get

n e- D \ -- r) ( b /. (5d)

In the case of Alcator, S1/S2 is typically equal to 2. From the experiment when

(vD/Te) = 0.3 the soft x-ray spectrum indicates the possible presence of a bump at

~Ub/VTeo = 2. In this case, the total number of electrons in the bump and the runaway

tail may be inferred to have been 30% of the total. Assuming these values, we then must

take A = 7r /4.

We can now evaluate the growth rate in (5a) for LFEPW. Maximizing the growth

rate, we find c/kI vTe = Ub/Te - 4I TbII/Te . Then for both the lower hybrid and the
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electron plasma waves, k2vT/. 2  (T
electron plasma waves, k T pe = Ub/VTe - Tb Ie ) -2. Taking into account electron

Landau damping, and picking Tb II/T e = 1/4, we find that the maximum growth rate for

nb/no = 0. 3 is y/w = 0. 09.

The distribution functions considered thus far lead to a variety of other instabilities

which we shall consider in connection with ion heating.

Ion Heating

It was observed during the course of the Alcator experiments that the ion tempera-

tures changed from 0.2 keV to 1 keV. This requires an energy input of (3/2 nAT) of

~1700 J/m 3 . We shall now discuss the amount of energy that is available in each of the

distribution functions that we have discussed.

a. Electron Drift

We have seen that it is unlikely that the LFEPW would be excited by this mechanism.

Let us consider, however, some of the low-frequency electrostatic ion waves that may

be destabilized. These are the ion acoustic (IA) and ion cyclotron harmonic waves

(EICHW). 5 It has been shown recently that with trapped particle effects taken into

account the slow magnetosonic waves (c= kllc s ) would essentially be inhibited except very

close to the center (r/R<me/mi) of the plasma. It is speculated that the IA and EICHW

may also be inhibited, since they are destabilized too by slow electrons that may be

trapped. If that is not the case, however, we can tap some energy from the drift (for

Alcator, (vD/Te) ~ 0.3 - 1). The complete flattening of the electron distribution in

one dimension (Fig. X-22) provides us with approximately 5 J/m ; for example, some

fo

UD 3 UD VI
2

Fig. X-22. Energy available in the electron drift velocity (UD<VTe),

7
of this energy could be transferred into the ion tail through resonance broadening. Since

-1 -1
the isotropization time for the electrons is ~v = 0.05 ms, and for the ions v. . =0.2 ms,ee II
we would expect this would happen several times in the course of the experiment. Still,

the amount of energy available is far from what we require, and the energy is fed mainly

into the tail.
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b. Runaway Tail

The runaway tail can also be used to excite the IA and ESICH. We assume that the

waves are maintained by the bulk electron and ion distribution functions. We shall cal-

culate the amount of growth provided by a tail such as was shown in Fig. X-20 except

that now vTi << w/kll << v Te This implies that for these waves we need

$ v 2 2 v
e Ti <e e Te (6a)

o. c kc c. c
pl II pi

for a = k(T /mi)1/2 -, /2 and k2 2e/ 2 << 1. We are neglecting the effects of ion
e 1 p Te pe

cyclotron damping. In the case of Alcator, Eq. 6a reduces to

0. 1 << e/k lc << 11.0. (6b)

Thus the tail can extend from 0. 1 < v l/c < 1. The growth rate of the IA waves because

of the tail is given by

2 2
= k i f [ /kl] (6 c)

O 16 o2 2 k22 oT

As an example, consider Alcator parameters, and 0 /k ic = 0.2, = opi/2, cos 0 = 0.5,

vma = ac with a <1. Then Eq. 6c leads to

y -4 nt 1= 1. 3 X 10 (6d)
o. n a
pl o

Furthermore, letting a = 1, nT/no = 0.2 leads to y/Cpi = 0.2 X 10- 4 , which is rather

small. In fact, this is not even large enough to overcome the damping of the wave that

has been neglected in Eq. 6c. Thus it is necessary to have some other mechanism

whereby these waves are driven unstable at least marginally. Such a mechanism would

be the drift of the electron distribution. In the case of Alcator, for a (VD/Te) ~ 0. 3

and ~ pi ./2, we get a growth rate of y/w . - 0.05. Since the tail is not likely to pro-

duce substantial growth of the ion waves, we do not expect the tail to be a large source

of energy to the ions through these instabilities.

We shall not discuss the energy that may be available to the lower hybrid wave, since

the tail is not likely to excite this wave.

c. Bump on Tail

In this case the only unstable wave in which the ions participate is the lower hybrid

wave. Let us now calculate the amount of energy available for heating the ions. A bump

that has both perpendicular and parallel temperatures much smaller than those of the
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bulk has a kinetic energy of "nbmUb/2, where nb and Ub are the bump number density

and velocity, respectively. The total energy in the bump is approximately

2n Ub 3
Eb 1400 n J/m .  (7)

O VTe

A fraction g of this energy may be transferred to the ions through nonlinear mech-

anisms. Recall that we required that the bump have Ub/VTe = 2 and nb/neo = 0. 3, as

inferred from measurements. For these numbers we find that the amount of energy

going into the ions is 1700t J/m 3 . Since the efficiency of energy transfer from the bump

to the ions is unlikely to be even 50%, the bump on tail instability alone cannot heat the

ions to their observed temperature.

Summary and Conclusion

We have been concerned with explaining the observed microwave radiation and ion

heating in some recent experiments on Alcator. The detection of microwaves at the out-

side wall of the device has two parts. First, it is necessary to find waves that propagate

out through the density gradient. We found that low-frequency electrostatic plasma

waves (LFEPW) which include the lower hybrid wave and the electron plasma waves are

a good candidate. Second, it is necessary to find the kind of anisotropic electron dis-

tribution functions that destabilize the LFEPW. To do this we considered 3 model dis-

tribution functions for the electrons: a drifted Maxwellian, a Maxwellian with a runaway

tail, and a Maxwellian with a bump on tail. Besides driving the LFEPW, these distribu-

tion functions lead to various other microinstabilities that could heat the ions.

First, we considered the drifted Maxwellian distribution function. We found that in

order to excite the LFEPW, the drift velocity of the electron distribution function has

to be greater than the electron thermal speed. Since this was unlikely to happen, this

mechanism for exciting the LFEPW was abandoned. On the other hand, if it is possible

to neglect the effects of trapped particles, then much smaller drift velocities could

destabilize the ion acoustic and ion cyclotron harmonic waves. We found, however, that

the amount of energy available from the flattening of the electron distribution function

is far below what is needed to explain the observed ion heating.

Next, we considered the runaway tail distribution function, and found that in order

to destabilize the lower hybrid waves it was necessary to have electrons with a speed

close to that of light. Since these electrons are unlikely to be confined long enough to

destabilize the lower hybrid wave, we abandoned this as a mechanism for exciting the

lower hybrid wave. We found, however, that the electron plasma waves could be desta-

bilized by particles having velocities 0.25 < vi1/c < 0.78 with the upper bound corre-

sponding to experimentally observed electrons having energy of ~300 keV. But the
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runaway tail would not be able to drive either the ion acoustic or the ion cyclotron har-

monic waves with large growth rates. Thus the runaway tail was useful only in desta-

bilizing the electron plasma waves.

Finally, we considered a bump on tail distribution function. We found that neither

the ion acoustic nor ion cyclotron harmonic waves would be destabilized but that both

the lower hybrid and the electron plasma waves would. Since this did not put much of

a constraint on the bump, we then looked for other mechanisms that might affect the

bump. The requirement that the bump carry all of the plasma current led us to place

the bump at Ub/VTe = 2 (to be consistent with the soft x-ray spectrum) which led to

nb/no = 0. 30. However, the amount of energy available in the bump was not sufficient

to heat the ions to the observed temperature unless a complete transfer of energy was

assumed.

