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Abstract: We study the compactification of M-theory on Calabi-Yau five-folds and the

resulting N = 2 super-mechanics theories. By explicit reduction from 11 dimensions,

including both bosonic and fermionic terms, we calculate the one-dimensional effective

action and show that it can be derived from an N = 2 super-space action. We find

that the Kähler and complex structure moduli of the five-fold reside in 2a and 2b super-

multiplets, respectively. Constrained 2a super-multiplets arise from zero-modes of the

M-theory three-form and lead to cross-couplings between 2a and 2b multiplets. Fermionic

zero modes which arise from the (1, 3) sector of the 11-dimensional gravitino do not have

bosonic super-partners and have to be described by purely fermionic super-multiplets in

one dimension. We also study the inclusion of flux and discuss the consistency of the

scalar potential with one-dimensional N = 2 supersymmetry and how it can be described

in terms of a superpotential. This superpotential can also be obtained from a Gukov-

type formula which we present. Supersymmetric vacua, obtained by solving the F-term

equations, always have vanishing vacuum energy due to the form of this scalar potential.

We show that such supersymmetric solutions exist for particular examples. Two substantial

appendices develop the topology and geometry of Calabi-Yau five-folds and the structure of

one-dimensional N = 2 supersymmetry and supergravity to the level of generality required

for our purposes.
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1 Introduction

The technique of compactification has connected string- and M-theory to a wealth of super-

gravity theories in diverse dimensions and has led to important insights into both theoretical
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and phenomenological aspects of the theory. Ever since the seminal work [1], compactifi-

cations on Calabi-Yau spaces and related constructions have played a central rôle in this

context. While most of this work has concentrated on Calabi-Yau three-folds, primarily

in order to connect string theory to four-dimensional physics, Calabi-Yau four-folds have

been used, for example in F-theory compactifications [2], and compactification on K3 has

played an important rôle in uncovering elementary duality relations [3, 4]. Calabi-Yau

four-folds have also appeared in string-/M-theory compactifications to two and three di-

mensions [5, 6]. To the best of our knowledge, the first time Calabi-Yau five-folds have

appeared in the physics literature was in ref. [7] where subclasses of those manifolds feature

in the discussion of certain vacuum constructions of F-theory and thirteen dimensional S-

theory leading to supersymmetric two dimensional N = (1, 1) and three dimensional N = 2

theories, respectively, and then again more detailed later in ref. [8] in a similar but more

general context.

The main purpose of the present paper is to close an apparent gap in the scheme of

M-theory compactifications by considering 11-dimensional supergravity on Calabi-Yau five-

folds. Eleven-dimensional supergravity is the only one of the six “known” limits of M-theory

with a sufficient number of physical spatial dimensions to allow for such compactifications

(although, Calabi-Yau five-folds can, of course, be used for F-theory compactifications to

two dimensions). M-theory backgrounds based on Calabi-Yau five-folds and their correc-

tions induced by higher-order curvature terms have been considered in ref. [9]. Here, we

will be concerned with the actual compactifications on such backgrounds and the resulting

one-dimensional (super-)mechanics theories. Calabi-Yau five-folds reduce supersymmetry

by a factor of 1/16 and, given the eleven-dimensional theory has 32 real supercharges, one

expects one-dimensional theories with N = 2 supersymmetry from such reductions.

Specifically, we will derive the general form of this one-dimensional N = 2 super-

mechanics theory and analyse its relation to the underlying topology and moduli-space

geometry of the five-folds. The necessary mathematical details regarding the topology and

geometry of five-folds are, to a large extend, analogous to the the well-established three-

fold case, and will be systematically developed as a preparation for our reduction. Another

vital ingredient in our discussion is the structure of one-dimensional N = 2 supersymmetric

theories [10]. Although gravity is non-dynamical in one dimension, the component fields of

the one-dimensional gravity supermultiplet (the lapse function and the gravitino) generate

constraint equations which cannot be ignored. Therefore, we have to consider local one-

dimensional N = 2 supersymmetry. Moreover, it turns out that the structure of the

one-dimensional theories obtained from M-theory reduction is more general than the super-

mechanics theories usually considered in the literature. In the present paper, we, therefore,

invest considerable work in order to develop one-dimensional N = 2 supergravity to a

sufficiently general level.

Our work is motivated by a number of general considerations. Reductions of M-

theory to one dimension have played some rôle in the attempts to understand quantum

M-theory [11, 12] and we hope the results of the present paper may prove useful in this

context. Arguments from topological string theory suggest a mini-superspace description

of quantum string cosmology [13] along the lines of “traditional” quantum cosmology [14].
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Mini-superspace quantisation may be applied to the one-dimensional effective theories de-

rived in this paper, hoping that this will describe some aspects of quantum M-theory on

Calabi-Yau moduli spaces. In the present paper, we will not pursue this explicitly but

possible applications in this direction are currently under investigation. A further motiva-

tion is related to the general problem of string vacuum selection and its possible interplay

with cosmology. One aspect of the string vacuum degeneracy, which is often overlooked, is

the ambiguous split of space-time into a number of internal, usually compact dimensions

and four external dimensions. One might speculate that a more plausible geometry for an

“initial” state in the early universe is one where all spatial dimension are treated on an

equal footing. In the context of M-theory, such “democratic” backgrounds are given by

10-dimensional compact Ricci-flat spaces (neglecting flux for the time being) and, hence,

Calabi-Yau five-folds provide a natural arena for this discussion. Assuming sufficiently

slow, adiabatic time evolution, the problem of how three large spatial dimensions emerge

from such a background can then be addressed by studying dynamics on the five-fold mod-

uli space. This dynamics is, of course, described by the one-dimensional effective actions

we will be deriving in the present paper.

As a low-energy effective description of M-theory, 11-dimensional supergravity is cor-

rected by an infinite series of higher-order terms which are organised by their associated

power of β ∼ κ
4/3
11 , where κ11 is the 11-dimensional Newton constant. Let us first consider

the situation at zeroth order in β, that is for 11-dimensional supergravity in its standard

form. A background with vanishing flux, that is with zero anti-symmetric four-form ten-

sor field G = dA, and an 11-dimensional metric which consists of a direct product of a

Ricci-flat Calabi-Yau metric and time, clearly solves the 11-dimensional equations of mo-

tion at this lowest order. However, at linear order in β the anomaly cancellation term

−β
∫
A ∧ X8, where X8 is the well-known quartic in the curvature two-form, has to be

added to the action. It has been observed in ref. [9] that X8 can be non-zero when evalu-

ated on Calabi-Yau five-folds backgrounds. In fact, here we will show that it is proportional

to c4(X), the fourth Chern class of the five-fold X. At order β, the equation of motion

for G is accordingly corrected by a term βX8 and is, hence, no longer necessarily satisfied

for G = 0. A further contribution to the A equation of motion can arise from membranes

wrapping a holomorphic curve C with cohomology class W = [C] in the Calabi-Yau five-

fold. Taking into account these contributions, we show the three-form equation of motion

leads to a topological consistency condition, required for a solution at order β to exist.

It states (modulo factors) that the cohomology class [G ∧G] plus the membrane class W

must be proportional to the fourth Chern class, c4(X). Here, we will consider several ways

of solving this consistency equation. First, for vanishing flux, G = 0, and no membranes,

the five-folds X needs to have vanishing fourth Chern class c4(X) and we will show that

such five-folds indeed exist. Alternatively, for five-folds with c4(X) 6= 0 a compensating

non-zero flux and/or membrane is required. By means of a number of simple examples we

will demonstrate that this can indeed frequently be achieved. In particular, we show that

the consistency condition can be satisfied for the Calabi-Yau five-fold defined by the zero

locus of a septic polynomial in P
6. The “septic” is arguably the simplest five-fold and the

analogue of the quintic three-fold in P
4.
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The one-dimensional effective action will be calculated as an expansion in powers of β.

As a first step we consider the situation at zeroth order in β. Effects from flux or membranes

only come in at order β and are, therefore, not relevant at this stage. In particular, we

clarify the relation between Calabi-Yau topology/geometry and the structure of the one-

dimensional supermechanics induced by M-theory at this lowest order in β. Many aspects

of this relation are analogous to what happens for compactifications on lower-dimensional

Calabi-Yau manifolds, others, as we will see, are perhaps less expected. The topology

of a Calabi-Yau five-fold X is characterised by six a priori independent Hodge numbers,

namely h1,1(X), h1,2(X), h1,3(X), h2,2(X), h1,4(X) and h2,3(X). In analogy with the

four-fold case [15], an index theorem calculation together with the Calabi-Yau condition

c1(X) = 0, leads to one relation between those six numbers. The moduli space of a

Calabi-Yau manifold consists (locally) of a direct product of a Kähler and a complex

structure moduli space [16]. For Calabi-Yau five-folds, these two parts of the moduli

space are associated with the (1, 1) and the (1, 4) sectors, respectively. As we will see,

the associated Kähler and complex structure moduli are part of 2a and 2b multiplets [17]

of one-dimensional N = 2 supersymmetry. A further set of bosonic zero modes originates

from the M-theory three form A in the (2, 1) sector. We will show that these modes become

part of constrained 2a multiplets. This exhausts the list of bosonic zero modes. Expanding

the 11-dimensional gravitino leads to fermionic zero modes in the sectors (1, q) where

q = 1, 2, 3, 4. For q = 1, 2, 4 these pair up into super-multiplets with the aforementioned

bosons but the (1, 3) fermions have no bosonic zero mode partners. We will show that

this apparent contradiction can be resolved by the introduction of fermionic 2b multiplets,

that is 2b multiplets with a fermion as their lowest component. With this assignment of

zero modes to super-multiplets, the one-dimensional effective theory is an N = 2 sigma

model which we present both in its component and superspace form. Some of its features

are worth mentioning. For example, the sigma model metric for the 2a multiplets in the

(1, 1) sector is not the standard Calabi-Yau Kähler moduli space metric [16], as is usually

the case for three-fold compactifications. However, the physical sigma model metric and

the standard Calabi-Yau metric are related in a simple way. Also, it turns out that the

sigma model metrics in the (2, 1) and (1, 3) sector depend inter alia on the Kähler moduli,

so that we require a coupling of 2a and 2b multiplets. As far as we know such a coupling

between 2a and 2b multiplets has not been studied in the context of one-dimensional N = 2

supersymmetry before.

Then, we proceed to include the order β effects from flux and membranes. We calculate

the scalar potential, including four-form flux, membrane effects and effects from the non-

zero Calabi-Yau curvature tensor. The latter requires evaluating the non-topological R4

terms of M-theory on a five-fold background and we show that these terms can be expressed

in terms of the fourth Chern class, c4(X). Our results indicate that the part of the scalar

potential induced by the (1, 3)-component of the four-form flux breaks one-dimensional

N = 2 supersymmetry. Setting the (1, 3)-part of the four-form flux to zero to maintain full

supersymmetry induces an implicit potential for the complex structure moduli. It is not

known whether this potential can be calculated explicitly and we have thus restricted our

attention to Calabi-Yau five-folds for which this potential vanishes. This is equivalent to
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demanding that all (2, 2)-forms can be obtained from the product of two (1, 1)-forms. All

the explicit examples of Calabi-Yau five-folds presented in this paper are of this type. The

(2, 2)-part of the scalar potential is compatible with one-dimensional supersymmetry and

can be written in terms of a superpotential W. As we will show, this superpotential can be

obtained from the Gukov-type formula W ∼
∫
X Gflux ∧ J3, where J is the Kähler form of

the Calabi-Yau five-fold. We also present the explicit superpotential and scalar potential

for a number of particular examples, including the septic in P
6, and discuss implications

for moduli stabilisation and dynamics.

The plan of the paper is as follows. In section 2 we review some basic facts about 11-

dimensional supergravity. Some general results on the topology and moduli space geometry

of Calabi-Yau five-folds are collected in section 3. In this section, we also present several

explicit examples of five-fold backgrounds which solve the M-theory consistency condition.

More details on this and derivations of some of the results are given in appendix B. In

section 4, we perform the reduction of M-theory on such backgrounds at zeroth order in β,

starting with the bosonic action and then including terms bilinear in fermions. Section 5

shows that the one-dimensional effective action obtained in this way has indeed two local

supersymmetries and can be written in superspace form. Many of the necessary details and

technical results on one-dimensional N = 2 supersymmetry and supergravity are collected

in appendix C. In section 6, we derive the order β corrections to the effective action and

calculate the scalar potential and superpotential. We conclude in section 7. Conventions

and notation used throughout this paper are summarised in appendix A.

2 The M-theory low energy effective action

In this section, we review a number of results on 11-dimensional supergravity and its higher-

derivative corrections, focusing on the aspects that will be important for the reduction on

Calabi-Yau five-folds. More detailed reviews on the subject can, for example, be found in

refs. [18, 19].

The field content of 11-dimensional supergravity consists of the 11-dimensional space-

time metric gMN , the anti-symmetric three form tensor field AMNP with field strength

G = dA and the gravitino ΨM , an 11-dimensional Majorana spinor. Here, we denote 11-

dimensional curved indices by M,N, . . . = 0, 1, . . . , 10 and their flat, tangent-space coun-

terparts by M,N, . . .. Where possible, we will use differential forms to keep our notation

concise. Our conventions largely follow ref. [18] and are summarised in appendix A.

We split the 11-dimensional action into four parts as

S11 = S11,B + S11,F + S11,GS + S11,R4 + . . . . (2.1)

Here, the first and second terms are the bosonic and fermionic parts of 11-dimensional

supergravity [20], respectively, SGS is the Green-Schwarz term related to the cancellation

of the M5-brane world-volume anomaly [21], SR4 are the non-topological R4 terms [22–24]

and the dots indicate additional higher order contributions, which we will not need for

our purposes.
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The bosonic part of the action reads [20]

S11,B =
1

2κ2
11

∫

M

{
R ∗ 1 − 1

2
G ∧ ∗G− 1

6
G ∧G ∧A

}
, (2.2)

where κ11 is the 11-dimensional gravitational constant, R is the Ricci scalar of the 11-

dimensional metric g and M is the space-time manifold. The equations of motion from

this bosonic action are given by

RMN =
1

12
GMM2...M4GN

M2...M4 − 1

144
gMNGM1...M4G

M1...M4, (2.3)

d ∗G = −1

2
G ∧G . (2.4)

The gravitino dynamics is encoded in the fermionic action

S11,F = − 1

2κ2
11

∫

M
d11x

√−g
{

Ψ̄MΓMNPDN (ω)ΨP

+
1

96

(
Ψ̄MΓMNPQRSΨS + 12Ψ̄NΓPQΨR

)
GNPQR + (fermi)4

}
, (2.5)

where Ψ̄M = iΨ†
MΓ0. Here and in much of what follows, we omit four-fermi terms. The

covariant derivative DM is defined by

DN (ω)ΨP = (∂N +
1

4
ωN

QRΓQR)ΨP , (2.6)

with the spin connection ωN
QR. The corresponding equation of motion for ΨM reads

ΓMNPDN (ω)ΨP +
1

96

(
ΓMNPQRSΨS + 12gMNΓPQΨR

)
GNPQR + (fermi)3 = 0 . (2.7)

The action S11,B + S11,F for 11-dimensional supergravity is invariant under the supersym-

metry transformations

δǫgMN = 2ǭΓ(M ΨN),

δǫAMNP = −3ǭΓ[MN ΨP ],

δǫΨM = 2DM (ω)ǫ+
1

144
(ΓM

NPQR − 8δN
MΓPQR)ǫGNPQR + (fermi)3 ,

(2.8)

which are parameterised by an 11-dimensional Majorana spinor ǫ.

In its rôle as the low-energy effective theory of M-theory the action S11,B + S11,F

receives an infinite series of higher-order derivative corrections which are organised by

integer powers of the quantity

β =
1

(2π)2

(
κ2

11

2π2

)2/3

. (2.9)
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One such correction which appears at order β is the Green-Schwarz term1

S11,GS = −(2π)4
β

2κ2
11

∫

M
A ∧X8, (2.10)

where X8 is a quartic polynomial in the curvature two-form R. It can be conveniently

expressed in terms of the first and second Pontrjagin classes p1(TM) and p2(TM) of the

tangent bundle TM of M as

X8 =
1

48

((p1

2

)2
− p2

)
,

p1(TM) = −1

2

(
1

2π

)2

trR2,

p2(TM) =
1

8

(
1

2π

)4 (
(trR2)2 − 2 trR4

)
.

(2.11)

This Green-Schwarz term leads to a correction to the equation of motion (2.4) for A, which

now reads

d ∗G = −1

2
G ∧G− (2π)4βX8 . (2.12)

We note that the exactness of d∗G implies that the eight-form 1
2G∧G+(2π)4βX8 must be

cohomologically trivial on M. This integrability condition will play an important rôle for

compactifications on Calabi-Yau five-folds, as we will see. There is also a non-topological

R4 term at order β which is related to the Green-Schwarz term (2.10) by supersymmetry.

This term which we will need for our discussion of flux and scalar potentials in the one-

dimensional effective theory is given by [22–24]

S11,R4 =
β

2κ2
11

1

9 · 211

∫

M
d11x

√−g tM1...M8
8 tN1...N8

8 RM1M2N1N2 . . . RM7M8N7N8 , (2.13)

with the famous rank eight tensor t8 which has been defined in ref. [27].

Equations of motion for anti-symmetric tensor fields can receive contributions from

electrically charged objects and, for the case at hand, an additional term has to be added

to (2.12) in the presence of M-theory membranes. Clearly, such a term can affect the

integrability of (2.12) and should be taken into account.

We start with the bosonic part of the membrane action

S3 = −T3

∫

M3

{
d3σ

√
−ĝ + Â

}
, (2.14)

where ĝ and Â are the pullbacks of the 11-dimensional space-time metric g and three-form

A under the embedding XM = XM (σ) of the membrane world-volume M3 into space-time

1Care has to be taken in order to obtain the correct sign of the Green-Schwarz term relative to the

GGA Chern-Simons term in the action (2.2) and different versions exist in the literature [18, 25, 26]. In

general, the sign of the Chern-Simons term is fixed by supersymmetry and the relative sign is fixed by the

anomaly cancellation condition on the five-brane world volume [21]. In ref. [18], several different arguments

are presented for why the relative sign must be positive (in our conventions) and we adopt this result in

the present paper.
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M. Here, σ = (σ0, σ1, σ2) are coordinates on the membrane world volume. The membrane

tension T3 is given by

T3 =
1

2π
√
β
. (2.15)

Adding this action to the bosonic one for 11-dimensional supergravity, (2.2), and re-

computing the equation of motion for A leads to

d ∗G = −1

2
G ∧G− (2π)4βX8 − 2κ2

11T3 δ(M3) . (2.16)

Here, δ(M3) is an eight-form current associated with the membrane world-volume. It is

characterised by the property

∫

M3

w =

∫

M
w ∧ δ(M3) (2.17)

for any three-form w.

3 Calabi-Yau five-folds

Our M-theory reduction depends on a range of results on Calabi-Yau five-folds, including

results about their topology, their differential geometry and moduli spaces. Perhaps most

importantly, to be sure we are not dealing with an empty set, we require some explicit

examples of Calabi-Yau five-folds on which consistent M-theory reductions can be carried

out. In this section, we provide a non-technical summary of the main facts and results for

the reader’s convenience. For the details we refer to appendix B.

We begin by defining what we mean by a Calabi-Yau five-fold X. As usual, we require

that X be a compact, complex Kähler manifold with vanishing first Chern class, c1(X) = 0.

In addition, X should break supersymmetry by a factor of 1/16. This means that the

holonomy group Hol(X) ⊂ SU(5) is a sufficiently large subgroup of SU(5) such that in

the decomposition

16Spin(10) → [10 + 5̄ + 1]SU(5) (3.1)

of (chiral) spinors on X under SU(5) only the SU(5) singlet is invariant under the holonomy

group. An immediate consequence is that the Hodge numbers hp,0(X) = h0,p(X) for

p = 1, 2, 3, 4 vanish and that h0,0(X) = h5,0(X) = h0,5(X) = h5,5(X) = 1. The reason

for this additional condition on supersymmetry breaking is to avoid “non-generic” cases

which lead to a larger number of preserved supersymmetries and additional zero modes

(due to hp,0(X) 6= 0 for some p ∈ {1, 2, 3, 4}), such as 10-tori, products of lower-dimensional

Calabi-Yau manifolds (for example, a product of a three-fold with K3) or products of lower-

dimensional Calabi-Yau manifolds with tori (for example, a four-fold times a two-torus).

Given the restrictions on Hodge numbers discussed above, we remain with six, a pri-

ori independent Hodge numbers, namely h1,1(X), h1,2(X), h1,3(X), h2,2(X), h1,4(X) and

h2,3(X). For Calabi-Yau four-folds it is known [15] that one additional relation between the

Hodge numbers can be derived using the index theorem together with the Calabi-Yau con-

dition c1(X) = 0. In appendix B, we show that the same is true for Calabi-Yau five-folds
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cohomology bosonic zero modes fermionic zero modes flux

H1,1(X) h1,1(X) real, Kähler moduli
h1,1(X) complex,

from gravitino
−

H1,2(X) h1,2(X) complex, from three-form
h1,2(X) complex,

from gravitino
−

H1,3(X) − h1,3(X) complex,

from gravitino
G-flux

H2,2(X) − − G-flux

H1,4(X) h1,4(X) complex structure moduli
h1,4(X) complex,

from gravitino
−

H2,3(X) − − −

Table 1. Cohomology groups of a Calabi-Yau five-fold X and their relation to zero modes and flux

in an M-theory reduction.

and we derive the relation

11h1,1(X) − 10h1,2(X) − h2,2(X) + h2,3(X) + 10h1,3(X) − 11h1,4(X) = 0 . (3.2)

Hence, we are left with five apparently independent Hodge numbers. The precise rôle of the

cohomology groups in the reduction of M-theory will be explained in the following section.

Here, we summarise the relation between cohomology groups, M-theory zero modes and

flux (see table 1). As usual, the moduli space of Ricci-flat metrics consists of Kähler

and complex structure deformations. For Calabi-Yau five-folds they are associated with

harmonic (1, 1) and (1, 4) forms, respectively. Another set of bosonic zero modes arises

from the M-theory three-form A and is related to the cohomology H1,2(X). As table 1

shows, for all these bosonic modes, we have fermionic zero modes counted by the same

Hodge number. This suggests an obvious way of arranging modes into one-dimensional

super-multiplets. However, the (1, 3) sector is somewhat puzzling in that it gives rise to

a set of fermionic but not bosonic zero modes. We will come back to this later and show

how this apparent mismatch of bosonic and fermionic degrees of freedom can be reconciled

with supersymmetry.

As discussed before, the equation of motion for the M-theory three-form A leads to

an important integrability condition which amounts to the right-hand side of (2.16) being

cohomologically trivial. Let us now consider this condition for the case of an 11-dimensional

space-time of the form M = R ×X, with a Calabi-Yau five-fold X. The total Pontrjagin

class of such a space-time is p(M) = p(X). In general, for a complex manifold Z, the

Pontrjagin and Chern classes are related by p1(Z) = c1(Z)2 − c2(Z) and p2(Z) = c2(Z)2 −
2c1(Z)c3(Z) + 2c4(Z). Given that c1(X) = 0 for a Calabi-Yau five-fold we have p1(X) =

−2c2(X) and p2(X) = c2(X)2 − 2c4(X). Inserting this into the definition (2.11) of X8,

we find

X8 = − 1

24
c4(X) . (3.3)

In general, we also allow four-form flux Gflux on X and it is convenient to introduce the
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re-scaled version

g =

[
T3

2π
Gflux

]
, (3.4)

where we recall that T3 is the membrane tension defined in (2.15) and the square brackets

indicate the cohomology class. As is clear from the Wess-Zumino term in the membrane

action (2.14) this re-scaled flux is quantised in integer units, that is, it should be an element

of the fourth integer cohomology of X. More accurately, taking into account the subtlety

explained in ref. [28], the quantisation law reads

g +
1

2
c2(X) ∈ H4(X,Z) . (3.5)

Finally, we should allow for membranes which wrap a holomorphic cycle C ⊂ X of the five-

fold, that is membranes with world volume M3 = R × C. The membrane current δ(M3)

then takes the form δ(M3) = δ(C). Inserting this current, together with eqs. (3.3) and (3.4)

into the right-hand side of the G equation of motion (2.16) and taking the cohomology class

of the resulting expression, one finds

c4(X) − 12 g ∧ g = 24W . (3.6)

Here, W = [C] ∈ H2(X,Z) is the second homology class of the curve C, wrapped by the

membranes. Eq. (3.6) is a crucial condition which is clearly necessary for consistent M-

theory backgrounds based on Calabi-Yau five-folds. When solving this condition, it must

be kept in mind that the homology class W , having a holomorphic curve representative C,

must be an effective class in H2(X,Z), that is, it must be an element in the Mori cone of X.

Our task is now to establish the existence of Calabi-Yau five-fold backgrounds which

satisfy the above consistency condition. Formally, this amounts to finding Calabi-Yau five-

folds X, an element g in the fourth cohomology of X and an effective class W ∈ H2(X,Z)

such that eqs. (3.5) and (3.6) are satisfied. In appendix B.2 we analyse this problem in

detail for a number of explicit examples. In particular, we consider torus quotients and

complete intersection Calabi-Yau five-folds (CICY five-folds) [29].

Let us briefly review some basic properties of CICY five-folds. CICY five-folds are

embedded in an ambient space A =
⊗m

r=1 P
nr , given by a product of m projective spaces

with dimensions nr. They are defined by the common zero locus of K =
∑m

r=1 nr − 5

homogeneous polynomials pα in A. The polynomials pα are characterised by their degrees

qr
α in the coordinates of the rth projective factor of the ambient space. A short-hand

notation for CICY manifolds is provided by the configuration matrix

[n|q] =



n1
...

nm

∣∣∣∣∣∣∣

q11 . . . q1K
...

...

qm
1 . . . qm

K


 (3.7)

which encodes the dimensions of the ambient projective spaces and the (multi)-degrees of

the defining polynomials. Such configuration matrices are constrained by the Calabi-Yau

condition, c1(X) = 0, which for CICY manifolds reads

K∑

α=1

qr
α = nr + 1 (3.8)
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for all r. The simplest CICY five-fold is given by the zero locus of a septic polynomial

in P
6 and is represented by the configuration matrix [6|7]. The septic in P

6 is the direct

analogue of the best-known example of a Calabi-Yau three-fold, the quintic hypersurface

in P
4. In total, there are 11 CICY five-folds which can be defined in a single projective

space and these manifolds are listed in table 5.

The main results of appendix B.2 can be summarised as follows. The simplest way of

satisfying the integrability condition (3.6) is to turn off flux, g = 0, and have no membranes

so that W = 0. In this case, a Calabi-Yau five-fold X with vanishing fourth Chern class,

c4(X) = 0, is required. It can be shown in general that CICY configurations with all qr
a ≥ 2

(which includes configurations with m = 1 or K = 1) always have c4(X) 6= 0. In addition,

we have verified that no configuration matrix with m ≤ 4 and K ≤ 4 leads to c4(X) = 0.

For larger configurations with m > 4 or K > 4 and at least one qr
a < 2 cases with c4(X) = 0

might still exist although we have been unable to find an explicit example. It is conceivable

that c4(X) 6= 0 for all CICY five-folds. Given the lack of a viable CICY example, we have

turned to torus quotients of the form X = T 10/Z4
2. We have shown that, for an appropriate

choice of shifts in the Z2 symmetries, Z
4
2 is freely acting and, hence, X is a manifold. Each

Z2 reduces supersymmetry by 1/2, so in total it is reduced by a factor of 1/16. This means

that X, although its holonomy is merely Z
4
2, is a Calabi-Yau manifold in the sense defined

earlier. Clearly, as X admits a flat metric, we have c4(X) = 0. It remains an open question

whether a Calabi-Yau five-fold with full SU(5) holonomy and c4(X) = 0 exists. We are not

aware of a general mathematical reason which excluded this and it would be interesting to

search for such a manifold, for example among toric five-folds. In the present paper, we

will not pursue this explicitly.

Next, we should consider the possibility of satisfying the integrability condition (3.6) in

the presence of non-vanishing flux but without membranes. The CICY manifolds defined

in a single projective space, given in table 5, all have b4(X) = 1 and, hence, there is only

a single flux parameter. Eq. (3.6) then turns into a quadratic equation for this parameter.

Unfortunately, there is no rational solution to this equation for any of the 11 cases. This

means that the quantisation condition (3.5) cannot be satisfied and, hence, that flux is

not sufficient to obtain viable examples for CICYs in a single projective space. Essentially,

the reason is that there is only one flux parameter available which is too restrictive. For

simple CICYs defined in a product of two projective space, where b4(X) = 2 or b4(X) = 3

depending on the case, we run into a similar problem. The simplest viable example we

have found involves the space

X ∼




1

2

3

∣∣∣∣∣∣∣

2

3

4


 , (3.9)

defined in the ambient space A = P
1 × P

2 × P
3. In this case, we have b4(X) = 5

and flux can be parameterized as g = k1,2J1J2 + k1,3J1J3 + k2,2J
2
2 + k2,3J2J3 + k3,3J

2
3 ,

where Jr are the three Kähler forms of the ambient projective spaces, normalised as

in (B.11). It turns out that both conditions (3.5) and (3.6) can be satisfied for the choice

(k1,2, k1,3, k2,2, k2,3, k3,3) = (1, 3, 7/2, 0, 6).
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What about the opposite case of including membranes but setting the flux to zero?

A simple viable example is given by the CICY [7|6 2] with a membrane wrapping a holo-

morphic curve with class W = 227J̃ , where J̃ is the eight-form dual to the ambient space

Kähler form J .

