Measuring the Properties of the Higgs with the ATLAS Detector

W. Quayle

University of Wisconsin-Madison

on behalf of the ATLAS Collaboration

SPIN 2008 Conference

October 7, 2008

Introduction

• One of the major goals of the LHC is to understand the mechanism of Electroweak symmetry breaking.

If evidence of a Higgs-like particle is discovered, its properties must be measured to establish that the excess is caused by a Higgs boson and not something else

- Mass and natural width
- Couplings to gauge bosons and fermions
- Spin and CP properties

Current Limits

From direct searches at LEP, lower bound on Standard Model Higgs is M_H>114.4 GeV

From direct searches at Tevatron, $M_{\rm H}$ =170 GeV is excluded at 95% CL

Fits to precision EW data favor a light Higgs

The LHC and the ATLAS Detector

Inner Tracker: B=2T, $\sigma/P_T \sim 5x10^{-4}P_T \oplus 0.01$ EM Calo: Pb-liquid Ar, $\sigma/E \sim 10\%/\sqrt{E \oplus 0.007}$ Hadronic Calo: Fe-scint+Cu-liquid Ar (10λ), $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

Muon spectrometer: $\sigma/P_T \sim 2\%@50$ GeV, 10%@1TeV

Higgs Search Sensitivity

 ATLAS can observe a Standard Model Higgs boson with a mass above the LEP limit

Most powerful discovery modes are H→WW and H→ZZ, but a variety of handles exist, especially at low mass

Higgs Mass Measurements (1)

Important observables like cross-sections and branching ratios depend sensitively on the Higgs mass

In order to interpret measured properties in terms of model parameters, need to know the mass

Higgs Mass Measurements (2)

► Mass determination is dominated by $H \rightarrow ZZ \rightarrow 41$ and $H \rightarrow \gamma \gamma$ for most values of M_H

• $H \rightarrow ZZ \rightarrow 4l$ (above): resolution is better than ~2-3 GeV for M_H below ZZ threshold (degrades slightly at higher masses)

• $H \rightarrow \gamma \gamma$: resolution is ~1.36 GeV

Coupling Measurements

Depending on assumptions, different quantities can be measured

- CP-even, spin 0 (implicit in H+WW event selection): measure only σ -BR
- Also assume only one Higgs boson, i.e. no degenerate Higgs pairs: extract relative branching ratios (equivalent to $\Gamma_{\rm X}/\Gamma_{\rm W}$)
- Also assume only Standard Model couplings, no extra particles or strong couplings to light fermions: extract ratios of Higgs couplings
- Also assume that the sum of all visible Branching Ratios is the same as in Standard Model: extract absolute couplings

Channels Used in Coupling Fit

Production		Decay	Mass range
eeeee t g	GF:	$H \to ZZ^{(*)} \to 4l$	$110~{\rm GeV}$ - $200~{\rm GeV}$
	Gluon Fusion	$H \to WW^{(*)} \to l\nu l\nu$	$110~{\rm GeV}$ - $200~{\rm GeV}$
	$(gg \rightarrow H)$	$H \to \gamma \gamma$	$110~{\rm GeV}$ - $150~{\rm GeV}$
<i>q'</i> <i>W</i> , <i>Z</i> <i>W</i> , <i>Z</i>	WBF:	$H \to ZZ^{(*)} \to 4l$	$110~{\rm GeV}$ - $200~{\rm GeV}$
	Weak Boson	$H \to WW^{(*)} \to l\nu l\nu$	$110~{\rm GeV}$ - $190~{\rm GeV}$
	Fusion	$H \to \tau \tau \to l \nu \nu l \nu \nu$	$110~{\rm GeV}$ - $150~{\rm GeV}$
q q	$(qq \ H)$	$H \to \tau \tau \to l \nu \nu had \nu$	$110~{\rm GeV}$ - $150~{\rm GeV}$
		$H \to \gamma \gamma$	$110~{\rm GeV}$ - $150~{\rm GeV}$
eeee \overline{t}	$t\bar{t}H$	$H \to WW^{(*)} \to l\nu l\nu (l\nu)$	$120~{\rm GeV}$ - $200~{\rm GeV}$
$t \rightarrow -H$		$H \to b \bar{b}$	$110~{\rm GeV}$ - $140~{\rm GeV}$
ococo t		$H \to \tau \tau$ (not included)	110 GeV - 150 GeV
		$H ightarrow \gamma \gamma$	$110~{\rm GeV}$ - $120~{\rm GeV}$
	WH	$H \to WW^{(*)} \to l\nu l\nu (l\nu)$	150 GeV - 190 GeV
		$H ightarrow \gamma \gamma$	$110~{\rm GeV}$ - $120~{\rm GeV}$
	ZH	$H \to \gamma \gamma$	110 GeV - 120 GeV

Rate Measurements

Left: for M_H<150 GeV, rates can be measured with an accuracy typically between 30-100% with 30 fb⁻¹ of integrated luminosity

 This assumes a 5% uncertainty on the luminosity measurement.

▶ Right: for channels that can be seen in the mass range $110 < M_H < 190$ GeV, error is smaller

Ratios of Partial Decay Widths

Assume only one Higgs

Total width cannot be measured due to detector resolution.

►H→WW used as normalization since it is measured with the smallest error

Right: with 30 fb⁻¹ of integrated luminosity, ratios of partial widths can be measured with an accuracy better than 60%

Ratios of Higgs Couplings

Assume no unobservable decay modes, etc.