We conclude with a brief remark about some of the nonlinear effects that may account

for the energy transfer in the various cases. In the cases of the ion acoustic and the ion

cyclotron harmonic waves the energy transfer mechanism is probably resonance broad-

ening. 7 In the case of the bump-driven lower hybrid wave the transfer probably occurs

through a nonlinear distortion of the ion orbits which has been studied for kll = 0. 8 , 9

Finally, it is also possible that there may be parametric downconversion from the elec-

tron plasma waves10 to low-frequency ion waves. This would be useful for two reasons;

it would help account for the observed peak (at o - pi) in the microwave spectrum and
pl

would also make some of the tail energy available to the ions. The electron plasma

waves probably account for the quasi-linear scattering11 of the runaway tail electrons

and this leads to an inhibition of the runaway tail.
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5. COHERENT WAVE-WAVE COUPLING IN MAGNETIZED

VLASOV PLASMA

National Science Foundation (Grant ENG75-06242)

Duncan C. Watson, Abraham Bers

Introduction

The coupling coefficients characterizing nonlinear wave-wave coupling in homoge-

neous magnetized Vlasov plasma are displayed here in a form that is more convenient

for computation than forms found elsewhere.1- 3 This form is used in Section X-B. 2 to

compute growth rates for unstable parametric downconversion from a lower hybrid pump

wave to ion cyclotron harmonic decay waves.

Review of Linear Results

Electrostatic modes in magnetized Vlasov plasma satisfy

8f _ qB °  8f I  qE 1  8f
+v +v X . (1)at Im m

8x m v av

We shall not go through the Laplace transform method of solution in detail. We merely

note that the correct dispersion relation, with causality taken into account, is obtained

by solving (1) for a growing wave and analytically continuing to a damped wave as

required. We assume therefore that E 1 and fl go to zero sufficiently rapidly as t - -o,

then we may integrate (1) along its characteristic or "free-particle orbit" to obtain

qE1 of
f 1 (xv, t) = - dt' ' , (2)

where the primed quantities are evaluated at the points (x',v',t')lying on the free-particle

trajectory through the points (x,v, t). The first-order plasma response to an electric

field with wavevector and frequency (k , aw ) is given by

fl(x,v,t) = fa(v) exp(ika x-iwa), (3)

where

t qEa
f (v) = dt' - exp[ika (x'-x)-iw (t'-t)] -- f (v') (4)
a m a a av' 0

We now follow Catto and Baldwin. 4 The charge-density response is

Pa - m  d3 v  dt' ik- -fo() exp[ik* (x'-x)-iwa(t'-t)] .  (5)
_co av
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Interchange the order of integrations and change the variable of integration in the

velocity-space integral. Thus

no 0qa t

Pa = m jo
dt' d3v' i a vfo(V') exp[ika

av a v'

The determinant of the Jacobian is unity. Also,

sin (t-t')

0

-1 + cos ~(t-t')
X - x t =

SM(t-t') v'

1 - cos (t-t')

sin (t-t')

0

say, where 0 = qB /m and B ° lies along z. In terms of

ity distribution function

the Fourier-transformed veloc-

F o (  f) I d3 v ' exp(-ip "v') fo(V'),

expression (6) for the charge-density response of the plasma may be written

o -o

This is as far as we need go to illustrate the methods used in the nonlinear calculations.

The result (9) for the linear charge density excited by a single potential wave may be

substituted in Poisson's equation to obtain a linear dispersion relation. Similarly, results

that we shall obtain for the second-order charge density may be substituted in Poisson's

equation to obtain equations describing mode-mode coupling. These additional steps

are well known and will not be repeated here.

Derivation of the Coupling Coefficient

We continue to use the same methods to find the second-order response of a mag-

netized Vlasov plasma to two potential waves.

The first-order response of a magnetized Vlasov plasma satisfies

8f f qBo . f qE I f
+tv -+ -

8x 8v 8v

The second-order response satisfies a similar equation:
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0 v',

0

S(x'-x)-ia (t'-t)

dt' exp[-i a(t'-t)] ka " M(t-t') kiaFo MT (t-t')ka).

140



(X. PLASMA DYNAMICS)

8f 2a +v8t

af

8x

X q B ° 8f2 qEl f+ vX --m mav av
(11)

Thus it may be computed in the same way by integrating along the characteristic:

f2z(x,, t) =- 00
-co

(12)dt' -
m av,

(cf. (2)). The second-order plasma response to two electric fields with wavevectors

and frequencies (kb , wo ) , (kc , Wc) is given by

f2 (x,v, t) = (fb, c() +fc, b(v)) exp(i(kb+kc) x - i(b+wc ) t),

where

qEbdt' - exp[ikb

(13)

fb,c(v) = -00
-00

(cf. (3), (4)).

again the tech

response as

(x_'-x)-iob(t'-t)] f (') exp[ik
av

Here fc(v') is the linear response to the electric field at (kc , wc). We u

nique of Catto and Baldwin 4 and write the second-order charge-density

(14)

Lse

2
bc q b 00

Pb, c In - - 0 3- 8v
av' av'

fc ( ' ) exp[i(kb+kc)

(cf. (6)). The determinant of the Jacobian is unity, and again

x - x' = M(t-t') v'. (16)

In terms of the Fourier-transformed first-order perturbation in the velocity distribution

Fc(P) = I d3 ' exp(-i *v') fc(v'), (17)

we have

P -00
dt' exp[-i(w+wc)

(cf. (8), (9)). The next step is to express F ( ) in terms of F 0'C O From (4) we have

ds' exp[-i c (s'-s)] exp[ik (y'-y)] ik c  fo(u- )
auc

Sfc(U)
c m 00
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(15)

b, c

E
(18)

(19)

*(x'-x)-iwc(t'-t)]

(x'-x)-i(wb+wc)(t'-t)]

(t- t') I (k b+k ) M (t-t ') k b Fe M (-)(kkc)
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_F qbc  s.
C m s

exp(-ip *u)

cos (s-s')

u = sin (s-s')

3- -
exp[-iw (s'-s)] d 3 u exp(-ik c M(s-s')')

-. 8 f-
ik * f (u').

Sau,

sin 02(s-s')

cos (s-s')

0

0

0 u'

1)

N(s-s') u', say.

Therefore (20) may be written

Fc( q ) = - S
-00c

ds' exp[-iw (s'-s)]
c

(22)

Substitute (22) in (18) and make use of definitions (7) and (21). We then have the expres-

sion for one piece of the second-order charge density (13) in terms of the Fourier trans-

form (8) of the unperturbed velocity distribution function.

2
Pb, c p s t

E b m00

( i ( t-t') k b -kb (s-s') kc +( +kc) * (s-s'+t-t')c

0[ F M (s-s' )kb+M (ss'+t-t')(b +k ) . (23)

The Fourier transform of the unperturbed velocity distribution in a magnetic field

has the same symmetry as the distribution itself:

(24)

We use this fact and the explicit form (7) for the matrix M. After some manipulation of

the ranges and variables of integration we obtain

PR No. 116

Also

(20)

(21)

ds'dt' exp[-iw c(s'_s)- i(wb+wd)(t't)1

f 0 ) E() fo(v ll

F OP) OPzll2
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2
'a b, c +Pc, b p

E m a bco

0

5 dsdt exp[i(was+c t)]

S(kCX k) (1- cos s) + *k al sin s]+k clik s

fE [(kb X c )I (1 -cos Qt)- bi * kcl sin Ot]-kbllkcllt

F 2 [(kc X ka)ll sin Os - (ki X kc)l sin at- (ka X kb) ll sin a(s-t)

-kcl* kl(l - cos s)- " k1 cl ( 1 - COS t)- kal kbl(1 - cos£ (s-t))], kalls +kbllt

- 5 dsdt exp[i( s + fct)

{1 [(aX i 1)1 (1 -os Qs) +k l kb

[c X k ) l l (1 - cos a ot)-k kcl al

sin as]+kalkbll s

sin at]-k c lk allt

Fo [(kX kb) sin s - (k X a) n t - bX kc)II sin 2(s-t)

kal -kbl(l - cos s)- .k' k(1 -cos t)- kb kcl(1 - cos (s-t))], kblls +kciil

dsdt exp[i(cs +.at) ]

1 [(kbX kc)ll (1-cos Qs) +kbLi kcl

{[(ikX )ll (1-cos ot)-kal" i

sin as]+kbilkcilIs

sin Qt]-kalikbllti

F- kb k c)1 sin Os s -k a kb)ll - sin t - (kc X ka(l -sin (s-t)

-kbL * kcl(1 - cos Qs) - kal •kbL(1 - cos Qt) - kcl , kal(1 - cos Q(s-t)), kclls +kallt

(25)
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The wavevector and frequency (ka , oa) are defined by

(0,0) = (ka ,) + (kb', b ) + (kc, wc). (26)

The right-hand side of (25) becomes the coupling coefficient normalized to modes of unit

electric field strength e *- j/o 0when divided by a 'b ckakbkc . It is almost symmetric

in the three subscripts a, b, c, with the symmetry broken by a reversed interval of inte-

gration and a reversed sign, both of which are associated with the subscript a. It will

be shown that this formal asymmetry can only lead to genuine asymmetry of the coupling

coefficient if at least one of the three modes has a Doppler-shifted cyclotron resonance

w - kllVll = nQ, n integer at a parallel velocity lying within the velocity distribution func-

tion. The energy of particles resonant with a mode is not included physically in the

energy of that mode, and yet it must enter into the total energy conservation of the sys-

tem. This is why particles with resonant parallel velocities destroy the symmetry of

the mode-mode coupling coefficient. The form (25) has the advantage that in case the

modes do possess many resonant particles, the coupling between them can still be dealt

with correctly. These points will now be illustrated further in the course of specializing

the form (25) to particular distribution functions and particular directions of propagation.