Finally, by combining flux and membranes, the anomaly condition can frequently be

satisfied. For example, for the septic, [6|7], with flux g = kJ2 we find the conditions (3.5)

and (3.6) are solved for k = 15/2 and a membrane class W = 6J4.

In summary, we have demonstrated that the quantisation and integrability condi-

tions (3.5) and (3.6), necessary for a consistent compactification of M-theory on Calabi-Yau

five-fold backgrounds, can be satisfied for a range of simple examples. Flux and membranes

are usually necessary and even the septic in P
6 leads to a viable background for appropri-

ate non-zero choices of both flux and membranes. We have also given an example, based

on a torus quotient, with c4(X) = 0 which is consistent without flux and membranes.

We have not been able to find a Calabi-Yau manifold with c4(X) = 0 and full SU(5)

holonomy and it might be interesting to search for such a case, for example among toric

Calabi-Yau manifolds.

4 Compactification on Calabi-Yau five-folds

In this section, we consider the compactification of 11-dimensional supergravity on a space-

time of the form M = R ×X, where X is a Calabi-Yau five-fold. At zeroth order in β, we

start with the background configuration

ds2 = −dt2 + gmndx
mdxn , G = 0 , (4.1)

where gmn = gmn(xp) is the Ricci-flat metric on X and m,n . . . = 1, . . . , 10. Clearly, this

background solves the leading order bosonic equations of motion (2.3) and (2.4). At order

β, additional higher-derivative terms appear in the 11-dimensional equations of motion and

corrections of the same order will have to be added to the above background. It is not

a priori clear that suitable corrections to the background exist in order for it to remain

a solution at order β. We have seen that the integrability condition (3.6) is a necessary

condition for this to be the case. In the absence of flux and membranes, the integrability

condition is solved by Calabi-Yau five-folds with c4(X) = 0 and, in the previous section,

we have given an explicit example of such a five-fold. In ref. [9], it has been shown that a

full solution at order β does indeed exist in this case. For five-folds with c4(X) 6= 0 flux

and/or membranes need to be included in order to satisfy the integrability condition and

we have seen that this can be achieved for a number of simple examples. In this case, the

existence of a full 11-dimensional solution at order β has not been analysed in detail. In

the presence of flux, one expects a scalar potential in the effective one-dimensional theory.

Flux potentials frequently lead to some runaway direction in moduli space and in such

cases, one would not expect a static 11-dimensional solution to exist. The study of 11-

dimensional solutions based on five-folds at order β, generalising the results of ref. [9], is

an interesting subject to which we intend to return in a future publication. In the present

paper, we focus on deriving the one-dimensional effective theory for backgrounds where
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the integrability condition (3.6) is satisfied and under the assumption that a full order β

background can be found. For now we will focus on the effective action at zeroth order

in β for which the above simple background is sufficient. Higher order corrections to the

effective action and, in particular, the scalar potential due to flux will be discussed later.

We start with the reduction of the bosonic part of the action before we move on to the

fermionic terms in the second part of this section.

4.1 Performing the dimensional reduction: the bosonic part

Our starting point is the bosonic part of 11-dimensional supergravity (2.2) which cor-

responds to the leading, zeroth order terms in a β expansion together with the back-

ground (4.1). The order β Green-Schwarz term (2.10) will also play a certain rôle. We now

need to identify the moduli of this background. As discussed in detail in appendix B.4, the

formalism to deal with Calabi-Yau five-fold moduli spaces is largely similar to the one de-

veloped for Calabi-Yau three-folds [16]. Here, we only summarise the essential information

needed for the dimensional reduction. As for Calabi-Yau three-folds, the moduli space of

Ricci-flat metrics on Calabi-Yau five-folds is (locally) a product of a Kähler and a complex

structure moduli space which are associated to (1, 1) and (2, 0) deformations of the metric.

They can be described in terms of harmonic (1, 1) forms for the Kähler moduli space and

harmonic (1, 4) forms for the complex structure moduli space. We begin with the Kähler

moduli which we denote by ti = ti(τ), where i, j, . . . = 1, . . . , h1,1(X) and τ is time (for a

summary of our index conventions see appendix A). They are real scalar fields and can be

defined by expanding the Kähler form J on X in terms of a basis {ωi} of H2(X) as

J = tiωi . (4.2)

The complex structure moduli are denoted by za = za(τ), where a, b, . . . = 1, . . . , h1,4(X),

and these are, of course, complex scalar fields.

After this preparation, the ansatz for the 11-dimensional metric including moduli can

be written as

ds2 = −1

4
N(τ)2dτ2 + gmn(ti, za, z̄ā)dxmdxn (4.3)

where N = N(τ) is the einbein or lapse function. The lapse function can, of course,

be removed by a time reparameterization. However, its equation of motion in the one-

dimensional effective theory is the usual zero-energy constraint (the equivalent of the Fried-

man equation in four-dimensional cosmology). In order not to miss this constraint, we will

keep N explicitly in our metric ansatz.

The zero modes of the M-theory three-formA are obtained by an expansion in harmonic

forms, as usual. From the Hodge diamond (B.2) of Calabi-Yau five-folds, it is clear that

only the harmonic two- and three-forms on X are relevant in this context. For the latter

we also introduce a basis {νp}, where p, q, . . . = 1, . . . , h2,1(X). The zero mode expansion

for A can then be written as

A = (ξp(τ)νp + c.c.) +Nµi(τ)ωi ∧ dτ , (4.4)
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with h2,1(X) complex scalar fields ξp and h1,1(X) real scalars µi. It is clear that the latter

correspond to gauge degrees of freedom since Nµi(τ)ωi∧dτ = d(f i(τ)ωi) with the function

f i being integrals of Nµi. Note that N enters here merely to ensure worldline reparame-

terization covariance. Since the fields µi do not represent physical degrees of freedom, the

one-dimensional effective action should not depend on these modes. It is, therefore, safe

to ignore them in the above ansatz for A. Nevertheless, we will find it instructive to keep

these modes for now to see explicitly how they drop out of the effective action.

Further zero-modes can arise from membranes if they are included in the compactifi-

cation, such as moduli of the complex curve C which they wrap and their superpartners.

Presently, we will not include these additional modes but rather focus on the modes from

pure 11-dimensional supergravity.

While the way we have parametrised the zero modes of A in (4.4) appears to be

the most natural one, it is not actually the most well-suited ansatz for performing the

dimensional reduction. This is due to the fact that we have split a three form into (2, 1)-

and (1, 2)-pieces (ignoring the gauge part for the moment) the choice of which implicitly

depends on the complex structure moduli. If carried through, this leads to an unfavourable

and complicated intertwining of kinetic terms of the (2, 1)- and (1, 4)-fields in the one-

dimensional effective action (that is, terms involving products of the like ξ̇pża etc.), which

would in turn force us into attempting lengthy field re-definitions in order to diagonalise

the kinetic terms.

It would, on the other hand, be much more economic to start out with a formulation

in which no such mixing of kinetic terms arises in the first place. Indeed, it is possible to

circumvent, yet fully capture, this complication by using real harmonic 3-forms instead of

complex (2, 1)- and (1, 2)-forms to parametrise the three-form zero modes. Real harmonic

3-forms can be naturally locked to 3-cycles and thus represent topological invariants. In

order to employ them in the ansatz for A, we first need to introduce a basis {NP}P=1,...,b3(X)

of real harmonic 3-forms on X. Instead of (4.4), we can then write

A = XP(τ)NP +Nµi(τ)ωi ∧ dτ , (4.5)

with b3(X) = 2h2,1(X) real scalar fields XP and h1,1(X) real scalars µi. The two ansätze

for A are readily related by devising linear maps, denoted A and B, translating back and

forth between real harmonic 3-forms and complex harmonic (2, 1)- or (1, 2)-forms. These

maps implicitly depend on the complex structure moduli, A = A(z, z̄), B = B(z, z̄). In

fixed bases, they possess a matrix representation:

νp = Ap
QNQ (and: ν̄p̄ = Āp̄

QNQ) , (4.6)

NP = BP
qνq + B̄P

q̄ν̄q̄ . (4.7)

Inserting eqs. (4.6)–(4.7) into eqs. (4.4)–(4.5), we learn how the two formulations are related

at the level of zero mode fields

ξp = XQBQ
p (and c.c.), (4.8)

XP = ξqAq
P + ξ̄q̄Āq̄

P . (4.9)
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For the reasons outlined above, we henceforth adopt the 3-form formulation. At each

step of the calculation, one may, of course, revert if desired to the complex (2, 1)-form

formulation using eqs. (4.6)–(4.9) and the results of appendix B.4.1, which is devoted to

providing a more detailed exposition of the moduli space of real 3-forms on Calabi-Yau

five-folds. One particularly important observation is that the moduli space of real 3-forms

is itself equipped with a complex structure ∆ inherited from the complex structure of the

Calabi-Yau five-fold and explicitly constructed out of As and Bs as

∆P
Q := i(BP

qAq
Q − B̄P

q̄Āq̄
Q) . (4.10)

It is readily verified that ∆ satisfies the properties of a complex structure.

The A and B matrices turn out to be an effective way to parametrize our ignorance

of the actual dependence of the (2, 1)-forms on the complex structure moduli and it would

be nice to find explicit expressions instead. However, we are not aware of a method to

calculate this dependence explicitly.

Returning to the metric ansatz in (4.3), we can now compute the eleven dimensional

Ricci scalar R. As usual, for given values of the complex structure moduli, we introduce

local complex coordinates zµ and z̄µ̄, where µ, ν, . . . = 1, . . . , 5 and µ̄, ν̄, . . . = 1̄, . . . , 5̄, so

that the metric is purely (1, 1), that is the components gµν̄ are the only non-vanishing ones.

This leads to

1

2
N2R = 4N2 d

dτ

(
N−2gµν̄ ġµν̄

)
+ gµρ̄gνσ̄ ġµσ̄ ġνρ̄ + gµρ̄gσν̄ ġµσ ġν̄ ρ̄

+ 2gµν̄ ġµν̄g
σρ̄ġσρ̄ + 4N−1Ṅgµν̄ ġµν̄ . (4.11)

where here and in the following the dot denotes the derivative with respect to τ . Into

this expression, we have to insert the expansion of the metric (B.66) which can also be

written as

ġµν̄ = −iωi,µν̄ ṫ
i , ġµν = − 1

12||Ω||2 Ωµ
µ̄1...µ̄4χa,µ̄1...µ̄4ν ż

a , ġµ̄ν̄ = (ġµν)∗ . (4.12)

Here {χa}, where a, b, . . . = 1, . . . , h1,4(X), is a basis of harmonic (1, 4) forms. Further we

need the field strength G = dA for the three-form ansatz (4.5) and its Hodge dual which

are given by

G = ẊPdτ ∧NP , ∗G = −N−1ẊP∆P
QNQ ∧ J2 . (4.13)

To derive the second equation we have used the result (B.101) for the dual of a real 3-form

on a Calabi-Yau five-fold. The ∆ appearing here has been defined in (4.10) and is discussed

further in appendix B.4.1.

Inserting the ansatz (4.3), (4.5) together with the last three equations into the bosonic

action (2.2) and integrating over the Calabi-Yau five-fold, one finds the bosonic part of the

one-dimensional effective action

SB,kin =
l

2

∫
dτN−1

{
1

4
G

(1,1)
ij (t)ṫi ṫj +

1

2
G

(3)
PQ(t, z, z̄)ẊPẊQ + 4V (t)G

(1,4)

ab̄
(z, z̄)ża ˙̄zb̄

}

(4.14)
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at order zero in the β expansion. Here l = v/κ2
11 and v is an arbitrary reference volume of

the Calabi-Yau five-fold.2 The moduli space metrics in the (1, 1), (1, 4) and 3-form sectors

are given by

G
(1,1)
ij (t) = 4

∫

X
ωi ∧ ∗ωj + 8V w̃iw̃j , (4.15)

G
(1,4)

ab̄
(z, z̄) =

∫
X χa ∧ χ̄b̄∫
X Ω ∧ Ω̄

, (4.16)

G
(3)
PQ(t, z, z̄) =

∫

X
NP ∧ ∗NQ , (4.17)

where ω̃i = gµν̄ωi,µν̄ . Since h1,1(X) need not be even, G
(1,1)
ij is a genuinely real metric

that cannot be complexified in general. This is compatible with the anticipated N = 2

supersymmetry in one dimension, which only demands target spaces of sigma models to

be Riemannian manifolds [10]. Using the results of appendix B.4, these metrics can be

computed as functions of the moduli. In the (1, 1) sector we have

G
(1,1)
ij (t) = 8V

[
G(1,1)

ij (t) − 25
κiκj

κ2

]
= −2

3
κij −

5

6

κiκj

κ
, (4.18)

where κ is a quintic polynomial in the Kähler moduli given by

κ = 5!V = di1...i5t
i1 . . . ti5 , di1...i5 =

∫

X
ωi1 ∧ · · · ∧ ωi5 , (4.19)

di1...i5 are intersection numbers and κi = dii2...i5t
i2 . . . ti5 , κij = diji3i4i5t

i3ti4ti5 . The stan-

dard moduli space metric G(1,1)
ij , as defined in appendix B.4, can be obtained from the

Kähler potential K(1,1) = −1
2 lnκ as G(1,1)

ij = ∂i∂jK
(1,1). We note that the physical sigma

model metric (4.18) differs from the standard moduli space metric G(1,1)
ij by a term pro-

portional to κiκj and a rescaling by the volume. The latter is not really required at this

stage and can be removed by a redefinition of time τ but it will turn out to be a useful

convention in the full supersymmetric version of the effective action. The additional term,

however, cannot be removed, for example by a re-scaling of the fields ti. As a consequence,

unlike the standard moduli space metric, the physical metric is not positive definite. In

the direction ui ∼ ti we have G
(1,1)
ij uiuj < 0 while for all perpendicular directions ui,

defined by G(1,1)
ij tiuj = 0, we have G

(1,1)
ij uiuj > 0. This means G(1,1) has a Minkowski sig-

nature (−1,+1, . . . ,+1). This is in contrast to, for example, M-theory compactifications

on Calabi-Yau three-folds [16, 30] where the sigma model metric in the (1, 1) sector is

identical to the standard moduli space metric and, in particular, is positive definite. In the

present case, the appearance of a single negative direction is, of course, not a surprise. Our

sigma model metric in the gravity sector can be though of as a “mini-superspace” version

of the de-Witt metric which is well-known to have precisely one negative eigenvalue [31].

2Related factors of 1/v should be included in the definition of the moduli space metrics (4.15)–(4.17)

but will be suppressed in order to avoid cluttering the notation. These factors can easily be reconstructed

from dimensional arguments.
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Here, we see that this negative direction lies in the (1, 1) sector. Another difference to

the Calabi-Yau three-fold case is the degree of the function κ. For three-folds κ is a cubic

while, in the present case, it is a quintic polynomial.

We now turn to the (1, 4) moduli space metric G
(1,4)

ab̄
which is, in fact, equal to the

standard moduli space metric in this sector and can, hence, be expressed as

G
(1,4)

ab̄
= ∂a∂b̄K

(1,4) , K(1,4) = ln

[
i

∫

X
Ω ∧ Ω̄

]
(4.20)

in terms of the Kähler potential K(1,4). This is very similar to the three-fold case. In

particular, G
(1,4)

ab̄
is positive definite as it should be, given that the single negative direction

arises in the (1, 1) sector.

Finally, in the 3-form sector one finds from the results in appendix B.4.1 that the

metric can be written as

G
(3)
PQ(t, z, z̄) =

1

2
∆(P

RdQ)Rijt
itj , dPQij =

∫

X
NP ∧NQ ∧ ωi ∧ ωj , (4.21)

where we have introduced the intersection numbers dPQij = −dQPij, which are purely

topological. The metric (4.21) is Hermitian with respect to the complex structure ∆

(see (B.109)).

This completes the definition of all objects which appear in the action (4.14).

We see that this action does not depend on the gauge degrees of freedom µi which

appear in the ansatz (4.4) for the three-form A, as should be the case. This demonstrates µi

independence at zeroth order in β but what happens at first order in β? At this order, there

are three terms in the 11-dimensional theory, all of them topological, which contribute to

µi dependent terms in one dimension. These are the Chern-Simons term A∧G∧G in (2.2),

the Green-Schwarz term (2.10) and the Wess-Zumino term in the membrane action (2.14).

Evaluating these three terms leads to the one-dimensional contribution

SB,gauge = − lβ1

2

∫
dτ N [12 g ∧ g + 24W − c4(X)]i µ

i , (4.22)

where β1 = (2π)4β/v4/5 is the one-dimensional version of the expansion parameter β. The

notation [. . .]i indicates the components of the eight-form in brackets with respect to a basis

{ω̃i} of harmonic eight-forms dual to the harmonic two-forms {ωi}. Hence, at order β the

µi dependent terms do not automatically vanish. However, the bracket in (4.22) vanishes

once the integrability condition (3.6) is imposed. Put in a different way, the equation of

motion for µi from (4.22) is simply the integrability condition (3.6)

12 g ∧ g + 24W − c4(X) = 0 . (4.23)

Hence, the rôle of the gauge modes µi is to enforce the integrability condition at the level

of the equations of motion and, once the condition is imposed, the gauge modes disappear

from the action as they should. The condition (3.6) can, therefore, also be interpreted as

an anomaly cancellation condition which has to be satisfied in order to prevent a gauge

anomaly of the M-theory three-form A along the Calabi-Yau (1, 1) directions.
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4.2 Performing the dimensional reduction: the fermionic part

One may ask if an explicit dimensional reduction of the fermionic part of the 11-dimensional

action (2.1) is really necessary, for in many other cases, once the bosonic terms in the

effective action are known the fermionic ones can be inferred from supersymmetry. In the

present case, there are a number of reasons why reducing at least some of the fermionic

terms might be useful. First of all, the structure of the bosonic action (4.14) points to some

features of one-dimensional N = 2 supersymmetry which have not been well-developed in

the literature. For example, the bosonic action (4.14) indicates a coupling between the two

main types of N = 2 supermultiplets, the 2a and 2b multiplets, which, to our knowledge,

has not been worked out in the literature. Also, in the last section, we have seen that it is

important to keep the lapse function as a degree of freedom in the one-dimensional theory,

as it generates an important constraint. In the context of supersymmetry, the lapse is part

of the one-dimensional supergravity multiplet which one expects to generate a multiplet

of constraints. Therefore, even though gravity is not dynamical in one dimension, we need

to consider local one-dimensional N = 2 supersymmetry. Again, it appears this has not

been developed in the literature to the extend required for our purposes. We will deal with

these problems in appendix C where we systematically develop one-dimensional N = 2

supersymmetry and supergravity both in component and superspace formalism. At any

rate, given that the relevant supersymmetry is not as well established as in some other

cases, it seems appropriate to back up our results by reducing some of the 11-dimensional

fermionic terms as well. Finally, the list of M-theory zero modes on Calabi-Yau five-folds

in table 1 contains (1, 3) fermionic zero modes but no matching bosons. This feature is

somewhat puzzling from the point of view of supersymmetry and can certainly not be

clarified from the bosonic effective action alone.

In this section, we will, therefore, reduce the terms in the 11-dimensional action

quadratic in fermions. These results together with the bosonic action are sufficient to

fix the one-dimensional action in superspace form uniquely and, in addition, provide us

with a number of independent checks. Four-fermi terms in the one-dimensional theory are

then obtained from the superspace action and we will not derive them by reduction from

11 dimensions.

We should start by writing down a zero mode expansion of the 11-dimensional gravitino

ΨM on the space-time M = R ×X. The covariantly constant, positive chirality spinor on

X is denoted by η and its negative chirality counterpart by η⋆ (for a summary of our spinor

conventions see appendix A). The spinor η is characterised by the annihilation conditions

γµ̄η = 0. Further, by ω
(p,q)
i we denote the harmonic (p, q) forms on X. Then, following

the known rules for writing down a fermionic zero mode ansatz (see for example refs. [32]

§1.7.1, [33] §3.2.5), we have

Ψ0 = ψ0(τ) ⊗ η⋆ + ψ̄0(τ) ⊗ η, (4.24)

Ψµ̄ =
∑

p,q

ζ
(i)
(p,q)(τ) ⊗ (ω

(p,q)

(i),α1...α(p)β̄1...β̄(q−1)µ̄
γα1...α(p)β̄1...β̄(q−1)η)

+
∑

p,q

ζ
′(i)
(p,q)(τ) ⊗ (ω

(p,q)

(i),α1...α(p)β̄1...β̄(q−1)µ̄
γα1...α(p)β̄1...β̄(q−1)η⋆), (4.25)

Ψµ = (Ψµ̄)∗ . (4.26)
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Here, ζ
(i)
(p,q) and ζ

′(i)
(p,q) are one-dimensional complex fermions which represent the zero-modes

in the (p, q) sector of the Calabi-Yau five-fold and ψ0 is the one-dimensional gravitino. The

sums over (p, q) in (4.25) run over all non-trivial cohomology groups of the five-fold. Let

us discuss the various (p, q) sectors in the first sum in (4.25) in detail. For (p, q) = (1, 4)

the number of annihilating gamma matrices, γµ̄ exceeds the number of creating ones, γµ,

and, as a result, this term vanishes. Further, for all cases with q = p + 1 the number

of creation and annihilation gamma matrices is identical. Anti-commuting all γµ̄ to the

right until they annihilate η one picks up inverse metrics gµν̄ which ultimately contract the

harmonic (p, p+1) forms ω
(p,p+1)
i to harmonic (0, 1) forms. Since the latter do not exist on

Calabi-Yau five-folds all terms with q = p+ 1 vanish. This leaves us with the cases where

p ≥ q. Among those, only the terms with (p, q) = (2, 2), (3, 2) contain both creation and

annihilation matrices. For (p, q) = (2, 2), anti-commuting leads to a single inverse metric

which converts the harmonic (2, 2) forms into harmonic (1, 1) forms. Therefore, the (2, 2)

part can effectively be absorbed into the (1, 1) term and does not need to be written down

independently. The same argument applies to the (3, 2) part which can be absorbed into the

(2, 1) contribution. By the gamma matrix structure and the annihilation property of η⋆ all

but the (5, 0) term in the second sum in (4.25) vanish. Using the Fierz identity (see (B.50))

the (5, 0) term in the second sum can be converted into a term with the (1, 1) structure of

the first sum and can, hence, be absorbed by the (1, 1) contribution. In summary, all we

need to write down explicitly are the (p, q) terms with q = 1 and p = 1, 2, 3, 4.

For the same reason as explained in the previous subsection on the bosonic reduction, it

is advantageous to use the real 3-form formulation developed in appendix B.4.1 to capture

the dynamics of the (2, 1)-sector while avoiding off-diagonal kinetic terms mixing in time

derivatives of (4, 1)-fields. Similarly, we will use the real 4̂-form formulation, also described

in appendix B.4.1, in the (1, 3)-sector. A general 4-form, which is always purely topological,

can be decomposed into (1, 3), (3, 1) and (2, 2) pieces using the complex structure of the

Calabi-Yau five-fold X. Henceforth, we will restrict our attention to Calabi-Yau five-folds

whose (2, 2)-forms are completely generated by the product of two (1, 1)-forms. All the

concrete examples of Calabi-Yau five-folds considered in this paper are of this type (see

appendix B.2). In this case, the (2, 2)-piece of a real 4-form can be split off from the rest in

a complex structure independent way and the fate of the (2, 2)-part of the gravitino ansatz

is as described in the previous paragraph. As a shorthand, we will refer to a 4-form that

only comprises a (1, 3) and a (3, 1) piece as a 4̂-form and given the restriction on h2,2(X),

this restriction is also purely topological. The 4̂-forms are thus well-suited to describe the

(1, 3)+(3, 1)-sector of the reduction in a way independent of the complex structure moduli.

To this end, it is convenient to choose a particular basis of real 4-forms, {OX }X=1,...,b4(X),

such that the first 2h1,3(X) 4-forms, denoted {OX̂ }X̂=1,...,2h1,3(X), only contain (1, 3) and

(3, 1)-pieces and the remaining h2,2(X) 4-forms, denoted {OX̃ }X̃=1,...,h2,2(X), only contain

(2, 2)-parts. This basis choice is complex structure independent for the class of manifolds

under consideration. The 4̂-forms then lie in the sub-vector space spanned by {OX̂ }. For a

general Calabi-Yau five-fold, a more complicated intertwining of the Kähler and complex

structure moduli with the (1, 3)-fields arises leading to additional interaction terms in the
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one-dimensional effective action. It should be appreciated that this is a relatively mild

restriction as it only affects the (1, 3)-sector’s couplings to fields of other sectors. Our

analysis of all other sectors by themselves does not rest on this restriction.

After some relabeling, adopting the notation in appendix B.4 for the harmonic forms

and introducing numerical factors for later convenience, the gravitino ansatz now reads

Ψ0 = ψ0(τ) ⊗ η⋆ + ψ̄0(τ) ⊗ η, (4.27)

Ψµ̄ = ψi(τ) ⊗ (ωi,α1µ̄γ
α1η) +

i

4
ΛP(τ) ⊗ (NP,α1α2µ̄γ

α1α2η)

+
1

4
ῩX̂ (τ) ⊗ (OX̂ ,α1...α3µ̄γ

α1...α3η) − 1

4!
κ̄ā(τ) ⊗ (||Ω||−1χ̄ā,α1...α4µ̄γ

α1...α4η), (4.28)

Ψµ = (Ψµ̄)∗, (4.29)

The four terms in (4.28) correspond to the (1, 1), (2, 1), (3, 1) and (4, 1) sectors, respectively.

The harmonic (1, 1) forms are denoted by ωi, where i, j, . . . = 1, . . . , h1,1(X), the real 3-

forms are denoted by NP , where P,Q, . . . = 1, . . . , b3(X), the real 4̂-forms by OX̂ , where

X̂ , Ŷ, . . . = 1, . . . , 2h1,3(X) and the (1, 4) forms by χa, where a, b, . . . = 1, . . . , h1,4(X). In

the same order, the associated zero modes, which are complex one-dimensional fermions,

are denoted by ψi, ΛP , ΥX̂ and κa. It is clear that the number of zero modes cannot

be reduced any further and that these four types of modes are independent. Three of

them, the (1, 1), 3-form and (1, 4) modes pair up with corresponding bosonic zero modes

in the same sectors. The 4̂-form modes, however, have no bosonic zero mode partners, as

mentioned earlier and one of our tasks will be to understand how they can be incorporated

into a supersymmetric one-dimensional effective theory.

Had we written the second term in (4.28) in (2, 1)-language Ψµ̄ = . . . − 1/4λp(τ) ⊗
(νp,α1α2µ̄γ

α1α2η) + . . ., we would have identified a set of h2,1(X) complex one-dimensional

fermions in this sector. From (4.28) however, there appear to be b3(X) = 2h2,1(X) complex

one-dimensional fermions. This apparent factor of two discrepancy in the number of degrees

of freedom is resolved by observing that a successive insertion of eqs. (B.92)–(B.95) into

the second term in (4.28) leads to a constraint in the form of a projection condition on the

3-form fermions ΛP

P+P
QΛP = ΛQ , (and: P−P

QΛ̄P = Λ̄Q) , (4.30)

where P±P
Q were defined in (B.103). This condition, which is equivalent to P−P

QΛP = 0,

precisely halves the number of degrees of freedom so as to match the counting in (2, 1)-

language. In other words, there are 1/2 b3(X) = h2,1(X) complex one-dimensional fermions

in this sector, as claimed in table 1. It can be shown that this constraint also applies to

the time derivative and supersymmetry transformation of ΛP

P+P
QΛ̇P = Λ̇Q , P+P

Q(δǫΛ
P) = δǫΛ

Q , (4.31)

implying in particular that the projection operators commute with both supersymmetry

and time translation when acting on ΛP

[
P±P

Q, ∂0

]
ΛP = 0 ,

[
P±P

Q, δǫ
]
ΛP = 0 . (4.32)
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The projection condition is thus preserved under both operations as is required by consis-

tency. Eqs.(4.30)–(4.32) will play important rôles in finding the correct superspace formu-

lation for this sector later in section 5.

By complete analogy, we learn that the 4̂-form sector really only contains h1,3(X)

complex one-dimensional fermions (cf. table 1) and not 2h1,3(X) as is suggested by the

third term in (4.28). By using (B.117) and (B.119) and the third term in (4.28), we infer

P+Ŷ
X̂ΥŶ = ΥX̂ , (and: P−Ŷ

X̂ ῩŶ = ῩX̂ ) , (4.33)

thereby halving the number of degrees of freedom. The projection operators P±Ŷ
X̂ were

defined in (B.129). (4.33) implies

P+Ŷ
X̂ Υ̇Ŷ = Υ̇X̂ ,

[
P±Ŷ

X̂ , ∂0

]
ΥŶ = 0 , (4.34)

P+Ŷ
X̂ (δǫΥ

Ŷ) = δǫΥ
X̂ ,

[
P±Ŷ

X̂ , δǫ

]
ΥŶ = 0 (4.35)

guaranteeing the preservation of the projection condition under time translation and su-

persymmetry. The compatibility conditions (4.34)–(4.35) are, of course, required for con-

sistency.

