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Abstract

The Q0 scheme of the LHC insertion region is based on
the introduction of a doublet of quadrupoles at 13 meters
from IP. In this scenario the value ofβ∗ can be reduced to
0.25 m with a moderate increase of theβ function inside
the inner triplet. We present here an optical layout, with
the required magnets parameters such as gradients, lengths,
positions and apertures. We also discuss in some details the
tolerance on alignment and the energy deposition.

INTRODUCTION

One possible option for the LHC IR upgrade [1] is based
on the introduction of two new quadrupoles inside the ex-
perimental devices, at 13 meters from IP.

The potential of this scenario, discussed in [2], is to
reduce the quadratic growth of theβ function, since the
two new quadrupoles should introduce an oscillation of
β between the IR triplet and the IP. Ideally, the modified
shape of theβ function should allow to interconnect the
optics withβ∗ = 0.25 m in the IP-side to the optics with
β∗ = 0.55 m in the inner triplet side, as shown in Fig. 1.
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Figure 1:β shift with Q0.

This ideal behavior is the starting point for a new opti-
mization of the interaction region based on five magnets, in
which the two Q0s should reduce the quadratic increase of
theβ function and the inner triplet should provide the final
focusing at the interaction point.

In this paper we present an IR layout compatible with
LHC optics, in whichβ∗ = 0.25 m, while the maximumβ
value is limited to5820 m (Fig. 3).
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OPTICS LAYOUT

Geometry

The proposed configuration of the interaction region is
represented in Fig. 2 and summarized in Table 1. The op-
tical functions are shown in Fig. 3 for the first 70 meters
from IP and in Fig. 4 for the whole interaction region.
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Figure 2: Q0 Layout.

Table 1: IR Layout.
Magnet L∗ [m] Length [m] Gradient [T/m]

Q0A 13.0 7.2 240
Q0B 20.8 3.6 196
Q1 25.8 8.6 200
Q2 37.1 11.5 172
Q3 52.0 6.0 160
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Figure 3: β function in the Q0-Triplet region whenβ∗ =
0.25 m.

With the nominal LHC IR layout and withβ∗ = 0.25 m,
the maximum value ofβ is of about9700 m (Fig. 5 and
Fig. 6).
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Figure 4:β function with Q0 layout andβ∗ = 0.25 m.
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Figure 5:β function in the nominal layout whenβ∗ = 0.25
m.

By using the Q0 doublet, the maximum value ofβ de-
creases to5820 m. The increase of the initial luminosity is
of a factor2 with respect to the LHC optic atβ∗ = 0.50
either in a zero-crossing angle scheme [3] or when compen-
sating the far beam-beam effect. Otherwise it is mandatory
to increase the crossing angle according to [4] and [5]:

θc = θc0

√
β0

∗

β∗
(6.5 + 3

√
NbnbnLR

Nb0nb0nLR0
) (1)

where nb is the number of bunches,Nb is the number
of protons for each bunch,nLR is the number of long-
range beam-beam collisions and the0 index represents the
nominal values. The crossing angle affects the luminosity,
through the geometric factor, expressed by:

F ≈ 1√
1 + ( θcσz

2σ∗ )2
(2)

(whereσz is the rms bunch length andσ∗ is the transverse
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Figure 6: Nominal layout atβ∗ = 0.25 m.

rms beam size). The luminosity is given by:

L = F
nbNb

2frev
4πσ∗2

(3)

wherefrev is the revolution frequency of the bunch. If the
crossing angle is of403 µrad, then the gain of the initial
luminosity is of1.75.

Aperture

The minimum value of the quadrupole apertureDmin is
estimated by means of the formula [6]:

Dmin > 1.1 · (10+2 ·9)σ+2 · (d+3 mm+1.6 mm) (4)

with a beam envelope of9 σ, a beam separation of10 σ, a
β-beating of20%, a peak orbit excursion of3 mm, and a
mechanical tolerance of1.6 mm. The parameters depend-
ing onβ are the rms beam radiusσ and the spurious dis-
persion orbitd. The values for beta function, the apertures
and the peak field are summarized in Table 2.

Table 2: Magnet apertures and peak field.
Magnet β Max [m] Dmin [mm] Peak field [T]

Q0A 2300 60 7.2
Q0B 4300 72 7.1
Q1 5780 80 8.0
Q2 5820 80 6.9
Q3 5770 80 6.4

The required integrated gradients may be reached using
NbTi superconductor technology or withNb3Sn but with
an higher margin for the energy deposition. In an further
optimized solution should be possible to decrease the gra-
dient of Q1 increasing the Q3 with minor changes into the
β function. It should also be possible to have the same gra-
dients for the five magnets (Q0A-Q3) saving the number of
power supply.

IR’07 PROCEEDINGS

68



Detuning

The injection optics corresponds to aβ∗ of 5 m. The
correspondingβ function along the IR is shown in Fig. 7.
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Figure 7:β function at injection.