Special Forms of Coupling Coefficient

The simplest form of zero-order velocity distribution that may be considered is that

corresponding to a cold beam. For later convenience, we index the beam by a and write

2-
f (v) = 6 (vI) 5(vll-oa). (27)

The Fourier transform of this is

Fo( ) = exp(-illv oa). (28)

The result of substituting (28) in (25) is

a (Pb,c c,b) i(kX k)ll kcl ka k cllkall
c a) 1I cl kiai _c__ _ all

E m abc + 2 2 2
aa aa aa

iQ(kb Xk)ll _kbl kcl kbllk c l

baQ- 2- 'ba ba

+ 2 further terms generated by cyclic interchange of
subscripts a, b, c. (29)
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Here w a = wa - kallvoa' and so on.

This cold-beam coupling coefficient is totally symmetric in the three modes, as

expected for a system lacking resonant particles. It agrees with previous cold-fluid

calculations 5 and is included to clarify later discussion of the effect of resonant particles

on the coupling coefficient.

Another simple form of velocity distribution is the beam that only possesses perpen-

dicular temperature. For such a beam

fo(v) = fla v 6 (vll-Voa).

The Fourier transform of this is

F F )i exp(-ipv)The result of substituting (31) in (25) is

The result of substituting (31) in (25) is

(30)

(31)

2
a b, c c,b pa 4 (TA/

E m abc W - y
0 a .Tubi -7/sin sin

S 7T/A-7TIO
dsdt exp[i( aas+wbat)]

[( Xk), (I +coss)-k *kaisins]+k cikaI s +- cot

[ iT w ba

[(kbX k') (1 +cos t) +kbl kcl sin Qt]-kb kcil +L cot

2
Fla - [-(k Xka11 sin s + (kb X kc) sin t - (ka X kb)II sin n(s-t)

-kcl * kal(l + cos 2s) - kb kcl(l + cos t) - kal * kbl(l - cos (s-t))]

+ 2 more terms generated by cyclic interchange of
subscripts a, b, c. (32)

This coupling coefficient for a cold beam in the parallel direction is totally symmetric

in the three modes, as expected for a system lacking resonant particles.

Another way to avoid resonant particles is to take three modes propagating perpen-

dicular to the magnetic field. The most general distribution in a magnetic field is

f 0 (v) = f vmv I.

The Fourier transform correspondingly is of the form

F,0 () = F 0(oP II).

(33)

(34)

PR No. 116 145



(X. PLASMA DYNAMICS)

The result of substituting (34) in (25) with all kll zero is

2
ba(Pb, c+ Pc,b) q 4 /

E m cabc 7ro dsdt exp[i(wass+wbt)]0 m b -7a/b Kc/
sin sin

[(kc X ka ) (1 +cos Qs)-kcl "kal sin Os][(kbX kc)ll (1 +cos 2t) +kbl ikc sin Qt]

- [-(k a) sin s +(k Xkc) sin t - (ka X kb) sin (s-t)

- kcl * kal(l + cos 2s) - kbi. kcl(l + cos t) - kal • kbl(l - cos (s-t)) ], O

+ 2 more terms given by cyclic permutation of subscripts a, b, c. (35)

This coupling coefficient for Berstein waves is totally symmetric in the three waves

that interact.

To study the effect of resonant particles on the coupling coefficient, we first take the

simplest case - that of waves propagating parallel to the magnetic field. The result is the

same as we would get from the one-dimensional zero magnetic field problem or the

three-dimensional infinite magnetic field problem.

We may derive the coupling coefficient as an integral over Pl. Substitute (34) in (25)

and set all k I to zero. We obtain

4 a(Pb, c +Pc,b) qp
E -m Ya bc

0

S 0 S" dsdt exp[i(cas +cbt)] k21 k IZsk btF Okooo o
oo 0+- so g dsdt exp[i( s +wct)] k allkbllSkclltFoOkbllS +kcllt }

-5 5 dsdt exp[i(ws + wt)] k 2bkcllskalF 0, ks +kat (36)

- Y KOOc a bil cl all of clisk al

Alternatively, by using the fact that conductivities of whatever order in the electric

field are additive over particle populations, we can construct the coupling coefficient

by superposing the coefficients for beams. Substitute (31) in (25), set all k± to zero,

and leave the integrals in infinite interval form. The coupling coefficient for a beam

with no parallel velocity spread is then
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2qwpa 2 2kallkb IlkclI kbl lk all
2 2 + 2 2

Waa ba b Oa Wca

k k 2
+ kclIallkbl

2 2
ca 'aa

2 2
pa Op fl(Voa )

and

f1 ) I dv fi o( 2 v , VII).

Integrating over parallel velocity, we get

a(Pb, c +Pc,b) q dv
E mE- m Ca~b c(kall Ikblkll) dVl IfI(vll )

0

3 3
cll + all +

+2 2 2 2

a b -IIIK I
all blkbi c _qai

(38)

(39)

(40)

The sense in which the poles of this integrand are to be circumnavigated in the complex

vii-plane is to be determined from the regions of integration occurring in the double inte-

grals over p1', the variable conjugate to vll, which constitute (36). First, suppose that

kall < 0 < kbll kc ll.

Then (36) may be written

a (Pb, c +Pc,b) p -1
E m Y c(kalkbilkcll

0

{S dpldpl Iexp + (lw k 3
11 IIpIIFo{0,p +P3

+ dp dp

+ S ddpil

The sense of the integrations in (42) clearly indicates that all poles in the integrand
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of (40) are to be above the integration contour in the complex vll-plane. Reversals of

sign of kl in (41) induce corresponding reversals of integration intervals in (42). Recall

that in the derivation of the coupling coefficient the convergence of the integrals (12)

and (14) over the past particle histories was ensured by taking 0 < Im ((b), Im (Wc), and

by the fact that the frequency wa is defined as an auxiliary quantity by (26), so that

Im (a) < Im (b), Im ( c). (43)

Thus we may always locate the contour correctly by first taking the mode frequencies

to satisfy (43) and then choosing the contour to be the real vll axis. For other values

of the mode frequencies we continue analytically by deforming the contour as necessary.

The subscript a is used to denote the driven mode and the subscripts b and c the modes

generating the nonlinear current.

It follows that the three quantities

a(Pb, c + p c , b ( c, a a,c c a,b b, a

E E E (44)
O o O

when computed for real wa , b' wc will differ from each other by imaginary quantities

proportional to residues at the poles of the integrand in (42). The usual symmetry of

coupling coefficients is consonant with the Manley-Rowe relations governing energy

exchange between modes. The asymmetry displayed here is due to the presence of par-

ticles resonating with the modes. The existence of resonant-particle energy means that

the sum of the mode energies alone is no longer a conserved quantity.

Similar arguments hold for coupling between modes propagating at arbitrary angles

to the magnetic field. Poles of the integrand in the integral over parallel velocity now

occur at all parallel velocities for which the Doppler-shifted frequency is a multiple of

the cyclotron frequency. These poles are circumvented by the prescription (43),

and the symmetry of the coupling coefficients (44) holds only insofar as the residues at

the poles are small enough to be neglected.
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6. WAVE-PACKET TRAPPING AND RESONANCE BROADENING

IN WAVE CASCADING PROCESSES

National Science Foundation (Grant ENG75-0 6242)

Nathaniel J. Fisch, Abraham Bers

Introduction

In a previous report I we showed that resonance broadening as a rule does not occur

in wave interactions because, as we reasoned, there is no mechanism that perturbs the

wave modes on a time scale faster than that associated with what we have called detuning

effects. The exception to this rule occurs when two of the interacting waves belong to

the same wave packet in such a way that the diffusion approximation2 can be made. This

type of interaction involves a cascading of energy within one wave packet, as opposed

to the transfer of energy between wave packets, so that the wave modes are more sensi-

tive to a finite level of turbulence. We shall show that for these wave cascading processes

there is a resonance broadening much like that for wave-particle interactions and, in

the appropriate limit, there is a trapping of the (cascading) wave packet that is much

like particle trapping.