In order to reduce the fermion terms, we also need explicit expressions for the vielbein,

its time derivative and the spin connection. In particular, it should be kept in mind that

the gravitino ansatz (4.27)–(4.29) implicitly depends on the vielbein since the curved index

gamma matrices γµ that appear have to be replaced by flat index gamma matrices γµ

via γµ = eµ
νγν . We begin with the vielbein. From the metric ansatz (4.3) with the 10-

dimensional metric taken to be purely (1, 1) its non-zero components are e0
0 = −N/2, eµν

and eµ̄
ν̄ , so that gµν̄ = eµ

ρeν̄
σ̄ηρσ̄ is the Ricci-flat metric on the Calabi-Yau five-fold. Of

course, the 10-dimensional part of the vielbein depends on the Calabi-Yau Kähler moduli

ti = ti(τ) and the complex structure moduli za = za(τ) and, hence, its time-derivative is

non-zero. From the time derivative (4.12) for the metric one finds

ėµ
ν = − i

2
ωi,µ

ρeρ
ν ṫi, (4.36)

ėµ
ν̄ = − 1

12||Ω||2 Ωµ
µ̄1...µ̄4χa,µ̄1...µ̄4ρe

ρν̄ ża, (4.37)

and similarly for the complex conjugates. From the equations above and the covariant

constancy of the vielbein, we find expressions for the 11-dimensional spin-connection ωN
QR.

Its only non-zero components are given by

ωµ
ν0 = −iN−1ωi,µ

ρeρ
ν ṫi, (4.38)

ωµ
ν̄0 = − 1

6||Ω||2N
−1Ωµ

µ̄1...µ̄4χa,µ̄1...µ̄4ρe
ρν̄ ża, (4.39)

plus their complex conjugates and the components ωm
np of the Calabi-Yau spin connection,

computed from the 10-dimensional vielbein em
n. The complex conjugates of the compo-

nents listed above are, of course, also present. The components of the eleven dimensional
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covariant derivative, defined in (2.6), then become

D0 = ∂0, (4.40)

Dµ = D̃µ +
i

2
N−1ωi,µν̄ ṫ

iγν̄Γ0 +
1

12||Ω||2N
−1Ωµ

µ̄1...µ̄4χa,µ̄1...µ̄4ν ż
aγνΓ0, (4.41)

Dµ̄ = (Dµ)∗, (4.42)

where D̃µ is the covariant derivative on the Calabi-Yau five-fold.

We are now ready to perform the reduction. Inserting the gravitino ansatz (4.27)–(4.29)

into the fermionic action (2.5) produces a vast number of terms — even when restricting to

terms quadratic in fermions. Each of these terms contains a product of a certain number

of gamma matrices sandwiched between two spinors η or η⋆. Luckily, on a Calabi-Yau five-

fold there only exist a very limited number of non-vanishing such spinor bilinears, namely

η†η, Jµν̄ , Ωµ1...µ5 and their complex conjugates (see appendix B.3 for details). As a result,

many terms in the reduction vanish immediately, due to their gamma matrix structure.

The remaining terms can be split into two types. The first type leads to one-dimensional

fermion kinetic terms and such terms originate from the 11-dimensional Rarita-Schwinger

term in the action (2.5). The second type leads to one-dimensional Pauli terms, that is

couplings between two fermions and the time derivative of a boson, which descend from all

the remaining terms in the action (2.5), quadratic in fermions.

After inserting the gravitino ansatz and integrating over the Calabi-Yau manifold, the

Rarita-Schwinger term gives rise to the following fermion kinetic terms

SF,kin = − l

2

∫
dτ
i

2

{
G

(1,1)
ij (t)(ψi ˙̄ψj − ψ̇iψ̄j) +G

(3)
PQ(t, z, z̄)(ΛP ˙̄ΛQ − Λ̇P Λ̄Q)

+3G
(4̂)

X̂ Ŷ
(t)(ΥX̂ ˙̄ΥŶ − Υ̇X̂ ῩŶ) + 4V (t)G

(1,4)

ab̄
(z, z̄)(κa ˙̄κb̄ − κ̇aκ̄b̄)

}
. (4.43)

Here, G
(1,1)
ij , G

(3)
PQ and G

(1,4)

ab̄
are the moduli space metrics for the (1, 1), 3-form and (1, 4)

bosons exactly as defined in the previous sub-section (see eqs. (4.15)–(4.17)). Since there

are no 4̂-form bosons, we have not yet encountered the metric G
(4̂)

X̂ Ŷ
. It is given by

G
(4̂)

X̂ Ŷ
(t) =

∫

X
OX̂ ∧ ∗OŶ = −dX̂ Ŷit

i , (4.44)

dX̂ Ŷi =

∫

X
OX̂ ∧OŶ ∧ ωi

in terms of the intersection numbers dX̂ Ŷi = dŶX̂ i, which are purely topological for the

class of five-folds we are considering. To evaluate ∗OŶ in the above integral we have used

the result for the Hodge dual of 4̂-forms from (B.125).

Reducing the other fermion bilinear terms in the 11-dimensional action (2.5) we find
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for the Pauli terms

SF,Pauli =
l

2

∫
dτ

{
i

2
N−1G

(1,1)
ij (t)(ψiψ0 + ψ̄iψ̄0)ṫ

j +
i

2
G

(1,1)
ij,k (t)(ψkψ̄i + ψ̄kψi)ṫj

+iN−1G
(3)
PQ(t, z, z̄)(ΛPψ0 + Λ̄P ψ̄0)Ẋ

Q + iG
(3)
PQ,i(t, z, z̄)(ψ

iΛ̄P + ψ̄iΛP)ẊQ

− i

2
G

(3)
PQ,a(t, z, z̄)Λ

P Λ̄Qża +G
(3)
PQ,a(t, z, z̄)κ

aΛ̄PẊQ

+
i

2
G

(3)
PQ,ā(t, z, z̄)Λ

P Λ̄Q ˙̄zā −G
(3)
PQ,ā(t, z, z̄)κ̄

āΛPẊQ

+2iV G
(1,4)

ab̄,c
(z, z̄)κaκ̄b̄żc − 2iV G

(1,4)

ab̄,c̄
(z, z̄)κaκ̄b̄ ˙̄zc̄

−4N−1V G
(1,4)

ab̄
(z, z̄)(ψ0κ

a ˙̄zb̄ − ψ̄0κ̄
b̄ża)

− 1

3!
KiG

(1,4)

ab̄
(z, z̄)(ψiκ̄b̄ża − ψ̄iκa ˙̄zb̄)

}
.

(4.45)

This completes the dimensional reduction of the fermionic part of the 11-dimensional action

at the level of terms quadratic in fermions. Our complete result for the one-dimensional

effective action in components, four-fermi terms not included, is given by the sum of the

bosonic action (4.14) and the two fermionic parts (4.43) and (4.45). Next, we have to verify

that this action is indeed invariant under one-dimensional N = 2 local supersymmetry, as

it should be. In the following section, we will do this by writing down a superspace action

whose associated component action coincides with our reduction result. This superspace

action then also determines the four-fermion terms, which we have not explicitly computed

from the dimensional reduction.

5 Supersymmetry and Calabi-Yau five-folds

Compactification on Calabi-Yau five-folds reduces the number of supersymmetries by a

factor of 16, so the effective theory derived in the previous section should, in fact, have

one-dimensional N = 2 supersymmetry. We will now show that this is indeed the case. Our

first step is to identify how the five-fold zero modes have to be arranged in one-dimensional

N = 2 supermultiplets. This is done by reducing the 11-dimensional supersymmetry trans-

formations to one dimension and comparing the result with the known supersymmetry

transformations of the various types of one-dimensional multiplets. Then, we write down

a superspace action and show that its associated component action, after integrating out

auxiliary fields and neglecting four-fermi terms, is identical to the component action derived

from reduction. As we have already mentioned, the required one-dimensional N = 2 theo-

ries have not been worked out in sufficient detail and generality for our purposes. We have,

therefore, included a systematic exposition of both globally and locally supersymmetric

one-dimensional N = 2 theories, tailored to our needs, in appendix C. Here, we will briefly

summarise the main results of this appendix, focusing on the structure of the multiplets

and other information necessary to relate N = 2 superspace and component actions.

One-dimensional, N = 2 superspace (“supertime”) is labelled by coordinates (τ, θ, θ̄)

where θ is a complex one-dimensional spinor3 and θ̄ its complex conjugate. General su-

3For our spinor conventions see appendix A.

– 23 –



J
H
E
P
0
5
(
2
0
0
9
)
0
6
9

perfields are functions of these coordinates and can, as usual, be expanded in powers of

θ and θ̄ to obtain their component fields. Since θ2 = θ̄2 = 0, only four terms arise in

such an expansion, namely the theta-independent term and the ones proportional to θ, θ̄

and θθ̄. In order to develop the geometry of supertime one needs to introduce a super-

vielbein, a superconnection and supertorsion and solve the Bianchi identities subject to

certain constraints on the torsion tensor. This is explicitly carried out in appendix C and

here we simply cite the main results. The field content of the supergravity multiplied can

most easily be read off from the component expansion of the super-determinant E of the

supervielbein. It is given by

E = −N − i

2
θψ̄0 −

i

2
θ̄ψ0 , (5.1)

where N is a real scalar, the einbein or lapse function and ψ0 is a complex fermion, the

one-dimensional gravitino or lapsino.

A 2a multiplet is a real supermultiplet, that is a supermultiplet φ satisfying φ† = φ.

Its component expansion is given by

φ = ϕ+ iθψ + iθ̄ψ̄ +
1

2
θθ̄f , (5.2)

and contains the real scalars ϕ and f and the complex fermion ψ. The highest component

f turns out to be an auxiliary field so we remain with a real scalar and a complex fermion

as the physical degrees of freedom.

A 2b multiplet, Z, is defined by the constraint D̄Z = 0, where D is the super-covariant

derivative

D =

(
1 − i

2
N−1θ̄ψ0 −

1

4
N−2θθ̄ψ0ψ̄0

)
∂θ +

(
i

2
N−1θ̄ − 1

4
N−2θθ̄ψ̄0

)
∂0 −

i

2
N−1θ̄ψ̄0∂θ̄

(5.3)

and D̄ its conjugate. For the component expansion of a 2b multiplet one finds

Z = z + θκ+
i

2
N−1θθ̄(ż − ψ0κ) , (5.4)

with a complex scalar z and a complex fermion κ. Unlike a 2a multiplet, a 2b multiplet

does not contain an auxiliary field so that its physical field content consists of a com-

plex scalar and a complex fermion. This distinction in physical field content between 2a

and 2b multiplets will be useful in identifying the supermultiplet structure of the five-fold

zero modes.

For both 2a and 2b multiplets fermionic versions exist, that is multiplets satisfying the

same constraint as their bosonic counterparts but with a fermion as the lowest component.

Here, we only need the fermionic 2b multiplet, R, defined by the constraint D̄R = 0. Its

component expansion

R = ρ+ θh+
i

2
N−1θθ̄(ρ̇− ψ0h) (5.5)

is analogous to that of an ordinary 2b multiplet except that the lowest component, ρ, is

now a (complex) fermion, while h is a complex scalar. As we will see, for a suitable chosen
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action, the scalar h is an auxiliary field so that the fermion ρ is the only physical degree

of freedom.

A superfield action can now be written as an integral
∫
dτ d2θ E over some function

of the above fields and their super-covariant derivatives, where d2θ = dθ dθ̄. Explicit

superfield actions and their component expansions as required for our purposes are given

in appendix C.

5.1 N = 2 supersymmetry transformations and multiplets

We should now identify how the zero modes of M-theory on Calabi-Yau five-folds fall into

super-multiplets of one-dimensional N = 2 supersymmetry. It is a plausible assumption

that bosonic and fermionic zero modes that arise from the same sector of harmonic (p, q)

forms on the five-fold pair up into supermultiplets. For example, the h1,1(X) Kähler

moduli ti should combine with the same number of (1, 1) fermions ψi. Since the Kähler

moduli ti are real scalars the resulting h1,1(X) supermultiplets must be of type 2a. In

the (1, 4) sector, on the other hand, we have h1,4(X) complex scalars za (the complex

structure moduli) and the same number of complex fermions κa so one expects h1,4(X)

supermultiplets of type 2b. The 3-form sector is somewhat more peculiar. There are b3(X)

real scalars XP and the same number of complex fermions ΛP fitting nicely into b3(X)

2a multiplets. However, we also need to take into account the constraint (4.30) on the

fermions, which halves their number. The result is a set of constrained 2a multiplets with

the same number of degrees of freedom as 1/2 b3(X) 2b multiplets, reminding us of their

original nature. This leaves us with the 4̂-form fermions ΥX̂ . They have no bosonic zero

mode partners so cannot be part of either the standard 2a or 2b multiplets. The natural

guess is for them to form 2h1,3(X) fermionic 2b multiplets. As for the 3-form fermions,

there is the constraint (4.33), which reduces their number to by a factor of two. That is, we

have h1,3(X) complex one-dimensional fermions in this sector. Finally, the lapse function

N and the component ψ0 of the 11-dimensional gravitino should form the one-dimensional

gravity multiplet. We now verify this assignment of supermultiplets by a reduction of the

11-dimensional supersymmetry transformations.

Our task is to reduce the 11-dimensional supersymmetry transformations (2.8) for

the metric ansatz (4.3), the associated spin connection (4.38)–(4.39), the three-form

ansatz (4.4) and the gravitino ansatz (4.27)–(4.29). We denote the spinor parameteris-

ing 11-dimensional supersymmetry transformations by ǫ(11) in order to distinguish it from

its one-dimensional counterpart ǫ. The 11-dimensional spinor can then be decomposed as

ǫ(11) =
i

2
ǫ⊗ η⋆ − i

2
ǭ⊗ η , (5.6)

where η is the covariantly constant spinor on the Calabi-Yau five-fold. Inserting all this

into the 11-dimensional supersymmetry transformations and collecting terms proportional

to the same harmonic Calabi-Yau forms we find the supersymmetry transformations of the

various zero modes. For the lapse function N and the time component ψ0 of the gravitino

they are
δǫN = −ǫψ̄0, δǫψ0 = iǫ̇, δǫψ̄0 = 0

δǭN = ǭψ0, δǭψ0 = 0, δǭψ̄0 = −i ˙̄ǫ .
(5.7)
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These transformations are identical to the one for a one-dimensional N = 2 supergravity

multiplet as can be seen by comparing with appendix C.

For the other zero modes we find the supersymmetry transformations

(1, 1) : δǫt
i = −ǫψi, δǫψ

i = 0, δǫψ̄
i =

i

2
N−1ǫṫi + . . . , (5.8)

3-form : δǫX
P = −ǫΛP , δǫΛ

P = 0, δǫΛ̄
P = iN−1ǫP−Q

PẊQ + . . . , (5.9)

4̂-form : δǫΥ
X̂ = 0 + . . . , δǫῩ

X̂ = 0, (5.10)

(1, 4) : δǫz
a = iǫκa, δǫz̄

ā = 0, δǫκ
a = 0, δǫκ̄

ā = N−1ǫ ˙̄zā + . . . , (5.11)

and similarly for the ǭ-variation. The dots indicate terms cubic in fermions which we

have omitted.4 To arrive at the last equation in (5.9), we have performed a compensating

transformation, making use of a local fermionic symmetry. Namely, the action (4.43)

and (4.45) is invariant under

δΛP = P−Q
P lQ , (and: δΛ̄P = P+Q

P l̄Q) , (5.12)

for a set of local complex fermionic parameters lQ, while all other fields do not transform.

The constraint (4.30) on ΛP may be viewed as a gauge choice with respect to this symmetry.

The form of the last equation in (5.9) then guarantees the preservation of this gauge choice

under a supersymmetry transformation as required by (4.31). Even though the 4̂-form

fermions ΥX̂ are subject to the same kind of constraint (cf. (4.33)), there is no associated

local symmetry. This is because the proof that (5.12) is a symmetry crucially hinges on

the Hermiticity of the 3-form metric (cf. (B.109)), but the 4̂-form metric is not Hermitian.

Again, comparing with the results for the supersymmetry transformations of the

various one-dimensional N = 2 multiplets given in appendix C, we confirm the assign-

ment of zero modes into supermultiplets discussed above. In particular, the transforma-

tion of the 4̂-form fermions ΥX̂ indicates that they should indeed be part of fermionic

2b supermultiplets.

To summarise these results, we write down the explicit off-shell component expansion

for all superfields in terms of the Calabi-Yau five-fold zero modes and appropriate auxiliary

fields. Taking into account the component structure of the various supermultiplets derived

4It may be a bit surprising that the transformations above do not seem to mix fields of different types

(that is (1, 1), (1, 4), etc.) despite the plethora of cross-sector interaction terms in the action. However,

this is merely an artifact due to the omission of (fermi)3 terms. That is, the sector-mixing terms in the

transformations are all of order (fermi)3, which can be seen by taking the full, off-shell supersymmetry

transformations of appendix C and eliminating the auxiliary fields.
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in appendix C, we have

SUGRA (2a) : E = −N − i

2
θψ̄0 −

i

2
θ̄ψ0, (5.13)

(1, 1) (2a) : T i = ti + iθψi + iθ̄ψ̄i +
1

2
θθ̄f i, (5.14)

3-form (2a) : XP = XP + iθΛP + iθ̄Λ̄P +
1

2
θθ̄gP , (5.15)

4̂-form (2b) − fermionic : RX̂ = ΥX̂ + θHX̂ +
i

2
N−1θθ̄(Υ̇X̂ − ψ0H

X̂ ), (5.16)

(1, 4) (2b) : Za = za + θκa +
i

2
N−1θθ̄(ża − ψ0κ

a), (5.17)

where f i, gP and HX̂ are bosonic auxiliary fields. These auxiliary fields can, of course, not

be obtained from the reduction (since 11-dimensional supersymmetry is realised on-shell)

and have to be filled in “by hand”. Full, off-shell supersymmetry transformations for all

the above components are given in appendix C.

5.2 The one-dimensional effective action in superspace

Having identified the relevant supermultiplets and their components our next step is to

write down an N = 2 superspace version of the one-dimensional effective theory. For

the most part, an appropriate form for the superspace action can be guessed based on

the bosonic action (4.14). Basically, all one has to do is to promote the bosonic fields

in this action to their associated superfields, replace time derivatives by super-covariant

derivatives D or D̄ and integrate over superspace. In addition, we need to implement the

constraint (4.30) on the 3-form fermions ΛP at the superspace level. The superpartner of

the constraint (4.30) turns out to be

gP = N−1∆Q
PẊQ +N−1(ψ0Λ

P − ψ̄0Λ̄
P) . (5.18)

Note that since the only object in this equation depending on the complex structure moduli

is ∆Q
P , it follows that ∆Q

P
,aẊ

Q = 0. Constraints (4.30) and (5.18) form a constraint

multiplet and can hence be obtained from a single complex superspace equation

P−P
Q(Z, Z̄)DXP = 0 , (and c.c.) , (5.19)

where P−P
Q(Z, Z̄) is the superspace version of the projection operator P−P

Q defined

in (B.103). The superspace constraint (5.19) follows from a superspace action by introduc-

ing a set of b3(X) complex fermionic Lagrange multiplier superfields LP

LP = L
(0)
P + θL

(1)
P + θ̄L

(2)
P +

1

2
θθ̄L

(3)
P . (5.20)

The action for the fermionic Lagrange multiplier superfields is then given by

− l

2

∫
dτd2θ E

(
LQP−P

Q(Z, Z̄)DXP − L̄QP+P
Q(Z, Z̄)D̄X̄P

)
. (5.21)
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This takes care of all but the fermionic multiplets in the 4̂-form sector whose superfield

action has to be inferred from the fermionic component action (4.43), (4.45). In particu-

lar, the 4̂-form part of the superspace action should be such that the bosons HX̂ in the

fermionic multiplets are non-dynamical. As for the 3-form case, we need to implement the

constraint (4.33) on the 4̂-form fermions ΥX̂ at the superspace level. The superpartner of

the constraint (4.33) is simply

P+Ŷ
X̂H Ŷ = HX̂ , (and c.c.) . (5.22)

Eqs. (4.33) and (5.22) are part of a single superspace equation

P−Ŷ
X̂ (Z, Z̄)RŶ = 0 , (and c.c.) , (5.23)

which can be obtained from a superspace action principle

− l

2

∫
dτd2θ E

(
LX̂P−Ŷ

X̂ (Z, Z̄)RŶ − L̄X̂P+Ŷ
X̂ (Z, Z̄)R̄X̂

)
(5.24)

by means of a set of 2h1,3(X) complex fermionic Lagrange multiplier superfields LX̂ , which

have the same component expansion as in (5.20). P±Ŷ
X̂ (Z, Z̄) are the superspace versions

of the projection operators P±Ŷ
X̂ defined in (B.129).

Combining all this, the suggested superspace action is

S1 = − l

2

∫
dτ d2θ E

{
G

(1,1)
ij (T )DT iD̄T j +G

(3)
PQ(T ,Z, Z̄)DXPD̄XQ

−3G
(4̂)

X̂ Ŷ
(T )RX̂ R̄Ŷ + 4V (T )G

(1,4)

ab̄
(Z, Z̄)DZaD̄Z̄ b̄ (5.25)

+
(
LQP−P

Q(Z, Z̄)DXP + LX̂P−Ŷ
X̂ (Z, Z̄)RŶ + c.c.

)}
.

This action can be expanded out in components using the formulæ presented earlier and

systematically developed in appendix C. The result can be split into (1, 1), 3-form, 4̂-form

and (1, 4) parts by writing

S1 =
l

2

∫
dτ
{
L(1,1) + L(3) + L(4̂) + L(1,4)

}
. (5.26)

For these four parts of the Lagrangian in (5.26) we find, after taking into account the

constraints (4.30) and (5.18) and using the formulæ provided in appendix B.4.1

L(1,1) =
1

4
N−1G

(1,1)
ij (t)ṫiṫj − i

2
G

(1,1)
ij (t)(ψi ˙̄ψj − ψ̇iψ̄j) +

1

4
NG

(1,1)
ij (t)f if j

+
i

2
N−1G

(1,1)
ij (t)(ψiψ0 + ψ̄iψ̄0)ṫ

j +
1

2
N−1G

(1,1)
ij (t)ψ0ψ̄0ψ

iψ̄j

−1

2
NG

(1,1)
ij,k (t)(ψiψ̄jfk − ψkψ̄jf i − ψiψ̄kf j) +

i

2
G

(1,1)
ij,k (t)(ψkψ̄i + ψ̄kψi)ṫj

−NG(1,1)
ij,kl (t)ψ

iψ̄jψkψ̄l, (5.27)
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L(3) =
1

2
N−1G

(3)
PQ(t, z, z̄)ẊPẊQ − i

2
G

(3)
PQ(t, z, z̄)(ΛP ˙̄ΛQ − Λ̇P Λ̄Q)

+iN−1G
(3)
PQ(t, z, z̄)(ΛPψ0 + Λ̄P ψ̄0)Ẋ

Q +N−1G
(3)
PQ(t, z, z̄)ψ0ψ̄0Λ

P Λ̄Q

−1

2
NG

(3)
PQ,i(t, z, z̄)Λ

P Λ̄Qf i + iG
(3)
PQ,i(t, z, z̄)(ψ

iΛ̄P + ψ̄iΛP)ẊQ

−1

2
G

(3)
PQ,i(t, z, z̄)Λ

P Λ̄Q(ψ0ψ
i − ψ̄0ψ̄

i) −NG
(3)
PQ,ij(t, z, z̄)Λ

P Λ̄Qψiψ̄j

− i

2
G

(3)
PQ,a(t, z, z̄)Λ

P Λ̄Q(ża − 2ψ0κ
a) +

i

2
G

(3)
PQ,ā(t, z, z̄)Λ

P Λ̄Q( ˙̄zā + 2ψ̄0κ̄
ā)

+G
(3)
PQ,a(t, z, z̄)κ

aΛ̄PẊQ −G
(3)
PQ,ā(t, z, z̄)κ̄

āΛPẊQ −NG
(3)

PQ,ab̄
(t, z, z̄)ΛP Λ̄Qκaκ̄b̄

−iNG(3)
PQ,ia(t, z, z̄)Λ

P Λ̄Qψ̄iκa − iNG
(3)
PQ,iā(t, z, z̄)Λ

P Λ̄Qψiκ̄ā, (5.28)

L(4̂) = −3i

2
G

(4̂)

X̂ Ŷ
(t)(ΥX̂ ˙̄ΥŶ − Υ̇X̂ ῩŶ) + 3NG

(4̂)

X̂ Ŷ
(t)HX̂ H̄ Ŷ

+3iNG
(4̂)

X̂ Ŷ ,i
(t)(ψiΥX̂ H̄ Ŷ + ψ̄iῩŶHX̂ ) +

3

2
NG

(4̂)

X̂ Ŷ,i
(t)ΥX̂ ῩŶf i

+3NG
(4̂)

X̂ Ŷ,ij
(t)ΥX̂ ῩŶψiψ̄j − 3

2
G

(4̂)

X̂ Ŷ,i
(t)ΥX̂ ῩŶ(ψ0ψ

i − ψ̄0ψ̄
i), (5.29)

L(1,4) = 4N−1V G
(1,4)

ab̄
(z, z̄)ża ˙̄zb̄ − 2iV G

(1,4)

ab̄
(z, z̄)(κa ˙̄κb̄ − κ̇aκ̄b̄)

−4N−1V G
(1,4)

ab̄
(z, z̄)(ψ0κ

a ˙̄zb̄ − ψ̄0κ̄
b̄ża) + 4N−1V G

(1,4)

ab̄
(z, z̄)ψ0ψ̄0κ

aκ̄b̄

+2iV G
(1,4)

ab̄,c
(z, z̄)κaκ̄b̄żc − 2iV G

(1,4)

ab̄,c̄
(z, z̄)κaκ̄b̄ ˙̄zc̄

− 1

12
NKiG

(1,4)

ab̄
(z, z̄)κaκ̄b̄f i − 2

3
NKijG

(1,4)

ab̄
(z, z̄)κaκ̄b̄ψiψ̄j

− 1

3!
KiG

(1,4)

ab̄
(z, z̄)ψiκ̄b̄

(
ża − 1

2
ψ0κ

a

)
+

1

3!
KiG

(1,4)

ab̄
(z, z̄)ψ̄iκa

(
˙̄zb̄ +

1

2
ψ̄0κ̄

b̄

)
.(5.30)

We should now compare this Lagrangian with our result obtained from dimensional re-

duction in the previous section. To do this, we first have to integrate out the auxiliary

fields f i and HX̂ . A quick inspection of their equations of motion derived from eqs. (5.27)–

(5.30) shows that they are given by fermion bilinears. Hence, integrating them out only

leads to additional four-fermi terms. Since we have not computed four-fermi terms in

our reduction from 11 dimensions they are, in fact, irrelevant for our comparison. All

other terms, that is purely bosonic terms and terms bilinear in fermions, coincide with

our reduction result (4.14), (4.43) and (4.45). This shows that (5.25) is indeed the correct

superspace action.

Both the lapse function N and the gravitino ψ0 are non-dynamical and their equations

of motion lead to constraints. For the lapse, this constraint implies the vanishing of the

Hamiltonian associated with the Lagrangian (5.27)–(5.30) and it reads (after integrating

out the (1, 1) and 4̂-form auxiliary fields f i and HX̂ )

1

4
G

(1,1)
ij (t)(ṫi + 2iψiψ0 + 2iψ̄iψ̄0)ṫ

j +
1

2
G

(3)
PQ(t, z, z̄)(ẊP + 2iΛPψ0 + 2iΛ̄P ψ̄0))Ẋ

Q

+4V G
(1,4)

ab̄
(z, z̄)(ża ˙̄zb̄ − ψ0κ

a ˙̄zb̄ + ψ̄0κ̄
b̄ża) + (fermi)4 = 0 .

(5.31)
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Name WR transformation τ → τ ′(τ)

scalar za → za′(τ ′) = za(τ)

co-vector N → N ′(τ ′) = ∂τ
∂τ ′N(τ)

spin-1/2 κa → κa′(τ ′) = κa(τ)

spin-3/2 ψ0 → ψ′
0(τ

′) = ∂τ
∂τ ′ψ0(τ)

Table 2. Worldline reparametrization (WR) covariance.

The equation of motion for ψ0 generates the superpartner of this Hamiltonian constraint

and implies the vanishing of the supercurrent.

Let us now discuss some of the symmetries of the above one-dimensional action. The

action (5.25) is manifestly invariant under super-worldline reparametrizations {τ, θ, θ̄} →
{τ ′(τ, θ, θ̄), θ′(τ, θ, θ̄), θ̄′(τ, θ, θ̄)}, which, in particular, includes worldline reparametriza-

tions τ → τ ′(τ) (that is, one-dimensional diffeomorphisms) and local N = 2 supersym-

metry. Note that the super-determinant of the supervielbein E , which transforms as a

super-density, is precisely what is needed to cancel off the super-jacobian from the change

of dτ d2θ, so that dτ d2θ E is an invariant measure.

In particular, the theory is invariant under worldline reparametrizations, τ → τ ′(τ)

which can be seen as a remnant of the diffeomorphism invariance of the eleven dimensional

action (2.1). Here, the lapse function, N , plays the same rôle as the “vielbein” and it trans-

forms as a co-vector under worldline reparametrizations. The transformation properties of

the different types of component fields under worldline reparametrizations are summarized

in table 2. The bosonic matter fields ti, XP and za and the bosonic auxiliary fields f i,

gP and HX̂ transform as scalars, whereas the fermionic matter fields ψi, ΛP , ΥX̂ and κa

transform as spin-1/2 fields. Finally, the gravitino ψ0 transforms as a spin-3/2 field.

The 3-form scalars XP arise as zero-modes of the M-theory three-form A and, hence,

they are axion-like scalars with associated shift transformations acting as

XP (τ) → XP′
(τ) = XP (τ) + cP , (5.32)

where the cP are a set of complex constants. It is easy to see that the component ac-

tion (5.27)–(5.30) only depends on ẊP but not on XP and that, hence, the action is

invariant under the above shifts. Also in the 3-form sector, there is a local fermionic

symmetry of the form δΛP = P−Q
P lQ as discussed around (5.12).