The transition between injection and collision is per-
formed by varying the gradients of Q4-Q11 as shown in
Fig. 8. In a more careful optimization, polarity changes
should be prevented. Note that, during the detuning, the
gradients of Q0-Q3 remain unchanged.
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Figure 8: Q4-Q11 gradients from injection to collision.

MISALIGNMENTS

Following the arguments in [7] and [8] it is possible to
estimate the misalignment tolerance of Q0A and Q0B. We
have to consider two cases, one in which there is a relative
misalignment in between Q0A and Q0B, the other in which
Q0A-Q0B are in a rigid structure and misaligned with re-
spect to the inner triplet.

In thin lens approximation, the shiftδx(s) of the closed
orbit, resulting from quadrupole displacements∆XQi , is
given by:

δx(s) = ξ

[∑
i

(
θ
√

βx

)
i
cos (πQx − |∆µi|)

]
(5)

whereθi = Kili∆XQi is the deflection angle of the dipolar
component of the misaligned magnetQi, ∆µi = µx(s) −
µx(si), Qx is the tune, and theξ parameter is

√
βx(s)

2 sin(πQx) .
Note that the sign ofδx(s) depends on two factor: the

beam and the quadrupole. A positive dipolar component
for beam 1 corresponds to a negative one for beam 2. An
alignment error in the shared region creates a different ef-
fect respect to a misalignment in the not-shared sequence.
On the other hand, if the Q0A and Q0B magnets move in
phase, the kicks of the quadrupoles tend to be compensate
since the positive dipolar component for the focusing mag-
net corresponds to a negative dipolar component for the de-
focusing magnet. This is why, quadrupoles with opposite
gradients in a rigid structure, tend to compensate the mis-
alignment error of the structure itself.

A numerical estimation ofδx(s) induced by Q0A mis-
alignment can be performed usingQx = 64.31, K =
0.01027 m−2, l = 7.2 m, βx = 2300 m and |µx(s) −
µx(si)| = π

2 . In this caseδx(s) ≈ 0.825
√

βx(s)∆XQx

that means a closed orbit error of1.5 mm for a displace-
ment of50µm.

For Q0B one should useK = −0.0084 m−2, l = 3.6 m,
βx = 4300 m, Qx = 64.31 and |µx(s) − µx(si)| = π

2 .
Then one hasδx(s) ≈ −0.459

√
βx(s)∆XQx and a closed

orbit error of0.8 mm for a misalignment of50µm.
This displacements of the orbits is disruptive for the lu-

minosity: a7.5µm of counter-phase misalignment decrease
the luminosity of10%. It’s evident that a system of correc-
tors is mandatory to compensate this kind of effects.

If the Q0 doublet is mounted in a rigid structure, the
closed orbit error induced by a misalignment of the struc-
ture itself is compensated to a large extent and the align-
ment tolerance becomes of some hundreds ofµm.

ENERGY DEPOSITION

A preliminary evaluation of the energy deposition in
Q0A and Q0B magnet is performed using the design of
Fig. 9

Figure 9: Q0 design.

and the regions inside the magnet are schematized as illus-
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trated in Fig. 10.
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Figure 10: Q0 structure for the FLUKA model.

Here the aperture of the magnet is57mm because is
based on a preliminary model of Q0A magnet. The mag-
netic field map is obtained from a 2D ROXIE model and
the total energy absorbed by this geometry is evaluated in a
simulation with the FLUKA code. The results of the sim-
ulation is in Fig. 11 for the Q0A and in Fig. 12 for the
Q0B.
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Figure 11: Total energy absorbed by Q0A.

For this simulation was used a luminosity of1035 events
per second percm2 and a 1 meter long TAS in front of
Q0A.

The power on the magnets is106 W (14.7 W/m) for Q0A
and42.5 W (11 W/m) for Q0B. These powers exceeds the
capabilities of the cryogenic system that can extract at most
∼ 10 W/m in ideal conditions. Some solutions can be eval-
uated to reduce the energy deposition as proposed in [9].

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

-30 -20 -10  0  10  20  30

[cm]

-30

-20

-10

 0

 10

 20

 30

e
n
e
rg
y
 [
m
W
/c
m
3
]

Figure 12: Total energy absorbed by Q0B.

CONCLUSIONS

The Q0 layout is rapidly evolving from the original idea
proposed in [2] towards a full integration into the LHC
nominal optic (v6.5). The optics proposed in this paper re-
quires a Q0A quadrupole with a gradient of240 T/m, just
compatible with NbTi technology.

Misalignment tolerances for Q0A and Q0B are similar to
those required for the inner triplet; it’s reasonable to think
that the same system of correctors used in the triplet can be
applied for Q0A-Q0B.

The energy deposition is an issue that must be fully ex-
plore to propose reasonable solutions compatibles with a
system of energy extraction in a limited volume such as
inside the detector.
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