Cross-sections and branching ratios are proportional to the squares of couplings

Proportionality constants, along with systematic errors, are computed from theory

With 30 fb⁻¹ of integrated luminosity, Ratios of Higgs couplings can be measured with an accuracy ranging from ~20% to ~100%

Absolute Couplings

Additional assumption: sum of visible branching ratios (H \rightarrow WW, ZZ, plus $\gamma\gamma$, $\tau\tau$, and bb, depending on mass) is the same as in Standard Model, with an error corresponding to the sum of undetected branching ratios

Couplings to Z, W, and τ can be measured with a precision better than 100%

Excluding Non-SM Higgs

In some regions of the MSSM parameter space, only one light Higgs is visible (left)
 Try to exclude MSSM using a X² analysis of coupling fits (right)

Spin/CP Measurements (1)

Spin:

Spin 1: no decays H→γγ and no production of gg→H
 Angular correlations of decay products in H→ZZ→41

CP:

Angular correlations of decay products in H→ZZ→41
 Angular correlations of tagging jets in WBF Higgs

► It is possible to study the structure of the $VV \rightarrow \phi$ tensor at LHC (non-SM contributions could come from heavy particle loops)

 $T^{\mu\nu}(q_1,q_2) \in a_1(q_1,q_2)g^{\mu\nu}$ Standard Model $+a_2(q_1,q_2)[q_1 \cdot q_2 g^{\mu\nu} - q_2^{\mu} q_1^{\nu}]$ CP-even $+a_3(q_1,q_2)\epsilon^{\mu\nu\rho\sigma}q_{1\rho}q_{2\sigma}$ CP-odd

Spin/CP Measurements (2)

 In H→ZZ→4l, extract spin information by measuring decay angles in Higgs rest frame
 Focus on M_H>200 GeV

Three discriminating variables (α, β, and R),
obtained by fitting to angular distributions:
Decay plane angle φ: F(φ)=1+α cos(φ)+β cos(2φ)

• Polar angle θ : G(θ)=T (1+cos² θ)+L sin² θ

: R = (L-T)/(L+T)

Test for: • Spin 1, CP +1 • Spin 1, CP -1 • Spin 0, CP -1 • Spin 0, CP -1

Spin/CP Measurements (3)

▶ Left: the predicted value of R as a function of M_H for the Standard Model case, and several alternatives. Right: the expected error on the measurement of R.
 ▶ The parameter R offers good separation between the Standard Model Higgs and both the spin 1 and pseudoscalar alternatives for M_H≥250 GeV
 ▶ For M_H=200 GeV, it is only able to rule out the pseudoscalar alternative

Spin/CP Measurements (4)

Both the parameters α (left) and β (right) can provide additional discrimination between the Standard Model case and the alternative case.

Spin/CP Measurements (5)

Parameter α and β 100 fb⁻¹ m_H = 200 GeV (196 < M_{inv} < 204) Parameter α and β 100 fb⁻¹ m_H = 200 GeV (196 < M_{nv} < 204) ഫ 0.3 ∟ 2 Eur. Phys. J. C32:209-219 0.20.2 0.1 SM - Higgs 0.1 SM - Higgs -0 Spin 1, CP -1 Spin 1, CP 1 -0 Spin 1, CP 1 Spin 1, CP -1 -0.1 -0.1 -0.2 -0.2 -0.3 Spin 0, CP -1 Spin 0, CP -1 -0.3 -0.4 -0.4 -0.1 0.2 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.2 n 0.1 α

Sensitivity to α and β can be enhanced if information about the correlation between the signs of the Z boson spins is used.

Above Left: $cos(\theta)$ has the same sign for both Z bosons. Above Right: $cos(\theta)$ has the opposite sign for the two Z bosons.

Spin/CP Measurements (6)

Analysis of H and Z decay angles can exclude possible Higgs-like particles that have unusual spin/CP properties.

Spin/CP Measurements (7)

 Angle between struck quarks in VBF events are sensitive to tensor structure of HVV vertex
 Typically: P_T(j_{1,2})>20-40 GeV, Δη_{ij}>3-4.5; M_{ij}>500-1000 GeV
 H→ττ for M_H~120 GeV, H→WW for M_H~160 GeV

Spin/CP Measurements (8)

Use a x² hypothesis test to determine dominant couplings

Right: toy Monte Carlo outcomes corresponding to the plots on the previous page.

Spin/CP Measurements (9)

Repeat test for 10000 SM pseudo-data samples
Above: example plots of the X² probability distribution for outcomes with a CP-odd signal
Median deviation of SM from CP-Even(CP-Odd):
5.4σ (4.6σ) for H→WW at 10 fb⁻¹
2.5σ (2.0σ) for H→ττ at 30 fb⁻¹

Spin/CP Measurements (10)

After establishing that the dominant coupling is Standard Model-like, one can still test for the presence of a small CP-even anomalous coupling
Interference terms modify the Δφ_{jj} distribution
Expected sensitivity
H→WW (30 fb⁻¹): σ(g_{5e}^{HZZ})=0.11
H→ττ (30 fb⁻¹): σ(g_{5e}^{HZZ})=0.24
10% BG uncertainty adds additional error of ~0.02

<u>Summary</u>

- ATLAS can measure properties of Higgs boson
 - \bullet Mass resolution as good as 1.36 GeV for some $M_{\rm H}$
 - Determination of relative widths through fit to results from different channels
 - Measurements of absolute couplings possible with additional assumptions
 - Typical precision ~a few 10%
 - Spin/CP in $H \rightarrow ZZ \rightarrow 41$ for masses above 200 GeV
 - Distinguish clearly between SM and non-SM cases for $M_{\rm H}{>}230~GeV$
 - Structure of HVV couplings and CP properties studied in Vector Boson Fusion
 - Strong exclusion of non-SM cases at 160 GeV; weaker exclusion possible at 120 GeV
 - Sensitive to interference between SM and CP-even effective coupling