6 Flux and the one-dimensional scalar potential

We have seen that, unless one works with a Calabi-Yau five-fold X satisfying c4(X) = 0,

flux and/or membranes are required in order to satisfy the anomaly condition (3.6). At

order β, both flux and membranes are expected to contribute to a scalar potential in the

one-dimensional effective theory. So far, we have worked at zeroth order in β but, in this

section, we will calculate the leading order β contributions to the scalar potential. Given

the need for flux and/or membranes in many five-fold compactifications this potential is

clearly of great physical significance.
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6.1 Calculating the scalar potential from 11 dimensions

There are three terms in the 11-dimensional theory which can contribute at order β

to a scalar potential in the one-dimensional effective theory: The non-topological R4

terms (2.13) evaluated on the five-fold background, the kinetic terms G ∧ ∗G for the four-

form field strength if flux is non-zero and the volume term in the membrane action (2.14)

provided wrapped membranes are present. We will now discuss these terms in turn starting

with the R4 one.

Due to its complicated structure, the reduction of this term on a Calabi-Yau five-

fold background is not straightforward. Also, this term depends on the unknown four-

curvature of the five-fold and the only hope of arriving at an explicit result is that it

becomes topological when evaluated on a five-fold background. A fairly tedious, although

in principle straightforward calculation shows that this is indeed the case and that it can

be expressed in terms of the fourth Chern class, c4(X), of the five-fold. Explicitly, we find

that (2.13) reduces to
lβ1

4

∫
dτ N

1

24
c4i(X)ti , (6.1)

where β1 = (2π)4β/v4/5 and we have expanded the fourth Chern class as c4(X) = c4i(X)ω̃i

into a basis of harmonic (4, 4)-forms ω̃i dual to the harmonic (1, 1)-forms ωi.

Next, we consider the contribution of a membrane wrapping a holomorphic curve

C in X with second homology class W . Using the explicit parametrisation X0 = σ0,

Xµ = Xµ(σ), X µ̄ = X µ̄(σ̄), where σ = (σ1 + iσ2)/
√

2 for the curve C, the first term in the

membrane action (2.14) reduces to

− lβ1

4

∫
dτ N Wit

i . (6.2)

Here, we have expanded the membrane class as W = Wiω̃
i into our basis of harmonic

(4, 4)-forms.

Finally, we need to consider four-form flux. In terms of the rescaled four-form g

(see (3.4)) the ansatz for flux can be written as

g =
1

2
nXOX = neσe + (mx̟x + c.c.) , (6.3)

where {OX } with X ,Y , . . . = 1, . . . , b4(X) is a basis of real harmonic 4-forms, {σe} with

e, f, . . . = 1, . . . , h2,2(X) is a basis of real harmonic (2, 2)-forms, {̟x} with x, y, . . . =

1, . . . , h1,3(X) is a basis of harmonic (1, 3)-forms and we used the Hodge decomposition to

split a real 4-form into (1, 3), (3, 1) and (2, 2) parts. The factor of 1/2 has been introduced

for convenience in view of the flux quantisation condition (3.5), which demands that nX be

an even (odd) integer depending on whether c2(X) is even (odd). An essential ingredient

in the reduction is the 10-dimensional Hodge dual of g. From the results in (B.56) we see

that this is given by

∗ g = ne

(
J ∧ σe −

i

2
J2 ∧ σ̃e +

1

12
˜̃σeJ

3

)
− (mxJ ∧̟x + c.c.) . (6.4)
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We recall from appendix B.3 that σ̃e is a harmonic (1, 1)-form which is obtained from σe

by a contraction with the inverse metric gµν̄ . Likewise, ˜̃σe is a scalar on X, obtained from

σe by contraction with two inverse metrics. Following the discussion in appendix B.4 these

objects can be written as

σ̃e = iki
eωi , ˜̃σe = −5

κ
ki

eκi , (6.5)

where ki
e is a set of (moduli-dependent) coefficients. Combining these results the four-form

kinetic term 1
2κ2

11

∫
M(−1

2 )G ∧ ∗G reduces to

− lβ1

4

∫
dτ
N

2

[
nenf

(
defit

i +
1

2
ki

fdeijkt
jtk − 5

12κ
ki

eκidejklt
jtktl

)
−
(
mxm̄ȳdxȳit

i + c.c.
)]
,

(6.6)

where we have used some of the intersection numbers introduced in appendix B.4.

We introduce a one-dimensional scalar potential U by

SB,pot = − l

4

∫
dτ N U . (6.7)

This expression should be added to the bosonic action (4.14). Then, by combining the

three contributions above, we find that

U = β1

[(
1

2
(g ∧ g)(2,2)i −

1

2
(g ∧ g)(1,3)i +Wi −

1

24
c4i(X)

)
ti (6.8)

+
1

4
nenfki

f

(
G(1,1)

ik − 25

12

κiκk

κ2

)
G(1,1)kjdejlmt

ltm
]
. (6.9)

Let us pause to discuss this result. The first line is linear in the Kähler moduli ti with

coefficients which are almost identical to the components of the anomaly condition (3.6).

In fact, only the sign of (g ∧ g)(1,3), the contribution from the (1, 3) part of the flux, is

opposite to what it is in the anomaly condition (3.6). The sign difference between the (2, 2)

and (1, 3) flux parts in (6.8) can be traced back to a sign difference in the formulæ (B.56)

for the Hodge duals which read ∗σ = J ∧σ+ . . . for (2, 2) forms and ∗̟ = −J ∧̟ for (1, 3)

forms. We have checked this sign difference carefully. We are, therefore, led to conclude

that, after using the anomaly condition (3.6), the first part (6.8) of the scalar potential

reduced to a linear term which depends only on (1, 3) flux. As will become clear in the

following such a term is not consistent with one-dimensional N = 2 supersymmetry. On

the other hand, the second part (6.9) of the potential which only depends on (2, 2) flux

can be written in a supersymmetric form, as we will see. Hence, (2, 2) flux is consistent

with one-dimensional N = 2 supersymmetry while (1, 3) flux breaks it explicitly. This

conclusion is also supported by analysing the eleven-dimensional Killing spinor equations

and the conditions for N = 2 supersymmetry in the presence of fluxes [34]. While there

may not be anything wrong with this explicit breaking, we have set out to study M-

theory compactifications which preserve one-dimensional N = 2 supersymmetry. We will,

therefore, focus on (2, 2) flux and set the (1, 3) flux to zero in the subsequent discussion.
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The decomposition in (6.3) of four-form flux into (1, 3), (3, 1) and (2, 2) pieces depends

on the complex structure and therefore the condition for unbroken N = 2 supersymmetry,

namely that the (1, 3) and (3, 1) parts of the four-form flux vanish, g(1,3) = g(3,1) = 0, a

priori leads to a potential for the complex structure moduli. In other words, the complex

structure moduli are only allowed to fluctuate in such a way as to keep the four-form flux

purely of (2, 2) type. With the decomposition (B.112) inserted into (6.3), the condition

g(1,3) = 0 becomes

mx(z, z̄) = nXDX
x(z, z̄) = 0 , (and c.c.) . (6.10)

However, it is not known whether the DX
x and hence the resulting potential for the za

can be calculated explicitly. It is important to recall that in our analysis of bosonic and

fermionic 4-form fields we are restricting to Calabi-Yau five-folds that satisfy (B.116) and,

in this case, the potential vanishes, that is the complex structure moduli are restored as flat

directions in the moduli space, because for such manifolds the split of a four-form into a

(2, 2)-piece and a (1, 3)+(3, 1)-piece is complex structure independent. This can also be seen

by noting that in this case the condition (6.10) turns into the complex structure independent

equation nX̂ = 0, with the help of the decomposition (B.119). Moreover, the (2, 2) flux

itself, g(2,2) = 1
2n

X̃OX̃ = neσe, becomes a complex structure independent quantity.

This leaves us with the second part (6.9) of the scalar potential and, in order to write

this into a more explicit form, we need to compute the coefficients ki
e. This has, in fact,

been done in (B.91). Inserting these results and using eqs. (B.79) and (B.80) we finally

find for the scalar potential

U =
1

2
G(1,1)ijWiWj , Wi =

∂W
∂ti

, (6.11)

where the “superpotential” W is given by

W(t) =

√
β1

3
deijkn

etitjtk (6.12)

and G(1,1)ij is the inverse of the physical (1, 1) moduli space metric (4.18). The fact that

the scalar potential can be written in terms of a superpotential in the usual way suggests

it can be obtained as the bosonic part of a superfield expression. This is indeed the case

and the term we have to add to the superspace action (5.25) is simply

Spot = − l

2

∫
dτ d2θ E W(T ) . (6.13)

Indeed, combining this term with the (1, 1) kinetic term in the superspace action (5.25)

and working out the bosonic component action using (5.27) one finds the terms

l

2

∫
dτ

N

4

(
G

(1,1)
ij f if j − 2f iWi

)
, (6.14)

which, after integrating out the (1, 1) auxiliary fields

f i = G(1,1)ij Wi , (6.15)

reproduce the correct scalar potential.
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It is, perhaps, at first surprising that the formula (6.11) for the scalar potential

in terms of the superpotential looks exactly like the one in global supersymmetry and

does not seem to have the usual supergravity corrections such as the analogue of the fa-

mous −3|W|2 term in four-dimensional N = 1 supergravity. However, we have to keep

in mind that the physical moduli space metric G
(1,1)
ij differs from the standard moduli

space metric G(1,1)
ij and it this difference which encodes the supergravity corrections to

the scalar potential. Specifically, let us formally introduce a “Kähler covariant derivative”

DiW = Wi + ∂K(1,1)

∂ti
W = Wi − tiW, where we recall that K(1,1) = −1

2 lnκ and we have

used (B.77) in the second equality. Moreover, we note that, from (B.80), the inverse G(1,1)ij

can be written as

G(1,1)ij =
1

8V

(
G(1,1)ij − 4

9
titj
)
. (6.16)

Combining these results and using κ = 5!V we can also write the scalar potential (6.11) as

U =
15

2
e2K(1,1)

(
G(1,1)ijDiWDjW − 1

2
W2

)
, (6.17)

which resembles the expression for the four-dimensional N = 1 supergravity potential

quite closely.

Finally, we should point out that the superpotential (6.12) can be obtained from a

Gukov-type formula

W(t) =
1

3

∫

X
Gflux ∧ J3 . (6.18)

This integral is, in fact, the only topological integral, linear in flux, one can build using the

two characteristic forms J and Ω of the five-fold and Gflux. In this sense, it is the natural

expression for the superpotential. Here, we have explicitly verified by a reduction form 11

dimensions that it gives the correct answer.

When (2, 2) flux is non-vanishing, another set of bosonic terms arises from the Chern-

Simons term A ∧ G ∧ G in the 11-dimensional action (2.2). Writing the complete ansatz

for the four-form field strength G, including flux and zero modes, one has

G = G
(2,2)
flux + ẊPdτ ∧NP =

2π

T3
neσe + ẊPdτ ∧NP . (6.19)

Here, we recall that {NP}, where P,Q, . . . = 1, . . . , b3(X), are a basis of real harmonic

3-forms and XP are the associated 3-form zero modes. Inserting this ansatz into the

11-dimensional Chern-Simons term one finds

SB,CS = − l

2

∫
dτ

√
β1

3
dPQen

eẊPXQ , (6.20)

where dPQe =
∫
X NP ∧NQ ∧ σe. Note that (6.20) is linear in flux and, hence, appears at

order
√
β. It represents a one-dimensional Chern-Simons term.
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6.2 A closer look at the bosonic action and the scalar potential

We would now like to discuss some features of the bosonic effective action. To begin with,

we summarise our result for the complete bosonic action up to and including order β. The

bosonic action depends on three sets of fields, the real (1, 1) moduli ti, the real 3-form

moduli XP and the complex (1, 4) moduli za. It can be written as a sum of three parts

SB = SB,kin + SB,pot + SB,CS (6.21)

which, from eqs. (4.14), (6.7), (6.11) and (6.20), are given by

SB,kin =
l

2

∫
dτN−1

{
1

4
G

(1,1)
ij (t)ṫi ṫj +

1

2
G

(3)
PQ(t, z, z̄)ẊPẊQ + 4V (t)G

(1,4)

ab̄
(z, z̄)ża ˙̄zb̄

}
,

(6.22)

SB,pot = − l

4

∫
dτ N U , (6.23)

SB,CS = − l

2

∫
dτ

√
β1

3
dPQen

eẊPXQ , (6.24)

with the scalar potential U and superpotential W

U =
1

2
G(1,1)ijWiWj , W(t) =

√
β1

3
deijkn

etitjtk . (6.25)

The (1, 1) metric G
(1,1)
ij has been defined in (4.18), the 3-form metric G

(3)
PQ in (4.21) and

the (1, 4) metric G
(1,4)

ab̄
in (4.20). The first two parts of this action can be schematically

written as

SB,kin + SB,pot =
l

2

∫
dτ

{
N−1GIJ(φ)φ̇I φ̇J − N

2
U(φ)

}
, (6.26)

where we have collectively denoted the various types fields of fields by (φI)=(ti,XP , za, z̄b̄)

and GIJ is a block-diagonal metric which contains the above moduli space metrics in the

appropriate way. The associated equations of motion then have the general form

1

N

d

dτ

(
φ̇I

N

)
+ ΓI

JK

φ̇J

N

φ̇K

N
+

1

4
GIJ ∂U

∂φJ
+ CI = 0 , (6.27)

where ΓI
JK is the Christoffel connection associated to GIJ and CI is the contribution from

the Chern-Simons term. Since the Chern-Simons term only depends on XP , we have

Ci = Ca = C b̄ = 0.

Are there any static solutions, that is, solutions with all φI = const in the presence of

a flux potential? Since the potential U only depends on the (1, 1) moduli, it is certainly

consistent with the equations of motion (6.27) to set all other fields to constants. For

vacua without (2, 2) flux (but possibly with membranes) this can also be done for the (1, 1)

moduli ti. In this case the scalar potential vanishes identically and the moduli space is

completely degenerate.

In the presence of (2, 2) flux the situation is more complicated. First, one should

look for vacua with constant scalars which preserve the N = 2 supersymmetry of the one-

dimensional theory. Finding such vacua amounts to setting the supersymmetry variations
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of all fermions to zero and solving the resulting Killing spinor equations, as usual. For the

various 2b multiplets the supersymmetry variations of their fermion components vanishes

automatically for constant scalar fields and vanishing fermions, as can be seen directly

from the results in appendix C.2. On the other hand, the supersymmetry variations of the

fermions residing in 2a multiplets require a bit more care. For the 3-form fermions ΛP one

has from (C.66) and (C.67)

δǫΛ
P = 0 , δǫΛ̄

P = −1

2
ǫgP = 0 , (6.28)

after inserting the constraint in (5.18) determining gP . For the (1, 1) fermions ψi the

transformations lead to

δǫψ
i = 0 , δǫψ̄

i = −1

2
ǫf i = −1

2
ǫG(1,1)ij Wj , (6.29)

again assuming vanishing fermions and constant scalars. Hence, constant scalar field vacua

which preserve N = 2 supersymmetry are characterised by the “F-term” equations

Wi = 0 . (6.30)

Eq. (6.25) shows that solutions to these F-term equations are stationary points of the

scalar potential, although, unlike in four-dimensional N = 1 supergravity, they need not be

minima since the (1, 1) metric G(1,1) is not positive definite. Another interesting difference

to four-dimensional supergravity is that the scalar potential always vanishes for solutions

of the F-term equations.

Let us now consider explicit examples to see whether the F-term equations have inter-

esting solutions for our examples. From the general form of W in (6.25), it is clear that for

a single (1, 1) modulus, that is, h1,1(X) = 1, the only solution to the F-term equations is

t1 = 0. This corresponds to vanishing Calabi-Yau volume so we should certainly not trust

our one-dimensional effective theory at this point. Moving on to Calabi-Yau manifolds

with h1,1 = 2 we start with the second example in table 6, a co-dimension one CICY in

the ambient space A = P
3 × P

3 with configuration matrix

X ∼
[

3

3

∣∣∣∣∣
4

4

]
. (6.31)

The discussion in appendix B.2 shows that the anomaly condition for this CICY can be

satisfied for a range of fluxes and an appropriate number of membranes. Since h2,2(X) = 3,

we have three flux parameters n1, n2, n3 and flux can explicitly be written as g = n1J
2
1 +

n2J1J2 + n3J
2
2 . Then, one finds for the Kähler potential and superpotential

κ = 40t31t
2
2 + 40t21t

3
2 , W =

4

3
n1t

3
2 + 4(n1 + n2)t1t

2
2 +

4

3
n3t

3
1 + 4(n2 + n3)t

2
1t2 . (6.32)

It is easy to see that setting, for example, n1 = n3 = 3 and n2 = −4 the F-term equations

are satisfied along the flat direction t1 = t2. Moreover, this flat direction consists of

minima of the potential with zero cosmological constant. The existence of such minima
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is of considerable importance for our M-theory compactifications. A general problem of

compactifications with flux is the tendency of producing large potential energies above the

compactification scale due to the quantised nature of flux. Such high scales of potential

energy are of course problematic as they invalidate the low-energy effective theory. We

have just seen an example where this problem can be avoided due to a flat direction with

vanishing vacuum energy in the two-dimensional Kähler moduli space. This means, at least

to first order in our β expansion, self-consistent five-fold compactifications of M-theory with

(2, 2) flux exist.

As the next example shows this is by no means automatic. Consider the first example

in table 6, a co-dimension one CICY in the ambient space A = P
1 × P

5 with configura-

tion matrix

X ∼
[

1

5

∣∣∣∣∣
2

6

]
. (6.33)

As in the previous example, the anomaly condition can be satisfied for a range of fluxes

and with the appropriate number of membranes (see the discussion around (B.33)). This

manifold has h2,2(X) = 2 and the flux can be written as g = n1J1J2 + n2J
2
2 with two flux

parameters n1 and n2. The Kähler potential and superpotential for the model are given by

κ = 30t1t
4
2 + 2t52 , W = 6n2t1t

2
2 +

(
2n1 +

2

3
n2

)
t32 . (6.34)

In this case, the F-term equations imply that t2 = 0 and the above expression for the

Kähler potential shows that the Calabi-Yau volume vanishes for this value. Hence, there

is no viable supersymmetric minimum in this case.

We should now discuss the scalar potential in some of the cases where solutions to the

F-term equations cannot be found. In general, we note that under a rescaling ti → λti the

(1, 1) metric scales as G
(1,1)
ij (λt) = λ3G

(1,1)
ij (t) and the superpotential as W(λt) = λ3W(t).

This means that the scalar potential scales as U(λt) = λU(t), so is homogeneous with

degree one. When discussing the implications of this scaling behaviour it has to be kept

in mind that the metric G
(1,1)
ij has signature (−1,+1, . . . ,+1) with the negative direction

ui given by ui ∼ ti. Whether this negative direction is “probed” by the scalar potential

depends on the structure of the superpotential and its derivatives. If it is, the potential

will be of the form U = −cλ, where c is a positive constant. This indicates an instability

which leads to a rapid growth of the Calabi-Yau volume and decompactification. Clearly,

this is always the case for examples with h1,1(X) = 1 where the metric is just a negative

number. For h1,1(X) > 1 the picture is less clear and what happens depends on the choice

of Calabi-Yau manifold and flux.

Let us consider two explicit examples. At the end of section 3 we have discussed how to

satisfy the anomaly condition for the septic, [6|7], by a combination of flux and membranes.

For this case we have

κ = 7t5 , W =
35

2

√
β1t

3 , (6.35)

where t is the single (1, 1) modulus. After a short computation, using eqs. (4.18) and (6.25)

this leads to the scalar potential

U = −525

4
β1t . (6.36)
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As expected, the potential is negative and results in a rapid growth of the volume. Our

compactification can only be trusted for large Calabi-Yau volume, that is t ≫ 1. In this

case the scale of the scalar potential (6.36) is quite large and it is questionable if we can

trust our low-energy theory.

For an example with h1,1(X) = 2 we return to the manifold in (6.33) with Kähler

and superpotential as in (6.34) which did not exhibit F-flat directions. We find for the

scalar potential

U =
β1(15n1 + 2n2)

6(15t1 + t2)

(
(3n1 − 2n2)t

2
2 − 36n2t1t2

)
. (6.37)

We recall that the Kähler cone of this CICY is given by t1 > 0 and t2 > 0. Now choose

the fluxes to be n1 = 0 and n2 = 1/2. Then the above potential is strictly negative in the

Kähler cone of X and such that both t1 and t2 will grow. For n1 = 1 and n2 = −1/2,

on the other hand, the above potential is strictly positive in the Kähler cone. Gradients

are such that t2 contracts and, as a result, the total volume goes to zero (while t1 slowly

expands). As for the septic, for large volume, t1 ≫ 1, t2 ≫ 1, the scalar potential is large

and it is not clear that the low-energy theory is valid.

In summary, a first look at the one-dimensional effective theory at order β indicates a

number of possibilities to obtain self-consistent compactifications with vanishing vacuum

energy. First of all, for some Calabi-Yau five-folds the anomaly condition can be satisfied

without the inclusion of flux, either if c4(X) = 0 or if a non-zero c4(X) can be compensated

for by membranes, and, in this case, the scalar potential vanishes identically. An interesting

general feature of the scalar potential is that it vanished for supersymmetric vacua, that

is, for solutions to the F-term equations. We have shown that such solutions to the F-term

equations do indeed exist for some five-folds and that they correspond to flat directions of

the potential. The general structure of the scalar potential means that the vacuum energy

vanishes along those flat directions. If supersymmetric flat directions do not exist, the

scalar potential, which is homogeneous of degree one in the Kähler moduli, is generally

large for large volume and it is questionable whether one can trust the effective theory.

Taken at face value, this scalar potential may either lead to a rapid expansion or a rapid

contraction of the Calabi-Yau volume, depending on the case. Calabi-Yau five-folds with

h1,1 = 1 such as the septic do not have F-flat directions and always contract. For h1,1 > 1,

supersymmetric flat directions may or may not exist. If they do not exist, one can have

rapid expansion or contraction, depending on the choice of Calabi-Yau manifolds and flux.

7 Conclusion and outlook

In this paper, we have considered compactifications of M-theory on Calabi-Yau five-fold

backgrounds, leading to one-dimensional effective theories with N = 2 supersymmetry. In

the absence of flux and membranes, such five-fold backgrounds are solutions to M-theory at

zeroth order in the β ∼ κ
4/3
11 expansion of the theory but at first order in β one encounters

a non-trivial consistency condition (3.6). This condition ensures the absence of a gauge

anomaly of the M-theory three-form A on a five-fold background. It requires a cancellation
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between the fourth Chern class, c4(X), of the Calabi-Yau five-fold X, the square, G ∧G,

of the flux G and the charge, W , of a membrane wrapping a holomorphic curve in X.

We have studied explicit examples of Calabi-Yau five-folds to check whether and how

this condition can be satisfied. The simplest possibility is to use a five-fold satisfying

c4(X) = 0, without any membranes or flux. We have constructed an explicit example of

such a five-fold with vanishing fourth Chern class, based on a quotient of a 10–torus by a

freely-acting Z
4
2 symmetry. Although such a torus quotient has merely Z

4
2 rather than SU(5)

holonomy, it still breaks supersymmetry by a factor of 16 and, hence, all our subsequent

results apply to this example. As another class of examples, we have studied complete

intersection Calabi-Yau five-folds (CICY five-folds) which are defined as the common zero

locus of homogeneous polynomials in a projective space or a product of projective spaces.

The simplest example of such a CICY five-fold is the septic in P
6, the analogue of the

famous quintic Calabi-Yau three-fold in P
4. We have shown for a wide range of CICY

five-folds that c4(X) 6= 0 and it is conceivable that this holds for all CICY five-folds. It

remains an open question as to whether Calabi-Yau five-folds with full SU(5) holonomy

and c4(X) = 0 exist, for example among toric five-folds.

For CICY five-folds we have shown that the anomaly condition can frequently be

solved by a cancellation between c4(X) 6= 0 and appropriate flux and/or membranes. In

particular, this can be achieved for the septic in P
6 when both flux and membranes are

included. Given the large number of topologically different Calabi-Yau five-folds and the

fact that many of the simplest examples can already be made to work we can expect a large

and rich class of consistent M-theory five-fold compactifications. It is for such anomaly-

free compactifications that we have set out to compute the associated one-dimensional

N = 2 effective theory. To this end, we have developed the general properties of Calabi-

Yau five-folds with regards to their topology, differential geometry and moduli spaces. In

particular, there are six a priori independent Hodge numbers, h1,1(X), h1,2(X), h1,3(X),

h2,2(X), h1,4(X) and h2,3(X). However, the Calabi-Yau condition c1(X) = 0 together with

the index theorem leads to one linear relation between those six Hodge numbers, so that

only five of them are effectively independent.

M-theory zero modes on five-folds can be classified according to the sector of harmonic

(p, q) forms they are related to. For the bosonic zero modes, we have metric Kähler moduli,

related to the (1, 1) sector and the metric complex structure moduli, related to the (1, 4)

sector. Further bosonic zero modes in the (2, 1) sector arise from the three-form A. All

these bosonic zero modes have associated fermionic partners which originate from the same

(p, q) sector of the five-fold. In addition, we also find (1, 3) fermionic zero modes that do

not have any bosonic partners, a feature which seems at first puzzling from the viewpoint

of supersymmetry.

After identifying these zero modes, we have reduced both the bosonic and fermion

bilinear terms in 11 dimensions to obtain the one-dimensional effective action, initially at

zeroth order in the β expansion. In order to understand the supersymmetry of this effective

action, we have systematically developed one-dimensional global and local N = 2 super-

space, extending previously known results. Based on these results, it turned out that the

(1, 4) zero modes reside in 2b multiplets while the (1, 1) multiplets reside in 2a multiplets.
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The complex (2, 1) zero modes are best described collectively as real 3-form fields forming

2a multiplets and subject to a constraint halving the number of fermions. This was neces-

sary in order to keep under control the otherwise intricate intertwining with the complex

structure moduli. It was found that the fermionic (1, 3) zero modes are compatible with

supersymmetry. However, the complex structure moduli also intertwine with those modes.

For this sector, we restricted our analysis to five-folds whose (2, 2)-forms are generated by

the product of two (1, 1)-forms. The fermionic (1, 3) and (3, 1) modes together, or 4̂-form

modes for short, could then be described by constrained fermionic 2b multiplets. For all

those multiplets, we have then written down a non-linear supersymmetric sigma model

in superspace and we have verified that the component version of this sigma model pre-

cisely reproduces our reduction result from 11 dimensions. Interesting properties of this

sigma model are the “non-standard” form of the (1, 1) sigma model metric which differs

from the standard Calabi-Yau moduli space metric and the mixing between 2a and 2b

multiplets. We also stress that local one-dimensional N = 2 supersymmetry is required

in order to properly describe the constraints which are the remnants of (super)gravity in

one dimension.

In a next step we have extended our results to order β effects and we have computed

the one-dimensional scalar potential which arises at this order. After imposing the anomaly

condition, it turns out that this potential has two parts, depending on (1, 3) and (2, 2) flux,

respectively. We have not been able to find a supersymmetric description of the (1, 3)

part of this scalar potential and we conclude that (1, 3) flux is not compatible with one-

dimensional N = 2 supersymmetry. Since this is a complex structure dependent statement,

keeping full N = 2 supersymmetry in the presence of non-zero four-form flux induces

restrictions on the complex structure moduli. The explicit form of these restrictions and

how they can be implemented, for example in terms of a potential, is not known. In order to

nonetheless make concrete statements about flux, we therefore focussed on Calabi-Yau five-

folds for which (1, 3) flux can be set to zero without imposing restrictions on the complex

structure moduli. In particular, we restricted to Calabi-Yau five-folds whose (2, 2)-forms

are completely generated by wedging together two (1, 1)-forms. All the explicit examples

of Calabi-Yau five-folds presented in this paper are of this type. In this case, the (2, 2)

flux potential is complex structure independent and allows for a fully supersymmetric

description. It is associated to the auxiliary fields in the (1, 1) 2a multiplets and is given in

terms of a superpotential which only depends on (1, 1) moduli and is cubic in those fields.

We find that this superpotential can also be directly obtained from a Gukov-type formula.

A first look at the properties of the effective theory suggests different possibilities for

self-consistent compactifications with small, or rather vanishing vacuum energy. For com-

pactifications without flux (but possibly with membranes) the potential vanishes identically.

In the presence of (2, 2) flux and depending on the case, there may be supersymmetric flat

directions with vanishing vacuum energy. The property of zero vacuum energy for super-

symmetric solutions is facilitated by the form of the scalar potential which vanishes for

vanishing F-terms. Models with flux but without flat directions have a rather large scalar

potential and it is not clear if the effective theory can be trusted. Näıvely, such scalar

potentials can lead to a rapid expansion or contraction of the Calabi-Yau volume, depend-
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ing on the Calabi-Yau manifold and the choice of fluxes. We have constructed explicit

examples for all these cases.

Our results open up a whole range of applications, particularly in the context of moduli

space “cosmology”. For example, the question as to whether the system can evolve towards

a state with three large and seven small spatial dimensions can be studied as a dynamical

problem in the five-fold moduli space. The effect of a scalar potential, from flux or other,

non-perturbative sources not discussed in the present paper, is of course crucial in such a

discussion. Another interesting aspect of such a cosmological analysis might be the study of

various types of topological phase transitions for Calabi-Yau five-folds. These and related

issues are centred around the question of how a one-dimensional theory can evolve to

effectively become four-dimensional and thereby become a viable description of the “late”

universe. Such a question might even be studied in a “mini-superspace” quantised version

of our one-dimensional theory.

