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1. High-Resolution High-Contrast Electron Optics

Joint Services Electronics Program (Contract DAAB07-74-C-0630)

John G. King, John W. Coleman

While our main objective is still the development of the Auger Emission Microscope

(AEM-1),1 we shall continue to perfect the Spherical Aberration Corrector Module

(SACM), 2 and to convert some obsolete equipment into state-of-the-art apparatus for
work on High Energy Electron Diffraction (HEED) and Scanning Electron Microscopy
(SEM). The HEED-SEM apparatus will be used to study electrical and metallurgical
properties of semiconductor compounds and devices.

Auger Emission Microscope (AEM-1)

We have essentially finished testing AEM-1, the first of three prototypes of the
Auger microscope, but we continue to use it. This instrument has given us more infor-
mation in some areas than we had anticipated, while in other areas it has demonstrated
some new problems that were not anticipated, which must be overcome if this device is
to be capable of resolving the positions and types of individual atoms in complex mole-
cules or on surfaces. I Although we have not yet achieved the desired 1000 A resolu-
tion with AEM-1, we have obtained sufficient data to begin building AEM-2 on schedule
while finishing the resolution studies with AEM-1.

Spherical Aberration Corrector Module (SACM)

This work continues as the doctoral thesis research of Norman D. Wittels. During
the past six months his main activity has been in theory and lens field calculations.

High-Energy Electron Diffraction (HEED) and Scanning
Electron Microscopy (SEM)

We have initiated work to convert HU-10, an obsolete Transmission Electron Micro-
scope (TEM), into a custom HEED apparatus that will permit study of semiconductor
devices in active circuits as a function of controlled environmental changes. The pri-
mary data will be in the form of reflection electron diffraction patterns, obtained with
a programmable electron source. JSEP
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A. ELECTRON LENS FIELD CALCULATIONS JSEP

Joint Services Electronics Program (Contract DAAB07-74-C-0630)

Norman D. Wittels, Edward H. Jacobsen, John W. Coleman

The fundamental problem in electron optical design is the selection of lens element

shapes and excitations to produce a lens with the desired optical characteristics. The

solution to this problem is nonunique: an arbitrarily large number of realizable lenses

may possess the same optical characteristics. Attempts to constrain the solutions by

requiring, say, cylindrical symmetry or time-invariant fields are not helpful, since

these solutions are noncomplete: there is an infinite number of optical characteristics

that cannot be satisfied by lenses of the restricted classes. Some progress has been

made in solving a very limited class of problems concerned with trying to improve

existing lens designs,2,3 but the direct design problem has eluded solution. Conse-

quently, we usually solve the inverse problem, using a three-step process: (i) The lens

field is calculated from the given lens element shapes and excitations. (ii) Electron tra-

jectories are calculated from the given field and the initial conditions of the electrons.

(iii) The optical characteristics are determined from considerations of selected trajec-

tories. In electron lens design we carry out this process iteratively with different

lens parameters until the calculated optical characteristics converge to the desired val-

ues. This report reviews our work on the first step of this process, the field determi-

nation.

1. Methods of Calculating Potentials

We have considered only rotationally symmetric electrostatic lenses having no vol-

ume space change, but most of the methods discussed here can be adapted to the more

general cases. The lens potentials are solutions of the two-dimensional Laplace equa-
tion

2
1 8 (r~ ) a2

Sr+ - 0 (1)r r ar + 2az

from which the electric fields can be obtained by partial differentiation

E E= (2)r 8r' z 8z

Our problem is, How do we solve Eq. 1, subject to the boundary conditions imposed by
shapes, locations, and potentials of the lens elements? Within the context of analyzing
thin-film spherical aberration correctors 4 and the mirror region of the Auger micro-

scope 5 we have explored five methods of obtaining these solutions. JSEP
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JSEP a. Analytic Solutions

Closed analytic solutions of Eq. 1 may be found for a few electrostatic lenses. 6

Unfortunately, none of the lenses that we need to analyze can be mapped conformally

into any of the simpler, solvable forms. Hence their only interest has been as test

cases for comparing other methods of field calculation.

