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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Speed Transformation of Speech

U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)

Alan V. Oppenheim, Michael R. Portnoff

One aspect of our effort to apply digital signal processing techniques to speech is
the development of ahigh-quality system to implement speed transformations on speech.
Our goal is to devise a scheme whereby a high-fidelity speech signal is modified so that
it is perceived as identical to the original signal in all aspects except that it appears
that the rate of utterance has been changed.

A system to perform such high-quality speed transformations has numerous appli-
cations, such as increasing the rate of speech in "talking books" for the blind and gen-
erating speech stimuli for psychoacoustical perception experiments. In contrast, it is
desirable to decrease the rate of speech in applications such as language learning,
speech therapy, and the transcription of poor-quality recordings of speech. Further-
more, we sometimes wish to introduce adaptive changes in the rate of utterance. For
example, in certain communication systems it is desirable to fit a given utterance into
a time slot of given duration.

We are considering three approaches for implementing high-quality speed transfor-
mations. The first approach is based on a linear-predictive analysis of speech. The
predictor coefficients are used to generate a linear time-variant least-squares inverse
filter and an analogous time-variant acoustic tube synthesis filter for the speech
waveform. The original speech signal is played through the inverse filter to produce
an error signal. The error signal is appropriately modified and then played through
the synthesis filter to produce the modified speech signal.

The second approach is based on short-time Fourier analysis. The short-time
Fourier spectrum is estimated for the speech waveform as a function of frequency and
time. The time rate of change of this spectrum is varied and the modified spectrum is
used to synthesize the modified speech signal.

The third approach is a combination of the two previous schemes. Here the analysis
and synthesis of the speech is performed by using the methods of linear prediction, and
the modification of the error signal is accomplished by short-time Fourier analysis
and synthesis.
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2. Enhancement of Degraded Speech

U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)

Ronald H. Frazier, Alan V. Oppenheim, Siamak Samsam,

W. Hans Schuessler, Elliot Singer

We have started a new set of projects related to the enhancement of degraded speech
in which the initial work is to apply variable comb filtering to track the pitch harmonics
of the desired speech. An earlier investigation of this approach was carried out sev-
eral years ago. Our present efforts are directed toward refining the technique and
developing ways of extracting the pitch of the desired speaker automatically in a
background of noise or multiple speakers. As one aspect of this work, an algorithm
has been developed by which digital comb filters can be designed with passbands of
arbitrary widths centered at arbitrary frequencies. The designs are obtained by
converting a lowpass prototype filter by means of a general all-pass transformation.
We have also developed techniques for designing the appropriate all-pass transfer
function. A second aspect of this project is concerned with exploring and evaluating
a class of nonlinear filtering techniques in which linear filtering is applied to a signal
transformed to a function of its arc length.

3. Spectral Zeros in Linear Prediction

U. S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)

Gary E. Kopec, Alan V. Oppenheim

In recent years the technique of linear predictive coding (LPC) has received con-
siderable attention as a basis for analysis-synthesis telephony, but no really high-
quality vocoder has yet emerged. There are two possible explanations for this.
Perhaps LPC, based on an all-pole model of speech production, suffers because it
cannot efficiently represent the effects of spectral zeros. Alternatively, it may be
that the problem arises from poor estimation of vocal tract excitation: the so-called
voiced/unvoiced decision.

We aim to address the first possibility by performing series of experiments on
artificially synthesized speech of known excitation and controlled spectrum. By
eliminating all errors of pitch'extraction, we can focus on the perceptual impact of
explicit zero coding in a very "clean" environment. Basically, we shall compare
all-pole LPC analysis with various schemes of pole-zero estimation. Subjective
reproduction fidelity will be used as a performance measure.