There are also a number of more theoretical issues in relation to our results. It would

be interesting to find the “uplift” of certain solutions to our one-dimensional theory by

studying supersymmetric solutions to the 11-dimensional theory based on Calabi-Yau five-

folds. In particular, our results for the flux scalar potential indicate that such solutions

should not exist in the presence of (1, 3) flux. Another interesting aspect concerns the pos-

sibility of mirror symmetry for Calabi-Yau five-folds. One might speculate that M-theory

on five-folds is mirror symmetric to F-theory on five-folds (times a circle). Both compact-

ifications lead to one-dimensional N = 2 supersymmetric theories in one dimension and a

first test for mirror symmetry would be provided by a comparison of the one-dimensional

theories derived in the present paper with the ones obtained from an F-theory reduction

on five-folds. Several of these problems are currently under investigation.
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A Index conventions and spinors

In this section, we summarise notations and conventions used throughout the paper. Indices

for space-time or superspace in the various relevant dimensions are listed in table 3. Indices
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symbols range meaning

A,B,C, . . . 0, θ, θ̄ one-dimensional N = 2 superspace indices

M,N,P, . . . 0, . . . , 10 D = 11 space-time indices

m,n, p, . . . 1, . . . , 10 D = 10 Euclidean indices

µ, ν, . . . 1, . . . , 5 D = 10 Euclidean holomorphic indices

µ̄, ν̄, . . . 1̄, . . . , 5̄ D = 10 Euclidean anti-holomorphic indices

Table 3. Curved space-time indices and superspace indices. Tangent space indices are denoted by

the same letters but are underlined.

symbols range meaning

i, j, . . . 1, . . . , h1,1 (1, 1)-moduli

p, q, . . . 1, . . . , h2,1 (2, 1)-moduli

x, y, . . . 1, . . . , h1,3 (1, 3)-moduli

e, f, . . . 1, . . . , h2,2 (2, 2)-flux

a, b, . . . 1, . . . , h1,4 (1, 4)-moduli

P,Q, . . . 1, . . . , b3 3-form moduli

X ,Y , . . . 1, . . . , b4 4-form moduli

X̂ , Ŷ, . . . 1, . . . , 2h1,3 4̂-form moduli (4̂ = (1, 3) + (3, 1))

A,B, . . . 1, . . . , b5 5-form periods

Table 4. Indices for Calabi-Yau five-fold cohomology.

in this table are curved indices and we refer to their corresponding tangent space indices

by underlining the same set of letters. Multiple indices are always symmetrized or anti-

symmetrized with weight one. In addition, we need a range of index types for the various

cohomology groups of Calabi-Yau five-folds. They are listed in table 4. For the index types

p, q, . . ., x, y, . . . and a, b, . . ., the barred versions are also present and are used to label the

complex conjugate of the respective moduli fields.

We now turn to our spinor conventions and start in 11 dimensions. We denote the

11-dimensional coordinates by xM and choose the 11-dimensional Minkowski metric ηMN

to have mostly plus signature, so ηMN = diag(−1,+1, . . . ,+1). The eleven dimensional

gamma matrices ΓM satisfy the Clifford algebra

{ΓM ,ΓN} = 2ηMN1132×32. (A.1)

Dirac spinors Ψ in 11 dimensions have 32 complex components and are anti-commuting

objects. We are working in the Majorana representation in which the charge conjugation

matrix is equal to 11 so that Majorana spinors Ψ are real, that is Ψ∗ = Ψ. The gamma

matrices in this representation are also real, (ΓM )∗ = ΓM , and all spatial gamma matri-

ces are symmetric, (Γm)T = Γm, whereas the timelike gamma matrix is anti-symmetric,

(Γ0)T = −Γ0. These properties combine into the following formulæ:

(ΓM )† = Γ0ΓMΓ0 and (ΓM )T = Γ0ΓMΓ0. (A.2)
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Curved gamma matrices ΓM are constructed by contracting with an inverse

vielbein ΓM = eMN ΓN .

In 10 Euclidean dimensions with coordinates xm we introduce complex coordinates by

zµ =
1√
2

(
xµ + i xµ+5

)
, z̄µ̄ =

1√
2

(
xµ̄ − i xµ̄+5

)
. (A.3)

Tensors transform from real to complex coordinates accordingly.

The 10-dimensional gamma matrices γm satisfying the Clifford algebra

{γm, γn} = 2δmn1132×32 . (A.4)

In accordance with our 11-dimensional conventions they are chosen to be real matrices and

are, hence, also symmetric. The ten dimensional chirality operator γ(11) is given by

γ(11) = iγ1 · · · γ10, (A.5)

and it satisfies the relations (γ(11))2 = 1132×32, (γ(11))∗ = −γ(11), (γ(11))T = −γ(11) and

{γ(11), γm} = 0. Ten-dimensional Dirac spinors η are 32-dimensional complex, as in 11

dimensions, and are taken to be commuting. Positive (negative) chirality spinors η are then

defined by γ(11)η = η (γ(11)η = −η). Written in complex coordinates the anti-commutation

relations for the gamma matrices read

{γµ, γν̄} = 2 δµν̄1132×32, {γµ, γν} = {γµ̄, γν̄} = 0 . (A.6)

As usual, the gamma matrices in complex coordinates can be interpreted as creation and

annihilation operators. If one defines a “ground state” η by

γµ̄η = 0 (A.7)

then η has positive and η⋆ negative chirality. The other spinor states are obtained by acting

with up to five creation operators γµ on η.

Finally, in one dimension, there is only one gamma matrix, a 1 × 1 matrix, which

we take to be −i. One-dimensional Dirac spinors ψ are complex one-component anti-

commuting objects and we often denote their complex conjugate by ψ̄ := (ψ)∗. Spinorial

differentiation and Berezin integration are the same operations and satisfy the relations

∂θθ = 1, ∂θθ̄ = 0, ∂θ̄θ = 0, ∂θ̄θ̄ = 1, (A.8)

∂2
θ = 0, ∂2

θ̄ = 0, {∂θ, ∂θ̄} = 0 , (A.9)

where ∂θ := ∂/∂θ and ∂θ̄ := ∂/∂θ̄ = −(∂θ)
∗. Complex conjugation of a product of two

anti-commuting objects is defined to be (ψ1ψ2)
∗ = ψ̄2ψ̄1. Note the change of order on the

right hand side. The rules for Berezin integration can be read off by replacing ∂θ →
∫
dθ

and ∂θ̄ →
∫
dθ̄. We also abbreviate d2θ = dθdθ̄ so that

∫
d2θ θθ̄ = −1 . (A.10)
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The relation between 11-, 10- and one-dimensional gamma matrices is summarised by

the decomposition

Γ0 = (−i) ⊗ γ(11), Γm = 111×1 ⊗ γm, (A.11)

where the tensor product between a complex number and a 32 × 32 matrix has been

introduced solely to make contact with similar formulæ for compactifications to more than

one dimension. As can be checked quickly, the matrices (A.11) indeed satisfy the 11-

dimensional anti-commutation relations (A.1) and (A.2), provided the γm satisfy the 10-

dimensional anti-commutation relations (A.4). Dirac spinors Ψ in 11-dimensions can be

written as (linear combinations of) tensor products of the form ψ ⊗ η, where ψ and η are

one- and 10-dimensional spinors, respectively. An 11-dimensional Majorana spinor Ψ can

be decomposed as

Ψ = ψ ⊗ η + ψ̄ ⊗ η⋆ . (A.12)

B Calabi-Yau five-folds

In this appendix, we develop the necessary tools to deal with Calabi-Yau five-folds and

present some examples relevant to our discussion in the main text. Of course, much of the

formalism will be analogous to Calabi-Yau three-folds and four-folds and we will borrow

heavily from the literature, particularly from refs. [16, 35, 36].

B.1 Basic topological properties

For the purpose of this paper, we define a Calabi-Yau five-fold to be a five complex-

dimensional compact Kähler manifold X with vanishing first Chern class, c1(X) = 0, and

holonomy Hol(X) ⊂ SU(5) sufficiently large to allow only one out of 16 supersymmetries.

By the last condition we mean that in the decomposition

16Spin(10) → [10 + 5̄ + 1]SU(5) (B.1)

of the 16 spinor representation under SU(5) only the SU(5) singlet is invariant under

Hol(X). Hence, for positive chirality, we have precisely one covariantly constant spinor

η. In particular, this means that 10-dimensional tori, direct products such as between

three-folds and four tori and similar spaces are excluded from our considerations. The

correspondence between covariantly constant spinors and harmonic (0, p) forms then implies

that the Hodge numbers of X are constrained by h0,p(X) = hp,0(X) = 0 for p = 1, 2, 3, 4

and h0,0(X) = h0,5(X) = h5,0(X) = h5,5(X) = 1. Consequently, the Hodge diamond of a
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Calabi-Yau five-fold has the following general form

1

0 0

0 h1,1 0

0 h1,2 h1,2 0

0 h1,3 h2,2 h1,3 0

1 h1,4 h2,3 h2,3 h1,4 1

0 h1,3 h2,2 h1,3 0

0 h1,2 h1,2 0

0 h1,1 0

0 0

1

(B.2)

with six, a priori independent Hodge numbers. For the Betti numbers bi(X) this implies

b0(X) = 1 b1(X) = 0

b2(X) = h1,1(X) b3(X) = 2h1,2(X)

b4(X) = 2h1,3(X) + h2,2(X) b5(X) = 2 + 2h1,4(X) + 2h2,3(X)

and bi(X) = b10−i(X) for i > 5. The Euler number η(X) of X can, therefore, be written as

η(X) ≡
10∑

i=0

(−1)ibi(X)

= 2h1,1(X) − 4h1,2(X) + 4h1,3(X) + 2h2,2(X) − 2h1,4(X) − 2h2,3(X) . (B.3)

For Calabi-Yau four-folds it is known [15] that one additional relation between the Hodge

numbers can be derived by an index theorem calculation using the Calabi-Yau condition

c1(X) = 0. As we will now see, a similar procedure can be carried out for Calabi-Yau

five-folds. First recall the general form of the index theorem

χ(X,V ) ≡
dim(X)∑

i=0

(−1)idimH i(X,V ) =

∫

X
ch(V ) ∧ Td(TX) , (B.4)

for a vector bundle V on X. We would now like to apply this theorem to the specific

bundles V = ∧qT ⋆X, where q = 0, 1, 2, 3. The cohomology groups of these bundles can

be written as H i(X,V ) = H i(X,∧qT ⋆X) ≃ H i,q(X) and they are, hence, directly related

to the Hodge numbers of X. For the subsequent calculation, it is convenient to use the

splitting principle and write the Chern class and character of the tangent bundle as

c(TX) = 1 + c1(TX) + c2(TX) + · · · =
∏

i

(1 + xi) , ch(TX) =
∑

i

exi . (B.5)

Then we have

ch(∧qT ⋆X) ∧ Td(TX) =
∑

i1>i2>···>iq

e−xi1 . . . e−xiq

∏

j

xj

1 − e−xj
. (B.6)
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Expanding this expression and re-writing it in terms of Chern classes using (B.5) we find

from the index theorem (B.4)

χ0 = h0,0 − h1,0 + h2,0 − h3,0 + h4,0 + h5,0

=
1

1440

∫

X

[
−c2c31 + c21c3 − c1c4 + 3c1c

2
2

]

χ1 = h0,1 − h1,1 + h2,1 − h3,1 + h4,1 − h5,1

=
1

480

∫

X

[
−c31c2 + c21c3 − 21c1c4 + 3c1c

2
2 − 20c5

]

χ2 = h0,2 − h1,2 + h2,2 − h3,2 + h4,2 − h5,2

=
1

720

∫

X

[
−c31c2 + c21c3 − 31c1c4 + 3c1c

2
2 + 330c5

]

χ3 = h0,3 − h1,3 + h2,3 − h3,3 + h4,3 − h5,3

= − 1

720

∫

X

[
−c31c2 + c21c3 − 31c1c4 + 3c1c

2
2 + 330c5

]

where we have used the short-hand notation χq = χ(X,∧qT ⋆X) and ci = ci(TX). Inserting

the non-trivial information about Hodge numbers from the Hodge diamond (B.2) together

with c1(X) = 0 the above equation for χ0 is trivially satisfied while the one for χ3 is

equivalent to the one for χ2. The remaining two relations for χ1 and χ2 turn into

χ1 = −h1,1 + h1,2 − h1,3 + h1,4 = − 1

24

∫

X
c5 ,

χ2 = −h1,2 + h2,2 − h2,3 + h1,3 =
11

24

∫

X
c5 .

(B.7)

Subtracting these two equations from one another and comparing with (B.8) results in the

standard formula

η(X) =

∫

X
c5(X) (B.8)

for the Euler number η(X) of the five-fold X. Eliminating c5, on the other hand, leads to

the relation

11h1,1(X) − 10h1,2(X) − h2,2(X) + h2,3(X) + 10h1,3(X) − 11h1,4(X) = 0 (B.9)

which only depends on Hodge numbers. Hence, five-folds are characterised by five rather

than six independent Hodge numbers.

Other relevant topological invariants of Calabi-Yau five-folds, apart from the Hodge

numbers and the Euler number, are the Chern classes c2(X), c3(X) and c4(X), the inter-

section numbers di1...i5 of five eight-cycles and various other intersection numbers which we

will introduce later.

As we have seen in the main part of the paper, compactification of M-theory requires

a Calabi-Yau five-fold X, a fourth cohomology class g ∈ H4(X) and an effective second

cohomology class W ∈ H2(X,Z) satisfying the integrability and quantisation conditions

c4(X) − 12 g ∧ g = 24W , g +
1

2
c2(X) ∈ H4(X,Z) . (B.10)
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Physically, g corresponds to a four-form flux and W is the homology class of a holomorphic

curve in X which is wrapped by membranes. Clearly, there are a number of qualitatively

different ways one might try to solve these conditions. Probably the simplest possibility is

to find a Calabi-Yau five-fold X with c4(X) = 0. In this case, one can set the flux g and

the membrane class W to zero. For Calabi-Yau five-folds with c4(X) 6= 0 one can ask if the

conditions can be satisfied with either flux or membranes individually or by a combination

of both. We should now discuss if and how these possibilities can be realised and to do so

we need to turn to specific examples of Calabi-Yau five-folds.

B.2 Examples of Calabi-Yau five-folds

B.2.1 Complete intersection Calabi-Yau five-folds

Perhaps the simplest class of Calabi-Yau manifolds is obtained from complete intersections

in a projective space or a product of projective spaces (see, for example, ref. [35] for a

review). In the case of Calabi-Yau three-folds, the best known example of such complete

intersection Calabi-Yau manifolds (CICY) is the quintic in P
4, defined as the zero locus of a

homogeneous degree five polynomial in P
4. For the case of Calabi-Yau five-folds, the direct

analogue of the quintic in P
4 is the septic in P

6, that is the zero locus of a homogeneous

degree seven polynomial in P
6.

In order to define CICY five-folds more generally, we first introduce an ambient space

A =
⊗m

r=1 P
nr , as a product of m projective spaces with dimension nr. Each of these

projective spaces comes equipped with a Kähler form Jr which we normalise such that
∫

Pnr

Jnr
r = 1 . (B.11)

We are interested in the common zero locus of polynomials pα, where α = 1, . . . ,K, which

are homogenous of degree qr
α in the coordinates of the factor P

nr in A. In order for this

zero locus to be five-dimensional we need, of course,

K =
m∑

r=1

nr − 5 . (B.12)

It is useful to summarise the dimensions of the various projective spaces together with the

(multi-) degrees of the polynomials in a configuration matrix

[n|q] =



n1
...

nm

∣∣∣∣∣∣∣

q11 . . . q1K
...

...

qm
1 . . . qm

K


 (B.13)

We note that every column in the q part of this matrix corresponds to the multi-degree

of one of the defining polynomials. As an example, using this short-hand notation, the

septic in P
6 can be written as [6|7]. The total Chern class of such a CICY is given be the

well-known formula [35]

c([n|q]) =

∏m
r=1(1 + Jr)

nr+1

∏K
α=1(1 +

∑m
s=1 q

s
αJs)

. (B.14)
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and the various individual Chern classes cq([n|q]) can be obtained by expanding the above

expression and extracting terms of order q in the Kähler forms Jr. For the first Chern class

this leads to

c1([n|q]) =

m∑

r=1

(
nr + 1 −

K∑

α=1

qr
α

)
Jr . (B.15)

Hence, the Calabi-Yau condition c1(X) = 0 translates into the simple numerical constraints

K∑

α=1

qr
α = nr + 1, ∀r = 1, . . . ,m (B.16)

on the multi-degrees of the defining polynomials. This means the rows in the q part of the

configuration matrix always have to sum up to the dimension of the associated projective

space plus 1 in order for the complete intersection to be a Calabi-Yau space. In our

application to M-theory compactifications, higher Chern classes and c4(X) in particular,

play a crucial rôle. By expanding (B.14) we find for CICYs

c2([n|q]) = crs
2 JrJs =

1

2

m∑

r,s=1

[
−(nr + 1)δrs +

K∑

α=1

qr
αq

s
α

]
JrJs , (B.17)

c3([n|q]) = crst
3 JrJsJt =

1

3

m∑

r,s,t=1

[
(nr + 1)δrst −

K∑

α=1

qr
αq

s
αq

t
α

]
JrJsJt , (B.18)

c4([n|q]) = crstu
4 JrJsJtJu =

1

4

[
−(nr + 1)δrstu +

K∑

α=1

qr
αq

s
αq

t
αq

u
α + 2crs

2 c
tu
2

]
JrJsJtJu ,

(B.19)

c5([n|q]) = cr1...r5
5 Jr1 · · · Jr5

=
1

5

[
(nr + 1)δr1...r5 −

K∑

α=1

qr1
α · · · qr5

α + 5c
(r1r2r3

3 c
r4r5)
2

]
Jr1 · · · Jr5 , (B.20)

where c1([n|q]) = 0 has been used to simplify the expressions. The fourth Chern class

should be written in terms of a set of harmonic eight-forms {J̃r} as c4(X) = c̃4rJ̃
r. If we

choose these forms to be dual to the Kähler forms Jr, that is,

∫

X
Jr ∧ J̃s = δs

r , (B.21)

it is easy to see that c4r can be obtained from the coefficients which appear in the for-

mula (B.19) by

c̃4r = drstuvc
stuv
4 , di1...i5 =

∫

X
Ji1 ∧ · · · ∧ Ji5 . (B.22)

The intersection numbers di1...i5 can be explicitly computed from the identity

∫

X
w =

∫

A
w ∧ µ , µ =

K∧

α=1

(
m∑

r=1

qr
αJr

)
, (B.23)
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which converts integration of a 10-form w over X into an integration over the ambient

space. In carrying out the latter the normalisation (B.11) must be taken into account. The

calculation of Hodge numbers is straightforward for CICYs with qr
α > 0 for all r and α.

In this case, repeated application of the Lefshetz hyperplane theorem (see, for example,

ref. [35]) shows that

Hp,q(X) ≃ Hp,q(A) for p+ q 6= 5 . (B.24)

Hence, all cohomology groups except the middle ones are isomorphic to the ambient space

cohomology groups for such CICYs. The only non-vanishing Hodge numbers of P
n are

hp,p(Pn) = 1 and, by applying the Künneth formula Hn(Y ⊗ Z) =
⊕

i+j=nH
i(Y ) ⊗

Hj(Z), one can easily compute the Hodge numbers of the ambient space A from this

result. Combining these facts, one finds for CICYs with all qr
a > 0 that

h1,1(X) = h1,1(A) = m (B.25)

h1,2(X) = 0 (B.26)

h1,3(X) = 0 (B.27)

h2,2(X) = h2,2(A) =
m(m− 1)

2
+ #{r|nr ≥ 2} . (B.28)

The first of these equations means that the restrictions of the ambient space Kähler forms

Jr to X form a basis of the second cohomology. The last equation implies that the four-

forms Jr ∧ Js span H2,2(X). Let us define the six-cycles Crs = [n|qer es] ⊂ X, where

er is a vector with one in the rth entry and zero elsewhere. The measure µrs for these

six-cycles is given by µrs = µ ∧ Jr ∧ Js where µ is the measure of the CICY as in (B.23).

It follows that
∫
Crs

w =
∫
Aw ∧ µrs =

∫
X w ∧ Jr ∧ Js for all six-forms w. Hence, the

forms Jr ∧ Js are Poincaré dual to the six-cycles Crs and are, therefore, integral. Two

remaining Hodge numbers need to be determined, namely h1,4(X) and h2,3(X). This can

be accomplished by calculating the Euler number from eqs. (B.8), (B.20) and then using

the two constraints (B.3) and (B.9).

For CICYs where some qr
α vanish a more refined version of the above reasoning can

sometimes be applied [35]. In more complicated cases, the Hodge numbers must be calcu-

lated using spectral sequence methods [37]. For CICY three-folds it is known that h1,1(X)

can be larger than m in such cases so that not all (1, 1) classes descend from the ambient

space. A similar phenomenon can be expected for CICY five-folds. In general, one can

also expect h1,2(X) and h1,3(X) to acquire non-zero values. The detailed analysis of these

issues is somewhat outside our main line of investigation and will not be pursued here.

Another useful feature of CICYs whose second cohomology is spanned by the ambient

space Kähler forms Jr is that the Mori cone, the cone of effective cohomology classes in

H2(X,Z) ≃ H8(X,Z), is given by positive integer linear combinations nrJ̃
r of the eight-

forms J̃r dual to Jr.

It is useful to have some explicit examples of CICYs available. The simplest sub-

class consists of CICY five-folds which can be defined in a single projective space. In this

case, a linear polynomial constraint simply amounts to a reduction of the ambient space

dimension by one. In other words, a configuration matrix of the form [n|q1 . . . qK−1 1]
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[n|q1 . . . qK ] c2(X)/J2 c4(X)/J4 η(X) h1,4(X) h2,3(X)

[6|7] 21 819 −39984 1667 18327

[7|6 2] 16 454 −32544 1357 14917

[7|5 3] 13 259 −19440 811 8911

[7|4 4] 12 198 −14208 593 6513

[8|5 2 2] 12 234 −23280 971 10671

[8|4 3 2] 10 136 −13392 559 6139

[8|3 3 3] 9 99 −9720 406 4456

[9|4 2 2 2] 9 114 −14592 609 6689

[9|3 3 2 2] 8 78 −9648 403 4423

[10|3 2 2 2 2] 7 58 −8832 369 4049

[11|2 2 2 2 2 2] 6 39 −6912 289 3169

Table 5. The 11 CICY five-folds which can be defined in a single projective space. The Hodge

numbers h1,2(X) = h1,3(X) = 0 and h1,1(X) = h2,2(X) = 1 for all manifolds.

[n|q] c2(X) c4(X) η(X) h1,1(X) h2,2(X) h1,4(X) h2,3(X)[
1

5

∣∣∣∣∣
2

6

]
12J1J2+

15J2
2

2610J̃1+

4542J̃2 −32280 2 2 1347 14797

[
3

3

∣∣∣∣∣
4

4

] 6J2
1 +

16J1J2+

6J2
2

3600J̃1+

3600J̃2 −28608 2 3 1194 13115




1

2

3

∣∣∣∣∣∣∣

2

3

4




3J2
2 +

12J2J3+

6J2
3 +

6J1J2+

8J1J3

84J̃1+

114J̃2+

130J̃3

−24480 3 5 1023 11225

Table 6. Examples of CICY five-folds defined in a product of projective spaces. The Hodge

numbers h1,2(X) = h1,3(X) = 0 for all manifolds.

in P
n is equivalent to a configuration matrix [n − 1|q1 . . . qK−1] in P

n−1. Hence, we can

require that all qα > 1 without restricting generality. It is then a simple combinatorial

exercise to write down all configurations in a single projective space, subject, of course, to

the dimension constraint (B.12) and the Calabi-Yau condition (B.16). One finds 11 cases

which are listed in table 5. For comparison, in the case of Calabi-Yau three-folds there

exist five CICYs which can be defined in a single projective space [35]. In fact, CICY three-

folds in arbitrary products of projective spaces have been classified [29] and about 8000

manifolds have been found. No similar classification is available for CICY five-folds but it

is reasonable to assume that their number is significantly larger than 8000. Here, we will

be content with the three examples of CICY five-folds defined in a product of projective

spaces given in table 6.

We should now discuss the various possibilities to satisfy the M-theory condi-

tions (B.10) for compactifications on CICY five-folds. We will not attempt to address
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this question in a systematic way but merely analyse a number of examples. Our main

goal is to show that CICY five-folds for consistent M-theory compactifications exist and to

give a flavour of how restrictive the conditions are. As discussed earlier, the simplest option

is to compactify on a manifold with c4(X) = 0, without flux and membranes. Do CICY

five-folds with c4(X) = 0 exist? From (B.22) we see that the intersection numbers are

positive, that is, di1...i5 ≥ 0. Further, it is clear from (B.19) that all components crstu
4 ≥ 0.

This means the fourth Chern class of CICY five-folds is positive in the sense that c̃4r ≥ 0

for all r. If the configuration matrix is such that qr
α ≥ 2 for all r and α, the coefficients crstu

4

are strictly positive. From the first (B.22) this shows that c4(X) 6= 0 for all such CICY

five-folds. In particular, it follows that all CICY five-folds defined in a single projective

space (m = 1) and all co-dimension one five-folds (K = 1) have c4(X) 6= 0. (The former

fact is, of course, confirmed by table 5.) So, we are left with CICY five-folds satisfying

m > 1, K > 1 and qr
α < 2 for at least one component. We have scanned all such config-

urations for m ≤ 4 and K ≤ 4 and the only examples with c4(X) = 0 we have found are

spaces such as

X ∼




4

2

2

∣∣∣∣∣∣∣

5 0 0

0 3 0

0 0 3


 , (B.29)

which correspond to the direct product of a Calabi-Yau three-fold Y (the quintic in the

above example) with two tori T 2. Clearly, c4(Y × T 2 × T 2) = 0 but such a space only

has holonomy SU(3). It breaks a quarter of the supersymmetry and is, therefore, not a

Calabi-Yau five-fold in the sense defined at the beginning of this appendix. In summary,

for m ≤ 4 and K ≤ 4 we have not found any proper CICY five-folds with holonomy SU(5)

which satisfy c4(X) = 0. We cannot exclude that larger configurations with this property

exist although we have not been able to find any explicit examples.

Given the lack of CICY five-folds with c4(X) = 0, we can ask if the conditions (B.10)

can be satisfied by including flux and membranes. To analyse this question let us start

with the five-folds in a single projective space which are listed in table 5. We write the

fourth Chern class as c4(X) = CJ4, where the numbers C can be read off from table 5 and

the flux as g = kJ2 for some number k. In the absence of membranes (W = 0) the anomaly

condition (B.10) is then solved for flux values

k = ±
√

C
12

. (B.30)

For the 11 cases in table 5, it can be checked that the resulting values of k are never

rational. This means, it is impossible to satisfy the flux quantisation condition (B.10) for

such values of k. We conclude that, in the absence of membranes the 11 CICY five-folds

in a single projective space cannot be used for consistent M-theory compactifications.

Does the inclusion of membranes help? We begin with the septic, [6|7], whose prop-

erties are listed in the first row of table 5. For the right-hand sides of the anomaly and

quantisation conditions (B.10) we find in this case

c4(X) − 12g2 = (819 − 12k2)J4 , g − 1

2
c2(X) =

(
k +

21

2

)
J2 . (B.31)
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Setting the flux to k = 15/2, the anomaly condition can then be satisfied for a membrane

wrapping a holomorphic curve with class W = 6J4. Recalling that J2 is an integral class,

the flux quantisation condition is also satisfied for this value of k. Hence, by including flux

and membranes the M-theory conditions can be satisfied for the septic.

While the M-theory conditions for CICY five-folds in a single projective space cannot

be satisfied with flux only, can they be satisfied for membranes only? Let us look at the

example [7|6 2] which corresponds to the second row in table 5. From (B.23) we know that

the measure for this manifold is given by µ = 12J2. This means
∫

X
J ∧ J4 = 12 . (B.32)

Comparing this with the definition
∫
X J ∧ J̃ = 1 of the dual eight-form J̃ we learn that

J̃ = J4/12 and that this is an integral class. Given that c4(X) = 454J4, the anomaly

condition can then be satisfied by setting the flux to zero and by including a membrane

which wraps a holomorphic curve with class W = 227J̃ .

In order to find viable examples with flux only we need to consider CICYs defined in

products of projective spaces. Let us start with the first example in table 6, a co-dimension

one CICY five-folds with configuration matrix

X ∼
[

1

5

∣∣∣∣∣
2

6

]
, (B.33)

defined in the ambient space A = P
1 ⊗ P

5. Writing the flux as g = k1,2J1J2 + k2,2J
2
2 one

finds for the right-hand-sides of the anomaly and quantisation condition (B.10)

c4(X) − 12g2 = (2610 − 72 k2
2,2)J̃

1 + (4542 − 144 k1,2k2,2 − 24 k2
2,2)J̃

2 , (B.34)

g +
1

2
c2(X) = (k1,2 + 6)J1J2 +

(
k2,2 +

15

2

)
J2

2 . (B.35)

For the anomaly to vanish without membranes we need a non-rational flux parameter

k2,2 = ±
√

145/2 and, hence, the quantisation condition cannot be satisfied. On the other

hand, for any integer k1,2 and any half-integer k2,2 the coefficients on the right-hand-side

of (B.34) are divisible by 24 and, for sufficiently small flux integers, positive. Hence, the

anomaly condition can be satisfied by inclusion of a membrane.