b. Assumed Solutions

It is a fundamental property of the solution of Eq. 1 that a closed, analytic expres-

sion describing the potential for all values of z along the axis suffices to determine the

potential everywhere within the lens. 7 Lenses may be designed by assuming axial poten-

tials in terms of simple sinusoidal or polynomial functions and calculating the trajec-

tories on their bases. Once an optically suitable axial potential has been found, the

off-axis potentials can be calculated and metal electrodes fashioned in the shapes of the

equipotentials.8 We have found this to be a valuable method for indicating basic lens

shapes but it is not always practical or even possible to construct the calculated elec-

trodes. Furthermore, this method reveals nothing about the effects of fringing fields,

electrode misalignment, or variations in electrode voltages, so we have only used it as

a first-order method.

c. Green's Function Method

By solving the classical Green's function set of integral equations, 9 the surface

charges on the lens electrodes can be found as a function of the electrode potentials. The

same integrals can be used to calculate the potential anywhere inside the lens from the

derived charge distribution. One of the advantages of this method is that the boundary

specification need not be closed, so the boundary potentials need only be specified on

the electrodes. No other method discussed in this report offers this advantage. Also,

the resultant surface charges are linear combinations of the contributions of the poten-

tials of the individual electrodes. Therefore linear superposition applies: one solution

of the integral equations suffices to determine the lens potentials for all possible com-

binations of electrode voltages. The disadvantage of this method is that virtually none

of the integral equations can be solved analytically, and the space charges can only be

calculated by numerical methods at a finite number of points along the electrode sur-

faces.

Approximate forms of the Green's function method have been used to analyze sev-

eral lenses. 1 0 In this approach we have found that a very large number of sample points

is required to achieve the necessary accuracy for lens aberration calculations (typical

lenses may require many thousands of sample points). The computer time for solving

so many integral equations and calculating the potentials at the trajectory points seems

JSEP prohibitive.
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d. Mesh Solutions JSEP

The solutions of Eq. 1 have the property that the potential at a point is the mean of

the potential along the surface of any sphere centered on that point. This property sug-

gests the use of "mesh" methods, in which the lens is divided into a fine grid of

sample points. The points on the lens boundaries retain fixed potentials, while the

points of the interior potentials are adjusted successively until they converge to values

approximately satisfying the mean-value principle. There have been many studies of

methods to effect this relaxation process and lenses have been analyzed by using
14

potentials so derived. Our studies of mesh methods have led us to the following objec-

tions.

1. While the mesh solutions converge rapidly (successive iterations do not alter the

solutions appreciably), they do not converge to the correct values when compared with

those lenses for which analytic solutions exist. This is most pronounced in regions near

the electrodes (which are important regions in the lenses that we are examining) and

emphasizes that solutions satisfying the averaging algorithms of mesh methods are not

fundamentally solutions of Eq. 1.

2. Because the potential is calculated only at discrete points, the solution has inher-

ent "noise" with spatial frequencies comparable to the inverse of the mesh spacings.

This noise is accentuated by the processes of differentiation and interpolation which are

necessary to calculate the fields at points that do not lie on the mesh.

3. Although in principle it is easy, in practice it is tedious to vary the boundary

conditions or mesh point spacings. Thus it is difficult to investigate thoroughly the

effects of electrode shapes and positions, and the aberrations arising from misalign-

ments.

The simplest means of overcoming the first two objections is to construct a sequence

of meshes with decreasing mesh spacings and to check for convergence of the solutions.

As we have noted in the third objection, however, this causes such difficulties that we

consider the method to be too cumbersome for accurate analysis.

e. Truncated Series Solution

Equation 1 has the exact solution

(r, z) = f0 (A sin az + B cos az) J (iar) da (3a)0 a a o

or equivalently

(r, z) = f C eaz+D e Joaz (ar) da, (3b)

where Jo is the zero-order Bessel function. The potential calculation is thus reduced JSEP
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JSEP to a problem of determining the functions A and B or C and D from the boundary

conditions. This is analytically possible only in a few uninteresting cases whose primary

utility has been to test the method. It is sometimes satisfactory to approximate Eq. 3a

by a truncated series:

N
2(r, z) (A sinanz+B cosanZ) I (a r). (4)n) E n n n n Ionn=l1

The ensuing discussion is equally applicable to Eq. 3b. The problem is thus to find an

appropriate set of eigenfrequencies a and then to determine the coefficients A and Bn n n
according to some criteria for best fit to the boundary conditions. The value of this

method lies in the fact that Eq. 4 is an exact solution of Eq. 1. The eigenfrequencies

and coefficients merely determine how well the solution conforms to the actual boundary

conditions of the lens. Furthermore, Eq. 4 can be differentiated to calculate the field

everywhere without interpolation, once the eigenfrequencies and coefficients have been

determined.