Derivation of the Wave Diffusion Equations

We derive the wave diffusion equations directly from the coherent wave-wave equa-

tions instead of first making the random-phase approximation and then dealing only with

the many-wave limit.2 The advantage of this procedure is that the physics becomes

clearer and the limits of validity of the theory can be obtained. The assumptions in

making the diffusion approximation are A2 >> A 1 and Ak1 >> k2 where Ai is the action

amplitude of spectrum i and spectrum 1 contributes two modes to the three-wave inter-

action; that is, the decay condition is k1 = k2 + k3 where k 1 and k3 both refer to modes

in spectrum 1. In Fig. X-23 we construct schematically the localization (implied by

our assumptions) of wave packet 1 in the long-wavelength wave packet 2. For simplicity,

we assume, at first, that there is only one mode in spectrum 2. In Fig. X-23, for

simplicity, we construct only one wave packet 1, although it must be realized that, by

assumption, there are many such packets situated homogeneously in the plasma. We

deduce immediately that the interaction is spatially periodic, with a period 2w/k 2 , since

wave packet 1 includes so many modes that only the envelope of the packet effectively

enters into the problem. Thus the interaction of wave packet 1 with wave 2 depends

only on the phase of the packet with respect to the wave trough in which it is found and

not on the location of the trough. This means that in describing this interaction mathe-

matically we may make random-phase approximations for wave packet 1 while retaining

the phase information associated with wave 2.
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2q#2

7r/k2  X

Fig. X-23. Wave-wave-packet interaction.

We may use the coherent wave-wave equations to write

d 2 * dd IAl(kl)12 = Al(kl) d-Al(kl) + c.c.

= Al(kl) T VA 2 (k2 ) Al(k'l) exp(i(kZ+kl -kl) x)
k'1 <k 1

-Al(kl) T V A2 (k 2 ) A1 (k'1) exp(-i(k 2 -k'l+kl) x) + c.c., (1)
k'l >k 1

where in short notation we write exp(ik.x) for exp(ik.x-iw.t). The first summation repre-

sents decay from a lower wave-number mode into kl, whereas the second summation

represents decay from a higher wave-number mode. We now wish to average (1) over

a distance that is large compared with I/Ak, but small compared with 1/k Z . From (1)

we see that the largest contributions to the summation surviving this averaging will be

at k'1 = k1 ± k2 . On the other hand, we must be sure to retain the slowly varying phase

exp(ik 2 x) so that the interaction will be periodic as deduced above. Thus performing an

averaging operation of the type

( exp(i(k2+k'l-kl) x)) c exp(ik2 x) 6(k 2 +k'-k I) (2)

on (1) results in

d 2 ik2 x , -ik x

dt IAl(kl)I = VA z e A (k I ) A 1 (k l -k Z ) - V A Z e A (k1 ) A l (k l +k Z ) + c.c.

ikz x 4"
= VA2 e Al(kl)Al(kl-k)-Al(kl)A (kl+kz) + c.c.

= VA 2 e + .c. -k2 k , (3)
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where we have expanded in a Taylor's series in k2 to obtain the final equality. Note that

the change in action in kl-space for wave packet 1 is dependent on its slope in kl-space

as is to be expected for cascading processes. Also note that, as required by the peri-

odicity condition, the phase exp(ik 2 x) is retained in (3) so that wave packet 1 can "know"

where it is (spatially) located in the trough of wave 2. In other words, wave packet 1 is

unable to distinguish between a change in the phase of A 2 or simply a shift in space.

We may put (3) into a more transparent form by expanding 8/ak = (avgl/akl)(/vgl)

and d/dt = 8/8t + vg l (8/8x). Also, since IAI Z is proportional to N1 , the action density

with units IA 12/k, N1 obeys the same equation as IA 12. Furthermore, since (3) is

linear in A 2, we may linearly sum contributions from a number of modes in wave

packet 2. Thus (3) may be written as

g gl + F avgl NI(x vg1 t) = 0, (4)

where F has units of force/mass and is given by

avg1
F = Re T2 2VA 2 (k2 ) k k exp[i(k2 x- 2 t) ] .  (5)

kz  1

Note that (4) is a Vlasov equation for N 1 in (x, vg1, t)-space mathematically identical to

the Vlasov equation for the particle distribution in (x, v, t) -space. In fact, we may treat

(4) in a manner entirely analogous to the treatment of the Vlasov equation in obtaining

the quasi-linear diffusion equation. In particular, we may linearize

N 1 = N 1 0 (Vgl t) + N1 1 (x, vgl t), (6)

where N11 << N 1 0 and (N 1) = N 1 0 , with the angular brackets now indicating a spatial

average over all of space. By treating V, and hence F, and N 1 1 as small parameters,

we may linearize (4) and, in the presence of a sufficiently broad spectrum 2, we may

proceed4 as in the derivation of quasi-linear wave-particle equations to obtain a dif-

fusion equation for N 1 0 given by

a a a
- N10(Vg1 t) D N10(V t), (7)N1 tgl' av D gN0gl' g' 7

where

av 2

D 8=:v12 1 (8)

- k2=z/Vgl
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which is the same as the equation obtained by performing immediately the diffusion

approximation on the weak-turbulence equations. It should be recognized that in pro-

ceeding from (4) to (7) we have assumed that N2 is a slowly varying function of time.

Similarly, it is possible to obtain the growth rate for N 2 directly from the coherent

wave-wave equations before performing the random-phase approximations. First,

linearize

A 1 = A 1 0 (kl) + al(k I , x, t) (9)

A3 = A3 0 (k 3 ) + a 3 (k3 , x, t), (10)

where A 1 and A 3 both belong to wave packet 1, and A 1 0 is independent of time and space

for homogeneous initial conditions because of the smallness of the coupling coefficient

so that perturbations in Ai caused by the interaction may be lumped in a i << Ai0. We can

then write the coherent wave-wave equation for A 2 as

dA "dA2 = -V A 0 A30 exp[i( wt-6kx)]
dt 10 3 0

_EV'(A10a + AOal) exp[i(6t-6kx)], (11)

where 6k = k 1 - k - k3 , and 6w = wl - W2- w 3. We may argue that the first term on the

right-hand side of (11) is negligible in a time-asymptotic solution (in terms of contribu-

tions to the wave energy) because of phase mixing. We can deal with the second term

on the right-hand side of (11) by finding a1 and a3 by integrating the coherent equations

for A 1 and A3 , assuming, for simplicity, homogeneous initial conditions and an inter-

action only in time. Then we get

2  i 6wt I V -it 1
dt = + V A10 e V'A'A - + c.c.

= iV2 A 1 -i A10 [ - IA3 0 2 + c.c. (12)

Here we noted that the double summation reduces to a single summation because of phase

mixing in the cross terms (6wo 6S) in the time-asymptotic limit. We can now expand

A10 2 in a Taylor's series in k2 and write the time-asymptotic solution as

dA 2  A2 IaA 1012

t = A 2Trj V k2  8k 6(w 2 3)
k1

A2 4w vl 2 aN 1

a gl/ak k I ' (13)
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In writing the second equality in (13) we converted the sum to an integral over k 1 and

we noted that the 6-function contributed twice {at vgl(±kl) = O2 /k 2 }. Since N 2 is propor-

tional to A2 , we may put (13) into the form

dN2 (k 2) 8N 1

dt YN 2(k 2 ), 8=8T 2 V 1  (14)

g 2g l =2 / k 2

which, together with (7), constitutes the quasi-linear equations for the wave-wave inter-

action. 2

Wave-Packet Trapping

One of the major advantages of the alternative derivation of the wave diffusion equa-

tions presented here is the intermediate result (4). In the event that spectrum 2 is suf-

ficiently coherent, (4) describes wave-packet trapping analogously to particle trapping.

The coherent long-wavelength wave 2 can trap the short-wavelength wave packet by

stimulating decay of high group velocity waves to low group velocity waves, thereby

decelerating the packet, or vice versa for accelerating the packet. One decay process

takes place at one wall of the trough, whereas the opposite decay takes place at the other

wall, which results in trapping the packet. Note that this process leads to orbit secular-

ities -that can invalidate the derivation of the wave diffusion equations. In particular,

note that

- Fk2 N10 t 2  (15)8vgI gi

so that aN 1 1/ vgg l ~ aN 1 0 /Ogl at time

w -1/2
t 

= 
Ttr -- 2(k 2 F) (16)

which we may call the wave-packet trapping or bounce time analogously to the particle

trapping or bounce time.