Next, we consider the second example in table 6, the co-dimension one CICY five-folds

in A = P
3 ⊗ P

3 with configuration matrix

X ∼
[

3

3

∣∣∣∣∣
4

4

]
. (B.36)

With the flux parameterised as g = k1,1J
2
1 + k1,2J1J2 + k2,2J

2
2 one finds for the right-hand-

sides of the anomaly and quantisation condition (B.10)

c4(X) − 12g2 = (3600 − 48k2
1,2 − 96k1,1k2,2 − 96k1,2k2,2)J̃

1

+ (3600 − 96k1,1k1,2 − 48k2
1,2 − 96k1,1k2,2)J̃

2 , (B.37)

g +
1

2
c2(X) = (k1,1 + 3)J2

1 + (k1,2 + 8)J1J2 + (k2,2 + 3)J2
2 . (B.38)
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Again, without membranes, it can be checked that the anomaly condition cannot be sat-

isfied for integers k1,1, k1,2 and k2,2. However, as the right-hand-side of (B.37) is divisible

by 24, a complete model can always be obtained be inclusion of membranes as long as the

flux integers are not too large.

For the above examples, we have h2,2(X) = 2 or 3 flux parameters and h1,1(X) =

2 equations from the anomaly condition, so it is perhaps not surprising that a rational

solution without membranes cannot be found. In fact, a similar obstruction can be found

for other simple CICYs defined in a product of two projective spaces. This suggests looking

at more complicated examples in products of more than two projective spaces, so that

h2,2(X) > h1,1(X). To this end, we consider the CICY in the third row of table 6, defined

in a product of three projective spaces and with configuration matrix

X ∼




1

2

3

∣∣∣∣∣∣∣

2

3

4


 . (B.39)

Flux can be parameterized as g = k1,2J1J2 + k1,3J1J3 + k2,2J
2
2 + k2,3J2J3 + k3,3J

2
3 and we

find for the right-hand-sides of the anomaly and quantisation conditions

c4(X) − 12g2 = (130 − 4k1,3k2,2 − 4k1,2k2,3 − 3k1,3k2,3 − k2
2,3 − 3k1,2k3,3 − 2k2,2k3,3)J̃

3

+ (114 − 4k1,3k2,3 − 4k1,2k3,3 − 3k1,3k3,3 − 2k2,3k3,3)J̃
2

+ (84 − 2k2
2,3 − 4k − 2, 2k3,3 − 3k2,3k3,3)J̃

1 , (B.40)

g − 1

2
c2(X) = (3 + k1,2)J1J2 + (4 + k1,3)J1J3 +

(
3

2
+ k2,2

)
J2

2

+ (6 + k2,3)J2J3 + (3 + k3,3)J
2
3 . (B.41)

A quick scan reveals that both conditions can be satisfied for the choice (k1,2, k1,3, k2,2, k2,3,

k3,3) = (1, 3, 7/2, 0, 6).

In summary, we have seen that viable M-theory backgrounds based on CICY five-folds

are not too hard to obtain by adding flux and membranes as well as membranes only.

With some more effort, by exploring more complicated examples with h2,2(X) > h1,1(X),

solutions with flux only can be found as well. Unfortunately, we have not managed to find

CICY five-folds with holonomy SU(5) and c4(X) = 0 and such CICY five-folds may well

not exist. However, an example with c4(X) = 0 which allows for a “clean” compactification

without flux or membranes is still highly desirable and we, therefore, turn to another class

of Calabi-Yau five-folds.

B.2.2 Torus quotients

The Chern classes of a torus vanish and it is, therefore, a promising starting point for the

construction of Calabi-Yau five-folds with c4(X) = 0. Specifically, we start with a product

T = T 2 × · · · × T 2 of five two-tori, each with a complex coordinate zµ, where µ = 1, . . . , 5,

identified as zµ ∼ zµ + 1 and zµ ∼ zµ + i. Then we consider the symmetry Z
4
2 defined by
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the four generators

γ1(z1, . . . , z5) = (−z1 + 1/2,−z2 + i/2, z3 + 1/2, z4, z5) (B.42)

γ2(z1, . . . , z5) = (z1,−z2 + 1/2,−z3 + i/2, z4 + 1/2, z5) (B.43)

γ3(z1, . . . , z5) = (z1, z2,−z3 + 1/2,−z4 + i/2, z5 + 1/2) (B.44)

γ4(z1 . . . , z5) = (z1 + 1/2, z2, z3,−z4 + 1/2,−z5 + i/2) . (B.45)

It is straightforward to check that the 16 elements of this group all act freely on T . Hence,

the quotient X = T/Z4
2 is a manifold. Clearly, it inherits the property of vanishing Chern

classes from the torus and, in particular, c4(X) = 0. The holonomy of X is of course just

Z
4
2 but the four Z2 symmetries are still sufficient to reduce the number of supersymmetries

by a factor of 1/16. Therefore, X is a Calabi-Yau five-fold in this sense defined at the

beginning of this appendix.

What are the properties of X? Clearly, ci(X) = 0 for i = 1, . . . , 5 and this implies that

the Euler number, η(X), also vanishes. The Hodge numbers are obtained by counting the

number of Z
4
2 invariant (p, q) forms dzµ1 ∧ · · · ∧ dzµp ∧ dz̄ν1 ∧ · · · ∧ dz̄νq . This results in

h1,1(X) = 5 , h1,2(X) = 0 , h1,3(X) = 0 ,

h2,2(X) = 10 , h1,4(X) = 5 , h2,3(X) = 10 .
(B.46)

Presumably five-folds from tori divided by other discrete symmetries can be constructed

along similar lines. We will not pursue this explicitly, having shown the existence of Calabi-

Yau five-folds with c4(X) = 0 by the simple example above. It remains an open question

whether Calabi-Yau five-folds with full SU(5) holonomy and c4(X) = 0 exist. We are not

aware of a general mathematical reason which rules this out and it would be interesting to

look for such manifolds, for example among toric five-folds.

B.3 Some differential geometry on five-folds

As discussed earlier, on a Calabi-Yau five-fold X we have a spinor η, unique up to normal-

isation, which is invariant under the holonomy group Hol(X). This means, η is covariantly

constant with respect to the Levi-Civita connection associated to the Ricci-flat metric g.

Its direction can be defined by imposing the five annihilation conditions5

γµ̄η = 0 . (B.47)

Given the definition (A.5) of the 10-dimensional chirality operator, η has positive and η⋆

negative chirality, that is

γ(11)η = η, γ(11)η⋆ = −η⋆ . (B.48)

As usual, we normalize η such that

η†η = 1 . (B.49)

It can be shown that η satisfies the Fierz identity (see, for example, ref. [19], Proposition

5, or ref. [38], eq. (2.3))

η⋆ηT = − 1

32
gµν̄γ

µν̄ , (B.50)

5For our conventions on 10-dimensional gamma matrices and spinors, see appendix A.
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which will be useful in our reduction of the fermionic terms. Apart from the normalisa-

tion (B.49), there exist two other non-zero spinor bilinears, namely the Kähler form J and

the holomorphic (5, 0) form Ω defined by

Jµν̄ = iη†γµν̄η , Ωµ1...µ5 = ||Ω||η†γµ1...µ5η
⋆ , (B.51)

where ||Ω|| = Ωµ1...µ5Ω̄
µ1...µ5/5!. Apart from these expressions and their complex conju-

gates, all other spinor bilinears vanish. Both J and Ω are covariantly constant as a direct

consequence of η being covariantly constant. The complex structure J is defined by the

equation Jmn = Jm
pgpn and the metric g is hermitian with respect to J . The projection

operators P± = (11 ∓ iJ )/2 can be used to split tensors on X into (p, q) “index types”

with p holomorphic and q anti-holomorphic indices. As usual, we will work in local com-

plex coordinates such that Jµ
ν = iδν

µ and Jµ̄
ν̄ = −iδν̄

µ̄. In this basis, the (2, 0) and (0, 2)

components of the metric and the Kähler form vanish and we have

Jµν̄ = igµν̄ . (B.52)

For a (p, q) form ω(p,q) with p > 0 and q > 0 we can define an associated (p − 1, q − 1)

form by contracting one holomorphic and one anti-holomorphic index of ω with the inverse

metric gµν̄ . In the following, it will be convenient to introduce the short-hand notation

w̃(p,q) for this (p− 1, q − 1) form. Note that ω̃(p,q) is harmonic if ω(p,q) is, since the metric

is covariantly constant. This short-hand notation for the contraction of forms is useful to

write down explicit formulæfor the Hodge duals of (p, q) forms which are required in many

physics applications. Straightforward but in part somewhat tedious component calculations

show that

(0, 1) : ∗ζ =
i

4!
J4 ∧ ζ, (1, 1) : ∗ω = − 1

3!
J3 ∧ ω − i

4!
ω̃J4,

(2, 1) : ∗ν =
i

2
J2 ∧ ν +

1

3!
J3 ∧ ν̃, (3, 1) : ∗̟ = −J ∧̟ − i

2
J2 ∧ ˜̟ ,

(4, 1) : ∗χ = iχ+ J ∧ χ̃, (2, 2) : ∗σ = J ∧ σ − i

2
J2 ∧ σ̃ +

1

12
˜̃σJ3,

(3, 2) : ∗φ = −iφ− J ∧ φ̃− i

12
J2 ∧ ˜̃

φ.

(B.53)

Some simplifications of these equations arise for harmonic (p, q) forms. We recall that

Calabi-Yau five-folds have vanishing Hodge numbers hp,0(X) = h0,p(X) for p = 1, 2, 3, 4.

This means non-zero harmonic (p, 0) and (0, p) forms do not exist and consequently

ω̃(p,1) = ω̃(1,p) = 0 for harmonic (p, 1) and (1, p) forms with p > 1. (B.54)

Moreover, a harmonic (0, 0) form is a constant and, hence,

ω̃(1,1) = const. for harmonic (1, 1) forms. (B.55)
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Combining these facts with the formulæ (B.53), one finds for the Hodge dual of harmonic

(p, q) forms on Calabi-Yau five-folds

(1, 1) : ∗ω = − 1

3!
J3 ∧ ω − i

4!
ω̃J4,

(2, 1) : ∗ν =
i

2
J2 ∧ ν,

(3, 1) : ∗̟ = −J ∧̟, (2, 2) : ∗σ = J ∧ σ − i

2
J2 ∧ σ̃ +

1

12
˜̃σJ3,

(4, 1) : ∗χ = iχ, (3, 2) : ∗φ = −iφ− J ∧ φ̃ ,

(B.56)

where we should keep in mind that ω̃ and ˜̃σ are constants and σ̃ is a harmonic (1, 1) form.

The volume V of the five-fold can be written as

V ≡
∫

X
d10x

√
g =

1

5!

∫

X
J5 . (B.57)

Then, acting with J∧ on the (1, 1) part of (B.56), using that J ∧ ∗w = −id10x
√
g w̃ and

integrating over X we learn that

w̃ = 5i

∫
X J4 ∧ w∫

X J5
. (B.58)

A further useful relation for a Hodge dual is

∗ (σ ∧ J2) = ˜̃σJ − 2iσ̃ . (B.59)

where σ is a (2, 2) form. In the next sub-section, we will use this relation to explicitly

compute σ̃ and ˜̃σ.

B.4 Five-fold moduli spaces

For Calabi-Yau three-folds the moduli space of Ricci-flat metrics is (locally) a direct product

of a Kähler and complex structure moduli space which are associated to harmonic (1, 1)

and (2, 1) forms, respectively. For Calabi-Yau five-folds the situation is analogous and we

will naturally borrow from the literature for three-folds (in particular, see ref. [16], for an

explicit description). Just as for three-folds, the Kähler deformations of a five-fold metric

are associated to harmonic (1, 1) forms while the complex structure deformations can be

described in terms of (1, 4) forms. All other harmonic forms on five-folds are unrelated to

metric deformations but some of them still do play a rôle in M-theory compactifications.

In particular, the (2, 1) forms determine the zero modes of the M-theory three-form field.

No bosonic degrees of freedom can be associated with the (1, 3) forms but, as we discuss

in the main part of the paper, they give rise to a set of fermionic zero modes. In summary,

all harmonic (p, 1) (or, equivalently, (1, p)) forms, where p = 1, 2, 3, 4, are relevant for the

zero-modes expansion of the M-theory fields. In addition, harmonic (2, 2) forms play a rôle

when flux is included in the compactification. It is useful to introduce sets of harmonic
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basis forms for these cohomologies as follows

H(1,1)(X) : {ωi}i=1,...,h1,1(X), (B.60)

H(2,1)(X) : {νp}p=1,...,h2,1(X), (B.61)

H(1,3)(X) : {̟x}x=1,...,h1,3(X), (B.62)

H(2,2)(X) : {σe}e=1,...,h2,2(X), (B.63)

H(1,4)(X) : {χa}a=1,...,h1,4(X), (B.64)

with ωi and σe real and all other forms complex. These forms can be used to construct

various intersection numbers6

di1...i5 =
∫
X ωi1 ∧ · · · ∧ ωi5 , dpq̄ij =

∫
X νp ∧ ν̄q̄ ∧ ωi ∧ ωj,

deijk =
∫
X σe ∧ ωi ∧ ωj ∧ ωk, dpq̄e =

∫
X νp ∧ ν̄q̄ ∧ σe,

defi =
∫
X σe ∧ σf ∧ ωi, dxȳi =

∫
X ̟x ∧ ¯̟ ȳ ∧ ωi.

(B.65)

which will play a rôle later on.

We begin with the metric moduli. As usual, the basic requirement is that a variation

gmn → gmn + δgmn of the metric leaves the Ricci tensor zero at linear order in δg. Working

this out in detail, reveals that the (1, 1) part of δg can be expanded in terms of harmonic

(1, 1) forms while the (2, 0) and (0, 2) parts can be expressed in terms of harmonic (1, 4)

forms. Explicitly, one has

δgµν̄ = −iwi,µν̄δt
i , δgµν = − 2

4!||Ω||2 Ωµ
ρ̄1...ρ̄4χa,νρ̄1...ρ̄4δz

a , (B.66)

with the variations δti and δza in the Kähler and complex structure moduli. The standard

moduli space metric on the space of metric deformations is defined by

G(δg, δ̃g) =
1

4V

∫

X
d10x

√
g gmngpqδgmpδ̃gnq . (B.67)

This metric splits into a Kähler and a complex structure part which can be worked out

separately. Let us first discuss the Kähler deformations. A straightforward calculation,

inserting the first (B.66) shows that

G(1,1)
ij (t) =

1

2V

∫

X
ωi ∧ ∗ωj . (B.68)

Using the expression in (B.56) for the dual of (1, 1) forms together with (B.58), this can be

written in terms of topological integrals which involve J and the forms ωi. Then, defining

the Kähler moduli by

J = tiωi , (B.69)

one finds

G(1,1)
ij (t) = −10

κij

κ
+

25

2

κiκj

κ2
, (B.70)

6The term “intersection number” is a slight misnomer in this context, as, in fact, all of these integrals,

except di1...i5 , in general depend on the complex structure (due to the use of complex (p, q)-forms) and thus

do not represent topological invariants.
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where we have introduced the notation

κ =

∫

X
J5 = 5!V = di1...i5t

i1 . . . ti5 , (B.71)

κi =

∫

X
ωi ∧ J4 = dii2...i5t

i2 . . . ti5 , (B.72)

κij =

∫

X
ωi ∧ ωj ∧ J3 = diji1i2i3t

i1ti2ti3 , (B.73)

... (B.74)

and so on for versions of κ with more than two indices. With this notation, (B.58) can be

re-written as

ω̃i = 5i
κi

κ
. (B.75)

It is easy to check that the above moduli space metric (B.70) can be obtained from a

“Kähler potential” K(1,1) as

G(1,1)
ij = ∂i∂jK

(1,1), where K(1,1) = −1

2
lnκ . (B.76)

We can use the moduli space metric to define lower index moduli ti via ti = G(1,1)
ij tj . From

the explicit form (B.70) of the metric, it is easy to verify the useful relation

ti =
5κi

2κ
. (B.77)

A further useful observation is related to “metrics” of the form

G̃ij = G(1,1)
ij + c

κiκj

κ2
(B.78)

for any real number c. A short calculation, using (B.77) and κit
i = κ repeatedly, shows that

G̃ij

(
G(1,1)jk + c̃

κjκk

κ2

)
= δk

i +

(
c+ c̃+

2

5
cc̃

)
κiκ

k

κ2
, (B.79)

where c̃ is an arbitrary real number. Here, the standard moduli space metric G(1,1)
ij and its

inverse G(1,1)ij have been used to lower and raise indices. The above relation shows that

for all c 6= −5/2 the metric (B.78) is invertible and that its inverse is given by

G̃ij = G(1,1)jk + c̃
κjκk

κ2
, c̃ = − 5c

5 + 2c
. (B.80)

These relations will be helpful when calculating the flux potential in the one-dimensional

effective theory.

To summarise the main points, the Kähler moduli space for five-folds can be treated in

complete analogy with the one for three-folds. The main difference is that the moduli space

metric is now governed by a quintic pre-potential κ instead of a cubic one for three-folds.
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We now move on to the complex structure moduli. Evaluating the standard moduli

space metric (B.67) for the (2, 0) variation of the metric in (B.66), one finds

G(1,4)

ab̄
=

1

V ||Ω||2
∫

X
χa ∧ ∗χ̄b̄ . (B.81)

Using the result in (B.56) for the Hodge dual of (4, 1) forms together with the relation

V ||Ω||2 = i
∫
X Ω ∧ Ω̄ then leads to the standard result

G(1,4)

ab̄
(z, z̄) =

∫
X χa ∧ χ̄b̄∫
X Ω ∧ Ω̄

. (B.82)

Kodaira’s relation
∂Ω

∂za
= kaΩ + χa (B.83)

can be shown exactly as in the case of Calabi-Yau three-folds [16]. It implies, via direct dif-

ferentiation, that the moduli space metric (B.82) can be obtained from the Kähler potential

K(1,4) as

G(1,4)

ab̄
= ∂a∂b̄K

(1,4), where K(1,4) = ln

[
i

∫

X
Ω ∧ Ω̄

]
. (B.84)

In order to express K(1,4) more explicitly in terms of moduli, we introduce a symplectic

basis (AA, BB) of five-cycles and a dual basis (αA, β
B) of five-forms satisfying

∫

AB

αA =

∫

X
αA ∧ βB = δBA,

∫

BA

βB =

∫

X
βB ∧ αA = −δBA . (B.85)

Then, the period integrals are defined in the usual way as

ZA =

∫

AA

Ω, GA =

∫

BA

Ω. (B.86)

and the periods GA can be shown to be functions of ZA, just as in the three-fold case. In

the dual basis (αA, β
B) the (5, 0) form can then be expanded as Ω = ZAαA − GAβ

A and

inserting this into the expression (B.84) for the Kähler potential yields

K(1,4) = ln
[
i(GAZ̄A −ZAḠA)

]
. (B.87)

By virtue of Kodaira’s relation,
∫
X Ω ∧ ∂Ω

∂ZA = 0 which immediately leads to GA =
1
2

∂
∂ZA (GBZB). Hence, the periods GA can be obtained as derivatives

GA =
∂G
∂ZA

(B.88)

of a pre-potential G which is homogeneous of degree two in the projective coordinates ZA.

This is formally very similar to the three-fold case. However, an important difference is

that the five-forms here contain not only (5, 0), (0, 5), (4, 1) and (1, 4) pieces but also (3, 2)

and (2, 3) parts. That is, A,B, . . . = 0, 1, . . . , h1,4 + h2,3. As a consequence, the periods

ZA do not simply serve as projective coordinates on the complex structure moduli space,
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though they can in principle be computed as functions of the za. However, their vast

redundancy renders them much less useful as compared to the three-fold case.

When flux is included, the one-dimensional effective theory depends on yet another

set of moduli-dependent functions which arises from the contractions, σ̃e and ˜̃σe, of the

harmonic (2, 2) forms σe which appear in the relation (B.56) for the Hodge dual of (2, 2)

forms. To explicitly compute these contractions, we note that σ̃e must be a harmonic (1, 1)

form and can hence be expanded in terms of the basis ωi. Concretely, we write

σ̃e = iki
eωi (B.89)

with some coefficients ki
e which, in general, depend on the (1, 1) moduli ti. Applying one

more contraction to this relation and using (B.75) we learn that

˜̃σe = −5

κ
ki

eκi . (B.90)

Hence, we can deal with all the contractions of harmonic (2, 2) forms if we are able to

compute the coefficients ki
e. This can be accomplished by multiplying (B.59) with ωj and

integrating over the Calabi-Yau five-fold X. This results in

ki
e =

1

4V

(
G(1,1)ij − 25

6

κiκj

κ2

)
dejklt

ktl , (B.91)

where G(1,1)ij is the inverse of G(1,1)
ij .

B.4.1 Real vs. complex forms

For the purpose of disentangling and clarifying the intertwining of (2, 1)- and (1, 3)-modes

with the complex structure moduli in the M-theory reduction, it turns out to be advan-

tageous to revert to real harmonic 3- and 4-forms instead of their complex counterparts,

namely harmonic (2, 1)- and (1, 3)-forms. In this subsection, we will investigate the rela-

tions between the two formulations.

Real harmonic 3-forms are naturally locked to 3-cycles and thus topologically invariant.

The fact that h3,0(X) = 0 for Calabi-Yau five-folds ensures that a real 3-form7 is exclusively

made up of a (2, 1)- and a (1, 2)-piece. However, the way in which a particular 3-form is

split into (2, 1)- and (1, 2)-parts evidently depends on the choice of complex structure.

We can parametrically represent this fact by introducing complex structure dependent

linear maps A and B from real 3-forms to complex (2, 1)-forms and vice versa. While this

parametrization of the complex structure dependence in terms of unknown implicit maps

turns out to be sufficient for the dimensional reduction we are carrying out in this paper, it

would nonetheless be nice to find a way to calculate explicit expressions for these functions.

However, this is beyond the scope of the present paper and will not be attempted here.

For fixed bases, the linear maps have a matrix representation according to

νp = Ap
QNQ (and: ν̄p̄ = Āp̄

QNQ) , (B.92)

NP = BP
qνq + B̄P

q̄ν̄q̄ , (B.93)

7All differential forms occurring in this subsection are henceforth implicitly assumed to be harmonic.
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where {NP}P=1,...,b3(X) is a real basis of H3(X) and {νp}p=1,...,h2,1(X) is a basis of H(2,1)(X).

To avoid confusion with symbols defined elsewhere, we use Fraktur font letters to denote

maps translating between real and complex forms and calligraphic letters for real form

indices. Note that Ap
Q and BP

q are complex and have dependence Ap
Q = Ap

Q(z, z̄),

BP
q = BP

q(z, z̄), where za and z̄ā are the complex structure moduli of the Calabi-Yau

five-fold. The equations above have two faces, for they can either be written in local real ten

dimensional coordinates or in local (complex) Darboux coordinates. For example, (B.93)

in real coordinates is

NP,m1m2m3 = BP
qνq,m1m2m3 + B̄P

q̄ν̄q̄,m1m2m3 , (B.94)

whereas in Darboux coordinates it reads

NP,µ1µ2ν̄ = BP
qνq,µ1µ2ν̄ , (and c.c.) , (B.95)

where forms with unnatural index types are to be translated manually using (A.3). Insert-

ing (B.92) into (B.93) and vice versa, we learn relations between the A and B maps:

Ap
QBQ

q = δp
q (and c.c.) , (B.96)

Ap
QB̄Q

q̄ = 0 (and c.c.) , (B.97)

BP
qAq

Q + B̄P
q̄Āq̄

Q = δP
Q . (B.98)

For the complex structure dependence, one finds:

∂aNP = 0 , ∂aνp = Ap
Q

,aBQ
qνq + Ap

Q
,aB̄Q

q̄ ν̄q̄ , (B.99)

∂āNP = 0 , ∂āνp = Ap
Q

,āBQ
qνq + Ap

Q
,āB̄Q

q̄ ν̄q̄ . (B.100)

Using eqs. (B.92)–(B.93) and (B.56), one can compute the Hodge star of the real 3-form NP :

∗NP =
1

2
∆P

QNQ ∧ J2 , (B.101)

where ∆P
Q := i(BP

qAq
Q − B̄P

q̄Āq̄
Q). The linear map ∆ provides a complex structure

on the moduli space of real 3-forms induced by the complex structure of the Calabi-Yau

five-fold itself. It satisfies

∆P
Q∆Q

R = −δPR , (∆P
Q)∗ = ∆P

Q , tr ∆ = 0 . (B.102)

Using the complex structure ∆, we define projection operators

P±P
Q :=

1

2
(11 ∓ i∆)P

Q (B.103)

satisfying

P±P
QP±Q

R = P±P
R , P+P

QP−Q
R = P−P

QP+Q
R = 0 , (P±P

Q)∗ = P∓P
Q .

(B.104)
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In terms of the A and B maps, they are explicitly given by

P+P
Q = BP

qAq
Q , P−P

Q = B̄P
q̄Āq̄

Q . (B.105)

The standard metric on the moduli space of real 3-forms is

G(3)
PQ =

∫

X
NP ∧ ∗NQ . (B.106)

Using the expression for the Hodge star (B.101), we can rewrite this so as to make the

dependence on the moduli more explicit:

G(3)
PQ(t, z, z̄) =

1

2
∆(P

RdQ)Rijt
itj , (B.107)

where we have defined a new intersection number dPQij :=
∫
X NP ∧NQ ∧ ωi ∧ ωj, which

is purely topological. Note that dPQij = −dQPij. The metric anti-commutes with the

complex structure:

∆P
QG(3)

QR + G(3)
PQ∆R

Q = 0 , (B.108)

which, in fact, becomes a Hermiticity condition on the metric G(3):

G(3)
PQ = ∆P

R∆Q
SG(3)

RS . (B.109)

Thus, the 3-form moduli space is a Hermitian manifold with G(3) being a Hermitian metric.

A real 4-form, which is topologically invariant, can be decomposed into the sum of

(1, 3)-, (3, 1)- and (2, 2)-forms using the complex structure of the Calabi-Yau five-fold X.

In the same spirit as for the 3-forms, we introduce linear maps C, D, E and F to translate

between real 4-forms and their (1, 3)-, (3, 1)- and (2, 2)-pieces:

̟x = Cx
XOX (and: ¯̟ x̄ = C̄x̄

XOX ) , (B.110)

σe = Ee
XOX , (B.111)

OX = DX
x̟x + D̄X

x̄ ¯̟ x̄ + FX
eσe , (B.112)

where {̟x} is a basis of H(1,3)(X), whereas {σe} and {OX } are real bases of H(2,2)(X)

and H4(X), respectively. Unlike C and D, E and F are real. All linear maps C, D, E and

F a priori depend on the complex structure moduli za and z̄ā. By consecutively inserting

eqs. (B.110)–(B.112) into each other, we learn relations among the linear maps

Cx
XDX

y = δx
y , C̄x̄

X D̄X
ȳ = δx̄

ȳ , Ee
XFX

f = δe
f , (B.113)

Cx
X D̄X

ȳ = Cx
XFX

e = Ee
XDX

x = 0 , (and c.c.) , (B.114)

DX
xCx

Y + D̄X
x̄C̄x̄

Y + FX
eEe

Y = δX
Y . (B.115)

The wedge product of two harmonic (1, 1)-forms is a harmonic (2, 2)-form. For the

purpose of this paper, we will restrict attention to the case where all (2, 2)-forms are

obtained by wedging together two (1, 1)-forms, that is we require8

H(2,2)(X) = H(1,1)(X) ∧H(1,1)(X) . (B.116)

8In the Calabi-Yau four-fold literature, the right hand side of (B.116) is often referred to as the vertical

part, denoted H
(2,2)
V , of H(2,2) (see, for example, ref. [6]). The total space H(2,2) is given by H(2,2) =

H
(2,2)
V ⊕H

(2,2)
H , where H

(2,2)
H comprises all (2, 2)-forms that can not be obtained by the product of two (1, 1)-

forms. In this terminology, we are considering Calabi-Yau five-folds X for which H(2,2)(X) = H
(2,2)
V (X)

and H
(2,2)
H (X) = 0.
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All examples of Calabi-Yau five-folds presented in appendix B.2 satisfy (B.116). The

significance of this restriction is that, since the (1, 1)-forms (being naturally locked to

2-cycles) are independent of the complex structure, so are the (2, 2)-forms if they are

entirely generated by the square of (1, 1)-forms. This implies that σe, Ee
X and FX

e are

all independent of the complex structure moduli (or of any moduli fields, in fact). Since

the left hand side and the last term on the right hand side of (B.112) are independent of

the complex structure, the same must be true for the sum of the first two terms on the

right hand side. This observation allows us to treat the (1, 3) and (3, 1) part together in a

complex structure independent way.

Let us now choose the basis {OX } such that the first 2h1,3(X) indices lie in the

(1, 3) + (3, 1) directions and the remaining indices lie in the (2, 2) direction, that is we

divide the index range X = (X̂ , X̃ ), where X̂ = 1, . . . , 2h1,3(X) and X̃ = 1, . . . , h2,2(X).