The problem of choosing the eigenfrequency set is underdetermined, so it has no

general solution. We have found empirically that choosing eigenfrequencies with regard

to the locations of zeros and planes of symmetry and with regard to the sizes and

spacings of electrodes is particularly effective. We are attempting to refine our methods

of selection.

Once the eigenfrequency set has been chosen, the criterion that seems to be most

effective for determining the coefficients is to least-squares fit Eq. 4 to sample points

spaced along the boundary. 1 5 We have tried several criteria for choosing the coefficients

and have found this to be the only one that converges rapidly and is stable. 1 6 But this rapid

convergence is somewhat deceptive, since there can still be substantial errors unless

the eigenfrequency set has been carefully chosen. This stresses the need for studying

ways to optimize the choice. The number and the spacing of points are somewhat arbi-

trary except that they must completely enclose the region of the solution; the points

should be concentrated in those regions where the best fit is required; and they must

be everywhere at least as dense as the inverse of the highest eigenfrequency aN. In
practice, it has proved valuable to keep the number of sample points fixed while varying

the eigenfrequency set to minimize the sum of the squares of the errors at the sample
points. The eigenfrequency set is then held fixed and the number of sample points

increased until the leading coefficients converge to stationary values. This process can
be repeated until an optimal fit is achieved.

The truncated series method has been applied to a geometry similar to that of the

thin-film corrector module.4 The potentials and fields have been calculated and com-
pare favorably with those calculated by other means. These results will be presented

JSEP in a future report.
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2. Conclusions JSEP

We have explored several methods of calculating the fields in electrostatic lenses

and it appears that the truncated series method gives the most promise of helping to

solve the problems of electron optical design in which we are engaged. Work will

continue along this line.
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B. CONDENSER UNDERFOCUS vs OVERFOCUS IN THE

TRANSMISSION ELECTRON MICROSCOPE (TEM)

Joint Services Electronics Program (Contract DAAB07-74-C-0630)

Norman D. Wittels

High-resolution electron microscopy in the transmission electron microscope (TEM)

requires highly coherent illumination of the specimen. This report suggests an optimal

choice of the condenser lens operating conditions to achieve this coherence with mini-

mal sacrifice of illumination intensity.

Figure II-1 is a schematic representation of the illumination system of a TEM with

a double condenser system. Condenser 1 (C 1 ) produces a highly demagnified image of

the source which becomes the object for the second condenser (C 2 ) lens. The size of
this object, the apparent electron source for C 2 , and its position along the z axis are
functions of the electron gun and C 1 designs and their operating parameters; usually
they are not varied during normal TEM operation.1

Condenser 2 (C ), which usually has magnification near unity, images the apparent
source on the specimen. The C 2 aperture limits the acceptance angle of C2 so that the

apparent source can be modeled as a disk of radius r 1 with uniform brightness p which
emits into a cone of half-angle 01. (Typically 81 is on the order of milliradians.) Since

the results presented here do not depend on the detailed characteristics of the C2 lens,
JSEP the lens can be modeled as an aberration-free thin lens (with coincident principal planes,
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JSEP and focal planes not crossed) with equal focal lengths, f. The simplified C 2 portion of

the illumination system is shown in Fig. 11-2.

Figure II-2 has been arranged for convenience, and f can actually be smaller or

larger than z 1 or z 3 . The distance z 2 is a function of f, but z 1 and z 3 are fixed by the

geometry of the optical column, on the assumption that the principal planes remain fixed.

