Photonic Crystals Molding the Flow of Light

Second Edition

John D. Joannopoulos Steven G. Johnson Joshua N. Winn Robert D. Meade

PRINCETON UNIVERSITY PRESS . PRINCETON AND OXFORD

CONTENTS

Preface to the Second Edition		xiii
Pre	face to the First Edition	XV
1	Introduction	1
	Controlling the Properties of Materials	1
	Photonic Crystals	2
	An Overview of the Text	3
2	Electromagnetism in Mixed Dielectric Media	6
	The Macroscopic Maxwell Equations	6
	Electromagnetism as an Eigenvalue Problem	10
	General Properties of the Harmonic Modes	12
	Electromagnetic Energy and the Variational Principle	14
	Magnetic vs. Electric Fields	16
	The Effect of Small Perturbations	17
	Scaling Properties of the Maxwell Equations	20
	Discrete vs. Continuous Frequency Ranges	21
	Electrodynamics and Quantum Mechanics Compared	22
	Further Reading	24
3	Symmetries and Solid-State Electromagnetism	25
	Using Symmetries to Classify Electromagnetic Modes	25
	Continuous Translational Symmetry	27
	Index guiding	30
	Discrete Translational Symmetry	32
	Photonic Band Structures	35
	Rotational Symmetry and the Irreducible Brillouin Zone	36
	Mirror Symmetry and the Separation of Modes	37
	Time-Reversal Invariance	39
	Bloch-Wave Propagation Velocity	40

CONTENTS

44

Electrodynamics vs. Quantum Mechanics Again	42
Further Reading	43

4 The Multilayer Film: A One-Dimensional Photonic Crystal

-		
The Multilo	ayer Film	44
The Physic	al Origin of Photonic Band Gaps	46
The Size of	f the Band Gap	49
Evanescei	nt Modes in Photonic Band Gaps	52
Off-Axis Pr	opagation	54
Localized	Modes at Defects	58
Surface St	ates	60
Omnidired	ctional Multilayer Mirrrors	61
Further Re	ading	65

5	Two-Dimensional Photonic Crystals	66
	Two-Dimensional Bloch States	66
	A Square Lattice of Dielectric Columns	68
	A Square Lattice of Dielectric Veins	72
	A Complete Band Gap for All Polarizations	74
	Out-of-Plane Propagation	75
	Localization of Light by Point Defects	78
	Point defects in a larger gap	83
	Linear Defects and Waveguides	86
	Surface States	89
	Further Reading	92

6	Three-Dimensional Photonic Crystals	94
	Three-Dimensional Lattices	94
	Crystals with Complete Band Gaps	96
	Spheres in a diamond lattice	97
	Yablonovite	99
	The woodpile crystal	100
	Inverse opals	103
	A stack of two-dimensional crystals	105

CONTENTS	
Localization at a Point Defect Experimental defect modes in Yablonovite Localization at a Linear Defect Localization at the Surface Further Reading	109 113 114 116 121
 Periodic Dielectric Waveguides Overview A Two-Dimensional Model Periodic Dielectric Waveguides in Three Dimensions Symmetry and Polarization Point Defects in Periodic Dielectric Waveguides Quality Factors of Lossy Cavities Further Reading 	122 122 123 127 127 130 131 134
 8 Photonic-Crystal Slabs Rod and Hole Slabs Polarization and Slab Thickness Linear Defects in Slabs Reduced-radius rods Removed holes Substrates, dispersion, and loss Point Defects in Slabs Mechanisms for High Q with Incomplete Gaps Delocalization Cancellation Further Reading 	135 135 137 139 139 142 144 147 149 149 151
9 Photonic-Crystal Fibers Mechanisms of Confinement Index-Guiding Photonic-Crystal Fibers Endlessly single-mode fibers The scalar limit and LP modes	156 156 158 161 163

Enhancement of nonlinear effects 166

COI	NTE	NTS
-----	-----	-----

Band-Gap Guidance in Holey Fibers	169
Origin of the band gap in holey fibres	169
Guided modes in a hollow core	172
Bragg Fibers	175
Analysis of cylindrical fibers	176
Band gaps of Bragg fibers	178
Guided modes of Bragg fibers	180
Losses in Hollow-Core Fibers	182
Cladding losses	183
Inter-modal coupling	187
Further Reading	189

10	Designing Photonic Crystals for Applications	190
	Overview	190
	A Mirror, a Waveguide, and a Cavity	191
	Designing a mirror	191
	Designing a waveguide	193
	Designing a cavity	195
	A Narrow-Band Filter	196
	Temporal Coupled-Mode Theory	198
	The temporal coupled-mode equations	199
	The filter transmission	202
	A Waveguide Bend	203
	A Waveguide Splitter	206
	A Three-Dimensional Filter with Losses	208
	Resonant Absorption and Radiation	212
	Nonlinear Filters and Bistability	214
	Some Other Possibilities	218
	Reflection, Refraction, and Diffraction	221
	Reflection	222
	Refraction and isofrequency diagrams	223
	Unusual refraction and diffraction effects	225
	Further Reading	228
	Epilogue	228

A Comparisons with Quantum Mechanics 229

X

CONTENTS		xi
B	The Reciprocal Lattice and the Brillouin Zone The Reciprocal Lattice Constructing the Reciprocal Lattice Vectors The Brillouin Zone Two-Dimensional Lattices Three-Dimensional Lattices Miller Indices	233 233 234 235 236 238 238 239
С	Atlas of Band Gaps A Guided Tour of Two-Dimensional Gaps Three-Dimensional Gaps	242 243 251
D	Computational Photonics Generalities Frequency-Domain Eigenproblems Frequency-Domain Responses Time-Domain Simulations A Planewave Eigensolver Further Reading and Free Software	252 253 255 258 259 261 263
Bibl	iography	265
Index		283