4. Implementation of a Programmable Digital Filter

U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)

Anthony P. Holt, Alan V. Oppenheim, Ernest Vincent

We are completing the implementation of a nonrecursive programmable digital
filter for use as a preprocessing filter for audio input to a digital computer. The

filter is 64t h order in a nonlinear phase configuration and 128thorder for linear phase.
During the coming year we plan to investigate the design and implementation of a
digital filter for which the cutoff frequency is varied by changing a single parameter.
The basic concept for implementation of variable cutoff digital filters of this type is
closely related to the theory of digital frequency warping.
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5. Seismic Data Analysis Using Homomorphic Filtering

U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)

Alan V. Oppenheim, Jos6 M. Tribolet

We have recently begun a research program to apply homomorphic deconvolution
techniques to seismic data analysis. Our work has been concerned with efficient
techniques for computation of the complex cepstrum, and to investigating the potential
for combining homomorphic techniques with the techniques of predictive deconvolution.
During the coming year we shall investigate some algorithms using both real and syn-
thetic seismic data.

6. Two-Dimensional Digital Filter Design

National Science Foundation (Grant GK-31353)

David B. Harris, Russell M. Mersereau,

Alan V. Oppenheim, Thomas Quatieri

We have been exploring a number of techniques for the design of two-dimensional
digital filters. Among these are use of transformations as suggested by McClellan,
equiripple Finite Impulse Response (FIR) designs using the first algorithm of Remez,
and design of Infinite Impulse Response (IIR) filters whose transfer functions have
separable denominators.

The McClellan transformation technique converts a one-dimensional linear phase
FIR filter into a two-dimensional linear phase FIR filter, by substituting a function of
two frequency variables for the single frequency variable of the one-dimensional filter.
The frequency response of the two-dimensional filter then depends in a rather simple
way upon the frequency response of the one-dimensional filter and upon the specific
transformation used. We have developed an algorithm for choosing the transformation
parameters efficiently and are now comparing the performance of these filters with
other two-dimensional design algorithms.

We have also developed an algorithm for finding the optimum equiripple two-
dimensional linear phase approximation to an arbitrary frequency response. This
uses the first algorithm of Remez which is modified to reduce the design time. The
algorithm appears to be efficient, but further modifications can probably be made to
increase the efficiency further. Convergence of the modified algorithm remains to
be proved.

We have also been concerned with the design of IIR filters with transfer functions
that have separable denominators. Unlike more general IIR filters, with such filters,
it is straightforward to guarantee the stability and implementation. We have found
an algorithm for designing these filters, but their performance remains to be com-
pared with more general IIR and FIR filters.

7. Analysis and Design of Digital Filter Structures

National Science Foundation (Grant GK-31353)

Ronald E. Crochiere, Alan V. Oppenheim

Our research on digital filter structures involves the investigation of general
digital network properties and the analysis of specific digital filter structures. During
the past six months, a doctoral thesis, entitled "Digital Network Theory and Its
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Application to the Analysis and Design of Digital Filters," was completed by Ronald
Crochiere. This research has produced new major results, including a matrix formu.
lation for digital networks, an approach to digital filter sensitivity analysis, the intro-
duction of precedence relations for evaluating parallelism in the implementation of
digital filters, and the development of a computer-aided network analysis program.
During the coming year, our research in the analysis of digital filter structures will
focus primarily on an attempt to understand the limit-cycle behavior of digital filters.

8. Small Signal Processor

U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)

Jonathan Allen

Design of a small signal processor (SSP) has been completed, and all parts obtained.
Layout of the large, 24 X 24 multiplier (involving 160 arithmetic-logic unit packages) is
complete, and the remaining layout will be facilitated by computer layout and wire-list
programs. Construction should be complete during the first quarter of 1975.

The SSP is unique in that it is a "straight" 3-address design, using two 1024 X 24
data memories, and a separate 1024 X 54 program memory. The 24-bit data word length
is intended for research applications for which high precision is required. The machine
includes a (X * Y) + Z functional unit that can multiply two 24-bit numbers and add a third
number (Z) to that result in 120 ns. Extensive shifting and rotating commands are pro-
vided, as well as a complete arithmetic-logic unit capability. Unlike many machines of
this class, a block transfer DMA facility is provided, the status of which can be moni-
tored at any time by the program. A timing clock, and direct D/A connections, are also
included. The logic is all in ECL 10k.