The wave conservation equation (4) contains sufficient information to allow us to

deduce all details of what we have called wave-packet trapping. The mathematics is

identical to that for particle trapping and it remains only to interpret the results cor-

rectly. Since we think of particle trapping in terms of forces on a particle, for illus-

trative purposes, we present an alternative derivation of the wave-packet trapping

equations for a specific interaction from a consideration of the forces on a wave packet.

The wave cascading process that we use as an example is the generation of relativis-

tic (phase velocity ~ c) plasma waves by a collimated beam of transverse waves. This

interaction has been considered by Tsytovich,5 who pays particular attention to the
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one-dimensional problem and notes that the growth rate for the longitudinal waves has

a maximum in the direction of the transverse waves. A dispersion diagram for this

interaction is shown in Fig. X-Z4. The major result of this interaction is the nonlinear

growth of the energy in the plasma waves caused by a diffusion in k-space of the trans-

verse modes. In one dimension, the transverse wave spectrum tends to flatten toward

N

resonant =
triplet t I

P t3>t2

k k

Fig. X-24. Fig. X-25.

Coupling between a longitudinal wave and a Diffusion in k-space of the transverse
broad packet of transverse waves. wave packet.

lower k or plateau, and thus to develop a time-asymptotic distribution as shown in

Fig. X-Z5.

The force (time averaged over the fast field variations) on the transverse wave

packet by an external source may be written as the time derivative of the wave packet

momentum. That is,

Z -kI A,( 1 )I] = -Re p E extX Bl, (17)
k k1

where we have summed the forces on the wave modes 6 over all the modes in the packet.

In (17) A 1 I2 is the action of modes [k l , w(kl)] in the wave packet, and p ext and Jext are

respectively the "external" charge density and current sources. The complex electric

and magnetic field amplitudes of modes (k 1 ) are E1 and B1. It is assumed on the left-

hand side of (17) that d/dt commutes with Z because of our assumption Ak 1 << k 1. Thus
k

the total time derivative d/dt follows the slowly varying (compared with l and k 1 oscil-

lations) envelope of wave packet 1.

The external sources in (17) may be taken to be perturbations caused by nonlinear

effects. In this interaction, the transverse modes nonlinearly excite longitudinal density

and current fluctuations that drive the low-frequency wave. Each transverse mode is

regenerated by the other transverse mode and the longitudinal mode, which nonlinearly
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excite transverse current fluctuations. These current fluctuations can impart momen-

tum to the transverse modes through the Jext X B 1 force as in (17). This Jext may be

written as

ext =  4VE 1 (E 2 * k2) exp[i(k 2 x-w2 t)]

Sext = a1/2 (18)

k1 a1 2
8wl1 2

where subscripts 2 and 1 refer to longitudinal and transverse modes respectively, and

V is the nonlinear coupling coefficient. Note that the coupling between the longitudinal

mode and a transverse mode does not excite charge-density perturbations (p ) and theext
current-density perturbation (J ex) is transverse to k. Thus from (17) we can see that

the only momentum change in the wave packet is due to the J extX B 1 force which is in

the k direction. This must be the case, since the left-hand side of (17) has components

only in the k direction. Plugging (18) into (17), we can write

S (k 1 A1 I) = -Re Z Z 2VA 2 k A 1A, exp[i(k 2 x-cw2t)] exp(i(kl-k'1 )x- i(ol-'1) t)
k 1  k 1 k'1

(19)
where A 2 is the action of the longitudinal wave. Note that in our interaction, a trans-

verse wave decays into another transverse wave and a longitudinal wave. Since each

scattering event neither creates nor destroys transverse waves, the total number

(defined in terms of the action) of transverse waves is conserved. That is,

d 2 I A =d IA1l = 0. (20)

Therefore we can rewrite the left-hand side of (19) as

k dk IAI dvg1  (21)
gl

The summation over the action implies a kind of averaging or weighting. Let us define

(h)avg [ AlI -1 kA 1l2 h(kl), (22)

where h is any quantity, and (h)avg is taken as the average of the quantity h over the

wave packet. This procedure is reasonable, since Ak 1 << k 1 . Note that on the right-

hand side of (19) the double summation reduces to a single summation because the phases

of A 1 and A'1 are uncorrelated. Since exp(ik 2 x) is assumed to be slowly varying compared

PR No. 116 155



(X. PLASMA DYNAMICS)

with IA1 2, we can replace x with (x) (where (x) is the average coordinate of the

wave packet), since IA 1 12 is nearly zero except at x = (x)avg. Note that we have invoked

the broadband nature of wave packet 1 (Ak 1 >>k2 ) in handling the right-hand side of (19),

whereas in dealing with the left-hand side we used the narrow-band nature (Ak 1 <<kl).
Using (21) and (22), we can now rewrite (19) as

d(Vglavg = -Re 2VAZkZ avavg exp {i[k2(x)avg- 2t] . (23)

avg

Note that d/dt is now defined as 0/at + (vgl)avg a/ax, where (vgl)avg is the average

group velocity and (x)avg is the average spatial coordinate of the wave packet. Note that

d(x)avg/dt = (Vgl)avg so that (23) may be put in the form

dt2 -Re LVA2k 2 \k1 avgexp {i[k 2 (x)avg- zt]}. (24)

Note that (24) implies the same force/mass, F, as in (4). Here the derivation makes

clear its role as a physical force on the wave packet. We may note from (24) that the

force tends to restore the wave packet to the bottom of the wave trough (see Fig. X-23).

Since (24) has been solved 7 within the context of the wave-particle interaction, we

simply note that the resulting trapping time Ttr is as in (16) and a trapping width, vtr

2r/ kZtrW, may be so defined that the wave packet is likely to be trapped when

(2 w (5)
kZ (gl avg Vtr (25)

Resonance Broadening Width

The analogy between the wave-particle interaction and the wave-wave cascading

process both in the turbulent and coherent limits allows us to predict with confidence

that the resonance broadening corrections to these interactions are also similar. In

particular, beginning with (25) in the many-wave 2 limit, we may trace the same steps

in deriving the resonance broadening widths in the wave-particle interaction to obtain

6vg I = D 1/3

gl kT

21/3
k2 D

6k 2 = g2 -2/k 2 1. (26)
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At this point, these results can be obtained by mathematically substituting the analogous

quantities into previously derived results for the wave-particle interaction. The reso-

nance broadening widths may now be used to correct the weak-turbulence equations in

a manner previously reported. 1

For n-wave interactions, the same ideas hold. For example, it is expected that

resonance broadening does not occur in four-wave interactions unless two waves, say 1

and 3, belong to the same spectrum in such a way that the diffusion approximation can

be made. It then follows that this interaction, which involves the cascading of energy

in wave packet 1, is analogous to nonlinear Landau damping. It can be argued, by anal-

ogy with the resonance width obtained for the nonlinear Landau damping interaction,

that

6vgl ~ [N2 4 (vg2g1)(vg4 _ g l ) 1/Z. (Z7)

Note that the resonance broadening widths in (27) are proportional to N, whereas

detuning widths are proportional to N3 , and hence much smaller. Higher order wave-

particle or wave-wave interactions, however, do not exhibit resonance broadening. For

example, for a four-wave-particle interaction (or a five-wave interaction with two waves

belonging to the same wave packet) we may scale l ' 4

6v [(NI 6kl) 1/2 (N6kz) 1/2 N3 6k 3 1/2 1/2 (28)

that scales as N3 which is of the same order as detuning effects. Thus we have essen-

tially categorized one-dimensional resonance broadening phenomena into two classes:

interactions with resonance widths ~N I1 /3 and detuning effects ~N, and interactions

with resonance widths ~N and detuning effects ~N3 . Higher order wave interactions in

which a number of waves belong to the same wave packet or higher order wave-particle

interactions in which the group velocity of some spectra equals the resonant-particle

velocity, if resonance broadening occurs, reduce to one of these two classes.
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report (the generation of plasma waves by a collimated beam of transverse waves)
2 2 22
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7. TEMPORALLY GROWING EIGENMODES OF A FINITE

INHOMOGENEOUS PARAMETRIC SYSTEM

National Science Foundation (Grant ENG75-06242)

Frank W. Chambers, Abraham Bers

We continue our studies of parametric interactions in an inhomogeneous plasma. 1

In this report we examine the effects of a finite interaction length in one dimension.
23 4

Rosenbluth and his co-workers ' and Piliya have shown that, in an infinite medium

with a linear mismatch Ak = K'x introduced by the density gradient, the pulse response

of the system does not grow exponentially for all times; rather, saturation takes place

after a gain of e k , X = y/(K 'vlv2 ) has occurred. Other workers have attempted to

recover the absolute instability (an exponentially growing (in time) normal mode of the

system) by considering different boundary conditions for the coupled modes and different

spatial profiles for the coupling coefficient. White et al. 5 considered a Gaussian profile

for the coupling and found a range of half-widths for which growing modes exist, but they
found no growing modes for a sufficiently long system. Nicholson and Kaufman 6 in a

numerical integration allowed for fluctuations in the mismatch and recovered the absolute

instability for certain amplitudes and characteristic wavelengths of the fluctuations.