This rearrangement is also independent of the complex structure. Eqs. (B.110)–(B.112)

then become

̟x = Cx
X̂OX̂ (and: ¯̟ x̄ = C̄x̄

X̂OX̂ ) , (B.117)

σe = Ee
X̃OX̃ , (B.118)

OX̂ = DX̂
x̟x + D̄X̂

x̄ ¯̟ x̄, OX̃ = FX̃
eσe , (B.119)

where OX̂ , OX̃ , FX̃
e, Ee

X̃ and σe are independent of the complex structure moduli, whereas

all other objects are dependent on them. Instead of eqs. (B.113)–(B.115) we have

Cx
X̂DX̂

y = δx
y , C̄x̄

X̂ D̄X̂
ȳ = δx̄

ȳ , Ee
X̃FX̃

f = δe
f , (B.120)

Cx
X̂ D̄X̂

ȳ = 0 , (and c.c.) , (B.121)

DX̂
xCx

Ŷ + D̄X̂
x̄C̄x̄

Ŷ = δX̂
Ŷ , FX̃

eEe
Ỹ = δX̃

Ỹ . (B.122)

The relations between Cx
X̂ , DX̂

y, OX̂ and ̟x are very similar to the relations between Ap
P ,

BP
q, NP and νp for the 3-form case discussed above. The complex structure dependence

in the (1, 3)-sector is parametrized by Cx
X̂ and DX̂

y

∂aOX̂ = 0 , ∂a̟x = Cx
Ŷ

,aDŶ
y̟y + Cx

Ŷ
,aD̄Ŷ

ȳ ¯̟ ȳ , (B.123)

∂āOX̂ = 0 , ∂ā̟x = Cx
Ŷ

,āDŶ
y̟y + Cx

Ŷ
,āD̄Ŷ

ȳ ¯̟ ȳ . (B.124)

Using (B.117), (B.119) and (B.56), one can compute the Hodge star of the real 4-form OX̂ :

∗OX̂ = −OX̂ ∧ J . (B.125)

Whenever we use the forms OX̂ to describe (1, 3)- and (3, 1)-forms we will refer to it as the

4̂-form formulation. The standard metric on the moduli space of real 4̂-forms is given by

G(4̂)

X̂ Ŷ
=

∫

X
OX̂ ∧ ∗OŶ . (B.126)

Using the expression for the Hodge star (B.125), we can rewrite this so as to make the

dependence on the moduli more explicit:

G(4̂)

X̂ Ŷ
(t) = −dX̂ Ŷit

i , (B.127)
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where we have defined a new intersection number dX̂ Ŷi :=
∫
X OX̂ ∧OŶ ∧ωi, which is purely

topological. Note that dX̂ Ŷi = dŶX̂ i.

Similarly to the 3-form case, there is a complex structure ∆X̂
Ŷ on the 4̂-form moduli

space inherited from the complex structure of the Calabi-Yau five-fold and given by

∆X̂
Ŷ = i(DX̂

xCx
Ŷ − D̄X̂

x̄C̄x̄
Ŷ) . (B.128)

It satisfies the relations of (B.102). The projection operators are

P±X̂
Ŷ :=

1

2
(11 ∓ i∆)X̂

Ŷ , (B.129)

which satisfy (B.104) and are explicitly given by

P+X̂
Ŷ = DX̂

yCy
Ŷ , P−X̂

Ŷ = D̄X̂
ȳC̄ȳ

Ŷ . (B.130)

Note, however, that unlike in the 3-form case, the standard 4̂-form metric (B.126) is not

Hermitian with respect to the complex structure ∆X̂
Ŷ .

C N = 2 supersymmetry in one dimension

In this appendix we will review and develop one-dimensional N = 2 supersymmetry to the

level necessary for the theories which arise from our M-theory reductions. One-dimensional

supersymmetry has previously been discussed in the literature (see, for example, [10, 39, 40]

and references therein), notably in the context of black hole moduli spaces [17]. However, to

describe the effective actions which arise from M-theory reduction on Calabi-Yau five-folds

a number of generalisations and extensions of the one-dimensional N = 2 theories studied

in the literature are required. For example, we find that we require theories in which the

two main types of multiplets, the 2a and 2b multiplets, are coupled. Some of the five-fold

zero modes fall into fermionic (2b) multiplets so we need to introduce and develop these

multiplets properly. Even though gravity in one dimension is non-dynamical, it leads to

constraints which cannot be ignored. This means we need to consider one-dimensional local

supersymmetry. Finally, when we include M-theory four-form flux we need to incorporate

a potential and an associated superpotential into the 2a sector of the theory. All those

features have not been fully worked out in the literature. We have, therefore, opted for a

systematic exposition of one-dimensional N = 2 global and local supersymmetry, in order

to develop a solid base for our application to M-theory.

C.1 Global N = 2 supersymmetry

Before turning to one-dimensional N = 2 curved superspace, we will briefly recapitulate the

case of global N = 2 supersymmetry in one dimension [10]. One-dimensional superspace

(supertime) is most easily obtained by dimensional reduction from d = 2, which has at-

tracted a lot of attention in view of formulating superstring actions in superspace [41, 42].

In d = 2, there are Majorana, Weyl and Majorana-Weyl spinors and hence the same

amount of supersymmetry can be realized by different choices of spinorial representation
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for the supercharges (see, for example, ref. [43]). For N = 2, the two options are (1, 1) and

(2, 0) supersymmetry.

Upon reduction to one dimension, these two choices for two-dimensional N = 2 su-

persymmetry lead to two different one-dimensional N = 2 super multiplets, referred to as

2a (descending from two-dimensional (1, 1) supersymmetry) and 2b (descending from two-

dimensional (2, 0) supersymmetry) multiplets. These two multiplets will play a central rôle

in our discussion. Off-shell, the 2a multiplet contains a real scalar as its lowest component

plus a complex fermion and a real scalar auxiliary field while the 2b multiplets contains

a complex scalar as its lowest component, accompanied by a complex fermion. The 2b

multiplet does not contain an auxiliary field. Other off-shell multiplets, not obtained from

a standard toroidal reduction, are the fermionic 2a and 2b multiplets and the non-linear

multiplet [39]. From those we will only need and discuss in detail the fermionic 2b multi-

plet. It has a complex fermion as its lowest component which is balanced by a complex

scalar at the next level.

Flat N = 2 supertime, R
1|2, is parametrised by coordinates {x0 = τ ; θ, θ̄}, where θ is a

complex one-dimensional spinor. In the following, we use indices A,B, . . . = 0, θ, θ̄ to label

supertime tensors. The supersymmetry algebra is generated by two supercharges Q and Q̄

defined as

Q = ∂θ −
i

2
θ̄∂0, Q̄ = −∂θ̄ +

i

2
θ∂0 (C.1)

where ∂θ = ∂
∂θ , ∂θ̄ = ∂

∂θ̄
= − (∂θ)

∗, ∂0 = ∂
∂x0 = ∂

∂τ . Using the conventions for one-

dimensional spinors summarised in appendix A it is easy to verify that they satisfy

the algebra

{Q, Q̄} = i∂0 = H, {Q,Q} = 0, {Q̄, Q̄} = 0 . (C.2)

Supersymmetry transformations of N = 2 supertime are parameterised by a complex one-

dimensional spinor ǫ and act as

δǫ = iǫQ , δǭ = iǭQ̄ . (C.3)

This choice ensures that the total supersymmetry variation δǫ,tot. = δǫ+δǭ is real. As usual,

we introduce the associated covariant derivatives D and D̄ which anti-commute with the

supercharges, that is {D,Q} = {D, Q̄} = {D̄,Q} = {D̄, Q̄} = 0, and are explicitly given by

D = ∂θ +
i

2
θ̄∂0, D̄ = −∂θ̄ −

i

2
θ∂0 . (C.4)

They satisfy the anti-commutation relations

{D, D̄} = −i∂0 = −H, {D,D} = 0, {D̄, D̄} = 0 . (C.5)

Although not really required for the global case it is useful for comparison with local su-

persymmetry later on to develop the geometry of flat supertime. To this end, we introduce

the notation (∂A) = (∂0, ∂θ, ∂θ̄) for the partial derivatives and similarly for the covariant

derivatives, (DA) = (D0,Dθ,Dθ̄). These two types of derivatives are generally related by

DA = EA
B∂B , (C.6)
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where EA
B is the inverse of the supervielbein EB

A, that is EA
CEC

B = δA
B . For flat

supertime we have D0 = ∂0, Dθ = D and Dθ̄ = D̄ with D and D̄ given in (C.4). A short

computation using (C.6) then shows that the supervielbein of flat supertime is given by

E0
0 = 1, E0

θ = 0, E0
θ̄ = 0,

Eθ
0 = − i

2
θ̄, Eθ

θ = 1, Eθ
θ̄ = 0,

Eθ̄
0 = − i

2
θ, Eθ̄

θ = 0, Eθ̄
θ̄ = −1.

(C.7)

The torsion tensor TAB
C and curvature tensor RAB

rs can be obtained from the general

relation [43, 44] [
DA,DB

}
= −TAB

CDC −RAB
rsMrs, (C.8)

where Mrs are the Lorentz generators. In d = 1, the Lorentz indices only run over one

value and hence the single Lorentz generator and the curvature tensor vanish. To compute

the torsion tensor of flat superspace we use the flat superspace covariant derivatives (C.4)

in the above relation (C.8) for the torsion tensor. One finds that the only non-vanishing

component is

Tθθ̄
0 = i . (C.9)

Finally, we find for the super-determinant of the flat supervielbein (C.7)

sdetEA
B = −1 . (C.10)

Now we need to introduce superfields. One-dimensional N = 2 superfields are functions

of the supertime coordinates τ , θ and θ̄. As usual, their component field content can be

worked out by expanding in θ and θ̄. Since θ2 = θ̄2 = 0, only the terms proportional to

θ, θ̄ and θθ̄ arise, in addition to the lowest, θ-independent component. Different types of

irreducible superfields can be obtained by imposing constraints on this general superfield.

We now discuss these various types in turn.

A 2a superfield φ = φ(τ, θ, θ̄) is a real superfield, that is, a superfield satisfying the

constraint φ = φ†. A short calculation shows that the most general component expansion

consistent with this constraint is

φ = ϕ+ iθψ + iθ̄ψ̄ +
1

2
θθ̄f , (C.11)

where ϕ and f are real scalars and ψ is a complex fermion. The highest component f will

turn out to be an auxiliary field so that a 2a superfield contains one real physical scalar

field. From (C.1) and (C.3), the supersymmetry transformations of these components are

given by

δǫϕ = −ǫψ, δǫψ = 0, δǫψ̄ =
i

2
ǫϕ̇− 1

2
ǫf, δǫf = −iǫψ̇, (C.12)

δǭϕ = ǭψ̄, δǭψ̄ = 0, δǭψ = − i

2
ǭϕ̇− 1

2
ǭf, δǭf = −iǭ ˙̄ψ . (C.13)
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For a set, {φi}, of 2a superfields the most general non-linear sigma model9 can be written

in superspace as [10, 17, 45]

S2a =
1

4

∫
dτd2θ

{
(G(φ) +B(φ))ijDφ

iD̄φj + Lij(φ)DφiDφj +Mij(φ)D̄φiD̄φj + W(φ)
}
,

(C.14)

where Gij is symmetric, Bij , Lij, Mij are anti-symmetric and W is an arbitrary function

of φi. The component version of W(φ) is obtained by a Taylor expansion about ϕi:

W(φ) = W(ϕ) + iθψiW,i(ϕ) + iθ̄ψ̄iW,i(ϕ) +
1

2
θθ̄(W,i(ϕ)f i + 2W,ij(ϕ)ψiψ̄j). (C.15)

The , i notation denotes the ordinary derivative with respect to ϕi. From this and the other

formulægiven in this appendix it is straightforward to work out the component action of

this superspace action. Here, we will not present the most general result but focus on the

first and last term in (C.14) which are the only ones relevant to our M-theory reduction.

One finds

S2a =
1

4

∫
dτd2θ

{
Gij(φ)DφiD̄φj + W(φ)

}
(C.16)

=
1

4

∫
dτ

{
1

4
Gij(ϕ)ϕ̇iϕ̇j − i

2
Gij(ϕ)(ψi ˙̄ψj − ψ̇iψ̄j) +

1

4
Gij(ϕ)f if j

− 1

2
Gij,k(ϕ)(ψiψ̄jfk − ψkψ̄jf i − ψiψ̄kf j) +

i

2
Gij,k(ϕ)(ψkψ̄i + ψ̄kψi)ϕ̇j

−Gij,kl(ϕ)ψiψ̄jψkψ̄l − 1

2
W,i(ϕ)f i −W,ij(ϕ)ψiψ̄j

}
. (C.17)

Apart from the standard kinetic terms we have Pauli terms (coupling two fermions and the

time derivative of a scalar), Yukawa couplings and four-fermi terms. We also see that the

highest components f i are indeed auxiliary field. The f i equation of motion can be solved

explicitly and leads to

f i = GijW,j + . . . (C.18)

where Gij is the inverse of Gij . The dots indicate fermion bilinear terms which we have not

written down explicitly. Using this solution to integrating out the f i produces additional

four-fermi terms and the scalar potential

S2a,pot = −1

8

∫
dτ U , U =

1

2
GijW,iW,j . (C.19)

The other major type of multiplet is the 2b multiplet Z = Z(τ, θ, θ̄) which is defined

by the constraint D̄Z = 0. Working out its most general component expansion one finds

Z = z + θκ+
i

2
θθ̄ż, (C.20)

where z is a complex scalar and κ is a complex fermion. We note that, unlike for the 2a

multiplet, the highest component is not an independent field but simply ż. Hence, a 2b

9For an introduction to supersymmetric non-linear sigma models in one and two dimensions, see, for

example, ref. [40].
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multiplet contains a complex physical scalar field and no auxiliary field. This difference

in physical bosonic field content in comparison with the 2a multiplet will be quite useful

when it comes to identifying which supermultiplets arise from our M-theory reduction.

Eqs. (C.1) and (C.3) lead to the component supersymmetry transformations

δǫz = iǫκ, δǫz̄ = 0, δǫκ = 0, δǫκ̄ = ǫ ˙̄z, (C.21)

δǭz̄ = iǭκ̄, δǭz = 0, δǭκ̄ = 0, δǭκ = ǭż . (C.22)

A general non-linear sigma model for a set, {Za}, of 2b multiplets has the form [10, 17, 45]

S2b =
1

4

∫
dτd2θ

{
Gab̄(Z, Z̄)DZaD̄Z̄ b̄ +

[
1

2
Bab(Z, Z̄)DZaDZb + c.c.

]
+ F (Z, Z̄)

}
,

(C.23)

where Gab̄ is hermitian, Bab is anti-symmetric and F is an arbitrary real function. The

component version of F (Z, Z̄) is obtained by a Taylor expansion about za and z̄ā:

F (Z, Z̄) = F (z, z̄) + θκaF,a(z, z̄) − θ̄κ̄āF,ā(z, z̄)

+
1

2
θθ̄
{
iF,a(z, z̄)ż

a − iF,ā(z, z̄) ˙̄zā + 2F,ab̄(z, z̄)κ
aκ̄b̄
}
. (C.24)

The component form of the action (C.23) can again be worked out straightforwardly from

the above formalæ but we will not pursue this here. Instead, we focus on a slightly different

superspace action which is better adapted to what we need in the context of our M-theory

reduction. First, we drop the term proportional to Bab which does not arise from M-theory.

Secondly, we introduce a slight generalisation in that we allow the sigma model metric Gab̄

to also depend on 2a superfields φi, in addition to the 2b superfields Za and their complex

conjugates. A multi-variable Taylor expansion of a function G(φ,Z, Z̄) depending on 2a

as well as 2b superfields yields the component form:

G(φ,Z, Z̄) = G(ϕ, z, z̄) + θ[iψiG,i(ϕ, z, z̄) + κaG,a(ϕ, z, z̄)] + θ̄[iψ̄iG,i(ϕ, z, z̄)

−κ̄āG,ā(ϕ, z, z̄)] + θθ̄

[
1

2
G,i(ϕ, z, z̄)f

i +G,ij(ϕ, z, z̄)ψ
iψ̄j

+iG,ia(ϕ, z, z̄)ψ̄
iκa + iG,iā(ϕ, z, z̄)ψ

iκ̄ā +G,ab̄(ϕ, z, z̄)κ
aκ̄b̄

+
i

2
G,a(ϕ, z, z̄)ż

a − i

2
G,ā(ϕ, z, z̄) ˙̄zā

]
. (C.25)

The relevant action is

S2b =
1

4

∫
dτ d2θ

{
Gab̄(φ,Z, Z̄)DZaD̄Z̄ b̄ + F (Z, Z̄)

}

=
1

4

∫
dτ

{
Gab̄(ϕ, z, z̄)ż

a ˙̄zb̄ − i

2
Gab̄(ϕ, z, z̄)(κ

a ˙̄κb̄ − κ̇aκ̄b̄) (C.26)

− i

2
Gab̄,c(ϕ, z, z̄)(κ

aκ̄b̄żc − 2κcκ̄b̄ża) +
i

2
Gab̄,c̄(ϕ, z, z̄)(κ

aκ̄b̄ ˙̄zc̄ + 2κaκ̄c̄ ˙̄zb̄)

−Gab̄,cd̄(ϕ, z, z̄)κ
aκ̄b̄κcκ̄d̄ − 1

2
Gab̄,i(ϕ, z, z̄)κ

aκ̄b̄f i −Gab̄,ij(ϕ, z, z̄)κ
aκ̄b̄ψiψ̄j

−iGab̄,ic(ϕ, z, z̄)κ
aκ̄b̄ψ̄iκc − iGab̄,ic̄(ϕ, z, z̄)κ

aκ̄b̄ψiκ̄c̄ −Gab̄,i(ϕ, z, z̄)ψ
iκ̄b̄ża

+Gab̄,i(ϕ, z, z̄)ψ̄
iκa ˙̄zb̄ − i

2
(F,aż

a − F,b̄
˙̄zb̄) − F,ab̄κ

aκ̄b̄

}
.
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Note that the function F gives rise to a Chern-Simons type term (and fermion mass terms)

but not to a scalar potential.

The 2a and 2b superfields introduced above are bosonic superfields in the sense that

their lowest components are bosons. However, for both types of multiplets there also

exists a fermionic version, satisfying the same constraint as their bosonic counterparts but

starting off with a fermion as the lowest component. In our context, we will only need

fermionic 2b superfields so we will focus on them. The details for fermionic 2a superfields

can be worked out analogously.

Fermionic 2b superfields R = R(τ, θ, θ̄) have a spinorial lowest component and are

defined by the constraint D̄R = 0. Their general component expansion reads

R = ρ+ θh+
i

2
θθ̄ρ̇ , (C.27)

where ρ is a complex fermion and h is a complex scalar. For its component supersymmetry

transformations one finds

δǫρ = iǫh, δǫρ̄ = 0, δǫh = 0, δǫh̄ = −ǫ ˙̄ρ, (C.28)

δǭρ̄ = −iǭh̄, δǭρ = 0, δǭh̄ = 0. δǭh = ǭρ̇ . (C.29)

A set, {Rx}, of fermionic 2b superfields can be used to build non-linear sigma models where

only fermions are propagating. A class of such models is given by

S2b,F =
1

4

∫
dτ d2θ Gxȳ(φ)RxR̄ȳ (C.30)

=
1

4

∫
dτ

{
i

2
Gxȳ(ϕ)(ρx ˙̄ρȳ − ρ̇xρ̄ȳ) −Gxȳ(ϕ)hxh̄ȳ − 1

2
Gxȳ,i(ϕ)ρxρ̄ȳf i

− iGxȳ,i(ϕ)(ψiρxh̄ȳ + ψ̄iρ̄ȳhx) −Gxȳ,ij(ϕ)ρxρ̄ȳψiψ̄j

}
.

Here, we have allowed the sigma model metric to depend on a set, {φi}, of 2a moduli, a

situation which will arise from M-theory reductions. Note that the bosons hx are indeed

auxiliary fields and only the fermions ρx have kinetic terms.

C.2 Local N = 2 supersymmetry

The goal of this subsection is to develop one-dimensional N = 2 curved superspace to an

extent that will allow us to write down actions over this superspace and compare their

component expansion with our result from dimensional reduction of M-theory on Calabi-

Yau five-folds. Eventually, we are using the results of this subsection to write our one-

dimensional effective action in full one-dimensional N = 2 curved superspace thereby

making the residual supersymmetry manifest.

The on-shell one-dimensional N = 2 supergravity multiplet comprises the lapse func-

tion (or “einbein”) N , which is a real scalar, and the “lapsino” ψ0, which is a one-component

complex spinor. In all expressions provided in this sub-section, flat superspace (and thus

the equations of the previous subsection) can be recovered by gauge fixing the supergravity
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fields to N = 1 and ψ0 = 0. From a more geometric viewpoint, curved N = 2 supertime

looks locally like flat N = 2 supertime R
1|2.

The well-known case of N = 1 in four dimensions [46–51] and supergravity theories in

two-dimensions [52, 53] will guide us in constructing our curved supertime here. Modulo

some subtleties, which are explained below, many textbook formulæ10 carry over to the

case of N = 2 supertime with the index ranges adjusted appropriately.

The geometrical description of curved superspace follows ordinary Riemannian geom-

etry, however with the range of indices extended to include the spinorial coordinates. In

particular, certain (super-)tensors, such as the supervielbein EA
B , super-spin-connection

ΩAB
C , supertorsion TAB

C and supercurvature RABC
D, play an important rôle when work-

ing with curved superspace. As in the previous subsection, the indices A,B, . . . = 0, θ, θ̄

are used to label supertime tensors and underlined versions A,B, . . . correspond to local

Lorentz indices. As local coordinates, we choose {x0 = τ ; θ, θ̄}, where θ is a complex one-

dimensional spinor. The supervielbein can be used to convert curved to flat indices and

vice versa, so that

VA = EA
BVB , VA = EA

BVB . (C.31)

In the second relation the inverse of the supervielbein has been used, which is defined via

EA
BEB

C = δA
C , EA

BEB
C = δA

C . (C.32)

Note that one may use the superdifferential dzA together with the graded wedge-product

∧ to write all the aforementioned supertensors as super-differential forms, for example

EA = dzBEB
A, TA =

1

2
dzB ∧ dzCTCB

A . (C.33)

The supertorsion is defined as covariant derivative of the supervielbein:

TA = dEA + EB ∧ ΩB
A. (C.34)

The rôle of the local Lorentz indices is rather subtle in N = 2 supertime. In order to

recover flat supertime, these indices are taken to be valued in the bosonic Lorentz group

SO(1), which is just the trivial group, and not in the full super-Lorentz group SO(1|2). Since

there is no Lie algebra for the trivial group, there are no Lorentz generators in one dimension

and the local Lorentz indices A,B, . . . do not transform under any group action but should

merely thought of as labels. They label the two different representations of Spin(1), namely

for A = 0 the “vector” representation, which is nothing but the real numbers in one

dimension, and for A = θ the spinor representation which are real Grassmann numbers.

In addition, the fact that we want to realize N -extended supersymmetry (with N > 1)

means we need in principle another index, say i, j = 1, . . . ,N on the A = θ components

to label the N -extendedness of the spinorial components (cf. the notation used in four

dimensional N = 2 superspace [54–57]). Here, N = 2 and hence A,B, . . . = 0, θ1, θ2.

For ease of notation, we combine the two θi into a combination of one complex index

θ = θ1 + iθ2 (and similarly θ̄ = θ1 − iθ2) thereby suppressing the additional N -extension

10We shall closely follow refs. [43, 44], here.
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index i. After this step, the local Lorentz indices A,B, . . . range over 0, θ and θ̄. Note that

this coincides precisely with the notation used for curved indices except for the additional

underline added for distinction. In summary, even though the local Lorentz indices can

take on three different values, there is no group acting on them. Objects carrying an anti-

symmetrized combination of two or more local Lorentz indices vanish identically, since the

Lorentz generator in each representation of Spin(1) is zero and there are no representation-

mixing Lorentz transformations. This immediately implies ΩAB
C = 0 and RABC

D = 0,

which profoundly simplifies the further discussion.

Since the on-shell supergravity multiplet contains only one real scalar, we take the

geometrical supertime tensors to be 2a superfields, which means they comprise four com-

ponent fields when expanded out in powers of θ and θ̄ (see (C.11)). The supervielbein

EA
B, in general, consists of a set of 3 × 3 = 9 2a superfields, which totals to 9 × 4 = 36

component (that is, off-shell) fields, and is expanded as

EA
B = EA(0)

B + iθEA(1)
B + iθ̄EA(1̄)

B +
1

2
θθ̄EA(2)

B . (C.35)

This is a large number of apparently independent fields given that on-shell, we just have

three, namely N , ψ0 and ψ̄0. In order to not obscure the physical content and to formulate

supertime theories in the most efficient way, it is important to find a formulation with

the minimum number of component fields. This can be achieved by imposing covariant

constraints on the supervielbein and by gauging away some components using the super-

general coordinate transformations

δEA
B = ξC(∂CEA

B) + (∂Aξ
C)EC

B , (C.36)

with infinitesimal parameters ξA, which comprise a set of three four-component 2a su-

perfields (that is, 12 component fields in total). The lowest component of ξ0| = ζ is the

infinitesimal parameter of worldline reparametrizations, whereas the lowest components of

the spinorial parameters ξθ| = iǫ and ξθ̄| = iǭ correspond to the infinitesimal local N = 2

supersymmetry parameters. The notation φ| is a shorthand for φ|θ=θ̄=0, that is denoting

the lowest component of the superfield φ. An infinitesimal local N = 2 supersymmetry

transformations with parameters ǫ and ǭ on a general superfield φ can be written by means

of the supercharges Q and Q̄ as

δǫφ = iǫQφ, δǭφ = iǭQ̄φ. (C.37)

If we use the following general component expansion for φ:

φ = φ| + θ(Dφ|) − θ̄(D̄φ|) +
1

2
θθ̄([D, D̄]φ|), (C.38)

then the components of φ transform as

δǫ(φ|) = iǫQφ|, δǫ(Dφ|) = iǫQDφ|, δǫ(D̄φ|) = iǫQD̄φ|, δǫ([D, D̄]φ|) = iǫQ[D, D̄]φ|.
(C.39)

Both (C.38) and (C.39) are manifestly super-covariant expressions since we used the tan-

gentized covariant super-derivative of curved supertime DA = EA
B∂B for building them.
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Note that, similarly to D and D̄ in the flat case, the tangentized, spinorial super-covariant

derivatives are abbreviated as D := Dθ = Eθ
A∂A and D̄ := Dθ̄ = Eθ̄

A∂A. From the general

fact that Q| = D| = ∂θ, it follows that one may replace Qs by Ds everywhere in (C.39)

and hence knowing the component expansion of D is enough for working out the entire

component version of (C.37), namely:

δǫ(φ|) = iǫDφ|, δǫ(Dφ|) = iǫD2φ| = 0, δǫ(D̄φ|) = iǫDD̄φ|, δǫ([D, D̄]φ|) = −iǫDD̄Dφ|,
(C.40)

and similarly for the ǭ-transformations. In the second and fourth equation in (C.40), we

used the property D2 = 0.

Now continuing our quest for finding the minimal formulation of off-shell N = 2, d = 1

supergravity, we have here opted for the analogue of the Wess-Zumino gauge in d = 4

and the way to formulate it in the present case will be explained in the following. Since

we have three physical components in the supergravity multiplet, we shall use 9 = 12 − 3

components out of ξA to gauge fix 9 out of the 36 components of EA
B, namely

Eθ
0| = Eθ̄

0| = Eθ
θ̄| = Eθ̄

θ| = DEθ̄
θ| = DEθ̄

θ̄| = 0, (C.41)

D̄Eθ
0| =

i

2
, Eθ

θ| = 1, Eθ̄
θ̄| = −1. (C.42)

The three remaining parameters in ξA act on the three physical fields N , ψ0 and ψ̄0, which

we choose to identify in the following way:

E0
0| = N, E0

θ| = ψ0, E0
θ̄| = −ψ̄0. (C.43)

We will now discuss our choice of covariant constraints. Usually, they are imposed on

certain components of the tangentized supertorsion TAB
C . “Trial and error” and “educated

guesses” eventually lead to a combination of constraints that yield the minimum number

of fields in the θ-expansion of the supervielbein EA
B . The main idea is to take the system

of constraints from N = 1, d = 4 and restrict the index ranges appropriately. Doing this,

we obtain the following torsion constraints:

Tθθ̄
0 = i, Tθθ̄

θ = 0, (conventional constraints), (C.44)

Tθ̄θ̄
0 = 0, Tθ̄θ̄

θ = 0, (representation preserving constraints), (C.45)

Tθθ
θ = 0, (“type 3” constraint), (C.46)

and their complex conjugates, of course. We are equating superfields to superfields here

and hence each of the above relations is manifestly (super-)covariant. The first line is the

analogue of the conventional constraints in N = 1, d = 4 and are characterized by being

algebraically solvable. In the absence of RA
B , the torsion is directly related to the graded

commutator of two super-covariant derivatives via

[DA,DB} = −TAB
CDC . (C.47)

The conventional constraints now stem from imposing (cf. (C.4))

{D, D̄} = −iD0, (C.48)
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which guarantees that the tangentized covariant super-derivatives of curved superspace,

D and D̄, satisfy the flat algebra. A 2b superfield Z by definition satisfies D̄Z = 0.

The representation preserving constraints listed in (C.45) follow from the corresponding

integrability condition, that is from

{D̄, D̄}Z = 0 ∀ 2b superfields Z. (C.49)

For the constraint in (C.46), we do not have a direct motivation from a one-dimensional

viewpoint, so we impose it purely by analogy to the conformal constraint of N = 1 in d = 4.

In general superspace theory, the torsion and curvature tensors satisfy the two Bianchi

identities (BIs)

∇TA = EB ∧RB
A, (C.50)

∇RA
B = 0, (C.51)

where ∇ = d + Ω∧. Specializing to N = 2 supertime, the second BI identically vanishes

due to RA
B = 0 and the first BI becomes

dTA = 0 ⇔ D[ATBC}
D + T[AB

ET |E|C}
D = 0. (C.52)

In the presence of constraints, consistency requires that the BIs are sill obeyed and this

needs to be checked by explicit calculation. In this respect, the BIs become “contentful”

(rather than being genuine identities) when constraints are present and then the BIs must

be imposed. For the case at hand, one learns from the BI (C.52) that all remaining torsion

components which are not already fixed by the constraints eqs. (C.44)–(C.46) must be zero.