Near-unity magnification implies that z 1 and z 3 are nearly equal, but the ratio zl/z 3 will
be explicitly retained in the derivation. In an axially symmetric magnetic lens, 1/f is

proportional to J B 2 dz, where B is the axial component of the magnetic field B. Sincez z 2
B scales linearly with the lens current, f is proportional to 1/1 2 . We define I to be theo
lens current such that the image lies on the specimen, z 2 = z 3 . This is called the

"focus" condition and the corresponding focal length is f . What follows is also true if,
o

instead of the focus condition, the "crossover" condition (the spot size at z 3 passes

through a minimum) is used for the normalization. From consideration of the "principal

rays," shown in Fig. 11-3, we can deduce expressions for z 2 and z3:

z 2 = z l (z l /f - 1)-

z 3 = z 1 (z/f o -1)- 1

The C 2 lens current can be normalized to the focus current, I = I/Io, to eliminate the

focal lengths:

2 = z 2 1/z 3 + )-1] - 1

The net optical effect of the C2 lens is to produce a real image of the source that has

radius r 2 ,

r2 = rl(z2 /z 1 ) = rl[I2(zl/Z 3 + 1) - ]
- 1

and uniform brightness, and an emission half angle 02 ,

02 1 = 0 1  2 + 1 - 1 .

As shown in Fig. 1I-2, this image is located at distance d,

d = z 3 - 2 = z 3 (
2 -1)(l+zl/z 3 ) 2(zl/z 3 +1)- 1  ,

A2
away from the specimen. The factor (I -1) in this equation may have either sign,

JSEP depending on whether the image occurs before or after the specimen. The case (12>1)
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is called "overfocus," and the case (I <1) "underfocus." JSEP

Optimal specimen illumination must satisfy two requirements. First, the electron

current density at the specimen must be as large as possible, since intensity limitation

is almost always a problem in high-resolution operation. Second, the illumination must

be coherent: its angular spread must be small compared with the acceptance angle of

the optical system that images the specimen. These requirements are contradictory:

the maximum current density occurs at focus where the angular divergence is 062 typi-

cally the same size (several milliradians) as the objective lens acceptance angle. The

requirement is to find whether one should move in the direction of underfocus or over-

focus to reduce the angular spread while maintaining high current density.

As a figure of merit, consider the ratio of the relative current density to the relative

angular spread R,

dJ/J
R=

d6max /max

This function, which is always positive, is to be minimized, and its value will be com-
pared in the underfocus and overfocus regions. The criteria for comparison are as fol-
lows.

In calculating the current density and illumination half angle at a specimen point on
the z axis, two cases are possible:

Case I: 82 < tan 1  l)

Case II: 2 > tan .

(The conclusions are identical for the off-axis case but the mathematical operations are
not as brief.)

In Case I the apparent emitting disk (actually the image of the apparent source) is
so close that the specimen is illuminated only by those electrons from the central por-
tion of the disk. The current density 2 at the specimen is J = 7r3 sin 2 0, and the maxi-
mum angle of electron incidence is 0max = 0 2 The figure of merit ratio is

21r sin 02 cos 0 2 de 2

S s in 2

R = 2 2 Z2 cot 82'dOZ

2

This function is to be minimized in the vicinity of focus, so we consider its slope JSEP
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JSEP dR sin 20 2 - 20 2
dO - sin2 02

Since 02 is positive near focus, this slope is negative. Hence R decreases in the direc-

tion of increasing 02 (underfocus). In Case I operation, underfocus is preferable.

In Case II the apparent emitting disk is far enough away so that electrons from all

parts of it reach the specimen point. Those electrons passing through the specimen at

the greatest angle come from the edge of the disk

-1 2  -1 r0 = tan - tan
max d I 2 - 1 I(Zl + z 3 )

The figure of merit, R, is identical to Case I, except that 02 is replaced by 0max:

R = 20 cot Omax max

Notice that there are two values of I corresponding to each value of max: I = 1 + A,

where JA I < 1. The corresponding values of R at any given 0 max (at any given coher-

ence criterion) are identical. Therefore, Case II operation is symmetric with respect

to underfocus and overfocus.

Using the criteria of maximum current density and minimum angular divergence in

the illuminating beam, we have shown that underfocus is preferable for lens operation

near the focal condition (Case I) and that there is no region of operation where overfocus

is preferable (Cases I and II form a complete set). The conclusion may be drawn, with

respect to these criteria and within the limitations of the model used, that condenser

lens underfocus is preferable to overfocus when using a TEM for high- resolution work.

This suggests a theoretical explanation for recommended practice 3 as determined empir-

ically.

Although the conclusions presented here have been drawn from consideration of the

TEM, they are applicable to all electron optical systems requiring intense, coherent

illumination, including the multioptical bench developed in this laboratory. 4
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