DuBois et al.7 considered an arbitrarily long system with a square profile for the

coupling coefficient. They investigated by WKB methods the dispersion relation of

the system and found growing modes for any sufficiently long system. They did not

give a description of the spatial profile of these growing eigenmodes. We shall derive
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an analytical form for the mode dispersion relation and the profiles for the eigenmodes.

We find the modes highly localized near the sharp boundaries assumed for the coupling

coefficient. As we make the system arbitrarily long we find that these modes persist

but remain tied to one or the other boundary. Since we are interested in the linear evo-

lution of parametric instabilities to a state where nonlinear effects dominate, we thus

find that the transient response away from the boundaries may be more important. The

normal-mode solution is only important for very short systems or systems with the tran-

sient response effectively suppressed by the inhomogeneity. When the normal modes do

become important the response is localized about the discontinuity in the coupling coef-

ficient. To complete this work, we shall analyze the semi-infinite problem with the

coupling coefficient having only one discontinuity.

We investigate the following system of coupled-mode equations1 for the existence of

exponentially growing normal modes:

* iK'x2/2
(8/St+vl8/Sx+y 1 ) a* = Yoa 2 e

v/x -iK'x /2(a/at +v2a/ax + y2) a2 = Yoal

(1)

(2)

For simplicity, we assume v I = -v 2 = v, that is, the modes are propagating exactly oppo-
sitely, and yl = y2 = 0, that is, the modes are undamped. The coupling coefficient is

assumed to have the boxed profile illustrated in Fig. X-26. The box has length f and

a(-//2)o _

- '/2

2 0 //2) 0

1 -2)

Fig. X-26.

Assumed spatial profile of the coupling
coefficient yo and the boundary conditions

on modes 1 and 2 for the finite-length
inhomogeneous normal-mode problem.

the coupling vanishes outside this region. The appropriate boundary conditions are that

no mode 1 or 2 propagates into the box.
A 2 Z* 2We begin to solve (1) and (2) by letting a1 = a1 exp(iK'x /4), a 2 = a2 exp(-iK'x /4)

A*
and eliminating a2 from the equations. Furthermore, we assume that the time depen-

dence of al and a 2 is ep . This results in a single equation for al:

2 + i 'x -- + + -oa, = 0. (3)

Px. 2
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By making the substitution X = eiT/ 4 (K 1/2x-i2p/K '/2v), the equation becomes the

parabolic cylinder equation

82  X 2  1 o ^
2 4 2 2  al (X ) = 0. (4)

We choose as our solutions

D (X) . z

v= -iX
D v (-X) K'v

where Dr(X) is the parabolic cylinder function (PCF), index v, of X. We now have a

general solution, a linear combination of D (X) and DV(-X). We apply our homogeneous

boundary conditions at ±./Z, then the resulting equation for a nontrivial solution, which

we shall refer to as the dispersion relation (DR) describing the growth rate Re p of the

normal modes of the system, is

D (-X L ) D 1 (X R ) = -D (XL) D -(-X R )

XL -K'12/2 K'1/2p v ei/4

K,1/2 i2p i7/4

XR = ' /2 e . (5)

Kl/2v

A
Coupled with this dispersion relationship we can write the eigenvectors al and a 2 . We

include two forms for each. When the dispersion relation is satisfied exactly the forms

are equivalent; however, the numerics of the problem are quite difficult and when there

is a slight numerical error in solving the DR for p one or the other forms of the eigen-

vector will be preferred.

A
al (X) = a o (Dv (- XL) Dv(X ) - Dv(XL) Dv(-X)) (6)

ao(Dv-I(-X R ) Dv(X) + DvD (X R ) D (-X)). (7)

A* i 7T/ 4 1/2 (D(X L )a2(X) = a e (D(XL) D_ 1 (X) +D (XL) D_ 1 (-X)) (8)

= a e i 7/4 1/2 v- (-XR)D (X) -D (XR) D (-X)) (9)
o( v-l -Dv-I R-

In the first form in each case the form of the eigenvector guarantees that the left bound-

ary condition at X = XL is satisfied, while the eigenvalue p is adjusted to satisfy the

right boundary condition at X = XR. In the second form the right-hand BC is automatically
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satisfied and the eigenvalue p is adjusted to satisfy the left-hand BC.

Before proceeding, we wish to compare our procedure with that of DuBois et al.7

The physical problem is the same for both (except that they retain damping and arbitrary

group velocities) and they arrive at the same spatial differential equation but they use

the approximate WKB solution rather than the exact solution. They apply the same bound-

ary conditions to get their dispersion relation. Our approach has the advantage that we

get an exact dispersion relation. Asymptotics can be applied to our solution fairly easily.

We can solve the DR, Eq. 5, for p and then we can calculate the eigenvectors from

Eqs. 6-9. This approach has, however, serious drawbacks. It is applicable only to the

square boundary problem; we cannot easily change the profile of the coupling coefficient.

The advantages of an analytical DR over a WKB DR with its implied integrations are

countered by the difficulty of calculating the parabolic cylinder functions for complex

index and argument. Our approach for the PCFs has been to calculate from a Taylor's

series expansion for small lXI and from the appropriate asymptotic series for large

IXI.8-11 Comparisons were made between our calculated values of D (X) and tabulated
8,12

values. Agreement was good, but it must be noted that there are no tables for com-

plex v. Since our routines work well for real v and the results for complex v are rea-

sonable, we believe the results are correct.

One set of roots of the full dispersion relation is shown in Fig. X-27. Real and

imaginary p are normalized to y and they are plotted as functions of the normalized

system length K'I/2f. This plot was carried out for X fixed at 2.0 for comparison with

the results of DuBois et al.7 By fixing X, we keep constant the ratio of the amplification

length v/y 0 to the inhomogeneity length K '- /2, while varying the system length compared

with these two lengths and calculating the unstable modes that are present. Later we

shall discuss briefly the solutions with varying X. For very short lengths with the sys-

tem just above the usual backward-wave oscillator start of oscillation thresholdl 3 the

roots coincide in the homogeneous and inhomogeneous cases. Here the finite-length

effects dominate over the inhomogeneity effects. But when the system is longer and a

second unstable p branch appears, the two solutions differ greatly. The two roots merge

at K1/2 f= 3.7 and take on the same Re p value with opposite Im p for increasing

lengths. These modes with positive Re p > 0 and with Im p increasing (decreasing) lin-

early with f are of most interest to us. To further understand these modes that persist

for arbitrarily long systems, we shall calculate their eigenvectors and study the asymp-

totic limits of the dispersion relation and eigenvectors for large 1.

We note several other features in Fig. X-27. For the homogeneous case p is always

real; only in the inhomogeneous case does p acquire an imaginary part corresponding

to a frequency shift in the normal modes. Our scale length is approximately 2 1/2 smaller

than that of DuBois et al.;7 so we believe they are in error. There are roots also for

Re p in the lower right corner of the plot 7 that we have not calculated.
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Fig. X-27.
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0 2 4 1/2 6 8 10 Real and imaginary parts of the normal-mode
K' eigenfrequency p normalized to y as a func-

1.0 ....... ...... tion of the normalized system length K'1/2
for a fixed X = 2.0. Dotted lines on the plot

0.s 8- . .. Re p indicate how the mode eigenfrequencies
would appear in the absence of inhomogeneity.
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To investigate the roots for large P, we can apply asymptotic methods to our DR.