We believe that this machine will provide many features that are missing in small
signal-processing computers. The ease of programming, 24-bit word length, relatively
large memory, and convenient I/O interface combine with high speed to provide a very
useful machine. Additionally, the console provides the ability to display the contents
of any specified location while the machine is running, or to halt whenever that location
is addressed. We expect the SSP to provide an extremely fast, powerful, and conve-
nient signal-processing capability for laboratory use.
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A. COMPARISON OF DIGITAL FILTER STRUCTURES ON THE

BASIS OF COEFFICIENT WORD LENGTH

National Science Foundation (Grant GK-31353)

Ronald E. Crochiere

1. Introduction

In this report we compare several different classes of recursive filter structures

which have been proposed recently by numerous authors. Comparison is made primar-

ily on the basis of coefficient word length and on the number of multiplies and adds

required for various structures. Analyses of these structures were performed with the

aid of the general-purpose computer-aided digital network analysis package (CADNAP).

For the comparison2 we chose an eighth-order elliptic bandpass filter (Fig. XVI-1).
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Elliptic filters are widely used, and hence we are able to show that for certain classes

of filter designs, such as elliptic and bandpass transformed designs, the number of mul-

tiplies (in some classes of structures) can be reduced by taking advantage of the prop-

erties of these designs.

2. Filter Structure Examples

Thirteen different recursive filter structures were chosen for comparison (see

Table XVI-1). Although these are not all of the known structures that are possible, they

were chosen to give a typical cross section of the methods and philosophies for recur-

sive filter structure synthesis. It is hoped that this comparison will provide further

insight into promising methods for further research and thereby stimulate investigation

in these areas.

We examined first the well-known direct form II structure (sometimes referred to
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as the "canonic form"), the cascade form structure, and the parallel form structure,

where the cascade and parallel forms are implemented with first- and/or second-order

direct form II sections. These three classes of structures, in various forms, were the
first types of structures to be considered in digital signal processing. Their properties

3-6have been studied extensively and are well known.

The direct form structures are synthesized from the ratio of polynomials comprising
the system function and the coefficients in the structure take the values of the coeffi-

cients in these polynomials. Figure XVI-2 shows the direct form II structure for the
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Fig. XVI-2.

Direct form II structure (Example 1,
Table XVI-1).
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Fig. XVI-3.

Parallel form structure (Example 2,
Table XVI-1).
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Fig. XVI-4. Cascade (direct form II sections) structure (Example 3,
Table XVI-1).
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eighth-order bandpass filter specified in Fig. XVI-1. Structure characteristics in this

figure and many of those that follow are given in detail in the referenced examples in

Table XVI-1. The parallel form structures are synthesized from a partial-fraction

expansion of the system function, and the cascade form structures by factoring the

numerator and denominator polynomials of the system function into first- and/or second-

order polynomials. These structures are shown in Figs. XVI-3 and XVI-4 for the

k z
- 1

k = 0.006958654501

c1 = c4 = 0.1427911919

2 = c3 = 0.9440851323
C5 = 0.4512591755

c6 = c9 = 0.2228671158
-c 7 = c 8 = 0.9291979992

c 10 = -1.09869455

C11 = c14 = 0.0984508325

"c12 = c13 = 0.9797156572

c15 = -0.0099665157

c16 = c 1 9 = 0.275769432

' 17 = c18 = 0.9458018404

c20 = -0.7304169706

Fig. XVI-5. Cascade (coupled form) structure (Example 4, Table XVI-1).

STAGE 3 STAGE 4

Fig. XVI-6.
OUT Cascade structure with

10
Avenhaus type B sections
(Example 5, Table XVI-1).
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INI
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Fig. XVI-7. Cascade structure with Avenhaus 1 0 type F sections
(Example 6, Table XVI-1).

eighth-order bandpass example. In addition to the direct form II sections for the cascade

structures, many other possible network configurations for implementing these sections

have been proposed.4, 7 - 1 0 Three different forms of second-order sections were

selected from these possibilities for the eighth-order bandpass example. They are

the coupled form sections4,11 and the network configurations B and F proposed by

Avenhaus1 0 (see Figs. XVI-5, XVI-6, and XVI-7).