From the definition of the supertorsion (C.34), the choice of gauge fixing (C.41)–

(C.43) and torsion constraints (C.44)–(C.46) and the imposition of the BI (C.52), all 36

components in the supervielbein expansion (C.35) are fixed uniquely to

E0
0 = N + iθψ̄0 + iθ̄ψ0, (C.53)

E0
θ = ψ0, E0

θ̄ = −ψ̄0, (C.54)

Eθ
0 = − i

2
θ̄, Eθ̄

0 = − i

2
θ, (C.55)

Eθ
θ = 1, Eθ

θ̄ = 0, Eθ̄
θ = 0, Eθ̄

θ̄ = −1. (C.56)

Note that the minimal set of fields of off-shell pure N = 2, d = 1 supergravity does not

comprise any auxiliary fields. From (C.32) we compute the component expansion of the

inverse supervielbein

E0
0 = N−1 − i

2
θN−2ψ̄0 −

i

2
θ̄N−2ψ0 −

1

2
θθ̄N−3ψ0ψ̄0, (C.57)

E0
θ = −N−1ψ0 −

i

2
θN−2ψ0ψ̄0, E0

θ̄ = −N−1ψ̄0 +
i

2
θ̄N−2ψ0ψ̄0,

Eθ
0 =

i

2
θ̄N−1 − 1

4
θθ̄N−2ψ̄0, Eθ̄

0 = − i

2
θN−1 − 1

4
θθ̄N−2ψ0,

Eθ
θ = 1 − i

2
θ̄N−1ψ0 −

1

4
θθ̄N−2ψ0ψ̄0, Eθ

θ̄ = − i

2
θ̄N−1ψ̄0,

Eθ̄
θ̄ = −1 +

i

2
θN−1ψ̄0 +

1

4
θθ̄N−2ψ0ψ̄0, Eθ̄

θ =
i

2
θN−1ψ0.
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Since DA = EA
B∂B, the above expressions allow us to write down the component expansion

of the tangentized, spinorial super-covariant derivative

D =

(
1 − i

2
N−1θ̄ψ0 −

1

4
N−2θθ̄ψ0ψ̄0

)
∂θ +

(
i

2
N−1θ̄ − 1

4
N−2θθ̄ψ̄0

)
∂0 −

i

2
N−1θ̄ψ̄0∂θ̄,

(C.58)

and similarly for D̄. By comparing the component expansion of (C.36) with eqs. (C.53)–

(C.56), we learn how the supergravity fields transform under local N = 2 supersymmetry

δǫN = −ǫψ̄0, δǭN = ǭψ0, δǫψ0 = iǫ̇, δǫψ̄0 = 0, δǭψ0 = 0, δǭψ̄0 = −i ˙̄ǫ. (C.59)

In order to build curved superspace actions that are manifestly invariant under local N = 2

supersymmetry, we need the analogue of
√−g to construct an invariant volume form. It

turns out that this is given by the super-determinant of the supervielbein, denoted simply

by E , and defined, in general, as

E := sdetEA
B = (detEa

b)(det[Eα
β − Eα

c(Ed
c)−1Ed

β])−1, (C.60)

where a, b, . . . and α, β, . . . denote vector and spinor indices, respectively. Specializing to

N = 2 supertime and inserting eqs. (C.53)–(C.56), one finds for the super-determinant of

the supervielbein

E = −N − i

2
θψ̄0 −

i

2
θ̄ψ0. (C.61)

Since there is no θθ̄-component in this expression, it follows that the canonical action of

pure supergravity vanishes as expected, that is

Spure sugra =

∫
dτd2θ E = 0. (C.62)

Also, as an additional consistency check, one may verify that E is super-covariantly con-

stant, so that ∫
dτd2θDE =

∫
dτd2θ D̄E = (total derivative) = 0 . (C.63)

This allows us to use the partial-integration rule for superspace.

In analogy to the flat superspace case, we will now present the different irreducible

multiplets. We begin with the 2a multiplet, defined by the constraint φ = φ†. The general

solution to this constraint leads to the component expansion

φ = ϕ+ iθψ + iθ̄ψ̄ +
1

2
θθ̄f , (C.64)

where the component fields are labelled as in (C.11). This can also be written in a mani-

festly super-covariant fashion as

φ = φ| + θ(Dφ|) − θ̄(D̄φ|) +
1

2
θθ̄([D, D̄]φ|). (C.65)
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For the supersymmetry transformations of the 2a component fields one finds

δǫϕ = −ǫψ,
δǫψ = 0,

δǫψ̄ =
i

2
N−1ǫϕ̇− 1

2
ǫf +

1

2
N−1ǫ(ψ0ψ + ψ̄0ψ̄), (C.66)

δǫf = −iN−1ǫψ̇ +
i

2
N−2ǫψ̄0ϕ̇+

1

2
N−1ǫψ̄0f − 1

2
N−2ǫψψ0ψ̄0,

δǭϕ = ǭψ̄,

δǭψ = − i

2
N−1ǭϕ̇− 1

2
ǭf − 1

2
N−1ǭ(ψ0ψ + ψ̄0ψ̄),

δǭψ̄ = 0, (C.67)

δǭf = −iN−1ǭ ˙̄ψ +
i

2
N−2ǭψ0ϕ̇− 1

2
N−1ǭψ0f +

1

2
N−2ǭψ̄ψ0ψ̄0 .

This is obtained by plugging in the component expansions (C.58) and (C.64) into the

general formula (C.40). A standard kinetic term of a single 2a superfield φ and its associated

component action are given by

S2a,kin = −1

4

∫
dτ d2θ E DφD̄φ =

1

4

∫
dτ L2a,kin,

L2a,kin =
1

4
N−1ϕ̇2 − i

2
(ψ ˙̄ψ − ψ̇ψ̄) +

1

4
Nf2 +

i

2
N−1(ψψ0 + ψ̄ψ̄0)ϕ̇+

1

2
N−1ψ0ψ̄0ψψ̄.

(C.68)

In the context of M-theory five-fold compactifications we need to consider more general

actions, representing non-linear sigma models for a set of 2a fields φi which also include a

(super)-potential term. The superspace and component forms for such actions read

S2a = − 1

4

∫
dτ d2θ E {Gij(φ)DφiD̄φj + W(φ)} =

1

4

∫
dτ L2a,

L2a =
1

4
N−1Gij(ϕ)ϕ̇iϕ̇j − i

2
Gij(ϕ)(ψi ˙̄ψj − ψ̇iψ̄j) +

1

4
NGij(ϕ)f if j

+
i

2
N−1Gij(ϕ)(ψiψ0 + ψ̄iψ̄0)ϕ̇

j +
1

2
N−1Gij(ϕ)ψ0ψ̄0ψ

iψ̄j

− 1

2
NGij,k(ϕ)(ψiψ̄jfk − ψkψ̄jf i − ψiψ̄kf j) +

i

2
Gij,k(ϕ)(ψkψ̄i + ψ̄kψi)ϕ̇j

−NGij,kl(ϕ)ψiψ̄jψkψ̄l − 1

2
NW,i(ϕ)f i −NW,ij(ϕ)ψiψ̄j − 1

2
W,i(ϕ)(ψiψ0 − ψ̄iψ̄0),

(C.69)

with a sigma model metric Gij(φ) and a superpotential W(φ) . Here, G...,i denotes differ-

entiation with respect to the bosonic fields ϕi. Note that the fields f i are indeed auxiliary.

Solving their equations of motion leads to

f i = GijWj +GijGkl,jψ
kψ̄l −GijGjk,l(ψ

kψ̄l + ψlψ̄k) , (C.70)

where Gij is the inverse of Gij and Wi = W,i = ∂W
∂ϕi . Inserting this back into the component

action leads, among other terms, to the scalar potential

S2a,pot = −1

8

∫
dτ N U , U =

1

2
GijWiWj , (C.71)
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for the scalars ϕi in the 2a multiplets. We will also need a slight generalization of (C.69),

namely an action for a set of 2a superfields Xp coupling to a set of other 2a superfields φi

and to a set of 2b superfields Za via the sigma model metric Gpq(φ,Z, Z̄):

S2a,gen. = − 1

4

∫
dτ d2θ E {Gpq(φ,Z, Z̄)DXpD̄Xq} =

1

4

∫
dτ L2a,gen.,

L2a,gen. =
1

4
N−1Gpq(ϕ, z, z̄)ẋ

pẋq − i

2
Gpq(ϕ, z, z̄)(λ

p ˙̄λq − λ̇pλ̄q) +
1

4
NGpq(ϕ, z, z̄)g

pgq

+
i

2
N−1Gpq(ϕ, z, z̄)(λ

pψ0 + λ̄pψ̄0)ẋ
q +

1

2
N−1Gpq(ϕ, z, z̄)ψ0ψ̄0λ

pλ̄q

− 1

2
NGpq,i(ϕ, z, z̄)(λ

pλ̄qf i − ψiλ̄pgq + ψ̄iλpgq) +
i

2
Gpq,i(ϕ, z, z̄)(ψ

iλ̄p + ψ̄iλp)ẋq

−NGpq,ij(ϕ, z, z̄)λ
pλ̄qψiψ̄j − i

2
Gpq,a(ϕ, z, z̄)λ

pλ̄q(ża − ψ0κ
a)

+
i

2
Gpq,ā(ϕ, z, z̄)λ

pλ̄q( ˙̄zā + ψ̄0κ̄
ā) − i

2
NGpq,a(ϕ, z, z̄)κ

aλ̄pgq

− i

2
NGpq,ā(ϕ, z, z̄)κ̄

āλpgq +
1

2
Gpq,a(ϕ, z, z̄)κ

aλ̄pẋq − 1

2
Gpq,ā(ϕ, z, z̄)κ̄

āλpẋq

−NGpq,ab̄(ϕ, z, z̄)λ
pλ̄qκaκ̄b̄ − iNGpq,ia(ϕ, z, z̄)λ

pλ̄qψ̄iκa

− iNGpq,iā(ϕ, z, z̄)λ
pλ̄qψiκ̄ā .

(C.72)

Next we turn to 2b multiplets. They are defined by the constraint D̄Z = 0 which leads

to the component expansion

Z = z + θκ+
i

2
N−1θθ̄(ż − ψ0κ) . (C.73)

Here, N and ψ0 are the components of the supergravity multiplet and the other fields are

labelled in analogy with the globally supersymmetric case (C.20). Expression (C.73) is

equivalent to the manifestly super-covariant version:

Z = Z| + θ(DZ|) − 1

2
θθ̄(D̄DZ|). (C.74)

By plugging in the component expansions (C.58) and (C.73) into the general for-

mula (C.40), the component field supersymmetry transformations are derived and read

δǫz = iǫκ, δǫz̄ = 0, δǫκ = 0, δǫκ̄ = N−1ǫ( ˙̄z + ψ̄0κ̄), (C.75)

δǭz = 0, δǭz̄ = iǭκ̄, δǭκ = N−1ǭ(ż − ψ0κ), δǭκ̄ = 0. (C.76)

A standard kinetic term for a single 2b multiplet Z can be written and expanded into

components as

S2b,kin = −1

4

∫
dτ d2θ E DZD̄Z̄ =

1

4

∫
dτ L2b,kin,

L2b,kin = N−1ż ˙̄z − i

2
(κ ˙̄κ− κ̇κ̄) −N−1(ψ0κ ˙̄z − ψ̄0κ̄ż) +N−1ψ0ψ̄0κκ̄.

(C.77)
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The generalization to a non-linear sigma model for a set, {Za}, of 2b multiplets is given by

S2b = − 1

4

∫
dτ d2θ E Gab̄(Z, Z̄)DZaD̄Z̄ b̄ =

1

4

∫
dτ L2b,

L2b = N−1Gab̄(z, z̄)ż
a ˙̄zb̄ − i

2
Gab̄(z, z̄)(κ

a ˙̄κb̄ − κ̇aκ̄b̄) −N−1Gab̄(z, z̄)(ψ0κ
a ˙̄zb̄ − ψ̄0κ̄

b̄ża)

+N−1Gab̄(z, z̄)ψ0ψ̄0κ
aκ̄b̄ − i

2
Gab̄,c(z, z̄)(κ

aκ̄b̄(żc − 2ψ0κ
c) − 2κcκ̄b̄ża)

+
i

2
Gab̄,c̄(z, z̄)(κ

aκ̄b̄( ˙̄zc̄ + 2ψ̄0κ̄
c̄) − 2κaκ̄c̄ ˙̄zb̄) −NGab̄,cd̄(z, z̄)κ

aκ̄b̄κcκ̄d̄.

(C.78)

Here, G...,a means differentiation with respect to the bosonic fields za. In our application

to M-theory, we need a variant of this action where the sigma model metric Gab̄ is also

allowed to depend on a set of 2a multiplets φi in addition to Za and Z̄ b̄. This leads to a

coupling between 2a and 2b multiplets. The action for this case reads

S2b = − 1

4

∫
dτ d2θ E Gab̄(φ,Z, Z̄)DZaD̄Z̄ b̄ =

1

4

∫
dτ L2b,

L2b = N−1Gab̄(ϕ, z, z̄)ż
a ˙̄zb̄− i

2
Gab̄(ϕ, z, z̄)(κ

a ˙̄κb̄−κ̇aκ̄b̄)−N−1Gab̄(ϕ, z, z̄)(ψ0κ
a ˙̄zb̄−ψ̄0κ̄

b̄ża)

+N−1Gab̄(ϕ, z, z̄)ψ0ψ̄0κ
aκ̄b̄ − i

2
Gab̄,c(ϕ, z, z̄)(κ

aκ̄b̄(żc − 2ψ0κ
c) − 2κcκ̄b̄ża)

+
i

2
Gab̄,c̄(ϕ, z, z̄)(κ

aκ̄b̄( ˙̄zc̄ + 2ψ̄0κ̄
c̄) − 2κaκ̄c̄ ˙̄zb̄) −NGab̄,cd̄(ϕ, z, z̄)κ

aκ̄b̄κcκ̄d̄

− 1

2
NGab̄,i(ϕ, z, z̄)κ

aκ̄b̄f i −NGab̄,ij(ϕ, z, z̄)κ
aκ̄b̄ψiψ̄j − iNGab̄,ic(ϕ, z, z̄)κ

aκ̄b̄ψ̄iκc

− iNGab̄,ic̄(ϕ, z, z̄)κ
aκ̄b̄ψiκ̄c̄ −Gab̄,i(ϕ, z, z̄)ψ

iκ̄b̄

(
ża − 1

2
ψ0κ

a

)

+Gab̄,i(ϕ, z, z̄)ψ̄
iκa

(
˙̄zb̄ +

1

2
ψ̄0κ̄

b̄

)
. (C.79)

This result can be readily specialized to Gab̄(φ,Z, Z̄) = f(φ)Gab̄(Z, Z̄), for a real function

f = f(φ), which is the case relevant to M-theory compactifications.

Finally, we need to discuss fermionic 2b multiplets, that is, super-multiplets R with a

fermionic lowest component and satisfying D̄R = 0. Their component expansion is given by

R = ρ+ θh+
i

2
N−1θθ̄(ρ̇− ψ0h), (C.80)

where the notation for the component fields is completely analogous to the globally su-

persymmetric case (C.27). The component supersymmetry transformations follow from

plugging in the component expansions (C.58) and (C.80) into the general formula (C.40)

and are given by

δǫρ = iǫh, δǫρ̄ = 0, δǫh = 0, δǫh̄ = −N−1ǫ( ˙̄ρ− ψ̄0h̄), (C.81)

δǭρ = 0, δǭρ̄ = −iǭh̄, δǭh = N−1ǭ(ρ̇− ψ0h), δǭh̄ = 0. (C.82)
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A simple kinetic term for a single fermionic 2b superfield R takes the form

S2b−f,kin = −1

4

∫
dτ d2θ E RR̄ =

1

4

∫
dτ L2b−f,kin,

L2b−f,kin =
i

2
(ρ ˙̄ρ− ρ̇ρ̄) −Nhh̄ .

(C.83)

Note that the only bosonic field, h, in this multiplet is auxiliary and, hence, we are left with

only fermionic physical degrees of freedom. This observation will be crucial for writing down

a superspace version of the effective one-dimensional theories obtained from M-theory. As

for the other types of multiplets, we need to generalise to a sigma model for a set, {Rx},
of fermionic 2b multiplets. The sigma model metric Gxȳ = Gxȳ(φ) should be allowed to

depend on 2a multiplets φi. Such an action takes the form

S2b−f = − 1

4

∫
dτ d2θ E Gxȳ(φ)RxR̄ȳ =

1

4

∫
dτ L2b−f ,

L2b−f =
i

2
Gxȳ(ϕ)(ρx ˙̄ρȳ − ρ̇xρ̄ȳ) −NGxȳ(ϕ)hxh̄ȳ − iNGxȳ,i(ϕ)(ψiρxh̄ȳ + ψ̄iρ̄ȳhx)

− 1

2
NGxȳ,i(ϕ)ρxρ̄ȳf i −NGxȳ,ij(ϕ)ρxρ̄ȳψiψ̄j +

1

2
Gxȳ,i(ϕ)ρxρ̄ȳ(ψ0ψ

i − ψ̄0ψ̄
i) .

(C.84)
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[9] H. Lü, C.N. Pope, K.S. Stelle and P.K. Townsend, String and M-theory deformations of

manifolds with special holonomy, JHEP 07 (2005) 075 [hep-th/0410176] [SPIRES].

[10] R.A. Coles and G. Papadopoulos, The Geometry of the one-dimensional supersymmetric

nonlinear σ-models, Class. Quant. Grav. 7 (1990) 427 [SPIRES].

[11] B. Julia, Group disintegrations, invited paper presented at Nuffield Gravity Workshop, June

22–July 12, Cambridge, U.K. (1980).

– 78 –

http://dx.doi.org/10.1016/0550-3213(85)90602-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B258,46
http://dx.doi.org/10.1016/0370-2693(96)01100-8
http://arxiv.org/abs/hep-th/9606148
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9606148
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://arxiv.org/abs/hep-th/9410167
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9410167
http://dx.doi.org/10.1016/0550-3213(95)00158-O
http://arxiv.org/abs/hep-th/9503124
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9503124
http://dx.doi.org/10.1016/0550-3213(96)00367-7
http://arxiv.org/abs/hep-th/9605053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA,50,3
http://dx.doi.org/10.1016/S0370-2693(97)00108-1
http://arxiv.org/abs/hep-th/9611007
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9611007
http://dx.doi.org/10.1016/S0370-2693(98)00391-8
http://arxiv.org/abs/hep-th/9802193
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802193
http://dx.doi.org/10.1088/1126-6708/2005/07/075
http://arxiv.org/abs/hep-th/0410176
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD,7,427


J
H
E
P
0
5
(
2
0
0
9
)
0
6
9

[12] T. Damour, M. Henneaux and H. Nicolai, E(10) and a ’small tension expansion’ of

M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [SPIRES].

[13] H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux

compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [SPIRES].

[14] J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960

[SPIRES].

[15] S. Sethi, C. Vafa and E. Witten, Constraints on low-dimensional string compactifications,

Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [SPIRES].

[16] P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds,

Nucl. Phys. B 355 (1991) 455 [SPIRES].

[17] G.W. Gibbons, G. Papadopoulos and K.S. Stelle, HKT and OKT geometries on soliton black

hole moduli spaces, Nucl. Phys. B 508 (1997) 623 [hep-th/9706207] [SPIRES].

[18] A. Bilal and S. Metzger, Anomaly cancellation in M-theory: a critical review,

Nucl. Phys. B 675 (2003) 416 [hep-th/0307152] [SPIRES].

[19] A. Miemiec and I. Schnakenburg, Basics of M-theory, Fortschr. Phys. 54 (2006) 5

[hep-th/0509137] [SPIRES].

[20] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions,

Phys. Lett. B 76 (1978) 409 [SPIRES].

[21] M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string/string duality: a

one-loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [SPIRES].

[22] M.B. Green and P. Vanhove, D-instantons, strings and M-theory,

Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [SPIRES].

[23] M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven dimensions,

Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [SPIRES].

[24] J.G. Russo and A.A. Tseytlin, One-loop four-graviton amplitude in eleven-dimensional

supergravity, Nucl. Phys. B 508 (1997) 245 [hep-th/9707134] [SPIRES].

[25] S.P. de Alwis, A note on brane tension and M-theory, Phys. Lett. B 388 (1996) 291

[hep-th/9607011] [SPIRES].

[26] S.P. de Alwis, Anomaly cancellation in M-theory, Phys. Lett. B 392 (1997) 332

[hep-th/9609211] [SPIRES].

[27] J.H. Schwarz, Superstring theory, Phys. Rept. 89 (1982) 223 [SPIRES].

[28] E. Witten, On flux quantization in M-theory and the effective action,

J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [SPIRES].

[29] P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau

manifolds, Nucl. Phys. B 298 (1988) 493 [SPIRES].

[30] A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity

compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144]

[SPIRES].

[31] B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory,

Phys. Rev. 160 (1967) 1113 [SPIRES].

[32] C.N. Pope, Lecture notes, online at http://faculty.physics.tamu.edu/pope/ihplec.ps.

– 79 –

http://dx.doi.org/10.1103/PhysRevLett.89.221601
http://arxiv.org/abs/hep-th/0207267
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0207267
http://dx.doi.org/10.1007/s11005-005-0022-x
http://arxiv.org/abs/hep-th/0502211
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0502211
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D28,2960
http://dx.doi.org/10.1016/S0550-3213(96)00483-X
http://arxiv.org/abs/hep-th/9606122
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9606122
http://dx.doi.org/10.1016/0550-3213(91)90122-E
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B355,455
http://dx.doi.org/10.1016/S0550-3213(97)00599-3
http://arxiv.org/abs/hep-th/9706207
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9706207
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.002
http://arxiv.org/abs/hep-th/0307152
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0307152
http://dx.doi.org/10.1002/prop.200510256
http://arxiv.org/abs/hep-th/0509137
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0509137
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B76,409
http://dx.doi.org/10.1016/0550-3213(95)00368-3
http://arxiv.org/abs/hep-th/9506126
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9506126
http://dx.doi.org/10.1016/S0370-2693(97)00785-5
http://arxiv.org/abs/hep-th/9704145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9704145
http://dx.doi.org/10.1016/S0370-2693(97)00931-3
http://arxiv.org/abs/hep-th/9706175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9706175
http://dx.doi.org/10.1016/S0550-3213(97)00631-7
http://arxiv.org/abs/hep-th/9707134
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9707134
http://dx.doi.org/10.1016/S0370-2693(96)01172-0
http://arxiv.org/abs/hep-th/9607011
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9607011
http://dx.doi.org/10.1016/S0370-2693(96)01569-9
http://arxiv.org/abs/hep-th/9609211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B392,332
http://dx.doi.org/10.1016/0370-1573(82)90087-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,89,223
http://dx.doi.org/10.1016/S0393-0440(96)00042-3
http://arxiv.org/abs/hep-th/9609122
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9609122
http://dx.doi.org/10.1016/0550-3213(88)90352-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B298,493
http://dx.doi.org/10.1016/0370-2693(95)00891-N
http://arxiv.org/abs/hep-th/9506144
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9506144
http://dx.doi.org/10.1103/PhysRev.160.1113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,160,1113
http://faculty.physics.tamu.edu/pope/ihplec.ps


J
H
E
P
0
5
(
2
0
0
9
)
0
6
9

[33] D. Roest, M-theory and gauged supergravities, Fortsch. Phys. 53 (2005) 119

[hep-th/0408175] [SPIRES].

[34] J. Gillard, U. Gran and G. Papadopoulos, The spinorial geometry of supersymmetric

backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [SPIRES].

[35] T. Hubsch, Calabi-Yau manifolds: a bestiary for physicists, World Scientific, Singapore

(1992), pag. 362.

[36] P. Candelas, Lectures on complex manifolds, in Trieste Spring School on Superstrings, April

1–11, Trieste, Italy (1987).

[37] P.S. Green, T. Hubsch and C.A. Lütken, All Hodge numbers of all complete intersection

Calabi-Yau manifolds, Class. Quant. Grav. 6 (1989) 105 [SPIRES].

[38] S. Naito, K. Osada and T. Fukui, Fierz identities and invariance of eleven-dimensional

supergravity action, Phys. Rev. D 34 (1986) 536 [SPIRES].

[39] J.W. van Holten, D = 1 supergravity and spinning particles, hep-th/9510021 [SPIRES].

[40] W. Machin, Supersymmetric σ-models, gauge theories and vortices, hep-th/0311126

[SPIRES].

[41] P.S. Howe, Superspace and the spinning string, Phys. Lett. B 70 (1977) 453 [SPIRES].

[42] E.J. Martinec, Superspace geometry of fermionic strings, Phys. Rev. D 28 (1983) 2604

[SPIRES].

[43] P.C. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore

(1990), pag. 425.

[44] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,

Princeton U.S.A. (1992), page 259.

[45] C.M. Hull, The geometry of supersymmetric quantum mechanics, hep-th/9910028 [SPIRES].

[46] J. Wess and B. Zumino, Superspace formulation of supergravity, Phys. Lett. B 66 (1977) 361

[SPIRES].

[47] R. Grimm, J. Wess and B. Zumino, Consistency checks on the superspace formulation of

supergravity, Phys. Lett. B 73 (1978) 415 [SPIRES].

[48] J. Wess and B. Zumino, Superfield lagrangian for supergravity, Phys. Lett. B 74 (1978) 51

[SPIRES].

[49] K.S. Stelle and P.C. West, Minimal auxiliary fields for supergravity,

Phys. Lett. B 74 (1978) 330 [SPIRES].

[50] S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity,

Phys. Lett. B 74 (1978) 333 [SPIRES].

[51] M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity,

Phys. Lett. B 105 (1981) 353 [SPIRES].

[52] P.S. Howe, Super Weyl transformations in two-dimensions, J. Phys. A 12 (1979) 393

[SPIRES].

[53] M.F. Ertl, Supergravity in two spacetime dimensions, hep-th/0102140 [SPIRES].

[54] P. Breitenlohner and M.F. Sohnius, Superfields, auxiliary fields, and tensor calculus for

N = 2 extended supergravity, Nucl. Phys. B 165 (1980) 483 [SPIRES].

– 80 –

http://dx.doi.org/10.1002/prop.200410192
http://arxiv.org/abs/hep-th/0408175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408175
http://dx.doi.org/10.1088/0264-9381/22/6/009
http://arxiv.org/abs/hep-th/0410155
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD,6,105
http://dx.doi.org/10.1103/PhysRevD.34.536
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D34,536
http://arxiv.org/abs/hep-th/9510021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9510021
http://arxiv.org/abs/hep-th/0311126
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311126
http://dx.doi.org/10.1016/0370-2693(77)90412-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B70,453
http://dx.doi.org/10.1103/PhysRevD.28.2604
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D28,2604
http://arxiv.org/abs/hep-th/9910028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9910028
http://dx.doi.org/10.1016/0370-2693(77)90015-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B66,361
http://dx.doi.org/10.1016/0370-2693(78)90753-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B73,415
http://dx.doi.org/10.1016/0370-2693(78)90057-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B74,51
http://dx.doi.org/10.1016/0370-2693(78)90669-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B74,330
http://dx.doi.org/10.1016/0370-2693(78)90670-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B74,333
http://dx.doi.org/10.1016/0370-2693(81)90778-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B105,353
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB,A12,393
http://arxiv.org/abs/hep-th/0102140
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0102140
http://dx.doi.org/10.1016/0550-3213(80)90045-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B165,483


J
H
E
P
0
5
(
2
0
0
9
)
0
6
9

[55] L. Castellani, P. van Nieuwenhuizen and J. Gates, S. J., The constraints for N = 2 superspace

from extended supergravity in ordinary space, Phys. Rev. D 22 (1980) 2364 [SPIRES].

[56] K.S. Stelle and P.C. West, Algebraic derivation of N = 2 supergravity constraints,

Phys. Lett. B 90 (1980) 393 [SPIRES].

[57] S.J. Gates Jr., Supercovariant derivatives, super Weyl groups, and N = 2 supergravity,

Nucl. Phys. B 176 (1980) 397 [SPIRES].

– 81 –

http://dx.doi.org/10.1103/PhysRevD.22.2364
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D22,2364
http://dx.doi.org/10.1016/0370-2693(80)90956-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B90,393
http://dx.doi.org/10.1016/0550-3213(80)90459-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B176,397

	Introduction
	The M-theory low energy effective action
	Calabi-Yau five-folds
	Compactification on Calabi-Yau five-folds
	Performing the dimensional reduction: the bosonic part
	Performing the dimensional reduction: the fermionic part

	Supersymmetry and Calabi-Yau five-folds
	N=2 supersymmetry transformations and multiplets
	The one-dimensional effective action in superspace

	Flux and the one-dimensional scalar potential
	Calculating the scalar potential from 11 dimensions
	A closer look at the bosonic action and the scalar potential

	Conclusion and outlook
	Index conventions and spinors
	Calabi-Yau five-folds
	Basic topological properties
	Examples of Calabi-Yau five-folds
	Complete intersection Calabi-Yau five-folds
	Torus quotients

	Some differential geometry on five-folds
	Five-fold moduli spaces
	Real vs. complex forms


	N=2 supersymmetry in one dimension
	Global N=2 supersymmetry
	Local N=2 supersymmetry