Looking at the definitions of XL and XR in (5), we might first allow IXRI - o, 1XL -

as f - oo. By substituting asymptotic forms for the PCF, it can be shown that there are

no roots. We note, however, that both XL and XR depend on p; if we permit p to become

arbitrarily large as f increases (and this actually does happen), then we can no longer

have both XL and XR large. If we assume one or the other large, then for the system

dispersion relation for the eigenvalue p we find

IXLI >> 1 D_(iXR) = 0. (10)

IXRI > 1 DV(XL) = 0. (11)

These approximations do indeed exactly give the roots for large 2 which are seen in

Fig. X-27. The IXRI > 1 DR yields the positive imaginary root, while the IXLI 1 DR
yields the negative imaginary root. We note that for large 2 there is a large frequency
shift in Im p; in fact, as 2 - 00 we find that in order for XLor XR to remain finite Im p

± K' Iv/4. The reason for this frequency shift will become apparent when we examine

the physical mechanism responsible for the unstable modes.

To understand the nature of these modes physically, we have calculated their eigen-

vectors for several values of f and p with X = 2.0. In Fig. X-28 for K'1/2= 2.0 we see

eigenmodes similar to those of the homogeneous case. We plot the magnitude of the

mode amplitude against the normalized distance K'I/2x. Note that the boundary

conditions are satisfied. In Fig. X-29 we see eigenvectors for modes at K'1/2f = 10.0
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Fig. X-28.

Spatial normal-mode pattern for
a finite inhomogeneous system.

(a) al1 (solid curve) and Ia21
(dotted curve) for a system of

normalized length K',/Zk =
2.0. For this mode X = 2.0
and p/Y, = (0. 596;0. 0) as cal-

culated for Fig. X-27.
(b) Spatial profile of the coupling

that produced this eigenmode.
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K' I/2= 0.0
P/ o = (0.644

I I I a

K 112= 10.0

K '/ , 20.0 .. 1

P/o= (0.644,- 2.99)

.. 

I

lal [ - .r / ... '-

-10 -5 0 5 10 -10 -5 0 5 10

K' 1/2x K'1/2x

Fig. X-29. Finite-length eigenmodes al I (solid curve) and I a2 (dotted curve)

for Imp > 0 (left) and Im p < 0 (right) for K'l/2. = 10.0 (upper)

and K'l/2 = 20.0 (lower). Values of p/y 0 for each mode are

given. The roots for p were calculated with X = 2.0 (see Fig. X-27).
Arrowheads in each plot indicate the exact resonance point.
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and at K'l/2 = 20.0 where the inhomogeneity has a large effect. With K'l/21 = 10.0

we plot the two modes from Fig. X-27 with the largest real p. We plot the Im p > 0 root

on the left and the Im p < 0 root on the right. The Im p > 0 mode is peaked near the left-

hand boundary and the Im p < 0 mode at the right. As we proceed to K'l/21 = 20.0 the

eigenvectors for the two modes are presented., They have almost the same shape as

before; they are merely displaced so that they hug the boundaries. At K'l/2x = 0 the

modes have very nearly zero amplitude. The eigenfunctions with lower growth rates

become more complex and their widths are increased but the predominant features

remain the same; the modes hug the boundaries. We are immediately led to suspect

that these modes are strictly an edge effect; they are genuinely growing normal modes

but their physical significance must be interpreted carefully.

To further understand this problem, we solve the semi-infinite eigenmode problem

taking the boundary conditions given in Fig. X-30. This is actually a simpler problem

CASE I X>O

a(O)= 0

O x

CASE 2 X < 0

VI V2

a (-o)= 0 a2 (0) = 0

Fig. X-30.

Assumed spatial profile of the coupling
coefficient yo and the boundary conditions

on modes 1 and 2 for both semi-infinite
cases. Case 1: coupling occurs for x > 0.
Case 2: coupling occurs for x < 0.

to solve than the original finite-length problem. We note that requiring one of the modes

to approach zero at infinity implies that the other mode will also, since from Eqs. 1
and 2 it is a linear combination of the first mode and its derivative. The solution pro-
ceeds in a manner similar to the finite-length case and we find the following dispersion

relations:

Case 1. For x > 0, D (X ) = 0

Case 2. For x < 0, D_ (iXo) = 0

v = -iX.

X = (-i2p/K ' 1/2v ) eir/4

(12)

(13,

The forms of the eigenvectors are the same as those in the two-boundary problem if we
pick the one that satisfies the remaining boundary condition. Thus for coupling with x > 0
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forms (6) and (8) are appropriate, while for x < 0 forms (7) and (9) must be used. We

note that the dispersion relations just calculated are of the same form as the asymptotic

DRs (10) and (11) for the two-boundary problem discussed previously. Now we can com-

pute the semi-infinite eigenvalues and eigenvectors for X = 2.0. The resulting normal

modes are presented in Fig. X-31. The first four eigenvectors are plotted in descending

021 ..............

P/Yo = (0.644,- 0.547)

lol 04

SP/ o = (0.447

' t\P/Y, (0.34;lal

. "" -.. .I
LI I

2,- I.55)

10 P/Y7 = (0.280,-1.93)

0 5 10 15

K, 1/2x

P/To= (0.644, 0.547)

I I I I - I

P/ 0 = (0.447, 1.09)

P/Y= (0.342, 1.55)

P/ (0.280, .93)

SI-20
?0 -20 -15 -10 -5 0

K' I/2x

Fig. X-31. Semi-infinite eigenmode s lal1 (solid curve) and I a2 (d
curve) for Case 1, x > 0 (left) and Case 2, x < 0 (right).
four highest Re p modes are plotted in descending order
top to bottom. Values of p/yo for each mode are given.

roots for p were calculated with X = 2. 0. Arrowheads in
plot indicate the exact resonance point.

lotted

The
from

The

each

order of Re p for x > 0 and x < 0. We have essentially reproduced the finite-length two-

boundary eigenvectors with no major modifications. In other words, we have shown that

the finite-length growing modes for long systems are due to and attached to one or the

other boundary of the coupled regions.

We shall now examine several aspects of these solutions. First, we give a physical

explanation for the existence of these growing modes. We show how this result is
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not inconsistent with the work of Rosenbluth who found no growing modes. Next, we

explore the physical significance of the large Im p encountered with the long system

lengths and discuss the extension of these results to other parameter regions. Finally,

we examine the applicability of this solution to the actual physical problem of laser-pellet

interaction.

The physical interpretation of these eigenmodes is straightforward. The growth

occurs because at the boundary there is no out-of-phase incoming wave that might sup-

press the interaction. In calculating the pulse response of the infinite medium, we find

that out-of-phase feedback suppresses the growth of the instability. At each boundary

the feedback is suppressed and the response grows exponentially. In the case of the

Gaussian profile (5) it was shown by WKB techniques that there are unstable modes when

V/Yo < fG < yo/(vK'), (15)

where PG is the half-width of the Gaussian coupling region. We can understand this

result qualitatively in terms of our present work. The first condition of (15) is simply

the start of oscillation length modified for a Gaussian profile. The other condition is

that the coupling possess a sufficiently steep gradient. We see that sharp edges give

rise to growing modes. This calculation shows that as the edges are smoothed out the

instability disappears. Similar results were found by DuBois et al. 7 Nicholson and

Kaufman 6 have also found that fluctuations in the mismatch term about an assumed linear

profile can cause the system to be absolutely unstable.

We shall now consider the origin of the calculated frequency shifts, the Im p, of the

eigenmodes. The origin of the mismatch term is illustrated in Fig. X-32. The dispersion

relations of the plasmons (EP) and the plasmons shifted by the laser frequency and wave

number (EP') are plotted (Fig. X-32a) at two positions, xl and x2 , where the plasma den-

sity has decreased in going from position 1 to 2. The intersections on the right-hand

side give rise to the two-plasmon interaction in the zero coupling limit. In the coupling-

of-modes approximation we shift the origin of the w-k plot to the intersection of interest

and linearize the two mode dispersion relations of the coupled modes about this point.