In the synthesis of bandpass filters such as the example that we are considering we

can first synthesize a lowpass prototype of the filter and then transform this function to
12 -1

a bandpass function.l2 In this transformation we replace all functions z with the all-

pass mapping g(z-1):

-1 -1 z (z -la)
replaced ) z-1
replaced 1 - az

where a is the mapping parameter. This same process can be incorporated into the

synthesis of filter structures by first synthesizing an appropriate lowpass filter and then

replacing all delays in the structure with a circuit (Fig. XVI-8) that realizes the mapping

in (1). The parameter a determines the bandpass center frequency Wo to which the dc

value of the lowpass filter function is mapped and can be expressed as
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Fig. XVI-8.

REPLACE I 1
BY I -1

(Z-1 )

g (z )

Lowpass to bandpass mapping.

I
b OUT

Fig. XVI-9.

Cascade (direct form II) struc-
ture synthesized with the bandpass
mapping transformation (Example 7,
Table XVI-1).
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Fig. XVI-10. Cascade (Avenhaus10 circuit E) structure synthesized with the
bandpass mapping transformation (Example 8, Table XVI-1).
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cos o = a. (2)

This synthesis approach is illustrated in Figs. XVI-9 and XVI-10. The example in

Fig. XVI-9 was synthesized from a fourth-order cascade structure with direct form II

sections. The example in Fig. XVI-10 was synthesized from a fourth-order cascade

structure with second-order sections in the form of circuit E proposed by Avenhaus. 10

Another way of representing the system function of a filter is in terms of continued

fraction expansions. Mitra and Sherwood 1 3 demonstrated that 4 basic forms of these

expansions are possible and that from these expansions we can construct a class of

structures. Two of these structures, type IA and type IB, were synthesized for the

eighth-order bandpass example (Figs. XVI-11 and XVI-12). The continued fraction

expansion of type IIA was not realizable for this example and the structure corresponding

to type IIB is noncomputable.

Ladder or lattice structures have received considerable attention recently. 14 -23
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Fig. XVI-11.

Continued fraction expansion structure
type IA (Example 9, Table XVI-1).

Fig. XVI-12.

Continued fraction expansion structure
type IB (Example 10, Table XVI-1).
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These structures are not synthesized by representing the system function in terms of

some form of factorization or expansion. Instead, the mechanisms behind the synthesis

procedures for these structures are closely related to the two-port network synthesis

techniques associated with conventional analog RLC circuits.

The ladder structure proposed by Mitra and Sherwood 1 4 was synthesized and is shown

in Fig. XVI-13. This structure has a ladder configuration only in terms of the imple-

mentation of the poles of the system function. The zeros are obtained as a linear com-

bination of the internal variables or state variables in the ladder.

I I
I I
I STAGE I ISTAGE 2

k

I I I
I I I
I STAGE 3 I STAGE 4 I STAGE 5
I I I
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I I
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6 
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Fig. XVI- 13. Ladder structure proposed by Mitra and
(Example 11, Table XVI-1).
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14. Ladder structure proposed by Gray and Markel 1 5

(Example 12, Table XVI-1).
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A second type of ladder structure, synthesized according to methods proposed

by Gray and Markel, 15 is shown in Fig. XVI-14. This structure also has a ladder con-

figuration only in terms of the implementation of the poles of the system function, and

the zeros are obtained as a linear combination of the internal "state variables" in the

structure.

Another procedure for the synthesis of ladder structures was proposed by

Fettweis,16-19 and we have proposed21 a modification for implementing the zeros in

these structures. For this class of structure the synthesis procedure is not only similar

to that for analog two-port circuits but, in fact, it is obtained by starting from an LC ana-

log ladder design and appropriately transforming this design into a digital ladder design.

To perform the synthesis of the eighth-order bandpass example, we started with a

fourth-order LC lowpass prototype (Fig. XVI-15a). This design was obtained by using

a standard set of tables of Saal. 2 4 This structure was then transformed to the bandpass

structure in Fig. XVI-15b, by using conventional transformations for LC ladder

designs.24 An important characteristic of this bandpass LC structure is that the gain

of the structure is zero at dc and at infinity. This is in contradiction to the even-order

optimal bandpass elliptic designs that require that the gain at these frequencies be finite.

RI= 10 R2 =0.60

c i TC c

C- = 1.258 C = 1.965

C = 0.1937 L = 0.8605

L = 1.073

(a)

12 1L3

RI= R2= 0.60

c1  L 2  C3  4 C

II I I I I
I STAGEI 1 STAGE 2 I STAGE 3 ISTAGE 4 I STAGE 5
I I I I I

C 1 = 7.05639 C3 = 2.68897 C5 = 0.207180

L1 = 0.141716 L3 = 0.548493 L5 = 4.82673

C2 = 1.82318 C4 = 11.02210

L2 = 0.371889 L4 = 0.0907268

(b)

Fig. XVI-15. (a) Normalized fourth-order LC lowpass prototype.
(b) Bandpass eighth-order LC ladder structure.

PR No. 115 240



(XVI. DIGITAL SIGNAL PROCESSING)

In fact, it is not possible to realize the optimal elliptic designs for even-order filters

by using this class of LC structures (odd-order optimal elliptic designs present no prob-

lems). In practice, the optimal even-order elliptic designs are transformed to slightly

less than optimal designs in a manner such that the largest zero in the frequency

response is mapped to infinity and the smallest zero, for bandpass designs, is mapped to

dc. This is illustrated in Fig. XVI-16. Because of this problem we could not synthe-

size an eighth-order digital ladder structure of this type for our specifications. Instead,

ITI

f = ANALOG FREQUENCY

w = DIGITAL FREQUENCY

Fig. XVI-16. Comparison of optimal eighth-order elliptic bandpass filter
and suboptimal design for LC ladder structure.
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Fig. XVI- 17. Wave digital filter structure (Example 13, Table XVI-1).
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we used the nearest suboptimal eighth-order design in the tables of Saal24 which cor-

responded to the LC structures in Fig. XVI-15. The equivalent digital design specifi-

cations for this analog structure corresponded to

E = 0.01623 E = 0.0066705
p s

O = 0.4111111 ? s = 0.3839368 7r
pl sl

p2 =0.4666667 7 ¢s2 = 0.4952625 T.

17, 18
Using techniques suggested by Fettweis and Sedlmeyer and our own modifica-

21
tion for implementing zeros, we transformed the analog ladder design of Fig. XVI-15b

to the wave digital filter configuration shown in Fig. XVI-17.

3. Comparison of Recursive Filter Structure Characteristics

We shall now interpret our analyses of the recursive filter structures whose char-

acteristics are summarized in Table XVI-1.

a. Coefficient Word Length

The coefficient word lengths of these structures are compared on the basis of the

fixed-point statistical word length.2 They are given for relative errors R = 1 (see

Fig. XVI-1) and confidence factors y = 0. 95 (i. e., x= 2). The statistical word length

for each structure was determined separately for the passband and stop band in order

to obtain a more general picture of the overall sensitivity properties of the structure.

For each structure the value iM used in the statistical word length definition is given,
i

where 2 is the power of 2 represented by the most significant bit in the coefficient

word length. This value iM , in general, is different for different structures. It is

chosen so that the largest value of the magnitudes of the coefficients in the structure is
iM +1 i

within the range 2 and 2 (exclusive of the gain constant).

In general, we found for this bandpass example that the direct form structure, the

continued fraction form structures, and the ladder structure of Mitra and Sherwood

required considerably larger coefficient word lengths. The structures with the lowest

coefficient word lengths were the parallel form, the cascade (Avenhaus F) form, and

the bandpass transformed structure designed from a cascade (Avenhaus E) lowpass pro-

totype.