This linearized shifted dispersion relation at x = xI is shown in Fig. X-32b. If we look

at the dispersion relations at x = x2 shown in Fig. X-32c, we see that for the same fre-

quency, w = 0, the two modes do not occur at the same k; rather, there is a mismatch

which produces Ak. This linearized dispersion relation, including mismatch and cou-

pling, is described by Eqs. 1 and 2. In Fig. X-32c we note that the two dispersion rela-

tions do intersect at a shifted 6d where

Ak vK'Ax
S = v 2 2 (16)

In fact, given any frequency w, in this linearized mismatch problem we can always find

an x such that the modes will be in exact resonance.
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* TWO- PLASMON
INTERSECTION

EP'

k

(0)

w

v v IK'Ax

X= XI XWX2

(b) (C)

Fig. X-32. (a) An actual pair of intersecting plasmon dispersion relations
w vs k for the two-plasmon interaction plotted at different
points, x 1 and x2 , in the density gradient. (b) and (c) show

the coupling-of-modes approximation to the dispersion rela-
tion in (a) for each density. In (c) we find the origin of the
mismatch term from the density gradient; hence, we can
simply relate Ak and 6w.

In Eqs. 1 and 2 we assumed that the frequency of the mode is the one that is in exact

resonance at x = 0. Then when an eigenmode frequency with Im p # 0 is calculated it

indicates that for the exact phase matching to take place we should have picked another x.

From Eq. 16 this normalized x is given by

K'i/2x = -21/2 Im p/y. (17)

In Figs. X-29 and X-31 we have indicated by arrowheads the x value at which the c and k

of the eigenmode are in exact resonance. Had we chosen this point as the origin in each

calculation the resulting p would have been pure real. The large values of Im p encoun-

tered in solving the DR indicate that our exact resonance point is far from the center;

in fact, in all cases it is quite near the edge where the eigenmode amplitudes are

largest.
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We can also show this property mathematically. Since the dephasing depends on x2

it might appear that a shift of the origin by some f would completely change the prob-

lem. If we let y = x + f in the Laplace transformed mode-coupling equations and then

let

^ iK'(2 2 - 22y)/4
a a 1 e

A* -iK'(0 2 - 2ky)/4
a2 = a 2 e

we find for al, a 2 :

(p+ iK' / + v / ay) Yoa2 exp\ 2 y (18)

(p +v v 8/8y a = oal exp y . (19)

Now if we just shift p - p' - iK'v2/2 we are back to our original equations with an addi-

tional phase factor on al and a2 . The frequency shift is the same as we have predicted

before. Again, a shift in frequency can be removed by a shift in the exact resonance

point.

We note from Fig. X-31 that the eigenvectors in the semi-infinite case are quite

small away from the boundaries; however, since they are growing exponentially in time,

they will eventually reach large amplitudes even away from the boundary (although these

amplitudes will still be small compared with the amplitudes near the boundary). Far

away from the edge, say at x = f, we can write for al with phase factors ignored

a I cc e(Re p)t D(X); X = eiT/4(K '-i2p/K' /2v)

cc e(Re p)t e-X 2 /4

c e(Re p)(t-2/v)cc e (20)

Thus the amplitude at x = 2 remains exponentially small until t > L/v; that is, until a

pulse originating at the boundary would propagate to 2. If we allow f to become arbi-

trarily large, the normal mode produces exponential growth only after an arbitrarily

long time. Until this time the infinite inhomogeneous pulse response of Rosenbluth et

al., 3 is the appropriate solution away from the boundary. If this response brings the

system into the nonlinear state, then the normal modes are unimportant.

Thus far, we have considered a system with X = 2.0, no damping, and v1 = -v 2 = v,

and normal modes with varying system lengths. Recapitulating, we find 4 regions in

the system length K'/21. If this length is too short, there are no unstable modes. For
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systems slightly longer than the usual backward-wave oscillator threshold we find

growing modes very similar to the homogeneous, finite-length system modes. After a

transition length where both finite-length effects and inhomogeneity effects are impor-

tant, we find inhomogeneous normal modes that are due to, and attached to, the separate

boundaries. For these systems the total length is no longer important and the semi-

infinite normal-mode description suffices. We find that for other values of X the dis-

persion relation exhibits similar qualitative behavior as a function of system length.

Since the system is sufficiently long and inhomogeneous for the laser-pellet interaction

parameters, we shall concentrate on the semi-infinite x > 0 problem, first for varying X

and then for varying v1/v 1  a.

With a = 1, varying X for the semi-infinite case, we find that the calculated normal-

ized growth rate for X Z 5 is described7 by

p1
Re Y- X1 (21)

yo 12/3)

1
This form has a threshold for growing modes, X > - 0.424, which agrees well with

73/4
the calculated value. Thus for a sufficiently inhomogeneous system the normal-mode

growth is suppressed. As the inhomogeneity becomes weaker relative to the gain of the

system the growth rate approaches that of the absolute instability. For all X, however,

the eigenmodes remain localized at the boundary. The modes are concentrated in x so

that K'l/2x 1. When y0 /v is increased with K' fixed, and hence X increases, the

growth rate increases but the width of the modes remains nearly constant. It appears

physically as if the inhomogeneity were introducing a "second boundary" into the prob-

lem. If we consider the modes to be in phase at x = 0, then the exp(iK'x ) in the coupling

oscillates rapidly for KIl/Zx > 1, thereby effectively suppressing the coupling. This

"second boundary" explains why the semi-infinite and long finite-length system problems

give the same result. Furthermore, the lower limit on X can be regarded as the condition

that the backward-wave oscillator criterion be satisfied between x = 0 and this "second

boundary." Modes 1 and 2 propagate freely away from this "bounded" interaction region

and exhibit an exponential falloff in space because they originate from a source growing

exponentially in time. These tails decay as exp{-Re (p)x/v} (see Eq. 20) and for weakly

growing modes may appear quite long.

These normal-mode solutions have been observed by Nicholson and Kaufman at the

University of California, Berkeley. 14 They integrate Eqs. 1 and 2 numerically and their

calculations are in excellent agreement with our analytic results both for growth rate

and spatial profile. Furthermore, their numerical results can serve as a guide to how

the modes scale with changing a = v2 /v1 (v 1 and v2 assumed opposite), since we have
-1

not done this analytically. For various integer a we find that their program computes
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growth rates given by

Rep 2 v1 V2 1/2 1Re ( 1

- al/2 1 - 2/ (22)

This result is intuitive, since the factor involving the a is the usual modification to the

homogeneous absolute instability growth rate when the modes are not propagating exactly

oppositely. Furthermore, the observed normalized mode width, determined by the

Nicholson and Kaufman numerical integration, scales with a as

K 1/2x c V -- (23)
V1 + IV21 1 +a

This result is observed for runs where a < 1, i.e., 1v21 < 1 and semi-infinite (with

x > 0). Thus we conclude from the Nicholson and Kaufman work that the nature of these

modes is independent of the requirement a = 1. We note that the localization in x scales

as K'-1/2 in agreement with our "second boundary" argument.

Having explored thoroughly the problem of finite-length, sharp-boundary, inhomo-

geneous normal modes, we shall now apply our result to the laser-pellet interaction

problem. Our primary objective is to determine the linear evolution of the system to the

nonlinear state. Considering an initial localized excitation in space, we can use the

transient response in an infinite medium to describe the time development of the sys-

tem until the pulse propagates into a boundary region. In our case this is the response

calculated by Rosenbluth et al.,3 characterized by a gain of eX and a spreading of this

pulse. After the pulse has encountered the boundary the dominant normal modes best

describe the response. Thus if exp(rk) > 1 and the system is sufficiently long, the pulse

response will grow to the nonlinear state before encountering the boundary. If exp(kX) <<1,

the growing normal modes will lead to the nonlinear state. If the system is sufficiently

long, these will be the localized inhomogeneous modes, and for a short system they will

be the backward-wave oscillator modes. Looking directly at backscatter, we might

regard the system as finite and consider the pump cutoff as one boundary and the plasma

edge as the other. Because of the scale lengths involved, however, this problem is

effectively semi-infinite. Considering a density scale length L = 100 pm and a neo-

dymium laser with a 1.06 pm wavelength, we can estimate K' -1/2 as a few microns.

Actual calculations of K'-1/ yield results of this order. Since the width of the inter-

action region is of the order of several hundred microns, we see that normal modes that

occur will be the highly localized inhomogeneous modes at the boundary. We have found
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previously I that the e growth was large for the Brillouin, two-plasmon, and plasmon-

phonon interactions; this indicates that for these interactions away from the boundaries

the system can grow and reach a nonlinear state in the transient response. In contrast,

for the Raman interaction the transient response is effectively suppressed by the inhomo-

geneity and the normal-mode solution becomes important. This may be the first linear

step in the development of the localized nonlinear spikons or cavitons. 1 5 With lower

powers or more inhomogeneous systems this normal-mode solution might also become

important for other instabilities.
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