The statistical word length for the wave digital filter structure is essentially the same

as that of the cascade (direct form II) structure in both the passband and the stop band.

When we rounded the coefficients in fixed-point arithmetic, however, we found that in

the passband the wave digital filter structure required approximately 3 bits less for a
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Table XVI-1. Comparison of recursive filter structure characteristics.

Statistical Word

Length (bits) Bit *
No. No. Multiply

Example Network Passband Stop Band iM Multiplies Adds Product

1 Direct Form II 20.86 10.85 2 16 16 334

2 Parallel Form 10.12 7.95 -1 18 16 182

3 Cascade (Direct Form II) 11.33 5.76 0 13 16 147

4 Cascade (Coupled Form) 11.70 5.78 0 21 20 246

5 Cascade (Avenhaus B) 11.22 5.96 0 13 16 146

6 Cascade (Avenhaus F) 10.57 5.95 0 13 24 137

7 BP Transformed 12.69 7.23 0 11 16 139
(Cascade, Direct Form)

8 BP Transformed 9.99 6.21 -1 11 20 110
(Cascade, Avenhaus E)

9 Continued Fraction LA 29.64 21.69 6 17 16 504

10 Continued Fraction IB 22.61 14.46 4 18 16 408

11 Ladder 28.72 20.97 8 17 16 488
(Mitra and Sherwood)

12 Ladder 13.97 10.81 0 17 32 238
(Gray and Markel)

13 Wave Digital Filter 11. 35 5.67 -1 12/11 31 136/125
(Fettweis)

See text.
tSee Crochiere.2
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Fig. XVI-18. Comparison of the actual coefficient word length for the wave
digital filter structure and the cascade (direct form II) struc-
ture: (a) passband, (b) stop band.

given relative error than the cascade structure, provided that the coefficients were not
"grossly quantized" so that the relative errors exceeded approximately 1 or 2. This
can be observed in Fig. XVI-18a. For the stop band, as seen in Fig. XVI-18b, the word
lengths are approximately the same. Thus it appears that the statistical word length for
the wave digital filter structure is somewhat overestimated in the passband.

b. Multiplies, Adds, and Bit * Multiplier Products

The number of multiplies and adds required for each structure is tabulated in
Table XVI-1. The bandpass transformed structures and the wave digital filter structure
could each be implemented with 11 multiplies. For the cascade structures, except the
cascade (coupled form) structure, the number of multiplies was 13. The rest of the struc-
tures generally required approximately 17 multiplies, which is the number of degrees
of freedom necessary to specify the poles and zeros of an arbitrary eighth-order system
function with complex poles and zeros in conjugate pairs.
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The number of adds in many of the structures was 16. For those structures where

we could obtain lower coefficient word lengths than in the cascade (direct form II) struc-

ture (Examples 6, 8, and 13), we found that it was generally obtained at the expense of

increasing the number of adds and the complexity of the structure.

To obtain a crude estimate of the total amount of computation involved in each struc-

ture, we evaluated the bit -multiplier products (see Table XVI-1). The number of bits

was taken as the passband statistical word length.

c. Modularity and Complexity of Structures in Terms of Hardware

The modularity in a digital structure may be defined as the topological redundancy

in the structure. Most structures exhibited a form of modularity that is identical from

stage to stage. The only exception is the wave digital filter structure in which only some
of the stages are identical. The bandpass transformed structures exhibited a dual form
of modularity. They are identical from stage to stage and also in the bandpass mapping
networks which replace the delays in the lowpass prototype.

4. Other Comments

The comparison of the structures made in this report has been primarily on the basis
of coefficient word length and on the number of multiplies and adds required for the
structures. These attributes are clearly important in the choice of a filter structure,

but they are not the only factors to be considered. Of equal importance are the issues
of round-off noise, dynamic range, and limit cycle effects. Considerable work has been
done in these areas by Oppenheim, Weinstein, Kaiser, Jackson, Liu, and others.5, 6

Although these issues have not been considered in this report, it is important to men-
tion them so that our results may be viewed in proper perspective to the overall issues
of filter structure synthesis.
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